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Abstract

Domain adaptation is a widely used method in
natural language processing (NLP) to improve
the performance of a language model within
a specific domain. This method is particularly
common in the biomedical domain, which sees
regular publication of numerous scientific arti-
cles. PubMed, a significant corpus of text, is
frequently used in the biomedical domain. The
primary objective of this study is to explore
whether refining a pre-training dataset using
specific quality metrics for scientific papers can
enhance the performance of the resulting model.
To accomplish this, we employ two straightfor-
ward journal impact metrics and conduct ex-
periments by continually pre-training BERT on
various subsets of the complete PubMed train-
ing set, we then evaluate the resulting models
on biomedical language understanding tasks
from the BLURB benchmark. Our results show
that pruning using journal impact metrics is not
efficient. But we also show that pre-training us-
ing fewer abstracts (but with the same number
of training steps) does not necessarily decrease
the resulting model’s performance.

1 Introduction

Advances in deep learning for natural language pro-
cessing (NLP) in recent years have enabled transfer
learning to develop (Ruder et al., 2019), particu-
larly since the creation of Transformers (Vaswani
et al., 2017).

One type of transfer learning aims to start with
a pre-training phase where the model learns the
general language structure and then a second phase
where the model can be fine-tuned for a specific
task. In the context of deep learning for NLP, this
method avoids re-training a model from scratch for
each new task, starting with a model that already
has general language knowledge. These pre-trained
models generally use a large corpus of text.

A specialized domain, such as finance or the
biomedical domain, may contain numerous tasks.

In the case of language, a specialized domain has
a specific vocabulary containing terms more rarely
found in general texts. We can observe this phe-
nomenon when looking at tokens produced by a
biomedical tokenizer against a general tokenizer
(Boukkouri et al., 2022). Moreover, tasks may
require domain-specific knowledge not found in
general sources. So, to improve the performance of
a model previously trained on a general domain to
a specific domain, it is interesting to use a corpus
specific to the domain to which we wish to adapt
our model.

Most of the data used for pre-training in the
biomedical field are research articles and papers
that can be either abstracts, full texts, or a com-
bination of both. This data generally originates
from large public databases such as PubMed or
PubMedCentral (for full-text articles). However, to
our knowledge, no study has examined the select-
ing subsets of these large databases for pre-training
using metrics specific to scientific papers. That
leads us to our research question: Can a language
model be adapted to the biomedical domain by
efficiently selecting scientific documents in the pre-
training data while maintaining or improving its
performance?

This paper presents our experiments on adapting
the pretrained BERT-base model to the biomedical
domain. We get the PubMed January 2024 baseline
corpus and define different subset configurations us-
ing journal impact metrics: h-index (Hirsch, 2005)
and Scimago Journal Rank or SJR (Guerrero-Bote
and Moya-Anegón, 2012). We then perform contin-
ual pre-training from the BERT-base model (Devlin
et al., 2019) and evaluate it on several tasks from
the BLURB benchmark (Gu et al., 2022).
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2 Related work

2.1 Domain-adaptive and domain-specific
pre-training for the biomedical domain

The adaptation of neural models to the biomedi-
cal domain has been extensively studied in recent
years, focusing on BERT-type models and, more
recently, large generative language models. We
distinguish two main categories regarding the pre-
training data:

• Mixed-domain pre-training, where the model
has seen data from different domains during
the pre-training: it can either be a model that
has been pre-trained on a general corpus and
then trained on in-domain data or a model
trained simultaneously on data from multiple
domains, such as biomedical and clinical for
example (Lee et al., 2019; Beltagy et al., 2019;
Peng et al., 2019).

• Domain-specific pre-training, where the
model only sees data from a single domain
during pre-training. The hypotheses are that
by using a domain-specific vocabulary, the
models learn more accurate representations
of specific in-domain terms (that would be
divided by the sub-word tokenization with a
general corpus) and that it reduces noise in-
troduced by text completely unrelated to the
domain (Beltagy et al., 2019; Boukkouri et al.,
2022; Lewis et al., 2020; Gu et al., 2022).

2.2 Pre-training data quality for large
language models

Several works focus on selecting sequences using
quality metrics for pre-training Transformer mod-
els in the general domain, particularly with the
advent of large language models and the evolution
of the size of pre-training datasets for these mod-
els (Zhou et al., 2023; Attendu and Corbeil, 2023;
Marion et al., 2023; Das and Khetan, 2023).

The adaptation of large language models using
scientific articles has been largely studied. How-
ever, only a few have emphasized the quality of
scientific articles used. For the Galactica model
(Taylor et al., 2022), they only mention applying
"several quality filters, including excluding papers
from journals with certain keywords and also ex-
cluding papers with a low journal impact factor".
Most other models that used PubMed or PubMed-
Central for pre-training do not mention any specific
selection of data at the document level; most focus

on preprocessing steps at the content level (bib-
liography references, authors, figures and tables,
etc.) when dealing with full-text articles (Luo et al.,
2022; Wu et al., 2023; Luo et al., 2023; Chen et al.,
2023).

3 Methods

We use the same methodology as Marion et al.
(2023), with some small modifications :

Let D be a large dataset containing documents
and ξ a metric assigning a score to a document. We
build a subset Pcξ by adding instances that fit our
selection criteria c :

Pcξ = {di ∈ D|c0ξ ≤ ξ(di)) ≤ c1ξ} (1)

Where c0ξ and c1ξ are the lower and upper bound
for the criteria c and the metric ξ. For each metric,
we consider two selection criteria: keeping top or
middle percentiles1 of D as the data to be kept.
This serves as verifying if the model learns better
with high quality documents (defined by the metric,
for our metrics, higher is better). We keep either
25% or 50% of the documents in D. So for in-
stance, if we take the 25 % middle for the metric
ξ, we should compute the 37.5 % and 62.5 % per-
centiles with respect to metric ξ, which corresponds
to c0ξ and c1ξ, and keep the documents between
these two percentiles.

Then, we tokenize each document in the subset,
and we concatenate them into sequences of length
equal to the model’s context length. This differs
from Marion et al. (2023) as we do the filtering
before tokenization (because our metrics are ap-
plied on a document, not on a sequence of tokens).
These sequences are then used to pre-train a model.
The goal is then to pre-train a model on a subset of
the whole training set while retaining or improving
the model’s performance.

3.1 Pre-training corpus

We use the PubMed Baseline corpus comprising all
article abstracts deposited on the PubMed database
until January 2024. Using PubMed metadata, we
filter out abstracts that are not in English, abstracts
whose text is not available, and abstracts whose
ISSN journal identifier is not present (we filter this
to have enough abstracts with a score as our prun-
ing metrics are based on journal impact). After

1we do not use the bottom percentiles because in our case,
for the SJR metric, more than 25% of the dataset had the same
value : 0
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filtering, the total corpus is comprised of 15.9B
tokens.

We did not perform a pre-training experiment
using the non-filtered PubMed set because we did
not have enough articles with journal identifiers
to obtain convenient metric percentiles. Still, we
expect this filtering to already impact the overall
quality of the corpus.

3.2 Quality metrics

The nature of the datasets used for general model
training (by which we mean models that are not
domain-specific) differs from those used in the
biomedical field. They are generally huge datasets
comprising texts extracted from the Internet on var-
ious sites. In our case, these are research articles
from the same database. This presupposes a text
quality that is adequate in certain respects (gen-
erally correct syntax and formal language, unlike
texts found on the Internet).

We wanted to use metrics specific to scientific
articles that have meaning for scientific article read-
ers. So, we decided to use journal impact met-
rics. We used the metadata available on PubMed.
This type of metric can provide insight into the
probable impact that a paper can have but does
not necessarily ensure scientific quality. However,
we believe filtering with impact metrics in a large
corpus can help reduce the noise, help the model
learn biomedical language, and learn biomedical
knowledge more efficiently. We use the h-index
(Hirsch, 2005) and the SJR (Guerrero-Bote and
Moya-Anegón, 2012) as the data is publicly avail-
able on the Scimago website2. For comparison, we
also perform a random score assignation on all pa-
pers from the dataset; we do not perform multiple
random assignations to limit the compute cost.

We computed the percentiles for SJR and h-
index and, as there were zero values for the SJR
index (for the 12.5% and 25% percentiles), we did
not perform all the pre-trainings for the mid cri-
teria, we only considered the 25 % subset. This
is also why we did not consider the bottom per-
centiles. We also did not perform the pre-training
on the complete set because of time and resource
constraints, but we plan to do it in future work.

3.3 Pre-processing

We define
We tokenize the whole dataset and concatenate
2https://www.scimagojr.com/journalrank.php

the text of the different abstracts into sequences of
length 512 tokens (maximum sequence length for
the model we use: BERT (Devlin et al., 2019)). .
We keep 5 % of this set as validation data.

3.4 Model and pre-training

We use the original BERT-base model (Devlin et al.,
2019), continue pre-training on the defined datasets
with masked language modeling, and compare the
resulting models. For each pre-training (on each
subset), we fix a shared global number of steps so
that each model sees the same quantity of tokens:
we select the number of steps as the total number
needed for one epoch on the entire PubMed corpus.
For the runs with the subsets, the model will run
multiple epochs until it reaches the total number
of steps, with data shuffling between epochs (for
example, two epochs for the run where we take
the top 50% of PubMed abstracts with respect to
h-index).

We train with a sequence length of 512 and a
batch size of 81923, which gives us a total of 3598
steps. We use a linear schedule with 10 % warmup
and a peak learning rate of 1e − 4. For the other
hyperparameters, we follow the original BERT pa-
per. We train our different models on 2 NVIDIA
A100 GPUs.

3.5 Evaluation and fine-tuning

We evaluate the produced pre-trained models on
some of the datasets from the BLURB benchmark
(Gu et al., 2022). We also re-evaluate the BERT-
based model to ensure a consistent evaluation with
our fine-tuning scripts. We excluded the PICO and
Sentence Similarity tasks (EBM-PICO (Nye et al.,
2018) and BIOSSES (Soğancıoğlu et al., 2017)),
for which we had trouble reproducing similar and
consistent results across runs to those obtained in
the BLURB paper, as they did not share any code
to perform the fine-tuning and evaluation. So, we
are left with the following evaluation tasks :

• Named entity recognition (NER) : BC5-chem
& BC5-disease (Li et al., 2016), BC2GM
(Smith et al., 2008), JNLPBA (Collier and
Kim, 2004) and NCBI-disease (Doğan et al.,
2014). We evaluate the models for NER tasks
using the entity-level F1 score. We model the
entities using BIO tags.

3We perform gradient accumulation and data parallelism
to get this batch size.

https://www.scimagojr.com/journalrank.php
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base random
h-index sjr

mid top mid top

0% 25% 50% 25% 50% 25% 50% 25% 25% 50%

BC5-chem 87.31 90.03 90.24 89.40 89.93 89.51 89.52 89.72 89.61 89.89
BC5-disease 77.09 81.09 80.72 81.05 80.73 80.38 80.68 81.00 80.76 80.60
BC2GM 75.32 79.17 79.01 79.51 79.51 79.52 79.41 78.74 79.01 79.87
JNLPBA 76.77 78.02 77.85 77.51 77.95 78.13 78.41 78.13 78.28 77.90
NCBI-disease 81.59 84.89 84.45 85.09 84.84 84.63 84.71 84.97 84.30 84.98
HoC 79.22 84.41 84.74 84.72 84.56 84.83 84.71 84.54 85.07 84.76
ChemProt 77.07 79.25 78.83 78.94 79.72 79.00 79.92 78.77 79.62 78.96
DDI 89.11 87.54 87.70 87.91 88.27 86.46 86.80 87.05 85.92 87.76
GAD 76.82 78.09 78.24 78.31 77.38 77.34 78.39 77.42 78.35 77.00
BioASQ 72.19 75.93 75.63 75.63 75.24 74.84 76.07 75.85 75.50 75.22
PubMed QA 55.24 55.20 55.20 55.16 55.12 54.78 55.16 55.20 55.22 55.20
Micro avg. 77.07 79.42 79.33 79.38 79.39 79.04 79.43 79.22 79.24 79.29
Macro avg. 75.89 78.56 78.55 78.59 78.53 78.25 78.64 78.41 78.53 78.46

Table 1: Comparison of the performance of our pretrained models on the different evaluation tasks from the BLURB
benchmark (Gu et al., 2022). ’base’ model is the BERTBASE model (Devlin et al., 2019) from which we continue the
pre-training. For the macro average, we average the datasets from the same task and then average the performance on
each task. For each task or average, the best performance is in bold and the second best performance is underlined.

• Relation extraction : ChemProt(M. et al.,
2017), DDI (Herrero-Zazo et al., 2013), GAD
(Bravo et al., 2015). We evaluate the mod-
els for relation extraction using the micro F1
score. We use entity dummyfication with start
and end tags and use the [CLS] token to clas-
sify relations.

• Document classification : HoC (Baker et al.,
2016), for which we measure the micro F1
score.

• Question answering : PubMedQA (Jin et al.,
2019) and BioASQ Task 7b (Nentidis et al.,
2020). We evaluate these tasks using accu-
racy.

4 Results and Discussion

To limit random effects, we perform the fine-tuning
multiple times with different random seeds, as de-
scribed in the BLURB paper: using five seeds for
all datasets except for BioASQ and PubMedQA, for
which we use ten seeds (because they are smaller
in size). We then report the average performance
across the different seeds for each dataset in the
table 1.

4.1 Improvement against non biomedical
model

All models trained on biomedical data perform bet-
ter than the base model trained only on general-
domain data. However, for a fair comparison, we
should train it for the same amount of steps on
non-biomedical data.

4.2 Are journal impact metrics important for
the model ?

We obtain the best results in micro and macro av-
erages for the model trained on the top 50% of the
entire set with respect to the h-index of the journal
in which abstracts have been published. Overall,
the h-index metric performs better than SJR, which
may be because the SJR percentile values are very
close to each other, so the quality differences are
less important.

However, the performance differences are low
when we compare to the SJR metric or even when
selecting abstracts randomly, regardless of the pro-
portion of abstracts we keep. So, journal impact
metrics do not seem important when selecting pre-
training data from a corpus of scientific articles.
We then should find more appropriate metrics to
define the quality of a single abstract or test it on
a full-text article corpus (so that the impact of a
single document is higher).
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4.3 Is it better to pre-train a model using
more abstracts ?

If we compare the performance difference when
training with 25% of the data against 50%, we
globally have better performances (except for the
random selection), but these differences are not sig-
nificant. So, it would be interesting to perform fur-
ther pre-training experiments using different subset
sizes to investigate which number of documents is
optimal for the domain adaptation.

5 Conclusion

This paper presents our early experiments on select-
ing the pre-training data for the biomedical domain.
We show that the journal impact metrics are not
better than the random selection at a fixed number
of training steps. We also observe that reducing
the number of abstracts in the training set does not
necessarily decrease the final model performance
and show the need to investigate how many docu-
ments we need to pre-train a model without losing
performance.

Further directions include finding better metrics
(or combinations of metrics) to assess the quality of
a document in the pre-training corpus, investigating
metrics at a different level (at the corpus level us-
ing various mixtures of biomedical domains), and
using a corpus of full-text articles.
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