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Abstract

We present a new approach to generat-
ing the “Findings” and “Impression” sec-
tions in the chest X-rays radiology reports,
developed as part of the shared radiol-
ogy task at BioNLP 2024. By integrat-
ing a DINOvV2 vision encoder trained on
medical data with specialized biomedical
large language model using the LLaVA
framework, our method addresses com-
plex medical semantics and diverse find-
ings in imaging. We use datasets from
PadChest, BIMCV-COVID19, CheXpert,
Openl, and MIMIC-CXR. The evaluation
metrics demonstrate our method’s effec-
tiveness and the potential for automating
the generation of radiology reports.

1 Introduction

The automatic generation of radiology reports
from chest X-rays is a challenging and signifi-
cant task in the field of biomedical natural lan-
guage processing (BioNLP). The growing volume
of medical imaging data and the limited number
of radiologists necessitate the development of ro-
bust automated systems to assist in report gener-
ation. Such systems not only have the potential
to improve clinical workflow efficiency but also to
ensure consistency and comprehensiveness in ra-
diological interpretations.

In recent years, advancements in deep learning
and natural language processing have paved the
way for innovative approaches to tackle this task.
The new approaches typically involve the inte-
gration of convolutional neural networks (CNNs)
or visual transformers for image feature extrac-
tion with recurrent neural networks (RNNs) or
transformers for text generation (Selivanov et al.,
2023). Despite the progress, challenges such as
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capturing complex medical semantics, handling
diverse imaging findings, and ensuring the clini-
cal accuracy of generated reports remain.

This paper explores a new method for generat-
ing the Findings and Impression sections of radi-
ology reports from chest X-rays. Our approach is
to combine a vision encoder, self-trained on medi-
cal data, with specialized biomedical LLM for text
generation, using LLaVA framework. This work
was done as a part of Radiology Report Generation
ahared task at BioNLP 2024 Workshop (Xu et al.,
2024) using the data provided by the organizers.
The metrics were calculated using the ViLMedic
platform (Delbrouck et al., 2022b).

2 Data

2.1 Training and validation data

The data from 5 datasets where combined to
create the competition training and validation
datasets: PadChest(Bustos et al., 2020), BIMCV-
COVID19(Vaya et al., 2020), CheXpert(Chambon
et al.,, 2024), Openl(Demner-Fushman et al.,
2012) and MIMIC-CXR(Johnson et al., 2019).
The training and validation sets are grouped by
study but not by subjects. The official language of
PadChest and BIMCV-COVID19 is Spanish, and
their reports have been translated using GPT-4 by
the shared task organizers.

The data consists of radiology studies, each
containing one or more chest X-ray images in var-
ious projections. Each study also includes Impres-
sion and Finding texts. Some studies have only
the Impression or only the Findings section, while
others have both.

2.2 Testing Data

The studies in the test sets are unseen studies pro-
vided by organizers. Public test sets for impres-
sion and findings contain both study images and
ground truth texts while private test set contains
only images.
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Dataset Findings | Impressions
PadChest 101,752 -
BIMCV-COVID19 | 45,525 -
CheXpert 45,491 181,619
Openl 3,252 3,628
MIMIC-CXR 148,374 181,166
Total 344,394 366,413

Table 1: Training dataset statistics.

Dataset Findings | Impressions
CheXpert 1,112 4,589
BIMCV-COVID19 1,202 -
PadChest 2,641 -
Openl 85 92
MIMIC-CXR 3,799 4,650
Total 8,839 9,331

Table 2: Validation dataset statistics.

Dataset Findings | Impressions
public test-set 2,692 2,967
hidden test-set 1,063 1,428

Table 3: Testing datasets statistics

2.3 Data preprocessing

Due to technical limitations, we only used the first
two images from each study. Studies with only
one image were not further processed. For studies
with more than one image, the first two images
were stitched together horizontally. No additional
preprocessing was applied to the texts.

3 Evaluation metrics

In the evaluation of radiology report summariza-
tion systems, several metrics are commonly used
to assess the performance and accuracy of the gen-
erated summaries. These metrics ensure that the
summaries produced by the models are not only
syntactically and semantically correct but also fac-
tually accurate. The metrics used in this competi-
tion where BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), BERTScore (Zhang et al., 2019), F1-
CheXbert (Smit et al., 2020), and F1-RadGraph
(Delbrouck et al., 2022a).

3.1 BLEU (Bilingual Evaluation Understudy)

BLEU-4: This metric is widely used for evaluat-
ing machine translation systems. It measures the
precision of n-grams in the generated summary by
comparing it to one or more reference summaries.

604

BLEU-4 specifically considers 4-gram overlaps,
providing a robust measure of how many 4-grams
in the generated text appear in the reference texts.
However, it does not account for recall or the con-
textual meaning of words.

3.2 ROUGE (Recall-Oriented Understudy
for Gisting Evaluation)

ROUGE-L: ROUGE is predominantly used
for evaluating automatic text summarization.
ROUGE-L measures the longest common subse-
quence (LCS) between the generated summary
and the reference summary. This metric empha-
sizes recall by capturing the longest sequence
of words that appear in both the generated and
reference summaries, thus reflecting the ability of
the summary to include important information.

3.3 BERTScore

BERTScore: This metric computes the similar-
ity between the generated and reference texts us-
ing pre-trained BERT embeddings. It calculates
a similarity score for each token in the candi-
date sentence with each token in the reference
sentence. BERTScore accounts for the semantic
meaning of words, making it more robust against
synonyms and paraphrasing compared to BLEU
and ROUGE.

3.4 F1-CheXbert

F1-CheXbert: This metric evaluates the factual
correctness of the generated summaries with a fo-
cus on specific medical conditions mentioned in
radiology reports. CheXbert is a specialized tool
designed to extract medical observations from ra-
diology reports. The F1 score is calculated based
on the precision and recall of these extracted ob-
servations, ensuring that the generated summaries
accurately reflect the medical conditions described
in the reference summaries.

3.5 F1-RadGraph

F1-RadGraph:  Similar to F1-CheXbert, this
metric evaluates the factual correctness of the
summaries using the RadGraph dataset. Rad-
Graph focuses on extracting entities and the
relations between them from radiology reports.
The F1-RadGraph score measures the accuracy
of these extractions, comparing the generated
summaries to the reference summaries to ensure
that the critical entities and their relationships are
accurately captured.



These metrics collectively provide a compre-
hensive evaluation framework for radiology report
summarization systems. BLEU and ROUGE
focus on the surface-level n-gram overlaps, while
BERTScore provides a deeper semantic evalu-
ation. FI1-CheXbert and F1-RadGraph ensure
the factual accuracy of medical details, which is
crucial for clinical applications.

4 Methods and Results

We used the LLaVA model (Liu et al., 2024)
with a DINOv2 encoder (Oquab et al., 2023) and
OpenBio-LLM-8B (Ankit Pal, 2024) as a text de-
coder. The whole pipeline was implemented using
HuggingFace’s transformers (Wolf et al., 2020)
and trl (von Werra et al., 2020) libraries.

For image encoding we used a DINOv2 Model
with the following parameters:

* Model:  ViT-base 14, initialized from
torch.hub’s dinov2_vitbl4

Patch size: 14

Number of parameters: 86M

Time and Resources: 4xA100 80GB GPUs,
Training Total Time: 2 days

Dataset: MIMIC-CXR Train, downsampled
to 518 px

Batch size per GPU: 50

Base Learning Rate: 0.001

For text generation, we used OpenBioLLM-8B,
an open-source language model designed specifi-
cally for the biomedical domain.

Training type: LoRA on LLM’s Attention
matrices (r=64, alpha=16) + MM projector
Architecture: OpenBio-LLM-8B + in-house
DINOV2 trained on MIMIC-CXR Train
Time and Resources: 5 epochs, 8xH100
80GB GPUs, DeepSpeed Zero-3; Training
Total Time: 2 days

Batch size per GPU: 8, gradient accumula-
tion: 2

Base Learning Rate: 0.001, cosine sched-
ule, warmup: 0.15

* Optimizer: Adam

Vanilla approach to fine-tune LLaVA model
with language model unfreezed resulted in rapid
overfitting, thus we opted for PEFT methods
(Mangrulkar et al., 2022), namely LoRA (Hu et
al., 2022).
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We used the same model for generating both im-
pression and findings, using different prompts: ei-
ther "Write findings for this X-ray.” or "Write im-
pression for this X-ray.”.

We used the following system prompt, inspired
by LLaVA-Med (Li et al., 2024):”You are a large
language and vision assistant. You are designed to
assist human with a variety of medical visual con-
tent and clinical research tasks using natural lan-
guage. Follow the instructions carefully and pro-
vide clinically valid answers.”

Our results on hidden test sets are presented in
Table 4 and Table 5.

Table 4: Findings - hidden test set (1063 samples)

Metric e-health csiro | maira | airi
BLEU4 11.68 11.24 | 9.97
ROUGEL 26.16 26.58 | 25.82
Bertscore 53.80 54.22 | 5242
F1-cheXbert 57.49 57.87 | 54.25
F1-RadGraph 28.67 25.48 | 25.29

Table 5: Impressions - hidden test set (1428 sam-

ples)
Metric e-health csiro | maira | airi
BLEU4 12.33 11.66 | 1091
ROUGEL 28.32 28.48 | 27.46
Bertscore 50.94 51.62 | 49.55
F1-cheXbert 56.97 53.27 | 52.32
F1-RadGraph 27.83 25.26 | 24.67

Our relatively simple model demonstrates
strong performance in generating radiology re-
ports. We attribute this success to the use of a
specialized image encoder and a specialized large
language model. Future improvements can be re-
alized by employing larger models and fully us-
ing the available image data, which would likely
enhance the competition metrics of the generated
reports.
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