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Abstract

The primary concern with exposure to ioniz-
ing radiation is the risk of developing diseases.
While high doses of radiation can cause im-
mediate damage leading to cancer, the effects
of low-dose radiation (LDR) are less clear and
more controversial. To further investigate this,
it necessitates focusing on the underlying bio-
logical structures affected by radiation. Recent
work has shown that Large Language Models
(LLMs) can effectively predict protein struc-
tures and other biological properties. The aim
of this research is to utilize open-source LLMs,
such as Mistral, Llama 2, and Llama 3, to pre-
dict both radiation-induced alterations in pro-
teins and the dynamics of protein-protein in-
teractions (PPIs) within the presence of spe-
cific diseases. We show that fine-tuning these
models yields state-of-the-art performance for
predicting protein interactions in the context
of neurodegenerative diseases, metabolic dis-
orders, and cancer. Our findings contribute to
the ongoing efforts to understand the complex
relationships between radiation exposure and
disease mechanisms, illustrating the nuanced
capabilities and limitations of current compu-
tational models. The code and data are avail-
able at: https://github.com/Rengel2001/
SURP_2024

1 Introduction

The exploration of the biological consequences of
ionizing radiation on human health has long been a
focal point of medical and environmental research.
High doses of radiation are linked to immediate
cellular damage and an increased risk of cancer
(Wang et al., 2018). However, the implications of
low-dose radiation (LDR) exposure remain a topic
of significant debate. Emerging evidence suggests
potential associations with various non-cancerous
diseases, including neurodegenerative and cardio-
vascular diseases (Sharma et al., 2018; Kamiya
et al., 2015). Additionally, others show that cancer
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Figure 1: Tasks Utilizing LLMs for Protein Behavior
Prediction.

is a result of low-dose radiation exposure (Shah
et al., 2014; Hauptmann et al., 2020).
Understanding these effects at the molecular
level, particularly in relation to protein structure
and function, is crucial for developing protective
measures. Similarly, protein-protein interactions
(PPIs) are vital for various cellular processes and
play a critical role in understanding disease mecha-
nisms. Furthermore, there exists extensive PPI data,
compiled into comprehensive public databases
like BioGRID (Oughtred et al., 2021), STRING
(Alanis-Lobato et al., 2016), HIPPIE (Szklarczyk
et al., 2021), and Kegg (Kanehisa et al., 2017).
Considerable research has been dedicated to un-
derstanding general protein interactions; however,
there is a lack of studies examining protein interac-
tion networks in the context of specific diseases.
The overarching goal of this research is to deter-
mine the efficacy of LLMs in accurately predict-
ing complex biological processes related to pro-
tein function under various conditions. We em-
ploy three state-of-the-art LLMs, to analyze data
from six diverse datasets. These datasets represent
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two distinct categories. The first focuses on the ef-
fects of LDR on proteins, and the second highlights
the PPI network present within specific diseases.
We formalize this data into two binary classifica-
tion tasks, which are illustrated in Figure 1. This
approach not only demonstrates the versatility of
LLMs in biological research but also paves the
way for novel insights into the molecular dynam-
ics influenced by radiation exposure and disease
processes. Our contributions in this paper include:

1. Organizing 6 key datasets, which are then split
into 13 subsets, each designed to emphasize
different experimental conditions.

2. Conducting a comprehensive evaluation of
three open-source LLMs, comparing the per-
formance of pre-trained models with the fine-
tuned models.

3. Investigating the level of knowledge that
LLMs have regarding protein behaviors and
reviewing their current limitations for these
tasks.

4. Analyzing the proteins that occur in both the
LDR datasets and the PPI datasets, to high-
light which proteins in each network are sig-
nificantly deregulated by radiation exposure.

2 Related Works

2.1 Low-Dose Radiation Research

There has been a great deal of research focused on
the effects of radiation on biological systems. Many
studies exploring the field use traditional meth-
ods and there has been significant progress (Khan
and Wang, 2022; Tatjana Paunesku and Woloschak,
2021; Ji et al., 2019). However, the application
of machine learning to these studies has been lim-
ited. Notably, one approach employed artificial
neural networks (ANNSs) within the Rosetta suite
to predict protein post-translational modifications
(PTMs) relevant to radiation-induced effects (Ertelt
et al., 2024). Another study used machine learning
to identify potential methionine oxidation sites, a
modification also associated with oxidative stress
from radiation (Aledo et al., 2017). These instances
showcase the emerging intersection of computa-
tional power with radiation biology research.

2.2 PPI Prediction Methods

The abundance of PPI data has prompted signifi-
cant advancements in molecular biology research.

Recently, computational techniques employing ma-
chine learning and graph embeddings have been
developed for PPI prediction. One approach em-
ploys Graph-BERT, ProtBERT, and SeqVec mod-
els within a PPI network graph, showcasing the
efficacy of language models (Jha et al., 2023). An-
other emerging trend is the use of Convolutional
Neural Networks (CNNs), with studies employ-
ing Bio2Vec coupled with CNNs to predict PPIs
from sequences (Wang et al., 2019; Hashemifar
et al., 2018). The PIPR method simplifies PPI pre-
diction by using sequence data alone, surpassing
many traditional models in both basic and complex
PPI tasks (Chen et al., 2019). While many meth-
ods focus on general PPI prediction, the NECARE
model (Qiu et al., 2021) excels at predicting cancer-
associated PPIs using a deep learning framework
with a Relational Graph Convolutional Network
(R-GCN). Similarly, the symmetric logistic matrix
factorization (symLMF) approach (Pei et al., 2021)
accurately predicts PPIs, including those involved
in neurodegenerative and metabolic disorders, out-
performing most classifiers.

2.3 Language Models for Molecular Biology

Concurrently, advancements in computational bi-
ology have also leveraged language models and
the transformer architecture (Vaswani et al., 2017)
to achieve significant breakthroughs in biomolec-
ular and proteomics research. At the forefront,
AlphaFold (Jumper et al., 2021) has set a precedent
by employing innovative deep learning techniques
to predict protein structures with remarkable accu-
racy. Building upon these foundations, protein lan-
guage models like ProGen2 (Nijkamp et al., 2022),
ProGPT?2 (Ferruz et al., 2022), and ProLlama (Lv
et al., 2024), have further developed the applica-
tions of language modelling for proteomics. Ad-
ditionally, this has led to advancements in general
purpose biological language models like BioGPT
(Luo et al., 2022), and BioMedLM (Bolton et al.,
2024).

2.4 General Purpose LLMs

Large-scale language models like Llama (Touvron
et al., 2023a), and its subsequent iterations includ-
ing Llama 2 (Touvron et al., 2023b), Llama 3
(Al@Meta, 2024) and Alpaca (Taori et al., 2023),
have highlighted the importance of data design and
task-specific training in improving model perfor-
mance across a variety of tasks. Additionally, the
creation of the Mistral (Jiang et al., 2023) model
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helps to bring open-source LLMs to the forefront
of scientific innovation. These strides in LLM re-
search have brought significant advancements in
other scientific disciplines (Zhang et al., 2024). We
aim to utilize such LLMs to further advance re-
search on LDR exposure and to analyze how this
might affect protein networks and specific diseases.

3 LLMs and Datasets

In this study, we employ three open-source LLMs,
Mistral (7B), Llama 2 (7B), and Llama 3 (8B),
to investigate two primary areas of biological re-
search: the effects of low-dose radiation (LDR)
on proteins and the dynamics of PPIs in the con-
text of specific diseases. These models were cho-
sen because of their state-of-the-art performance
in many natural language processing (NLP) tasks.
Additionally, their open-source nature allows for
broad accessibility and modification by researchers
across disciplines, which promotes transparency
and collaborative advancements in both NLP and
other scientific domains.

To facilitate a comprehensive analysis, our
methodology encompasses six core datasets, which
are further subdivided into 13 distinct subsets based
on specific experimental parameters and objectives.
The first 3 datasets primarily explore the effects of
LDR on protein deregulation. These 3 sets are fur-
ther divided into 10 subsets, emphasizing different
experimental conditions. The last 3 datasets focus
on PPIs in the presence of specific diseases, namely
neurodegenerative, metabolic, and cancer.

The subsets of the LDR data are much smaller
than the PPI datasets, which is why these were
combined into dataset 3c. Dataset 3¢’s larger size
is shown in comparison with the other datasets in
Figure 2. The details about each dataset is outlined
in Appendix A.

Sizes of Datasets

12000 11762

10000

8000

6000

4000

Number of Proteins

™
”)’J/ ”)"\ VvV

Figure 2: Comparison of Dataset Sizes

2000 1866
’—‘1332 892
[[]204 198 160 154 98 94 74
> >

4 Experiments

The methodology for analyzing each dataset be-
gan with data pre-processing, executed through a
Python script tailored to appropriately structure the
raw data. Subsequently, this processed data was
used to create prompts that fit the prompting strate-
gies outlined in Appendix A. These prompts were
then saved in a JSON file, and were subsequently
used as input to the LLMs.

For deploying the models, a separate Python
script using the Hugging Face Transformers library
loaded the models onto 4 x NVIDIA A100 80GB
GPUs. These pre-trained models were then pre-
sented with the JSON file prompts and the perfor-
mance of each model was recorded.

4.1 Experimental Setup

Our experimental setup across the datasets imple-
mented a binary classification task, instructing the
models to produce a "yes" or "no" answer in re-
sponse to each prompt. The generated responses
from each model necessitate the deployment of
an algorithm to parse these outputs effectively. If
the given string "yes" or "no" is not found in the
model’s response, this response is marked as the
opposite of the true label. This is a result of using
causal language models, which are designed for
text generation. To optimize this task, the “Data
Collator for Completion-Only Language Models*
and the SFT (Supervised fine-tuning) Trainer from
the Hugging Face library were utilized in training
the models to give the correct response structure.

4.2 Data Split

We structured the training process differently for
each of the two tasks. For the LDR task, we di-
vided the prompts for each dataset into an 80/10/10
split for training, validation, and testing, respec-
tively. The PPI datasets 4 and 5 utilized a 5-fold
cross validation setup, where 4 sets were used for
training and 1 set was used for testing in each fold.
Similarly, the PPI dataset 6 used a 5-fold cross
validation setup but instead 3 sets were used for
training, 1 set for validation, and 1 set for testing.
This was carried out to replicate the experimental
conditions used in the benchmark models.

4.3 Fine-Tuning

During the training process, we employed Param-
eter Efficient Fine-Tuning (PEFT) (Mangrulkar
et al., 2022), a method focused on selectively modi-
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fying a subset of the model’s parameters rather than
the entire set. Low-Rank Adaptation (LoRA) (Hu
et al., 2021) is a specialized PEFT technique that
was utilized when fine-tuning the LLLMs for these
tasks. Additionally, we used QLoRA (Dettmers
et al., 2023) to reduce the GPU memory required
for training Llama 3 on datasets 4 and 5. This ap-
proach was essential because the combined size of
these datasets and the 8 billion parameter model
required more efficient memory usage than tradi-
tional LoRA.

5 Results

Every phase of the model training process was doc-
umented and analyzed. The evaluation metrics used
include accuracy, Matthews Correlation Coefficient
(MCCQ), specificity, macro precision, and macro F1
Score.

Model Acc. | MCC |Spec. |Prec.| F1
Mistral (3-shot) [0.367(-0.343[0.068(0.290|0.304
Llama 2 (3-shot)|0.556| 0.110 |0.386|0.558{0.541
Llama 3 (3-shot)|0.489| 0.0 | 1.0 |0.244|0.328
Mistral (LoRA) |0.500| 0.058 |0.977|0.580|0.369
Llama 2 (LoRA)|0.522| 0.061 |0.750{0.534|0.500
Llama 3 (LoRA)|0.567| 0.155 |0.773|0.585|0.551

Table 1: Performance Comparison for Dataset 1.1

Model Acc. | MCC |Spec. | Prec.| F1
Mistral (3-shot) [0.291-0.461{0.027{0.210|0.239
Llama 2 (3-shot)|0.567 | 0.153 |0.479]0.5780.566
Llama 3 (3-shot)|0.545| 0.0 | 1.0 |0.272|0.353
Mistral (LoRA) [0.493| 0.007 |0.384/0.503|0.490
Llama 2 (LoRA)[0.537]-0.006|0.932|0.4940.401
Llama 3 (LoRA)|0.552| 0.054 |0.945]0.554|0.420

Table 2: Performance Comparison for Dataset 1.2

Model Acc. | MCC |Spec. |Prec.| F1
Mistral (3-shot) [0.286(-0.230{0.133]0.368(0.279
Llama 2 (3-shot)|0.381(-0.067]0.267|0.467|0.381
Llama 3 (3-shot)|0.714| 0.0 | 1.0 [0.357|0.417
Mistral (LoRA) [0.381|-0.241{0.400{0.391|0.358
Llama 2 (LoRA)|0.381-0.447|0.533|0.286|0.276
Llama 3 (LoRA)|0.571| 0.279 |0.467 |0.630|0.568

Table 3: Performance Comparison for Dataset 1.3

Model Acc. | MCC |Spec. |Prec.| F1
Mistral (3-shot) [0.125]-0.745| 0.0 [0.083{0.111
Llama 2 (3-shot)|0.438(-0.035| 0.3 |0.482|0.435
Llama 3 (3-shot)|0.625| 0.0 | 1.0 |0.313|0.385
Mistral (LoRA) [0.688| 0.313 | 0.8 [0.664|0.654
Llama 2 (LoRA)|0.688| 0.423 | 0.6 [0.706|0.686
Llama 3 (LoRA)|0.813| 0.592 | 0.9 [0.809|0.792

Table 4: Performance Comparison for Dataset 2.1

Model Acc. | MCC |Spec. | Prec.| F1
Mistral (3-shot) [0.095[-0.767| 0.0 [0.059(0.087
Llama 2 (3-shot) [0.524| 0.224 | 0.4 |0.607|0.523
Llama 3 (3-shot)|0.714| 0.0 | 1.0 |0.357|0.417
Mistral (LoRA) |0.714| 0.0 | 1.0 |0.357|0.417
Llama 2 (LoRA)|0.286| 0.0 | 0.0 |0.143]0.222
Llama 3 (LoRA)[0.524|-0.167 |0.667|0.417|0.417

Table 5: Performance Comparison for Dataset 2.2

Model Acc. | MCC |Spec.|Prec.| F1
Mistral (3-shot) | 0.25 | -0.5 | 0.25] 0.25 | 0.25
Llama 2 (3-shot) |0.375|-0.378| 0.0 |0.214|0.273
Llama 3 (3-shot)| 0.5 0 1.0 | 0.25 |0.333
Mistral (LoRA) |0.625] 0.258 | 0.5 |0.633|0.619
Llama 2 (LoRA)|[0.625| 0.258 | 0.75 |0.633(0.619
Llama 3 (LoRA)| 0.5 0 1.0 | 0.25]0.333

Table 6: Performance Comparison for Dataset 2.3

Model Acc.| MCC |Spec.|Prec.| F1
Mistral (3-shot) | 0.1 [-0.816{0.167| 0.1 [0.091
Llama 2 (3-shot)| 0.4 |-0.102|0.167|0.438(0.375
Llama 3 (3-shot)| 0.6 | 0.0 | 1.0 | 0.3 |0.375
Mistral (LoRA) | 0.6 | 0.0 | 1.0 | 0.3 |0.375
Llama 2 (LoRA)| 0.4 | 0.0 | 0.0 | 0.2 |0.286
Llama 3 (LoRA)| 04 | 0.0 | 0.0 | 0.2 |0.286

Table 7: Performance Comparison for Dataset 2.4

Model Acc. | MCC |Spec. |Prec.| F1
Mistral (3-shot) [0.364| 0.0 | 0.0 [0.182[0.267
Llama 2 (3-shot)|0.364|-0.463|0.571| 0.25 |0.267
Llama 3 (3-shot)[0.636| 0.0 | 1.0 |0.318|0.389
Mistral (LoRA) |0.364| 0.0 | 0.0 {0.182{0.267
Llama 2 (LoRA)|0.364| 0.0 | 0.0 [0.182]0.267
Llama 3 (LoRA)|0.273]-0.418| 0.0 | 0.15 |0.214

Table 8: Performance Comparison for Dataset 3.1

Model Acc. | MCC |Spec. | Prec.| F1
Mistral (3-shot) [0.438| 0.0 | 0.0 [0.219|0.304
Llama 2 (3-shot)|0.438]-0.0980.333(0.450|0.435
Llama 3 (3-shot) |0.625] 0.293 | 1.0 | 0.8 | 0.5
Mistral (LoRA) [0.563| 0.0 | 1.0 |0.281]0.360
Llama 2 (LoRA)[0.438] 0.0 | 0.0 |0.219(0.304
Llama 3 (LoRA)|0.563| 0.0 | 1.0 |0.281|0.360

Table 9: Performance Comparison for Dataset 3.2

Model Acc. | MCC |Spec.|Prec.| F1
Mistral (3-shot) [0.247(-0.593| 0.0 [0.173]|0.198
Llama 2 (3-shot) |0.475|-0.015|0.769|0.491|0.443
Llama 3 (3-shot)|0.493|-0.038|0.317|0.480(0.473
Mistral (LoRA) [0.552| 0.090 |0.423|0.546|0.540
Llama 2 (LoRA)[0.547| 0.066 |0.154|0.549(0.459
Llama 3 (LoRA)|[0.516| 0.014 |0.375|0.507|0.502

Table 10: Performance Comparison for Dataset 3¢

Tables 1-13 indicate the performance of both the
pre-trained models, and their fine-tuned counter-
parts on each of the 13 datasets. We evaluated the
pre-trained models using the same procedure as the
fine-tuned models, the only difference is that the
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Model Acc. (%) | MCC (%) | Spec. (%) | Prec.(%) F1 (%)
Mistral (3-shot) |38.444-0.46|-31.7940.54 | 4.15+0.16 | 28.1640.28 | 30.2340.25
Llama 2 (3-shot) [55.1440.16| 13.18+0.29 |23.79+0.57| 58.47+0.23 | 50.23+0.17
Llama 3 (3-shot) [50.384+0.36| 6.1740.27 1.0+0.0 | 75.10£0.18 | 34.184+0.17
Mistral (LoRA) |62.3446.88(25.53+14.37(97.8941.17|48.49+12.84|51.974+10.36
Llama 2 (LoRA) |87.2840.41| 76.634+1.03 {88.594-0.95| 87.334+-0.22 | §7.2840.31

Llama 3 (QLoRA) [88.274+1.08| 76.92+2.12 {92.81+1.06| 88.58+1.08 | 88.26+1.07
SymLMF (Reported) |86.11+1.05| 74.29+2.07 N/A 83.2441.28 N/A
Table 11: Performance Comparison for Dataset 4

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot)  |35.52+0.76(-39.08+£0.82 | 1.9840.14 | 23.6540.56 | 27.33+0.48
Llama 2 (3-shot) [51.454+0.81| 6.66+£1.16 | 6.42+0.37 | 57.66+t1.31 | 39.09+0.57
Llama 3 (3-shot) [56.0340.21| 12.1240.46 {53.6940.34| 56.064-0.23 | 56.0040.21
Mistral (LoRA) |62.1846.61{25.084+13.33(93.804+-3.89(57.70+11.91{51.934+10.16
Llama 2 (LoRA) |84.6340.24| 69.204-0.66 |84.06+0.92| 84.51+0.34 | 84.434+-0.34

Llama 3 (QLoRA) [91.284+0.87| 82.57+1.73 |90.41+1.08| 91.29+.86 | 91.28+0.87
SymLMF (Reported) |81.37+1.04| 63.314+2.07 N/A 77.70+1.07 N/A
Table 12: Performance Comparison for Dataset 5

Model Acc. MCC Spec. Prec. F1
Mistral (3-shot) |41.91+£1.19|-23.81+£1.55| 5.1540.43 | 32.45+0.95 | 32.79+0.69
Llama 2 (3-shot) |[57.614+0.91| 16.69+2.40 [39.184+1.42| 59.0+1.32 | 56.09+1.0
Llama 3 (3-shot) |53.96+1.62| 16.40+2.75 {97.83+0.55| 67.254+2.83 | 42.91+1.68
Mistral (LoRA) |83.76+8.12|68.81+15.40(93.30+2.15|79.20+12.41|80.69+10.85
Llama 2 (LoRA) |93.2540.84| 86.844+1.49 [93.3941.38| 93.554+0.74 | 93.224+0.84
Llama 3 (LoRA) |93.94+0.25| 88.04+0.47 {91.834+1.12| 94.094+0.22 | 93.92+0.25

NECARE (Reported) N/A 84.0+3.0 92.0+£2.0 90.0+2.0 90.0£2.0

Table 13: Performance Comparison for Dataset 6

models were prompted with example questions or
“shots* before the dataset prompt was given. The
term "3-shot" refers to the 3 example questions
prompted before the dataset’s prompt. The results
of these experiments demonstrated that LLMs were
particularly effective when fine-tuned on larger,
well-structured datasets, as evidenced by their suc-
cess in the PPI prediction task.

5.1 Performance

When fine-tuned with QLoRA, Llama 3 shows su-
perior performance on the PPI prediction task for
each of the three datasets. On the neurodegen-
erative (Table 11) and metabolic disorder (Table
12) PPI prediction tasks, it scores an accuracy of
88.27% and 91.28% respectively. These values out-
perform the current best model SymLMF (Pei et al.,
2021), which achieves only 86.11% and 81.37%.

Furthermore, this model fine-tuned with LoRA
achieves a precision of 96.9%, which outperforms
the 94% precision achieved with NECARE (Qiu
et al., 2021) as shown in table 13. It is clear that the
fine-tuned Llama 3 model is currently the best pre-
diction method for identifying PPIs in the presence
neurodegenerative diseases, metabolic disorders,
and cancer.

5.2 Discussion

We show that fine-tuning the LL.Ms can increase
performance by a substantial margin. However,
this depends heavily on the size of the dataset
used to train the model, and the specific prompting
techniques used. While fine-tuning significantly
boosted accuracy in datasets 4, 5, and 6 by up to
50%, model performance on datasets 1, 2, and 3
exhibited less pronounced improvements after fine-
tuning (Tables 1-10).

In analyzing the discrepancies in model perfor-
mance between the PPI and LDR tasks, one notable
difference lies in the composition of the prompts
used for each task. For the PPI task, each prompt
includes two variable protein names. This dual-
protein structure of the prompts likely provides
the model with a relational context that aids in
discerning interaction patterns between proteins,
facilitating more effective learning and prediction.

In contrast, the LDR task prompts feature only
one variable protein name, potentially limiting the
model’s learning and predictive capabilities due to
insufficient relational or comparative data. The sin-
gle protein name reduces the available contextual
cues for predicting deregulation. This prompt de-
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sign likely contributes to the lower accuracy in the
LDR task, as the model may struggle to infer the
broader biological impacts of LDR exposure from
a solitary protein reference.

These results not only illustrate the current con-
straints of these models but also suggests potential
avenues for improvements, such as the develop-
ment of more domain-specific datasets related to
LDR, or the application of prompt engineering tech-
niques.

6 Evaluation of Model Predictions

In this section, we analyze the predictions made
by the LLMs and highlight some of the proteins
that were correctly and incorrectly identified. We
focus on interpreting the results obtained from our
experiments in tables 1-13, examining the predic-
tions made and identifying patterns in each model’s
output to understand their current limitations.

6.1 Correctly Identified Proteins

After analyzing the model output for each LLM,
there are a few commonalities between the cor-
rectly identified proteins. Many of the names fol-
low standard naming conventions in molecular bi-
ology, such as using abbreviations or acronyms
that represent the function or family of the protein.
Some examples include: SLC (Solute Carrier) pro-
teins slc9a6, slc3a2, slc27a4, slclal, slc38a3, and
RP (Ribosomal Protein) proteins rpl24, rpl22, rpl9,
rpl15, rps11, rps25, rps13, rps27rt.

Additionally, the proteins correctly identified
seem to belong to various functional categories,
such as cytoskeletal proteins: tubb4a, tubb, actb,
signaling proteins: hras, gsk3b, camk2a, camk4,
rab3b, and metabolic enzymes: aldh3bl, aldh1ll,
psatl, cpt2, pnpo, ak5, pgm3.

Overall, the correctly identified proteins cover a
diverse range of cellular functions, including signal-
ing, metabolism, transport, cytoskeletal organiza-
tion, and many others. The naming conventions and
functional hints within the protein names suggest
that these proteins are well-studied and recognized
by the models, potentially due to their importance
in various biological processes and their prevalence
in scientific literature.

6.2 Incorrectly Identified Proteins

When contrasting the incorrectly identified proteins
with the correctly identified ones, a few key dif-
ferences can be observed. Specifically, the incor-
rectly identified protein names seem to follow less

standardized naming conventions compared to the
correctly identified ones. They lack common abbre-
viations or acronyms that indicate their functional
categories or protein families.

Furthermore, it is more challenging to infer the
functional categories or processes that the incor-
rectly identified proteins are involved in based
solely on their names. These proteins could be less
well-known or less extensively researched, making
it more challenging for the models to accurately
identify them.

Additionally, LLMs might have biases or limi-
tations in their training data or algorithms, which
could contribute to the discrepancies in identifi-
cation accuracy. Ultimately, the correctly identi-
fied proteins seem to follow more recognizable
naming conventions, belong to well-characterized
functional categories, and potentially have a more
substantial presence in scientific literature, which
could explain why they were more accurately iden-
tified by the models compared to the incorrectly
identified ones.

7 Dataset Cross-Reference Analysis

Independent of the LLM experiments, we conduct a
dataset cross-reference analysis to identify the com-
mon proteins between the LDR and PPI datasets,
highlighting those that may be involved in both pro-
cesses. Through this extensive analysis, we gained
a deeper understanding of the data utilized for train-
ing these LLLMs and enhanced our understanding
of the protein dynamics involved in both radiation
response and disease mechanisms.

We identified overlaps between the PPI datasets
4,5, and 6, and the combined LDR dataset 3c. The
positive interaction pairs were identified for each
of datasets 4 (11,762 proteins), 5 (10,262 proteins),
and 6 (1,866 proteins). Subsequently, the signifi-
cantly affected proteins in the combined dataset 3¢
were identified (1,111 proteins). Our findings show
that the highest percentage of overlap with the LDR
data was with dataset 4, the neurodegenerative PPI
dataset.

7.1 Dataset Analysis Metrics

The metrics used for these experiments include the
percentage of overlap, the multiset coverage, the
Jaccard index, and the weighted Jaccard index. The
difference between the percentage overlap and the
multiset coverage is that the multiset coverage takes
into account the frequency of reoccurring proteins
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between all interactions. In other words, multiset
coverage includes duplicate protein names, where
the percentage overlap uses only unique proteins
names.

The reasoning for calculating both multiset cov-
erage and percent overlap is because if a specific
protein occurs frequently in the protein interaction
network, it likely contributes more to the overall
biological structure. Thus, including the duplicate
proteins in the calculation of multiset coverage il-
lustrates the extent to which these proteins affect
the network.

Additionally, the Jaccard index was used for cal-
culating the set similarity for the unique proteins,
and the weighted Jaccard index was used when
accounting for duplicate proteins. These values
measure the similarity between the two sets, while
accounting for their sizes through normalization.

7.2 Neurodegenerative Diseases PPI

The neurodegenerative diseases PPI dataset exhib-
ited the highest percentage of unique protein over-
lap (14.02%) and multiset coverage (22.21%). The
Jaccard Index for unique proteins was 0.0633 and
the Weighted Jaccard Index was 0.2546, indicating
a significant shared profile. This neurodegenera-
tive PPI dataset contains 820 unique proteins in
the PPI network. There were 115 unique proteins
identified to overlap between the LDR data and
PPI data. Some of these proteins include MAPT
(Microtubule-Associated Protein Tau) (Medeiros
etal., 2011), HTT (Huntingtin) (Tabrizi et al., 2019;
Jimenez-Sanchez et al., 2017), APP (Amyloid Pre-
cursor Protein) (de la Vega et al., 2021; X et al.,
2021), and GFAP (Glial Fibrillary Acidic Protein)
(Yang and Wang, 2015; Kunchok et al., 2019), each
of which have been shown to be linked with neu-
rodegenerative diseases.

7.3 Metabolic Disorders PPI

The metabolic disorders PPI dataset showed a
7.14% overlap with unique proteins, and a mul-
tiset coverage of 13.78%. Both the Jaccard In-
dex (0.0357) and Weighted Jaccard Index (0.1420)
were lower compared to the neurodegenerative
dataset, indicating less similarity with the LDR
dataset but still notable overlap. This metabolic
diseases PPI dataset contains 1036 unique proteins
in the network. There were 74 unique proteins
identified between both sets. Some of these pro-
teins include ALDH?2 (Aldehyde Dehydrogenase
2) (Wang et al., 2021; Chen et al., 2022), ACE

(Angiotensin-Converting Enzyme) (Fountain et al.,
2024), and ACADS8 (Acyl-CoA Dehydrogenase 8)
(Zhuang et al., 2022), which have been shown to
link to metabolic disorders.

7.4 Cancer PPI

The overlap in the cancer PPI dataset was more
modest, with an 8.84% overlap and 4.72% mul-
tiset coverage, highlighting 19 unique overlap-
ping proteins. The Jaccard Index was notably
low at 0.0145, and the Weighted Jaccard Index
at 0.0305. Some notable proteins identified in-
clude PAK1 (P21-Activated Kinase 1) (Belli et al.,
2023), GRM1 (Glutamate Metabotropic Receptor
1) (Mehta et al., 2013; Nord et al., 2014), ANK1
(Ankyrin 1) (Tessema et al., 2017), and PTEN
(Phosphatase and Tensin Homolog) (Liu et al.,
2015). These proteins are illustrated in Figure 3.
The highlighted proteins are also found in the com-
bined LDR dataset, indicating that these proteins
are significantly deregulated after exposure to LDR.

GRM1
PAK1
/ EPHA2
AHK CD44
TIAM1 ARAF
ANK2
PTEN

ANK3

Figure 3: Cancer Protein Interaction Network. High-
lighted Proteins are Significantly Affected by LDR.

7.5 Comparison

The higher overlap and Jaccard indices for dataset
4 show that there are more proteins in this network
that are affected by LDR compared to those in
the metabolic and cancer datasets. Similarly, the
overlap of unique proteins between dataset 3¢ and
dataset 6 is more than the overlap between datasets
3c and 5 despite its significantly larger size. This
data suggests a higher probability that LDR affects
cancer when compared to metabolic disorders. By
highlighting the specific proteins overlapping be-
tween these datasets, we have identified key points
for future research that can help bridge the gap
between LDR exposure and disease mechanisms.
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8 Conclusion

This study presents an exploration of the capabil-
ities of LLMs in predicting the molecular dynam-
ics of proteins under various conditions. By em-
ploying three state-of-the-art LLMs across multiple
datasets, our research offers valuable insights into
the potential utility and limitations of computa-
tional models for these tasks.

The fine-tuning process using LoRA proved to
be a pivotal factor in enhancing model performance,
demonstrating notable improvements in accuracy
and predictive capabilities. Improving the accuracy
of these models is key, because a major limitation
of LLMs is their tendency to hallucinate, or give
false information. Utilizing parameter efficient fine-
tuning strategies helps to alleviate this problem
while also maintaining an efficient computational
complexity. Through the use of PEFT, the Llama
3 model outperforms the current best models for
the PPI prediction tasks, indicating its potential for
future advancements in biomolecular research.

Our analysis of protein identification by these
models revealed intriguing patterns. Correctly iden-
tified proteins often belonged to well-characterized
functional categories and were represented by stan-
dard naming conventions, suggesting that the pre-
training on extensive biomedical literature may
have equipped the models with a robust foundation
of biological knowledge. Conversely, proteins that
were incorrectly identified typically lacked these
characteristics, possibly indicating areas where
LLMs could benefit from further training or more
focused dataset enrichment.

The cross-referencing of proteins affected by
LDR with those involved in PPIs of neurodegen-
erative, metabolic, and cancer-related processes
brought forth specific proteins that could be further
explored in future studies. Notably, the neurode-
generative PPI dataset showed the highest overlap,
where 115 unique proteins were identified in both
datasets. These results highlight exactly which pro-
teins in the PPI networks are significantly dereg-
ulated after LDR exposure, which could help to
advance our understanding of how LDR affects
disease mechanisms.

In conclusion, the integration of LL.Ms into bio-
logical research, particularly using fine-tuning tech-
niques like LoRA, holds promising potential for ad-
vancing our understanding of the molecular mecha-
nisms underpinning disease and radiation exposure.
The versatility and scalability of these models make

them instrumental tools in the ongoing quest to de-
code complex biological data. Their capacity to
learn patterns and generate insights from extensive
datasets holds immense promise for future research
endeavors. Future work should focus on expand-
ing the datasets, specifically the LDR data, and
refining model architectures to further enhance the
precision and applicability of LLMs in scientific
discovery.
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A Dataset Information

Dataset 1

The first dataset was provided from this study:
“CREB Signaling Mediates Dose-Dependent
Radiation Response in the Murine Hippocampus
Two Years after Total Body Exposure” (Hladik
et al., 2020). This study records the modulation of
protein expressions in response to varied radiation
exposures, categorizing proteins based on their up-
regulation or downregulation across three distinct
radiation groups. A graphical representation of the
significantly deregulated proteins can be seen in
Chart A, this chart was presented in the original
study and helps to visualize the structure and size
of the dataset.

To construct a balanced representation of
the data, we combine the identified upregulated
and downregulated proteins, for each of the
three radiation groups. Subsequently, we employ
a randomized selection process, drawing an
equitable count of proteins from the list of proteins
deemed unaffected by LDR, as shown by the
original study.

After cleaning the data, the number of pro-
teins in each of the three subsets (1.1, 1.2, and 1.3)
are 892, 1332, and 204 proteins respectively. Each
subset maintains an equal distribution between
proteins influenced by LDR and those unaffected,
thus ensuring analytical balance. The LLMs are
then tasked to evaluate the following query for
each protein: "Given the options yes or no, will
there be significant deregulation of the protein
{protein x} 24 months post low-dose radiation
exposure at {dosage level} Gy?".

Dataset 2

The second dataset was provided from the
study titled “DNA damage accumulation during
fractionated low-dose radiation compromises
hippocampal Neurogenesis” (Schmal et al., 2019).
This research provides an evaluation of protein
expression changes due to low-dose radiation
(LDR), and gives information regarding the
temporal aspects of radiation exposure on cellular
processes. Similar to Dataset 1, we have provided
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Figure 4: Chart A (Top) and Chart B (Bottom)

a graphical representation of the significantly
deregulated proteins in Chart B, this chart was also
presented in the original study.

This dataset encapsulates the regulatory sta-
tus of proteins, upregulated or downregulated,
across four distinct cohorts. Each cohort under-
went an identical radiation dosage of 2.0 Gy, but
the resultant protein expression was analyzed
at different post-exposure intervals. Mirroring
the methodology applied to the first dataset, we
combined the upregulated and downregulated
protein expressions, as indicated by the red and
green columns for each group, and randomly
sample the unaffected proteins. This approach
ensures a balanced representation of the data for
each group.

After the data cleaning process the number
of proteins in each of the four subsets (2.1, 2.2,
2.3, and 2.4) are 160, 198, 74, and 94 proteins
respectively. Similar to the first dataset, the LLMs
are then tasked to evaluate the following query for
each protein: "Given the options yes or no, will

there be significant deregulation of the protein
{protein x} {time} after exposure to low dose
radiation at 2.0 Gy?".

Dataset 3

Dataset 3 was provided from the study titled
"Low-dose radiation differentially regulates
protein acetylation and histone deacetylase
expression in human coronary artery endothelial
cells" (Barjaktarovic et al., 2017). This work
delves into the post-translational modifications,
specifically acetylation, that occur in proteins
of human coronary artery endothelial cells as a
result of low-dose radiation (LDR) exposure. The
administered radiation dose of 0.5 Gy and the
subsequent temporal protein measurements offer
valuable insights into the cellular responses.

In this study, the protein deregulation via
acetylation was monitored at two time intervals:
at 4 hours and then at 24 hours post-radiation
exposure. The resulting subsets for analysis,
capturing the 4 hour period and the 24 hour period,
comprised 98 and 154 proteins, respectively. These
two groups represents datasets 3.1 and 3.2.

To maintain a consistent evaluation strategy,
the LLMs are given a prompt for each protein in
the dataset: "Given the options yes or no, will there
be an altered acetylation status of protein {protein
x} 24 hours after exposure to low dose radiation at
0.5 Gy?".

Dataset 3¢

Dataset 3c represents a strategic combination of
datasets 1, 2, and 3. This integration was motivated
by insights derived from the review of experiments
1 through 3, which suggested limitations in the
approach’s efficacy. Specifically, the chosen
prompts for these experiments were potentially
too narrowly defined, and the datasets themselves
were not sufficiently sized to enable the LLMs to
recognize the patterns within the data.

To address these challenges, we synthesized
a comprehensive dataset combining the protein
deregulation data from the first 3 datasets. The
objective was to refine the training process for
the LLMs using a larger dataset and significantly
broader prompting strategy. The reformulated
prompt used to train the LLMs is: "Given the
options yes or no, will there be deregulation of
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the protein {protein x} after low-dose radiation
exposure?".

Dataset 3c includes an amalgamation of datasets
1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 24, 3.1, 3.2. Itis a
combination of the proteins in each of the columns
from charts A and B from Figure 17, along with the
proteins from datasets 3.1 and 3.2. The repeated
proteins between all datasets were removed. These
proteins become deregulated across different time
intervals and radiation dosage levels, resulting in a
comprehensive dataset of 1,111 proteins.

A randomized sampling methodology was
employed to select proteins that do not exhibit
deregulation across these varied experimental
conditions, which resulted in a dataset featuring
2,222 proteins. This augmented dataset size
significantly enhances the LLMs’ training ability,
facilitating a more nuanced understanding of
protein behavior in response to low-dose radiation
exposure.

Dataset 4

Dataset 4 was provided by the study "Predicting
Protein-Protein Interactions Using Symmetric
Logistic Matrix Factorization" (Pei et al., 2021).
In an effort to understand the Protein-Protein
Interactions (PPIs) specific to disease mechanisms,
this dataset focuses on the protein interactions
associated with neurodegenerative diseases.

From the data provided, this study narrows
its focus to a subset encompassing 820 proteins,
which form a network of 5,881 positive (interaction
present) and 5,881 negative (interaction absent)
protein pairs. This gives us a total of 11,762
protein interactions. The LLMs are prompted
with the following query for each protein pair:
"Given the options yes or no, do proteins {protein
x} and {protein y} interact in the presence of
neurodegenerative disease?".

Dataset 5

Concurrent with the exploration of neurodegen-
erative diseases in Dataset 4, Dataset 5 focuses
on metabolic disorders. Provided by the same
study "Predicting Protein-Protein Interactions
Using Symmetric Logistic Matrix Factorization"
(Pei et al., 2021), this dataset shines a light on
the protein interactions that might contribute to
metabolic dysfunction.

This data is made up of 1,063 proteins, from which
a balanced collection of 5,131 positive and 5,131
negative protein pairs is drawn. This leads to a
total dataset size of 10,262 protein interactions.
The LLMs will use a similar prompt to that used
for dataset 4: "Given the options yes or no, do
proteins {protein x} and {protein y} interact in the
presence of a metabolic disorder?".

Dataset 6

Dataset 6 was provided from the study "Network-
based protein-protein interaction prediction
method maps perturbations of cancer interactome"
(Qiu et al., 2021), which offers a focused lens on
the protein interaction network within the context
of cancer.

This data presents a network of protein interactions
consisting of 933 positive instances—indicative
of an interaction’s presence—and 1,308 negative
instances, signifying the absence of interaction. To
achieve an even representation akin to previous
datasets, we conduct a randomized selection,
reducing the negative instances to 933, thereby
equalizing the number of positive and negative
samples and giving a total of 1,866 protein
interactions. The prompt used for this dataset is
similar to datasets 4 and 5: "Given the options
yes or no, do proteins {protein x} and {protein y}
interact in the presence of cancer?".
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