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Abstract

Clinical documentation is an important aspect
of clinicians’ daily work and often demands a
significant amount of time. The BioNLP 2024
Shared Task on Streamlining Discharge Doc-
umentation (Discharge Me!) aims to allevi-
ate this documentation burden by automatically
generating discharge summary sections, includ-
ing brief hospital course and discharge instruc-
tion, which are often time-consuming to syn-
thesize and write manually. We approach the
generation task by fine-tuning multiple open-
sourced language models (LMs), including
both decoder-only and encoder-decoder LMs,
with various configurations on input context.
We also examine different setups for decod-
ing algorithms, model ensembling or merging,
and model specialization. Our results show
that conditioning on the content of discharge
summary prior to the target sections is effec-
tive for the generation task. Furthermore, we
find that smaller encoder-decoder LMs can
work as well or even slightly better than larger
decoder-based LMs fine-tuned through LoRA.
The model checkpoints from our team (aehrc)
are openly available.1

1 Introduction

Clinical documentation in the age of Electronic
Health Records (EHRs) can be a significant burden
to clinicians in recording clinical information ef-
fectively (Colicchio et al., 2020; Rule et al., 2021).
This reduces the time clinicians spend interacting
with their patients and could lead to stress and
burnout (Colicchio et al., 2019), degrading both
the quality of patient care and the experience of
care providers (Shanafelt et al., 2016).

Language Models (LMs) have demonstrated im-
pressive NLP capabilities and are considered to
have the potential to reduce the clinical documen-
tation burden by automatically generating clinical

1https://github.com/JHLiu7/
bionlp24-shared-task-discharge-me

text (Patel and Lam, 2023; Roberts, 2024; Omiye
et al., 2024). For example, a recent study (Van Veen
et al., 2024) demonstrated that LMs can generate
succinct clinical summaries from text including
progress notes and patient-doctor dialogues, some-
times even preferred over those written by medical
experts. The BioNLP 2024 Shared Task “Discharge
Me!” (Xu et al., 2024) focuses on generating the
discharge summary (or discharge note) to assess
the potential of LMs for this specific type of clini-
cal note, which is often more time-consuming for
clinicians to document and also more challenging
to model given its length and complexity.

This paper presents the submissions from e-
Health CSIRO in the shared task. We approach
the task by fine-tuning multiple open-sourced LMs,
including both decoder-only and encoder-decoder
models. We fine-tune these models to generate two
specific sections from discharge notes: brief hospi-
tal course and discharge instruction, by condition-
ing on the prior content in the notes as context. We
explore various configurations with input context,
decoding, ensembling, and target specialization.
We find that much smaller encoder-decoder LMs
could have a slight edge over fine-tuning decoder-
only LMs (all with the size of 7/8B parameters)
with LoRA (Hu et al., 2022). Our best submis-
sion ranked 3rd on the final leaderboard under both
automatic and manual evaluation.

2 Methods

2.1 Task and Dataset

The Shared Task focuses on generating two im-
portant sections of discharge notes: brief hospital
course (BHC) and discharge instruction (DI). The
first section provides a snapshot of the important
information about the patient care during the hos-
pital, and the second a summary to communicate
that information and instructions after leaving the
hospital to patients. The audiences for the two

https://github.com/JHLiu7/bionlp24-shared-task-discharge-me
https://github.com/JHLiu7/bionlp24-shared-task-discharge-me
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sections are different as the former is read by clin-
icians while the latter by patients. The Shared
Task uses the MIMIC-IV database (Johnson et al.,
2023) to curate the dataset consisting of 109,168
patients, which are split into Train (68,785), Valida-
tion (14,719), Phase I testing (14,702), and Phase
II testing (10,962). Each patient has a discharge
summary that includes both sections, and partic-
ipants are allowed to utilize data elements in the
EHR database beyond the note alone as input.

Sections  
Part 1

Sections  
Part 2BHC DIDischarge 

Note:

Radiology 
Report 1

Radiology 
Report 2

Radiology 
Report 3

Radiology 
Reports: …

Figure 1: Illustration of the contents in clinical notes.

Our experiments focus only on the free-text clin-
ical notes as input and do not consider other data
modalities. We primarily use the content in the
discharge note prior to the corresponding target
section as input context. Radiology reports are con-
sidered optionally. We depict the note structures in
Figure 1. Specifically, we consider the base con-
text for BHC as Cbhc

base = “Sections Part 1”, and
for DI as Cdi

base = “BHC” + “Sections Part 2”.
We consider two types of prolonged contexts: 1)
Cbase+rad = Cbase + “Rad Reports”, where radiol-
ogy reports are concatenated with with the related
sections; and 2) Cdi

long = “Sections Part 1” + Cdi
base,

which extends the input context for DI. We then
train models to generate the target sections T bhc

and T di based on the corresponding contexts.

2.2 Language Models

We consider both decoder-only and encoder-
decoder LMs for our experiments. For decoder-
only LMs, we examine three popular open-sourced
models at 7/8 billion paramater levels, including
Llama3-8B 2, Mistral-7B (Jiang et al., 2023), and
Gemma-7B (Gemma Team, 2024), all based on the
instruction-tuned versions, denoted as Llama3-it,
Mistral-it, and Gemma-it. Additionally, we exam-
ine the base version of Llama3-8B, denoted simply
as Llama3. For encoder-decoder LMs, we focus on
PRIMERA (447M) (Xiao et al., 2022) and Long-
T5 (770M, global attention) (Guo et al., 2022), both
capable of handling long input and output lengths.

To determine the maximum lengths for model-

2https://ai.meta.com/blog/meta-llama-3/

# Max Tokens
(Llama3)

# Max Tokens
(PRIMERA)

Cbhc
base 2816 3328

Cdi
base 2048 2048

Cdi
long 4608 5120

Cbhc
base+rad 4608 5120

Cdi
base+rad 3840 4096

T bhc 1280 1280
T di 512 512

Table 1: Number of maximum tokens for modeling.

ing, we calculate the 85th percentile of the number
of tokens and round it up to a multiplier of 256
for each LM. We present the statistics for Llama-3
and PRIMERA in Table 1 as examples. With each
LM, we train two independent models for BHC
and DI. For decoder-only LMs, we construct the
prompt template similar to Alpaca (Taori et al.,
2023), shown in Appendix Figure 2.

We then fine-tune these LMs for the text gen-
eration task. The decoder-only LMs, on the other
hand, are loaded in half-precision (BF16) and fine-
tuned through LoRA. We follow the setup from
Dettmers et al. (2023) and use lr = 2e-4, r = 64,
alpha = 16, with LoRA attached to all linear lay-
ers. The encoder-decoder LMs are fully fine-tuned
with lr = 5e-5. All LMs are trained with batch size
of 16 for 5 epochs using Adam, with 3% ratio for
linear warmup. We use the default generation con-
figuration, including the decoding algorithms, for
the pretrained LMs. All experiments are performed
on NVIDIA H100 GPU.

2.3 Evaluation
The automatic evaluation is based on 8 popu-
lar pairwise metrics, including BLEU-4 (Pap-
ineni et al., 2002), ROUGE-1/2/L (Lin, 2004),
BERTScore (Zhang* et al., 2020), Meteor (Baner-
jee and Lavie, 2005), AlignScore (Zha et al., 2023),
and MEDCON (Yim et al., 2023). They present
a diverse set of measurements for string overlaps,
semantic similarity, and medical concept mapping.
The results for BHC and DI are averaged for each
metric. The final ranking of the Shared Task is
based on the average of the all scores on 250 hidden
cases from Phase II testing, although participants
are required to submit generation for all cases.

2.4 Experimental Setup
We investigate several factors that could impact the
generation performance and compare them with
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Model Overall BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON
Fine-tuning baselines based on Cbase

Llama3 28.05 10.05 35.65 13.56 25.65 38.66 39.98 25.93 34.90
Llama3-it 23.53 7.88 25.56 9.66 15.70 35.13 38.90 22.73 32.69
Mistral-it 23.71 5.46 32.43 12.23 21.04 30.58 34.49 23.11 30.34
Gemma-it 25.14 6.31 35.04 11.18 24.53 32.91 36.07 23.46 31.60
PRIMERA 29.17 10.55 40.33 15.94 25.69 41.17 37.92 26.49 35.28
Long-T5 22.47 6.31 30.16 8.88 19.12 32.31 31.44 22.50 29.07

Extended Input Context
Llama3 w/ Cbase+rad 25.15 8.69 27.24 10.81 19.20 37.26 39.17 25.11 33.71
PRIMERA w/ Cbase+rad 29.10 10.64 39.76 15.75 27.10 40.31 37.55 27.10 34.61
Llama3 w/ Cdi

long 28.33 9.56 37.27 12.93 25.87 38.67 40.64 26.67 35.04
PRIMERA w/ Cdi

long 28.26 10.14 38.93 13.48 23.73 40.68 37.95 26.80 34.37
Unified LM for both Tbhc and Tdi

Llama3 (single) 25.38 7.89 31.79 11.34 21.89 35.38 38.91 23.39 32.42
Alternative Decoding for Llama3

Llama3 w/ beam 25.20 10.06 29.14 8.05 17.83 37.05 40.57 26.17 32.71
Llama3 w/ constrastive 24.09 8.36 27.81 10.13 18.24 36.10 35.52 26.37 30.21

Ensemble Decoding
Llama3 + Llama3 26.17 9.67 28.79 11.36 21.02 38.31 39.71 26.29 34.24
Llama3 + Llama3-it 27.04 9.66 32.68 12.99 22.30 37.96 39.79 26.10 34.84

Merging LoRA Adapters
Llama3 x2 LoRA 25.78 8.20 34.48 11.60 22.69 35.81 37.44 23.25 32.79
Llama3 x4 LoRA 21.80 4.50 33.05 11.97 20.45 30.79 28.31 17.35 28.00

Table 2: Results from automatic evaluation, based on 250 hidden samples from Phase II testing.

the base generation setup, in which two LMs of
the same architecture are trained on Cbase for BHC
and DI, respectively. We examine the impact of
extended input context by replacing Cbase with
Cbase+rad or Cdi

base with Cdi
long. Taking Llama3 as

the example, we explore a variety of modifications,
including training a unified LM that models the
two targets jointly to explore the benefit of target
specialization. We also apply various decoding al-
gorithms other than greedy search, including beam
search (n = 4), and contrastive search (α = 0.6,
k = 6) (Su et al., 2022). Furthermore, we explore
ensemble decoding (Manakul et al., 2023) and the
popular adapter merging with Llama3 as the ex-
ample. The former averages the logits from two
LMs for generating each token with greedy search,
and the latter applied TIES (Yadav et al., 2023)
to merge the paramters of several LoRA adapters
(equal weights, density of 0.5) before attaching it to
the main LM. Finally, we prompt instruction-tuned
LMs in the zero-shot manner, including the 70B
checkpoints, on a subset of validation to observe
the benefit of fine-tuning for this task.

3 Results & Analysis

3.1 Both Decoder and Encoder-encoder LMs
Work Well When Fine-tuned

We firstly find all LMs obtain decent results when
fine-tuned with Cbase. Meanwhile, the instruction-
tuned decoder-only LMs perform worse than the

base version of Llama3. This aligns with exist-
ing findings that instruction tuning could harm
performance on NLP benchmarks (Ouyang et al.,
2022; Ivison et al., 2023). PRIMERA performs
slightly better than Llama3, despite being the small-
est model we examined. On the other hand, Long-
T5 seems to struggle with the task.

3.2 Prior Context of Dicharge Note is
Sufficient as Input

We observe poorer results when including radiol-
ogy reports as supplementary input for both Llama3
and PRIMERA. Although the input context lengths
increase more than 50% with the radiology reports,
it appears that no new, valuable information is
added. Instead, it misleads the LMs to produce
worse outputs, especially for Llama3. This shows
the content in the discharge notes have well cap-
tured free-text information from the existing EHR
data. Using radiology reports alone offers an over-
all score from 19.1 to 20.3 (Appendix Table 4).

3.3 Prolonged Context in Discharge Note
Offers Little Value

In a similar fashion, we extend the input context
for DI by including contents prior to BHC, namely
Cdi
long. Again, more context does not necessarily

lead to better results. We consider this is likely due
to the fact that BHC and the content between BHC
and DI have provided sufficient information for
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generating DI. Future work may explore how to fur-
ther trim down the input to reduce the noise, such
as through de-duplication (Kandpal et al., 2022;
Liu et al., 2022), to enhance performance.

3.4 Two Specialized LMs are Better Than
One Unified LM

Instead of trainig two copies of LM for each section,
we combine samples for both targets together to
train a single model that is capable to produce either
of the sections. We explore this with Llama3, fine-
tuned with LoRA in the same setup as previous.
We see the unified Llama3 performs worse than the
two independant copies of Llama3, demonstrating
the importance of specialization in modeling BHC
and DI independently. Furthermore, as the two
copies share the same base model and differs only
in adapters, keeping them separately does not lead
to significantly more storage cost than the unified
model.

3.5 Better Decoding Methods Lead to Mixed
Results

The Phase II test results in Table 2 indicate that
better decoding algorithms, such as beam search
and contrastive search, could lead to worse results
than the baseline greedy search. Interestingly, our
initial experiments on the 1000 validation samples
in Appendix Table 5 show that they are at least on
par and sometimes better. The mixed results show
the diversity of the dataset and the need to further
investigate the distribution and biases of the data.

3.6 Ensemble Decoding is Not Helpful

An ensemble of two Llama3 models trained using
different data or with different base LMs at the to-
ken level is not helpful. With Llama3 + Llama3,
we ensemble Llama3 fine-tuned using Cbase and
Cbase+rad, and with Llama3 + Llama3-it, we en-
semble the base and instruction-tuned Llama3 fine-
tuned both using Cbase. Neither of these two pairs
produced improved results. Although ensembling
is found helpful previously for generation (Man-
akul et al., 2023), for our task naively averaging
the logits at token-level during decoding is both
inefficient and ineffective.

3.7 Merging Adapters is Not Helpful Either

Similarly, we perform another form of ensemble
by merging the LoRA adapter weights for the
same base LM. Merging with x2 LoRA is based on
adapters trained using Cbase and Cbase+rad, while

merging with x4 further merges the adapters for
BHC and DI. Both substantially decrease the perfor-
mance, and merging adapters trained for different
targets leads to the worst result in our fine-tuning
experiments. This again shows that model special-
ization is important for the current task. In addition,
it is possible that model merging tends to prevail in
generating creative contents instead of improving
the specific aspects of generation quality.

3.8 Fine-tuned LMs Substantially
Outperform Out-of-box LMs

Finally, we prompt the instruction-tuned LMs in the
zero-shot manner to compare with fine-tuned per-
formance. Besides Llama3-8B-it and Mistral-7B-it,
we additionally prompt the 70B scale Llama3-70B-
it and Mixtral-8x7b-it (Jiang et al., 2024). They
achieve an overall score ranging from 15.1 to 17.4
(details in Table 5), significantly fell short com-
pared to the fine-tuned results. Although more
advanced prompting strategies are expected to en-
hance performance, we suspect that fine-tuning
would still be the more effective solution given the
amount of training data.

4 Discussions

We demonstrate that fine-tuning LMs based solely
on the prior content from the discharge note is suf-
ficient to generate BHC and DI sections. Given
the heterogeneity of EHR data (Yadav et al., 2018)
and variations in clinical notes (Liu et al., 2024),
selecting the appropriate inputs would be crucial
for both the quality and applicability of the genera-
tion. In this work, we assume that the non-BHC/DI
contents of the discharge note have been populated
from other available sources or clinical notes, mak-
ing them readily available as model input.

The context for BHC (“Sections Part 1” in Fig-
ure 1) typically includes chief complaint, history
of present illness, past medical history, social his-
tory, physical exam, and various pertinent results.
The “Sections Part 2” of DI context may include
admission and discharge medications, discharge
disposition, dischage diagnoses.

Using these sections as input yields competitive
generation results, and including additional text
sources like radiology reports does not lead to im-
provement. One explanation is that the sections
within the discharge summary, such as “pertinent
results”, often already include imaging findings.
Future work may futher investigate how selecting
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Model Overall BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON
WisPerMed 33.2 12.4 45.3 20.1 30.8 43.8 40.3 31.5 41.1
HarmonAI Lab at Yale 30.0 10.6 42.3 18.0 28.4 41.2 38.1 26.5 35.3
aehrc (ours) 29.7 9.7 41.4 19.2 28.4 38.3 39.8 27.4 33.2
EPFL-MAKE 28.9 9.8 44.4 15.5 26.2 39.9 33.6 25.5 36.0
UF-HOBI 28.6 10.2 40.1 17.4 27.5 39.5 28.9 29.6 35.5

(a) Automatic evaluation results on 250 cases from Phase II test set.

Team Average
BHC

Completeness
BHC

Correctness
BHC

Readability
BHC

Overall
DI

Completeness
DI

Correctness
DI

Overall

WisPerMed 3.4 3.7 3.7 3.4 2.4 3.9 4.0 2.5
HarmonAI Lab at Yale 2.9 3.5 2.6 2.1 1.5 4.3 3.9 2.4
aehrc (ours) 2.8 2.3 3.1 2.0 1.1 3.9 4.5 2.6
EPFL-MAKE 2.7 3.3 2.8 2.5 1.7 3.5 3.4 1.9
UF-HOBI 2.6 2.5 3.4 2.7 1.4 3.0 3.3 1.8

(b) Manual evaluation results by clinicians on 25 selected cases.

Table 3: Results from the top-5 teams on the final Phase II leaderboard.

relevant content (Zheng et al., 2023) or removing
redundant information (Liu et al., 2022) impacts
the performance. It is also unclear whether other
sources of EHR information should be considered,
especially those not captured by the discharge sum-
mary. These include structured EHR data and other
types of clinical text, such as nursing or physician
notes. Regarding structured data elements, this
study does not consider diagnosis codes like ICD
or DRG (Dong et al., 2022; Liu et al., 2021b), as
they are typically assigned after the patient dis-
charge. However, future work could model other
measurement data or codes from prior patient en-
counters. Examining the end-to-end generation of
discharge notes solely from structured EHR data
and other clinical notes is also important to ensure
that the generation model integrates into different
clincial documentation workflows.

From the modeling perspective, we find that fine-
tuning smaller LMs, such as PRIMERA, achieves
surprisingly good results. Examination of any po-
tential biases or overfitting is left for future work.
During development, we observed that the gen-
eration qualities of Llama3 and PRIMERA were
similar (examples shown in Appendix Table 6 & 7)
and had better quality compared to other LMs like
Mistral (see Appendix Table 7), consistent with
the quantitative analysis. We noticed that Llama3
tended to generate repetitive content more often
and tried to alleviate this with better decoding tech-
niques, but were unable to improve the overall per-
formance on quantitative metrics (see Table 2). It is
possible that more hyperparameter search on either
fine-tuning or decoding could lead to improvement,
which we leave to future work.

Given the slight edge over Llama3 and other
LMs, PRIMERA was our final submission. Table 3
shows the final leaderboard, in which we rank 3rd

overall and are close to 2nd under both automatic 3

and manual evaluation, with the latter conducted
by a team of clinicians on 25 selected samples.

Similar to previous findings (Van Veen et al.,
2024), we see that the manual evaluation aligns
with the automatic evaluation in ranking different
systems. The manual evaluation further reports
fine-grained scores on Completeness, Correctness,
and Readbility for BHC and DI separately. Inter-
estingly, we observe that PRIMERA obtains the
best overall score for DI but worst for BHC among
the top-5 teams. This may indicate the model ca-
pacity correlates with the length or complexity of
the target generation, with smaller LMs potentially
struggling with prolonged outputs. It is plausible
that Llama3 would offer improved results on BHC,
especially in terms of readability. Future work may
investigate this further through separate automatic
evaluations specifically for BHC and DI.

5 Conclusion

This paper describes our efforts in the “Discharge
Me!” BioNLP 2024 Shared Task (Xu et al., 2024),
with the final system ranked 3rd on both automatic
and manual evaluation. We show that fine-tuning
LMs with appropriate input context has the poten-
tial to automatically synthesize high-quality dis-
charge summary sections, which holds promise to
reduce the time clinicians spend on documentation.

3These finalized scores were re-run by the organizers and
slightly different from automated scoring by the submission
system (Codabench), which provides results in Table 2.



680

Limitations

Although we consider model ensembling for the
generation, there are potentially more effective
ways to combine or control outputs from multiple
models (Liu et al., 2021a; Shen et al., 2024) that
we did not consider. In addition, we only averaged
the model logits for the ensemble and did not ex-
amine other interpolation setups, such as log-linear
interpolation. Given the variations in BHC and DI,
improved selection methods or heuristics would
likely further enhance the results. We also did not
explore the generalizability of our LMs in gener-
ating sections beyond BHC and DI, transferring
to other type of notes, and handling notes written
from different medical institutions. Finally, despite
achieving promising results under both automatic
and human evaluation, how the generation system
helps clinicians in practice remains to be studied.
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A Appendix

Model Llama3 PRIMERA

Overall 20.34 19.10
BLEU-4 5.27 3.52
ROUGE-1 27.11 30.56
ROUGE-2 7.30 8.39
ROUGE-L 17.16 18.82
BERTScore 30.03 30.42
Meteor 32.76 27.13
AlignScore 17.38 13.46
MEDCON 25.67 20.47

Table 4: Additional results using only radiology reports
as input; on Phase II test set (250 hidden samples).

Prompt template for BHC

Summarize the below clinical text into a
section of brief hospital course.

### Input:
{{input_text}}

### Summary:
{{target_text}}

Prompt template for DI

Summarize the below clinical text into a
section of discharge instruction.

### Input:
{{input_text}}

### Summary:
{{target_text}}

Figure 2: Template used for decoder-only LMs.
target_text is removed at inference time.

Model Overall BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BERTScore Meteor AlignScore MEDCON
Baseline

Llama3 30.16 11.48 38.28 18.69 25.08 41.69 31.76 31.79 42.53
Alternative decoding

Llama3 w/ beam 28.82 11.34 33.40 16.06 22.46 40.37 33.43 31.66 41.86
Llama3 w/ nucleus 28.13 9.66 37.74 16.41 22.47 39.79 33.42 27.74 37.81
Llama3 w/ contrastive 30.98 11.98 42.28 21.49 27.33 41.38 33.34 31.35 38.70

Zero-shot prompting
Llama3-8B-it 15.05 0.97 19.92 3.88 10.65 18.47 19.35 25.47 21.70
Llama3-70B-it 15.62 0.95 21.73 4.59 11.31 19.16 20.03 23.84 23.33
Mistral-7B-it 17.31 1.61 30.32 6.97 15.83 23.56 20.33 16.22 23.62
Mixtral-8x7B-it 17.40 1.49 30.29 7.13 15.02 22.00 19.34 20.15 23.77

Table 5: Additional results on 1000 validation samples.
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BHC by
Llama3

Mr. ___ is a ___ year old M w/ PMH ___ syndrome (s/p L femoral stenting, left knee surgery
at ___), hx of recurrent DVTs in ___ and UEs s/p IVC filter c/b PEs on chronic warfarin,
chronic ___ on methadone who presents with LLE swelling and ___. # LLE swelling: Patient
presented with LLE swelling and erythema. He was found to have a chronic DVT on LLE
US. He was started on IV ceftriaxone for cellulitis. He was transitioned to PO cephalexin
on discharge to complete a 7 day course. # ___ syndrome: Patient has a history of ___
syndrome, which is a hypercoagulable state. He has had multiple DVTs and PEs in the
past. He was found to have a chronic DVT on LLE US. He was continued on his home
warfarin. His INR was therapeutic at 2.3 on discharge. # Chronic ___: Patient has a history
of chronic ___ on methadone. He was continued on his home methadone. # Gout: Patient
has a history of gout. He was continued on his home allopurinol. TRANSITIONAL ISSUES:
==================== - Patient was started on cephalexin 500 mg PO Q6H to complete
a 7 day course (last day ___. - Patient’s INR was 2.3 on discharge. Please check INR on ___
and adjust warfarin dose as needed. - Please follow up with patient’s ___ clinic. - Please
follow up with patient’s PCP. - Please follow up with patient’s vascular surgeon. - Please
follow up with patient’s pain clinic. - Please follow up with patient’s hematologist. - Please
follow up with patient’s PCP regarding his chronic ___. Code: Full (confirmed) Contact:
___ (mother) ___ Patient seen and examined on day of discharge. >30 minutes on discharge
activities. ___ ___ Attending ___ Date: ___ Time: ___ I have read and agree with the
discharge summary. ___, MD, PharmD Attending ___ Date: ___ Time: ___ I have read and
agree with the discharge summary. ___, MD Attending ___ Date: ___ Time: ___ I have read
and agree with the discharge summary. ___, MD Attending

BHC by
PRIMERA

Mr. ___ is a ___ year old M w/ PMH ___ syndrome (s/p L femoral stenting, left knee
surgery at ___), hx of recurrent DVTs in ___ and UEs s/p IVC filter c/b PEs on chronic
warfarin, chronic ___ on methadone who presents with LLE swelling and ___, found to have
non-occlusive LLE DVT.
#LLE DVTs: Patient has a history of ___ syndrome and has had multiple DVTs, most
recently 6 months ago. He has been on warfaradin for this, but has had a subtherapeutic
INR. He was admitted with a sub therapeutic INR of 4. He had a LLE US which showed
non-occlusion of his LLE veins. He received 1 dose of IV ceftriaxone in the ED, but was
not continued on antibiotics. He remained hemodynamically stable and was discharged on
his home warfarine regimen. He will follow up with his PCP and ___ clinic. #Chronic ___:
Patient was continued on his methadione. #Hx of PEs: Patient with history of PE on warfain,
on warafarin. INR 4 on admission. He is followed by Hematology at ___ and has been
subtheraputic on warferin. He reports compliance with warfarin. - Continue warfarain 5mg
daily - INR check on ___
TRANSITIONAL ISSUES: ==================== - Patient will need INR checked on
___ and results faxed to ___ clinic at Dr. ___ - Please continue to monitor INR and adjust
warfarins as needed - Consider outpatient hematology follow up for further management of
chronic ___ syndrome - Follow up with PCP - ___ with ___ clinic - CODE: Full - CONTACT:
___ (wife) ___

Table 6: Example generations of brief hospital course (hospital ID: 20020402). More examples can be obtained
using the released model checkpoints.
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DI by
Llama3

Dear Ms. ___, You were admitted to ___ for ongoing fevers. You were evaluated by the
Infectious Disease team. You had multiple tests performed to determine the cause of your
fevers. You had a CT scan of your sinuses which showed sinusitis. You were started on
antibiotics for this. You also had a CT scan of your chest which showed findings consistent
with a condition called lymphocytic interstitial pneumonia. You were monitored for 24 hours
and did not have any recurrent fevers. You will be discharged home with close follow-up
with the Infectious Disease team. They will help to arrange follow-up with Rheumatology
and Pulmonology. It was a pleasure taking care of you! Sincerely, Your ___ Team

DI by
PRIMERA

Dear Ms. ___,
It was a pleasure caring for you at ___. You were admitted for fevers. Your flu test
was negative. Your sinus CT showed inflammation, so you were treated empirically with
Augmentin. Additional CT scan showed findings in your lungs concerning for lymphocytic
interstitial pneumonia. Because you had no recurrent fevers and your blood cultures were
Please follow up with your PCP and infectious disease doctors.
___ wish you the best!
Sincerely, Your ___ Team

DI by
Mistral

Discharge Instructions: Dear Ms. ___, It was a pleasure caring for you at ___ ___. You
were admitted to the hospital for fevers. You had a CT scan of your sinuses which showed
inflammation of the sinuses. You were started on an antibiotic called Augmentin to treat a
possible sinus infection. You also had a CT scan of your chest which showed inflammation of
the lungs. You will need to follow up with a lung doctor (___) and Rheumatologist to further
evaluate this. The Infectious Disease doctors ___ help to arrange these appointments. Please
continue to take your medications as prescribed and keep your follow-up appointments as
scheduled. We wish you the best! Sincerely, Your ___ Care Team ## More Radiology
Reports ___ 11:50 AM CT SINUS W/O CONTRAST IMPRESSION: 1. Mild mucosal
thickening and sinus opacification, most prominent in the maxillary sinuses, likely secondary
to inflammation. No focal fluid collection or osseous erosion identified. 2. Hypoattenuating
lesion in the upper pole the left kidney is unchanged and indeterminate in density, likely a
proteinaceous or hemorrhagic cyst. Recommend dedicated non urgent renal ultrasound for
further evaluation. ___ 11:50 AM CT SINUS W/O CONTRAST IMPRESSION: 1. ## More
for ___ ___ 11:50 AM CT SINUS W/O CONTRAST IMPRESSION: 1. Hypoattenu ##
More for ___ ___ 11:50 AM CT SINUS W/O CONTRAST IMPRESSION: 1. Mild mucosal
thickening and sinus op ## More for ___

Table 7: Example generations of discharge instructions (hospital ID: 20094440). We present an additional generation
from fine-tuned Mistral-7B based on the same input context, which contains more redundant and irrelevant content
compared to the other two models.
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