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Abstract

The consequences of a healthcare data breach
can be devastating for the patients, providers,
and payers. The average financial impact of
a data breach in recent months has been esti-
mated to be close to USD 10 million. This
is especially significant for healthcare organi-
zations in India that are managing rapid dig-
itization while still establishing data gover-
nance procedures that align with the letter and
spirit of the law. Computer-based systems
for de-identification of personal information
are vulnerable to data drift, often rendering
them ineffective in cross-institution settings.
Therefore, a rigorous assessment of existing
de-identification against local health datasets is
imperative to support the safe adoption of digi-
tal health initiatives in India. Using a small set
of de-identified patient discharge summaries
provided by an Indian healthcare institution,
in this paper, we report the nominal perfor-
mance of de-identification algorithms (based
on language models) trained on publicly avail-
able non-Indian datasets, pointing towards a
lack of cross-institutional generalization. Sim-
ilarly, experimentation with off-the-shelf de-
identification systems reveals potential risks
associated with the approach. To overcome
data scarcity, we explore generating synthetic
clinical reports (using publicly available and
Indian summaries) by performing in-context
learning over Large Language Models (LLMs).
Our experiments demonstrate the use of gener-
ated reports as an effective strategy for creating
high-performing de-identification systems with
good generalization capabilities.

1 Introduction

Over 330 million patient records in India have al-
ready been linked with a unique central ID (PIB
Press Release). To put this in perspective, the
number roughly equals the total population of the
United States. Several federal initiatives aimed
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at establishing standards for medical information
exchange, adoption of controlled terminologies,
and promoting open architecture-based systems
for the management of patient records have seen
a steady rise in the adoption of electronic health
records within Indian healthcare institutions (Min-
istry of Health and Family Welfare (MoHFW), In-
dia; Srivastava, 2016). This data represents an
under-utilized resource that has profound impli-
cations for informing public policy, medical re-
search and patient care. At the same time, it also
poses some serious challenges. The risks of reveal-
ing patient identity even from data that has been
anonymized are well known (Sweeney, 2013). Pri-
vacy regulations such as GDPR 2016 (European
Parliament and Council of the European Union)
and the HIPAA Privacy Rule 2003 (U.S. Depart-
ment of Health and Human Services (HHS)) lay
down heavy penalties on non compliance with data
safety protocols. A robust data de-identification
pipeline is vital if we aim to unlock insights from
these electronic patient histories.

Natural Language Processing (NLP) methods for
de-identification are known to perform signifi-
cantly better than manual de-identification (Dou-
glass et al., 2004). However, these have been stud-
ied mostly in the single-institution setting. There
are limited studies that evaluate de-identification
performance of these methods across institutions
(Yang et al., 2019). These suggest that NLP meth-
ods for de-identification perform poorly when eval-
uated on data from a different institution compared
to the one that contributed the training data. This is
especially significant in the context of patient data
originating within Indian healthcare institutions.
To the best of our knowledge, studies evaluating
the performance of NLP based de-identification
systems on patient data from Indian healthcare in-
stitutions have not yet been carried out. One reason
for this might be that until recently there was no
regulatory framework for accessing patient data for
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research. The Indian Digital Personal Data Pro-
tection Act 2023 (DPDPA) (Ministry of Electron-
ics and Information Technology (MeitY), India)
is a landmark legislation that came into effect in
September 2023 and covers all organizations that
process the personal data of individuals in India.
Similar to GDPR 2016, the DPDPA defines respon-
sibilities for organizations that collect, store, and
process data from patients in India and holds them
legally accountable for safeguarding patient pri-
vacy. The DPDPA also highlights the need for a
data de-identification solution that has been vali-
dated on patient data from Indian healthcare insti-
tutions.
The present study takes a step towards answering
this imminent need. Using a dataset of fully de-
identified 99 discharge summaries obtained under
Institutional Review Board (IRB) approval from the
Sanjay Gandhi Post Graduate Institute of Medical
Sciences (SGPGIMS), Lucknow, India, the study
evaluates language models (LMs) for the task of
de-identification. Furthermore, commercially avail-
able de-identification solutions are also evaluated.
Hereafter, we refer to this dataset as the Indian
Clinical Discharge Summaries (ICDS g, subscript
R refers to real) dataset. Given the paucity of clini-
cal data, the study also evaluates Large Language
Models (LLMs) on the task of generating synthetic
clinical texts for training de-identification models.
Critically, the study highlights the existence of sev-
eral personal health information (PHI) elements in
the ICDS i dataset that are unique to the language
use and cultural practices in India. It is unlikely that
the existing de-identification solutions have been
trained to recognize these unique PHI elements,
and therefore, their detection may be unreliable. In
a nutshell, we make the following contributions:
¢ We introduce a new dataset (Indian Clin-
ical Discharge Summaries (ICDSp)) ob-
tained from an Indian hospital and evaluate
the performance of PI-RoBERTa model (PI-
RoBERTa2) (fine-tuned on non-Indian clinical
summaries) on ICDSpr for the task of De-
Identification. Our experiments show poor
cross-institutional performance. Experiments
with existing commercial off-the-shelf clinical
de-identification systems show similar trends.
* To overcome the paucity of Indian clinical
data, we generate synthetic summaries using
LLMs (Gemini (Team et al., 2023), Gemma
(Team et al., 2024), Mistral (Jiang et al., 2023),
and Llama3 (Touvron et al., 2023)) via In-

Context Learning (ICL). Further, the synthetic
summaries are used to train PI-RoBERTa for
de-identification on ICDSr. Results show sig-
nificant improvement in the performance of
the de-identification system.

* We release the model code and experiments
via GitHub: https://github.com/Explora
tion-Lab/11lm-for-clinical-report-g
eneration-deidentification

2 Related Work

Automatic data de-identification methods for
biomedical texts have focused on leveraging ma-
chine learning techniques to ensure privacy while
maintaining data utility. Named Entity Recognition
(NER) systems have been tailored to identify and
anonymize personal health information/personal
identifiable information (PHI/PII) from clinical nar-
ratives. Earlier work explored Support Vector Ma-
chines (SVMs) for identifying PHI (Neamatullah
et al., 2008). Researchers have also explored deep
learning models, such as Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks
(RNNs) (Dernoncourt et al., 2017), which have
shown superior performance over the conventional
approach.

In recent years, there has been a growing inter-
est in the application of transformer-based models
like BERT (Devlin et al., 2018) for the clinical
NER and de-identification task (Chaudhry et al.,
2022; Alsentzer et al., 2019). LLMs have also
been explored for various clinical tasks such as
clinical NLI (Mandal and Modi, 2024). Hybrid
approaches that combine rule-based and machine
learning methods have also been developed to en-
hance the robustness of de-identification systems
(Meystre et al., 2010). A study by Yang et al. (2019)
used a hybrid model combining Long Short-Term
Memory (LSTM) networks with Conditional Ran-
dom Fields (CRFs) for the de-identification of clin-
ical notes. It demonstrated the effectiveness of
integrating local resources and diverse word em-
beddings, and achieved high F1 scores across var-
ious de-identification tasks. Furthermore, El Az-
zouzi et al. (2023) de-identified French electronic
health records using distant supervision and deep
learning techniques. The study utilized models like
Bi-LSTM+CREF and enhanced them with contex-
tualized word embeddings. It achieved remark-
able accuracy in removing identifiable informa-
tion while maintaining data utility. These inno-
vations underscore the continuous improvement
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| Apollo Hospital Hespital Sector 11, Main Road, Faridabad - 121001, India Location
Discharge Summary CRNO: _Name: _ 35/Y Age M Department: _

Unit: UNIT-3 Ward/Bed: 1423 - Admission No: ADM- _ Admitted on: _ 09:30
Discharged on: _ 14:00 Patient Type: Normal Consultant: _ Discharge Type: Normal
Discharge Correspond. Address:, Distt. State | Haryana Lecation | Pin No. Phone No +91- _ Admission

Details: Patient was admitted to the hospital on _ at 09:30 with a chief complaint of chest pain. He was

diagnosed with acute myocardial infarction and was treated with thrombolysis and angioplasty.

Figure 1: A sample of annotated text from Discharge Summary

and adaptation of de-identification methods to ad-
dress the evolving challenges in data privacy. With
remarkable progress made in generative Al tech-
niques, researchers have started exploring generat-
ing synthetic clinical data. For example, medGAN
(Choi et al., 2017) has been proposed to gener-
ate high-dimensional discrete variables such as pa-
tient records. It shows that it can produce realistic
EHR data that preserves the statistical properties
of the original dataset. Researchers have also ex-
plored differential privacy techniques in conjunc-
tion with Generative Adversarial Networks (GANSs)
to ensure that the synthetic data does not allow
re-identification of individuals. There is also on-
going research into hybrid models that combine
rule-based and machine learning techniques to gen-
erate data that not only looks realistic but also ad-
heres to known clinical correlations and constraints
(Isasa et al., 2024; Goncalves et al., 2020). Such
approaches ensure that the synthetic data is both
safe and scientifically valid for use in biomedical
modeling simulations. The trend highlights the po-
tential of synthetic data to address privacy and data
availability challenges in biomedical research. In
this paper, we explore LLMs for generating syn-
thetic clinical reports that closely resemble reports
in ICDSR, thus capturing the underlying data gen-
eration processes.

3 Clinical Discharge Summaries Datasets

n2c2: We make use of the 2006 and 2014 n2c2
datasets (Ozlem Uzuner et al., 2008; Stubbs et al.,
2015). The 2006 challenge involved the devel-
opment of automated methods to de-identify dis-
charge summaries from patient medical records
(Ozlem Uzuner et al., 2008). The total number
of summaries in the n2c2-2006 dataset are 888,
split between training and test sets. The 2014 chal-
lenge comprised of two tasks: de-identification and
heart disease risk factor identification (Stubbs et al.,
2015). For the de-identification task, the dataset
included a variety of clinical documents such as

progress notes, discharge summaries, and other nar-
rative texts that typically contain detailed patient
information.

Indian Clinical Discharge Summaries (ICDSR):
We obtained fully de-identified 99 discharge sum-
maries obtained under Institutional Review Board
(IRB) approval from the Sanjay Gandhi Post Grad-
uate Institute of Medical Sciences (SGPGIMS),
Lucknow, India. All discharge summaries in the
Indian Clinical Corpus were manually annotated
for de-identified entities by human annotators using
Doccanno (Nakayama et al., 2018), a data anno-
tation tool. Each document was annotated by one
annotator. The annotators had previous experience
in clinical text annotations. Following established
practice, we used the BIO scheme (Ramshaw and
Marcus, 1999) for annotating named entities. Our
PHI labels were defined by augmenting the PHI
entities defined in the HIPAA Privacy Rule 2003
along with adaptation to Indian clinical texts. After
annotation, we obtained 26 PHI unique entities in
the ICDS R, dataset. Subsequently, due to privacy
concerns, PHI elements were replaced with fake
values through an automatic replacement tool devel-
oped using the Python library Faker (Faraglia and
Other Contributors, 2010) (example in Fig. 1). Re-
peated occurrences of an entity within a note were
tracked for consistent replacements. Moreover, set-
tings such as date/time offsets were parameterized
via a configurable file. The tool provides a scal-
able solution for de-identifying medical datasets
while ensuring secure data access. Table 1 provides
statistics of the datasets.

4 Generated Discharge Summaries
Datasets

Initial experimentation showed over-fitting in mod-
els on the ICDSp data due to its small size
(69, 10, 20 summaries for train, val, and test sets, re-
spectively). Consequently, we generated synthetic
summaries to augment ICDS p data. Synthetic pa-
tient data is being used increasingly for a variety
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Statistics

Training dataset

Test set

n2c2-2006 n2c2-2014 ICDSr ICDS ICDSY, n2c2-2006 n2c2-2014 ICDSg

# Summaries 668 790 79 1596 1043 220 514 20
# Unique Tokens 29218 55907 13542 56780 25184 15231 41066 6106
Max Length 3023 2984 9494 4256 2590 2687 2474 8511
Min Length 13 74 97 100 109 15 99 270
Avg. Summary Length  581.71 618.86  1005.94 373.80 392.34  748.22 615.19  1343.40
Original Tag Set 9 24 26 34 106 9 21 24
Mapped Tag set 9 9 9 9 9 9 9 9

Table 1: Statistics of various datasets

of in-silico biomedical experiments in addition to
training data augmentation (Chen et al., 2021). Us-
ing the samples from ICDSp we generated medi-
cal discharge summaries specific to Indian patients
using LLMs (Gemma, Llama-3-8B-Instruct, and
Mistral-7B-Instruct-v0.1) via In-Context Learning
(ICL). We experimented extensively with various
prompts and discharge summaries, as explained
below. Our choice of LLMs was driven by the fea-
sibility of instantiating these models on-premise.
Prompting is a key aspect of using LLMs. As
described below, we experimented with various
prompt designs.

Discharge Summaries Generation using the
n2c2-2006 dataset: Since the n2¢2-2006 discharge
summaries are publicly accessible, we generated
synthetic discharge summaries based on these
along with PHI annotations using Gemini-pro-1.0.
We arrived at a functional prompt by iteratively
tuning and inspecting the synthesized outputs for
overall length, presence of key subsections, and
correct PHI annotation. While tuning our prompts,
we did not check for the medical validity of the
discharge summaries (see App. Table 12). The
prompt also contained an original n2¢2-2006 sum-
mary as an exemplar. This way, we generated five
patient discharge summaries for each original dis-
charge summary in the n2c2-2006 dataset and a
total of 3000 discharge summaries. The generated
summaries were manually reviewed, and the ones
containing gibberish text and missing or incorrect
annotations were filtered out, resulting in 1596 syn-
thetic discharge summaries with PHI annotations.
Hereinafter, we refer to this dataset as ICDS% .

Discharge Summaries Generated using the
ICDSy dataset: The ICDSy dataset is accessi-
ble only under the Institutional Review Board’s
approval, and therefore, LLLMs that can be inferred
only via public API endpoints cannot be used to
process these. Consequently, we generated syn-

thetic discharge summaries for the ICDS dataset
only with LLMs that could be instantiated within
our secure compute infrastructure (Llama-3-8B-
Instruct, Gemma and Mistral-7B-Instruct-v0.1, re-
spectively). We evaluated various LLM and prompt
combinations to converge on Llama-3-8B-Instruct
(see App. Table 12 for the prompt). To evaluate the
performance of model-prompt combinations, we
calculated two metrics: BERT F1-Score and the av-
erage length of summaries (in words). The BERT
F1-Score was calculated on a sample of synthetic
annotated discharge summaries (target) and the 99
original ICDS g discharge summaries (see Table
2). The BERT F1-Score of Meta-Llama-3-8B-
Instruct and Mistral-7B-Instruct-v0.1 models with
prompt B surpass other model-prompt combina-
tions. We selected the Meta-Llama-3-8B-Instruct
model for synthetic discharge summary generation
and PHI annotation since, in addition to a high
BERT F1-score, the generated summaries are, on
average, longer. The ICDS dataset was split so
that 79 summaries were used in the prompt to gen-
erate synthetic summaries while the remaining 20
were reserved for the test set. The temperature
parameter of Meta-Llama-3-8B-Instruct was set
to 0.9. Around 25 summaries were generated for
each of the 79 ICDS R, discharge summaries by em-
bedding these one at a time as an exemplar in the
prompt. In total, 1831 discharge summaries, which
already had PHI annotations, were generated, yield-
ing 1043 generated discharge summaries after man-
ual review and filtration. Hereinafter, we refer to
this dataset as ICDSZG, Further, we asked two an-
notators to annotate 50 generated summaries (after
removing the PHI tags) with PHI tags. The Cohen’s
kappa coefficient (Warrens, 2015), the measure of
inter-annotator agreement, was 0.921, showing a
high agreement.

Evaluation of the Quality of the Generated Sum-
maries: We assessed the face validity of the gen-
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Prompt Id Model Used BERT F1-Score Avg. Summary
Length (words)

B meta-llama/Meta-Llama-3-8B-Instruct 0.491 564

B mistralai/Mistral-7B-Instruct-v0.1 0.493 400

C meta-llama/Meta-Llama-3-8B-Instruct 0.486 503

C mistralai/Mistral-7B-Instruct-v0.1 0.468 267

C google/gemma-1.1-7b-it 0.478 268

Table 2: Comparison of model-prompt combinations

Test Set

Training Set

222006  n2c2-2014  ICDSR

12c2-2006 v v v

2c2-2014 v v v

n2c2-2006+ n2c2-2014 v v v

ICDSY v v v

1cnsg v v v

ICDSY, + ICDS, v v v

ICDS, + ICDSL, + n2c2-2014 v v v

ICDSZ,+ ICDS, + n2¢2-2014 v v v

Table 3: Experiments Matrix

erated summaries by asking physicians to review
a convenience sample of 30 real and 30 synthetic
discharge summaries with the real/synthetic labels
suppressed. The 60 discharge summaries were
shuffled and uploaded to a secure, online review
tool accessible only to the reviewers (physicians).
The reviewers were asked to review each summary
and then assign a single label (real or synthetic)
to each based on their experience. The review re-
sults were compiled, and the precision, recall, and
F1 scores were computed for each physician along
with Cohen’s Kappa to assess agreement between
the two physicians (details in §7).

As can be observed in Table 1, for the purpose of
uniformity and modeling, we mapped PHI entities
in each of the dataset to 9 tags (corresponding to
8 unique entities + 1 OTHERS). App. Table 15 pro-
vides details of tag mapping where the PHI entities
are mapped with to their superset and all non-PHI
entities are mapped to OTHERS Tag.

5 De-Identification Task

De-Identification Task: De-Identification is con-
ceptually similar to a Named Entity Recognition
task. Both ICDS“(C’; and ICDSlG were pre-processed
and converted into BIO format as is customary
in Named Entity Recognition development (also
see App. Fig. 4). Formally, given some text,
S = (w1, ws,ws, ..., w,) containing n words, de-
identification requires labeling each of the word
w; with a tag t; coming from a NER tagset
t1,t2, ..., t7. Subsequently, the labeled entities can
be redacted or replaced with fake values for privacy
protection.

De-Identification Model: We
several different NER models,

fine-tuned
including

. Dataset
Attribute

Real Generated

3158684
560753

5022667
721886

Counts
Length (words)

Mean + SE 4.64 £+ 0.004 5.93 £ 0.005

Median 4.0 5.0

Min 1 1

Max 50 89
Jaccard Distance 0.83
BERTScore (F1) 0.64
BERTScore (Precision) 0.65
BERTScore (Recall) 0.63

Table 4: Comparison of n2¢2-2006 and ICDSY, Dataset

Attribute Dataset

Real Generated

636805
102604

4789863
508244

Counts
Length (words)

Mean + SE 521 £0.01 7.77 £ 0.01
Median 4.0 5.0
Min 1 1

Max 72 472
Jaccard Distance 0.80
BERTScore (F1) 0.58
BERTScore (Precision) 0.60
BERTScore (Recall) 0.56

Table 5: Comparison of ICDS g and ICDSZG Dataset

ghadeermobasher/BCHEM4-Modified-BioBERT-
vl (BioBERT) and Clinical-AI-Apollo/Medical-
NER (Clinical AI Apollo). In each case, we
used a training partition of the data to train and
a validation partition for evaluation. However,
the Clinical NER models did not perform well
since they are designed to label medical entities
such as disease, drugs, procedures, and devices
(see App. D). RoBERTa-NER-Personal-Info
model (PI-RoBERTa) showed good performance
on n2c2-2006 and n2c2-2014 datasets. The
architecture for PI-RoBERTa is shown in App.
Fig. 13. PI-RoBERTa is a 24-layered transformer
model that predicts a label for each token.

6 Model Training Experiments

Initial experiments with ICDS R using a 69-10-20
(train-val-test) split resulted in overfitting given that
ICDSR, is small, containing only 99 discharge sum-
maries. We also experimented with training the
model on n2¢2-2006 and n2c¢2-2014 datasets and
testing on ICDS i to check for cross-institutional
generalization. We experimented with several com-
binations of real and synthetic datasets and evalu-
ated on the test set of n2¢2-2006, n2¢2-2014, and
ICDSg. Table 3 shows the experiments matrix, in
total we evaluated 24 different combinations. For
all the experiments, we reserved 20 summaries of
ICDSk, for testing. Note that these summaries were
also not used for generation. For each experiment,
PI-RoBERTa was fine-tuned on each training set as
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Training Data n2c2-2006

n2c2-2014 n2¢2-2006 + n2c2-2014

Testing Data n2c2-2006 n2c2-2014 ICDSr n2c2-2006 n2c2-2014 ICDSr n2c2-2006 n2c2-2014 ICDSr

CONTACT 0.98 0.66 0.18 0.73 0.95 0.20 0.96 0.93 0.24
PATIENT 0.95 0.65 0.81 0.82 0.98 0.85 0.91 0.96 0.77
DOCTOR 0.95 0.89 0.64 0.93 0.98 0.76 0.97 0.98 0.54
D 0.99 0.55 0.64 0.96 0.97 0.65 1.00 0.96 0.93
DATE 0.98 0.43 0.16 0.70 0.99 0.97 0.97 0,98 0.97
LOCATION 0.89 0.80 0.71 0.78 0.95 0.80 0.81 0.94 0.75
HOSPITAL 0.94 0.79 0.34 0.87 0.94 0.36 0.94 0.93 0.40
AGE 0.80 0.00 0.00 0.02 0.99 0.48 0.12 0.94 0.53
Micro Avg 0.96 0.66 0.41 0.81 0.98 0.80 0.96 0.97 0.80
Macro Avg 0.93 0.60 0.43 0.72 0.97 0.63 0.83 0.95 0.64
Weighted Avg 0.96 0.61 0.31 0.84 0.98 0.78 0.96 0.97 0.78

Table 6: F1 scores for PHI entities with overall micro Avg F1 , macro Avg F1 , Weighted Avg F1

Training Data ICDSZ,

ICDS, ICDSZ+ ICDSy

Testing Data  n2c¢2-2006 n2c2-2014 ICDSgr n2c2-2006 n2c¢2-2014 ICDSg n2c2-2006 n2c2-2014 ICDSr

CONTACT 0.80 0.47 0.11 0.55 0.38 0.96 0.93 0.67 0.98
PATIENT 0.74 0.56 0.68 0.05 0.32 0.95 0.83 0.60 0.90
DOCTOR 0.86 0.78 0.88 0.35 0.71 0.98 0.86 0.76 0.98
1D 0.87 0.58 0.51 0.81 0.61 1.00 0.93 0.63 0.98
DATE 0.87 0.90 0.88 0.70 0.84 0.99 0.90 0.88 0.99
LOCATION 0.71 0.78 0.34 0.50 0.66 0.97 0.75 0.81 0.96
HOSPITAL 0.87 0.72 0.31 0.42 0.51 0.97 0.88 0.70 0.98
AGE 0.02 0.67 0.51 0.02 0.38 0.96 0.06 0.56 0.97
Micro Avg 0.85 0.77 0.68 0.55 0.67 0.98 0.88 0.76 0.98
Macro Avg 0.72 0.68 0.53 0.42 0.55 0.97 0.77 0.70 0.97
Weighted Avg 0.86 0.77 0.69 0.52 0.66 0.98 0.88 0.77 0.98

Table 7: F1 scores for PHI entities for the PI-RoBERTa trained on generated data.

given in Table 3 and tested on each corresponding
test set. Details about training are given in App. D
Comparison with Commercial De-Identification
Systems: We compared the performance of these
on the ICDSR, test set. In particular, we evaluated
AWS’s (Amazon Web Services) Comprehend Med-
ical DetectPHI (Amazon Web Services) and GCP’s
(Google Cloud Platform) Data Loss Protection
(DLP) (Google Cloud) de-identification solutions.
For comparison and evaluation, ICDS i, test set was
mapped to a common tag set, which includes DATE,
NAME, LOCATION, AGE, ID, and CONTACT. To ensure
consistency across the dataset, pre-processing steps
were applied. For instance, titles such as ‘Dr.’
and ‘Mr.” were removed from NAME entities in the
ICDSk, test set due to the solution’s inability to
recognize them. Certain tags and entities were ex-
cluded from the analysis to align with a common
tag set. The LOCATION entity was standardized by
merging all location-related entities (street, city,
state, zip) into a single LOCATION entity. Similarly,
HOSPITAL, ORGANISATION_NAME and ADDRESS en-
tities were consistently mapped to LOCATION.

De-identification using LLMs: We further evalu-
ated the performance of LLMs on ICDSF, test set.
Meta-Llama-3-8B-Instruct was instantiated within
our secure compute infrastructure, and the prompt
was developed for medical text de-identification
using the iterative approaches described in the fore-
going sections.

7 Experiments, Results and Analysis

Comparison of datasets: The total number of
summaries in the n2c2-2006 dataset are 888, split
between training and test sets, as shown in Ta-
ble 1. The n-gram analysis of the n2¢2-2006 and
ICDSp, datasets reveals distinct linguistic patterns
reflecting their unique clinical foci. The n2¢2-2006
dataset features unigrams like ‘patient,” ‘discharge,’
and medication-related terms such as ‘mg’ and ‘po’
and bigrams like ‘mg po’ and ‘discharge date,” high-
lighting a narrative centered on patient manage-
ment and clinical processes as shown in App. Fig.
14. In contrast, the ICDS g dataset (as shown in
App. Fig. 18) shows a marked presence of terms
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Training Data

n2c2-2014+ ICDS;+ ICDSY,

n2¢2-2014+ n2¢2-2006+ ICDSZ, + ICDSY,

Testing Data  n2c2-2006 n2c2-2014 ICDSr n2c¢2-2006 n2c2-2014 ICDSRr
CONTACT 0.89 0.95 0.98 0.97 0.96 0.98
PATIENT 0.87 0.97 0.88 0.94 0.96 0.88

DOCTOR 0.95 0.97 0.98 0.98 0.98 0.99

1D 0.99 0.97 0.99 0.99 0.96 0.99

DATE 0.82 0.99 0.99 0.99 0.99 0.99
LOCATION 0.76 0.95 0.98 0.85 0.94 0.98
HOSPITAL 0.93 0.94 0.96 0.96 0.94 0.97
AGE 0.02 0.97 0.96 0.35 0.97 0.86
Micro Avg 0.88 0.97 0.97 0.97 0.97 0.97
Macro Avg 0.78 0.96 0.96 0.88 0.96 0.96
Weighted Avg 0.90 0.97 0.97 0.97 0.97 0.97

Table 8: F1 scores of PHI entities when PI-RoBERTa is fine-tuned on combination of datasets

AWS
0.37

GCP
0.47

Metric
F1 Score

Table 9: Results: AWS vs. GCP Solutions on ICDSg
test set

Entity AWS  GCP
DATE 039 056
NAME 057 052

LOCATION  0.20 0.22
AGE 0.12  0.00

1D 0.17  0.17
CONTACT 0.63 0.36

Table 10: F1 scores for Entity-Wise Comparison of
AWS and GCP Solutions on ICDS i test set

such as ‘pm,” ‘days,” and ‘mgdl,” and bigrams and
trigrams like ‘10 days,” ‘daily 10,” and ‘cr x ray,’
suggesting an orientation towards experimental or
lab-result oriented narratives, with a particular em-
phasis on procedural timelines and diagnostic pro-
cedures. Hence, ICDS R focuses on a broader scope
involving diagnostics and treatment monitoring.
Real versus Generated Datasets

ICDSY, vs n2¢2-2006: We analyzed the n2c2-2006
and the synthetic ICDS}, discharge summaries
in terms of summary statistics, Jaccard distance,
and BERTScore (using the “dmis-lab/biobert-v1.1”
model) as shown in Table 4 (Lee et al., 2020; Zhang
et al., 2020). The Jaccard distance suggests a high
level of lexical dissimilarity between the datasets,
indicating that the synthetic dataset introduces a
significant degree of variation compared to the real
dataset. While indicating some differences, an F1
score of 0.6362 indicates the real and synthetic
datasets have semantic overlap. An n-gram analy-
sis of the top 10 unigrams, bigrams, and trigrams
unveils the differences between the two datasets,
yet also underscores their relevance to the task at
hand as shown in App. Fig.14, Fig.15, Fig.16, and
Fig.17. These metrics suggest that while the syn-

thetic dataset is designed to be distinct enough to
introduce useful variability, it retains a substantive
semantic similarity to the real dataset. This bal-
ance is crucial when synthetic data is used for tasks
such as model training, where the goal is to en-
sure that the model is not only trained on a diverse
set of data but also remains relevant and effective
when applied to real-world data. The high Jaccard
distance combined with the moderate BERTScore
indicates that the synthetic dataset achieves this ob-
jective by being similar enough to the real dataset
to be useful, yet different enough to enhance the
dataset’s diversity and robustness.

ICDSZG vs ICDSr: Similar to the n2c2-2006
and ICDSgG datasets, we analyzed the ICDS i and
ICDSZG datasets with summary statistics, Jaccard
distance, and BERTScore, as shown in Table 5.
The Jaccard distance suggests lexical dissimilarity
implying injection of new vocabulary in the gener-
ated discharge summaries. The n-gram analysis of
the top 10 unigrams, bigrams, and trigrams shows
these differences (App. Fig.18, Fig.19, Fig.20, and
Fig.21). The BERTScore results indicate a mod-
erate level of semantic similarity between the real
and generated datasets. The metrics suggest that
the generated dataset has greater lexical variety and
incorporates some additional semantic constructs.

Evaluation of The Quality of Generated Sum-
maries: The confusion matrix on convenience sam-
ple of 60 discharge summaries evaluated by physi-
cianl and physician2 are shown in Fig. 2 and Fig.
3 respectively. There are 10 summaries that were
originally synthetic but were labeled as real by
physician 1, and 19 summaries that were originally
synthetic but were labeled as real by physician 2.
Physician 1 is able to label summaries with higher
precision and recall, i.e., higher f1-score as com-
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Physician Precision  Recall ~ Fl-score
Physician I 0.714 0.833  0.769
Physician2  0.537 0.733  0.620

Table 11: Evaluation metrics of 60 discharge summaries
annotated by physician 1 and physician 2

pared to physician 2 (Table 11). The Cohen’s kappa
coefficient, the measure of inter-annotator agree-
ment, is 0.290 showing a fair agreement between
the labels assigned by the physicians. Additionally,
physician 1 observed that many of the discharge
summaries that he labeled synthetic appeared to
have been translated from a non-English source.
Physician 2 reported some diagnosis and format-
ting issues among the summaries he labeled as
synthetic. Additionally, physician 2 reported some
errors in diagnoses, medications, and lab results,
but these were not limited to the summaries he
labeled as synthetic.

True Label

Synthetic

10 20

Real Synthetic
Predicted Label

Figure 2: Confusion matrix on convenience sample (60
discharge summaries) evaluated by physician 1
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Figure 3: Confusion matrix on convenience sample (60
discharge summaries) evaluated by physician 2

Model Performance: Table 6 shows the results
for intra- and inter-institutional performance. As
can be observed, the inter-institutional performance
of the model is very high (> 0.96 F1). However,
the cross-institutional performance suffers signif-
icantly. Table 7 shows the results of training on
generated datasets. The fine-tuned Model gives
68% F1 score on the ICDSk, test set, 77% on the
n2c2-2014 test set, and 85% on the n2c2-2006.
Results on the ICDSR, test set are not promising.
This might have happened because ICDS“Z; was

generated using n2¢2-2006. Fine-tuning on ICDSZG
dataset results in 98% F1 score on the ICDS test
set, 67% on n2c2-2014 test set, and 55% on the
n2c¢2-2006 test set. To further improve model gen-
eralization, we experimented with combinations
of datasets. Table 8 shows the training results on
a combination of real and synthetic datasets. We
get micro-F1 of 97% on n2c¢2-2014 and ICDSR
test set given that we have included n2¢2-2014 and
ICDS., datasets in training, but the performance
of the model (88%) is also notable on n2¢2-2006
dataset. These results indicate that fine-tuning on
the combination improves cross-institutional per-
formance.

Analysis: Our experiments indicate models have
poor cross-institutional generalization. We per-
formed several experiments with n2¢2-2006, n2c2-
2014, ICDS%, and ICDSlG datasets, and their com-
binations. The general trend is that fine-tuned
model performance degrades heavily in cross-
dataset settings. At the individual entity level, the
F1 score for the PATIENT entity is consistent for all
the fine-tuned models. For the DOCTOR and DATE
entities, the F1 scores of all the fine-tuned models
are also consistent, except for when the model is
trained on the n2c2-2006 dataset and tested on the
n2c2-2014 dataset and ICDSR, test sets. For the
ID entity, all the fine-tuned models have consistent
F1 scores, except for when the model is trained
on ICDSY,, and tested on n2c2-2014 and ICDS
datasets. We noticed performance variance in the
LOCATION, AGE, and CONTACT entities. This could
be because the LOCATION can be any local address
without a specific format. AGE is either a number
like “78 Y’ or a word representation of that num-
ber like ‘Seventy-Eight year old’. In most cases
in the datasets, these types of words or tokens are
tagged as OTHERS, and they are highly prevalent.
This could be why the AGE tag was incorrectly pre-
dicted as OTHERS in cross-dataset settings. The
entity CONTACT includes email, IP address, phone
number, landline number, etc. However, their dis-
tribution is not uniform.

Our main aim was to develop a robust model that
could de-identify medical text from Indian Health-
care Institutes. This was done by fine-tuning PI-
RoBERTa on ICDSlG where we are getting state-
of-the-art performance on ICDS . Almost all the
entities were correctly identified, with a few excep-
tions. A few PHI entities were misidentified with
non-PHI entities (i.e., OTHERS ) and vice versa, as
can be seen in App. Fig. 26. However, the per-
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centage of incorrect prediction is significantly less
when considering the total support set of ICDS
test set. However, this fine-tuned model was not
generalizable when we tested it on the n2¢2-2006
and n2¢2-2014 test sets, as seen in the Table 7. For
model generalizability, we fine-tuned PI-RoBERTa
on n2¢2-2014 , ICDS% and ICDSZG, tested on the
n2c2-2006 test set. The results shown in Table 8
indicate that models are generalizing when we fine-
tuned them on different combinations of datasets,
although the F1 score for all entities is not consis-
tent, as can be seen in App. Fig. 28a. Confusion
matrix for all the experiments are shown in App.
Fig. 22 Fig. 23, Fig. 24 , Fig. 25, Fig. 26 Fig. 27
, Fig. 28b.

Comparison with Commercial De-Identification
Systems: The results obtained using AWS and
GCP solutions are summarized in Table 9 and Ta-
ble 10. The results clearly indicate that AWS and
GCP do not perform well on ICDSy, test set. This
could be because systems have been trained on
non-Indian specific clinical data. This underscores
the importance of ensuring that de-identification
caters to diverse demographics, which is essential
for ensuring the efficacy and ethical deployment of
these solutions.

The underperformance of commercial solutions
in classifying PHI in ICDSR, can be attributed to
misidentification. Medical entities are mistaken
as NAME/ LOCATION, while Pin-codes as ID. Names
like ‘Alia’ and ‘Adah’ are not being consistently
recognized as NAME by AWS and GCP. Patient
IDs that start with CRNO: ######H#HHH#H# or ADM-
HHHHHHAEHA are not identified as PHI; these solu-
tions probably aren’t sure what CRNO, ADM stand
for. ‘B/O Kanav Viswanathan’ is misidentified,
where ‘Kanav Viswanathan’ is a name and B/O
stands for Baby of but gets labeled as a LOCATION.
‘Urvi Bhamini Faiyaz Kakar’ is identified as Name
by GCP but not by AWS. ‘Wockhardt Hospitals,’
hospital name was not identified as PHI. Med-
ical terms like ‘BILIRUBIN,” ‘MALLOY EVE-
LYN, ‘CR X Ray’ and ‘SERUM LIPASE’ are
misidentified as NAME when they describe medi-
cal tests. Similarly, ‘CREATININE (M - JAFFE
COMPENSATED)’ is a medical test and ‘JAFFE’
is misidentified as NAME. ‘Meropenem,” an antibi-
otic, is misidentified as NAME. Even terms like
‘Ward’ from room names such as ‘“Ward-B’ occa-
sionally get misidentified as NAME. Test results like
‘136/94mmHg’ or ‘TSH - 5.45’ are misidentified
as ID. Locations like ‘Subramaniam Chowk’ and

“Yohannan Nagar,” are also misidentified as NAME.
Additionally, using GCP or AWS for PHI detection
introduces variability, causing results to vary with
each execution. These factors underscore the need
for precision and consistency in data handling to
mitigate performance issues in medical contexts.
De-identification using LLMs: We also con-
ducted experiments of de-identifying clinical sum-
maries using LLMs directly. A precision score of
0.55 was obtained. However, the model faced chal-
lenges in terms of recall. The recall scores were
merely 0.11. We also evaluated the performance of
Mistral-7B-Instruct-346v0.1 and Gemma. Surpris-
ingly, the results obtained from these models were
far inferior to those of Meta-Llama-3-8B-Instruct.
Results suggest that the LLMs struggle to detect
PHI in Indian medical discharge summaries.

8 Conclusion and Future Directions

In this paper, we explored the task of de-
identification on Indian clinical discharge sum-
maries. Experiments indicate a poor generaliza-
tion of fine-tuned (on public datasets) models and
poor performance of the off-shelf commercial sys-
tems. Experiments with LLM generated summaries
look promising; the model fine-tuned on generated
summaries and public datasets shows good gener-
alization performance. Our results are based on a
small test set. Using the insights from our work,
we aim to set-up an active learning workflow that
combines our fine-tuned model and human anno-
tators to produce a larger test dataset on which we
may evaluate overall model performance as well as
by conditioning on a medical specialty. The aug-
mented (generated summaries with original data)
institution-specific dataset can be used to fine-tune
NER models that have been pre-trained on PHI
data cost-effectively. Achieving cross-institution
portability remains a topic of active research. How-
ever, many open-source large language models can
be deployed on-premise and, as described above,
fine-tuned to provide an immediate and effective
solution to personal data protection in Indian health-
care institutions.
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A Prompts and Synthetic Discharge
Summaries

In Table 12, we showcase the prompts which we
used to generate the ICDSY, and ICDS/, datasets.
We used Prompt A in Table 12 for generating
ICDSgG from Gemini-pro-1.0. Table 13 gives a
sample discharge summary. Using prompt B in Ta-
ble 12, we generated ICDSlG dataset using Llama-
3-8B-Instruct. Table 14 gives a sample discharge
summary.

B Tag Mapping across all the dataset and
tag Distribution after Mapping the
Tags

We have five datasets: n2c2-2006, n2c2-2014,
ICDSpg, ICDS%, and ICDSlc. Each dataset has its
own tag set. n2c¢2-2006 contains 9 tags, n2¢2-2014
contains 24, ICDS p contains 26, ICDSgG contains
34, and ICDSZG contains 106 unique tags, includ-
ing the OTHERS tag. In the datasets n2c2-2006,
n2c2-2014, and ICDSR, all the tags are related to
PHI entities. However, in the ICDSL, and ICDS%,
datasets, a few annotated tags are not related to the
PHI entities due to LLM hallucinations. To train
models for a fair comparison, we need a uniform
tag set across all datasets.

Hence, we mapped the tag set of all the datasets
to the n2c2-2006 tag set. In all the datasets, we
mapped entities like street, city, country, zip, etc
to LOCATION. Similarly, we mapped phone number,
mobile number, email, landline, etc, to CONTACT.
Additionally, we mapped all the PHI-related enti-
ties to their super-set using mapping shown in Table
15. In the ICDSZG and ICDS% datasets, we have
several tags unrelated to the PHI entities. Hence,
we mapped all non-PHI entities to the OTHERS tag.
After mapping the tag set of all the datasets to n2c2-
2006 tag set, we calculated the tag distribution of
all PHI entities across all datasets. The distribution
of tag sets of all the dataset when mapped with
n2c2-2006 dataset are shown in Fig. 5, Fig. 6, Fig.
7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, and Fig. 12.

C Corpus Statistics

The n-gram frequencies from the n2¢c2-2006 dataset
show a strong emphasis on clinical and procedu-
ral language, including terms like ‘mg,” ‘po,” and
‘hospital,” as shown in Fig. 14. Notably, phrases
such as ‘discharge summary’ and ‘physical exami-
nation’ dominate, highlighting standard documen-
tation practices. Trigrams such as ‘dis report status’

and ‘report status unsigned’ indicate typical phras-
ing in medical reports. This is in contrast with the
ICDSpR dataset in Fig. 18, where there is a pre-
dominance of time-related unigrams (‘pm,” ‘days’)
and clinical terms (‘mgdl,’” ‘method’). The frequent
bigrams and trigrams revolve around treatment and
diagnosis descriptors, such as ‘daily 10 days’ and ‘x
ray chest,” illustrating the detailed recording of pa-
tient care routines and diagnostic procedures com-
monly found in medical records. In the n2¢2-2006
dataset, bigrams like ‘mg po’ and ‘discharge date,’
and trigrams like ‘mg po bid” and ‘history present
illness,” which reveal specific medication dosages
and detailed descriptions of patient conditions, are
found next to PHI elements, as shown in Fig. 16. In
the ICDS i dataset, specific trigrams like ‘discharge
summary crno’ and ‘normal discharge correspond’
are located near PHI elements (Fig. 20). The differ-
ences between the n2¢2 2006 dataset and ICDS R
highlight how clinical documentation practices and
language differ between the US and India.

In the synthetic ICDS% dataset, the frequent oc-
currence of ‘phi’ in various n-grams highlights (in
Fig. 15) the inclusion of potentially identifiable
information. Trigrams such as ‘phi typehospital-
fihphi’ and ‘phi typeid7673299w3phi’ illustrate
the use of placeholders for personal identifiers, in-
dicative of the synthetic nature of the dataset and
its focus on mimicking real-world PHI data while
maintaining privacy. In the ICDSlG dataset, the
frequent mention of basic terms like ‘patient,” ‘dis-
charge,” and ‘history’ reflects their regular usage
in clinical documents, as seen in Fig. 19. Phrases
such as ‘discharge summary’ and ‘medical history’
indicate standardized document formats. For n-
grams next to PHI elements in the synthetic ICDS%
dataset as seen in Fig. 17, we observe a mix of
clinical terminology (‘discharge, ‘patient, ‘his-
tory’) and documentation descriptors (‘text record,’
‘reportend text’). Bigrams and trigrams like ‘dis-
charge summary patient’ and ‘text record record’
suggest a replication of typical medical documen-
tation formats. Terms like ‘primary care physician’
and ‘history present illness’ reflect the comprehen-
sive nature of clinical narratives. In contrast, the
n-grams next to PHI elements in the ICDSZG dataset,
as shown in Fig. 21, highlight the frequent use of
both temporal (‘pm’, ‘days’) and medical (‘mgdl,
‘discharge’) terms. Common bigrams and trigrams
such as ‘discharge summary, ‘cr x ray, and ‘x
ray chest’ underscore the clinical focus on diag-
nostic imaging and summary documentation. The
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Dischage Summary CRNO! e prgvegte—y

Unit: UNIT-3 Ward/Bed: 1423 - Admission No: ADM- _ Admitted on: _ 09:30
Discharged on: _ 14:00 Patient Type: Normal Consultant: Dr _ John I-Dector  Discharge Type: Normal
Discharge Corespond.Adres, i, e FSARRIERBRARD i No.Phove o -1 (D s

Details: Patient was admitted to the hospital on _ a09:30 with a chief complaint of chest pain. He was

diagnosed with acute myocardial infarction and was treated with thrombolysis and angioplasty.

Figure 4: Pre-processed Discharge Summary after adding B and I tags

Count

Figure 5: Tag Distribution in n2¢2-2006 train dataset

Count

Figure 6: Tag Distribution in n2c¢2-2006 test dataset

trigrams involving ‘daily 10 days’ and ‘x ray chest
bed’ reflect specific medical interventions and pa-
tient care protocols typically documented in patient
records.

D Model Training Details

We fine-tuned dslim/bert-base-NER (Dslim
bert base NER), ghadeermobasher/BCHEM4-
Modified-BioBERT-v1 (BioBERT), and Clinical-
Al-Apollo/Medical-NER (Clinical AI Apollo).
We obtained a consistent train-set F1 Score for
PHI entities from these models after fine-tuning,
but the performance of these models decreased
significantly when we tested them on cross-dataset
settings. However, after fine-tuning, PI-RoBERTa
outperformed these models in the same and
cross-dataset settings, so we chose PI-RoBERTa

Count

Figure 7: Tag Distribution in n2¢2-2014 train dataset

Figure 8: Tag Distribution in n2c¢2-2014 test dataset

for further experiments. Fig. 13 shows the model
architecture.

PI-RoBERTa was fine-tuned on each training set as
given in Table 3 and tested on each corresponding
test set. We fixed the hyperparameters for all the
experiments. The model was fine-tuned at four
epochs in all the experiments with a batch size of
8; the learning rate was Se-5. We used Weighted
Cross entropy loss to handle the data imbalance
problem because around 90 percent of the tokens
correspond to non-PHI entities in all datasets. After
several experiments, we devised a formula to assign

weights to different Entities. w; = log <4 X nﬂt) ,

where wy is the weight assigned to the t"?entity; n;

is the number of tokens in the t** entity; n is the
total number of tokens in the dataset
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Figure 9: Tag distribution in ICDS g train dataset
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Figure 10: Tag distribution in ICDS, test dataset

E Evaluation Metrics

Model was evaluated using various performance
metrics as described below.

¢ Macro Precision:

n
Precisionpacro = Z T p + F P,
¢ Macro Recall
1 — TP
Recall = - Tp. . N
eCallmacro n ; TPi + FNi

Macro F1-score

2 X Precisionmacro X Recallmacro

Fl-scoremacro = ..
Precisionmacro + Recallmacro

Micro Precision:

Precisionmicro = - Zzn:l TB
Y (TP +FP)
¢ Micro Recall
" TP
Recallpicro = Ez:l i

Z?:1(TP7J + FNZ)

Count

Figure 11: Tag distribution in ICDSY, dataset
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Figure 12: Tag distribution in ICDSL, dataset
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Figure 13: Architecture of PI-RoBERTa
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Figure 24: Confusion matrix on ICDS, test set when
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PromptId Prompt

A

Generate discharge summaries for Indian patients, capturing the essence of healthcare in India. The summaries
should integrate conventional medical treatments with traditional remedies, reflecting the holistic approach embraced
by Indian healthcare systems. Incorporate prevalent Indian health conditions, treatments, and culturally relevant
follow-up care instructions. To ensure authenticity, each summary should include distinct patient details like name, age,
address, contact information, hospital, doctor, and ID. Include prevalent diseases in India such as Tuberculosis (TB),
Diabetes, Cardiovascular Diseases, Respiratory Infections, Hypertension, Dengue Fever, Malaria, Hepatitis, Chronic
Kidney Disease (CKD), Cancer, Typhoid Fever, Cholera, HIV/AIDS, Japanese Encephalitis, Leptospirosis, Rabies,
Tuberculosis of the Central Nervous System (CNS TB), Rheumatic Heart Disease, Iron-Deficiency Anemia, and
Chikungunya. Also, laboratory test reports of the chosen disease should be included. Ensure the format of generated
discharge summaries is similar to the summary given in the prompt, i.e., in XML format.

Example: Patient Summary: <discharge summary>

Generate the summaries that have a minimum of 2048 words. Ensure there is consistent consistency between the
doctor’s name, patient name, drug-disease, etc.

Generate an extensive discharge summary of at least 2048 words tailored for Indian patients. To ensure authenticity,
the generated summary must include distinct patient-specific details like name, age, address, contact information,
hospital name, doctor name, and unique ID. Maintain coherence across all the elements, doctor’s name, patient’s
identity, medications, diseases, etc. Ensure all the PHI (personal health information) elements are properly annotated to
maintain privacy and authenticity.

The generated discharge summary should be XML-formatted with PHI annotations. The generated summaries should
include following sections: Admission Details, Diagnosis / Chief Complaints, Allergies, Physical Examination, Medical
History, Family Medical history, Treatment Plan, Investigations, Medications (List of medications prescribed at
discharge), Follow-up Instructions, Procedures/Lab Tests Conducted (List of procedures or tests conducted during
hospital stay, along with results if available), and Special Instructions.

Please ensure that these sections are incorporated into the generated summaries, but refrain from including them as tags
in the output. The generated summary should be properly enclosed within the <KRECORD> and </RECORD> tags to
ensure it’s within the XML format.

Here’s an example patient summary:

Patient Summary: <discharge summary>

Generate an extensive synthetic discharge summary of at least 2048 words tailored for Indian patients. Generated
summary must include distinct entities like name, age, address, contact information, hospital name, doctor name, and
unique ID. Maintain coherence across all the elements, doctor’s name, patient’s identity, medications, diseases, etc.
Identify all entities in the generated text and mark these with XML tags as in the following example:<TYPE="Insurance
Number’>AB123456C</TYPE>

entities= [ ‘Patient Name’,‘Hospital_Name’,‘Staff Name’,'Doctor_Name’,‘Age’,‘Gaurdian_Name’,‘Gender’,
‘Patient_ID’,‘Misc_Medical_ID’,‘Aadhar’,‘Driver_License’,Voter_ID’,'PAN_Card’, ‘Patient_DOB’,
‘Treatment_Date’,‘Treatment_Time’, ‘Phone_No’,‘Landline’, ‘Email’, ‘TP_Address’, ‘Fax’, ‘Doctor_Specialisation’,
‘Patient_Profession’, City’,"Ward_Location’,‘Device_Number’, ‘Other_Info’, State’, ‘Street’,Zip’,‘Country’,
‘Other_Location’,‘Other_Govt_ID’,‘Insurance_Number’,Web_url’]

The generated summaries should include following sections: Admission Details, Diagnosis / Chief Complaints,
Allergies, Physical Examination, Medical History, Family Medical history, Treatment Plan, Investigations, Medications
(List of medications prescribed at discharge), Follow-up Instructions, Procedures/Lab Tests Conducted (List of
procedures or tests conducted during hospital stay, along with results if available), and Special Instructions. Please
ensure that these sections are incorporated into the generated summaries, but refrain from including them as tags in the
output.

The generated summary should be properly enclosed within the <RECORD> and </RECORD> tags to ensure it’s
within XML format.

Here’s an example synthetic patient summary:

<discharge summary>.

Table 12: Prompts used for synthetic discharge summary generation
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Model Name

Generated Discharge Summary

Gemini-pro-1.0

829369 HODYEGE DISTRICT HOSPITAL 9151843 830690 408542 12/12/10/2023 23:59:00 PM
Discharge Summary Discharge Report Status : Signed DISCHARGE SUMMARY NAME : NIVEDITHA
CHETTY UNIT NUMBER : 393-29-55 ADMISSION DATE : 12/10/10/2023 DISCHARGE DATE
1 12/12/10/2023 PRINCIPAL DIAGNOSIS : Prolapsed intervertebral disc with radiculopathy of L4-
L5, L5-S1, L2-L3, with weakness of right lower limb. ASSOCIATED DIAGNOSIS : CVA (LEFT
SIDED HEMIPARESIS) ADVERSE DRUG REACTIONS : None . CLINICAL INFECTIONS : None .
PRINCIPAL PROCEDURE : Spinal surgery ASSOCIATED PROCEDURES : Physiotherapy . HISTORY
OF PRESENT ILLNESS : Mrs. NIVEDITHA CHETTY is a 58 years old female who presented to the
emergency department with complaints of low back pain for 1 year and weakness of right lower limb for
1 month . Weakness was insidious in onset and gradually increased to the present level . There was no
numbness of lower limbs . No urinary or bowel involvement . No fever , cough , gastrointestinal symptoms
or cardio-respiratory symptoms . PAST MEDICAL HISTORY : CVA (LEFT SIDED HEMIPARESIS)
. SOCIAL HISTORY : Non smoker and non alcoholic . PHYSICAL EXAMINATION : VITALS :
Temperature : 98.6\302\260 F, BP : 120/80 mmHg , SPO2 : 95% , Respiratory rate : 20/min , Pulse
rate : 80/min CNS : GCS 15/15 , Cranial nerves - Normal . Power - Right lower extremity grade - 4/5 .
Sensation - Intact . Motor system examination - Tone - Increased on the right side . Deep tendon reflexes
- Brisk on the right side . Plantar - Extensor on the right side . CVS : No pallor , icterus , clubbing ,
pedal edema , cyanosis , SPO2 - 99% . JVP not raised . Carotid pulsations are well felt and equal on
both the sides . No bruits audible . Heart sounds - Regular . No murmurs , gallops , rubs or extra sounds
. Respiratory system : Chest expansion - Symmetrical . Air entry reduced bilaterally but more on the
right side . No added sounds . Breath sounds decreased in right infrascapular area . Abdomen : Soft ,
non-tender , no mass or organomegaly . LABORATORY DATA : Hb - 12.0 gm/dl , TLC - 8,000/cmm
, Platelets - 2.5 lacs/cmm , ESR - 20 mm/hr . Blood sugar - 100 mg/dl , Urea - 30 mg/dl , Creatinine -
1.0 mg/dl, Uric acid - 5.0 mg/dl . Liver function tests - Normal . Lipid profile - Normal . Electrolytes -
Normal . X-RAY : LUMBAR SPINE AP LATERAL VIEW : There is narrowing of the L4-L5, L5-S1,
L2-L3 intervertebral spaces with sclerosis of the adjacent end plates . Loss of lumbar lordosis with mild
dextroscoliosis . CT SCAN : LUMBAR SPINE : There is a prolapsed intervertebral disc at L4-L5, L5-S1,
L2-L3 with foraminal stenosis on the right side at L4-L5 . Thecal sac is compressed at L4-L5, L5-S1 due
to central disc prolapse . MRI SCAN : LUMBAR SPINE : There is a prolapsed intervertebral disc at
L4-L5, L5-S1, L2-L3 with foraminal stenosis on the right side at L4-L5 . Thecal sac is compressed at
L4-L5, L5-S1 due to central disc prolapse . There is evidence of denervation of the right sciatic nerve and
cauda equina . HOSPITAL COURSE : The patient was admitted for surgical intervention . After proper
pre-operative evaluation the patient was taken up for surgery . During surgery , a decompression of the
thecal sac and foramina was done . Postoperatively , the patient was started on physiotherapy . The patient
was able to walk with the support of walker . MEDICATIONS ON DISCHARGE : Tramadol - 50 mg -
BD SOS - 7 days Aceclofenac - 100 mg - BD - 7 days Multivitamin and minerals - OD FOLLOW UP :
The patient will be reviewed in the clinic in 2 weeks . DR.GYANESHWARI JANGID MBBS, MD, MS
(Orthopedics) HODYEGE DISTRICT HOSPITAL Electronically Signed DR.GYANESHWARI JANGID
[ report_end |

Table 13: Example summary generated using gemini-pro-1.0

361



Model Name Generated Discharge Summary

Meta-Llama-3-8B-Instruct Max Super Specialty Hospital Sector 11, Dwarka, New Delhi - 110075,India Discharge Summary
CRNO: 1234567890 Name: Rahul Kumar 35/Y/M Department: Ward E Unit: UNIT-3 Ward/Bed:
5432 ICU Admission No: ADM-9012345678 Admitted on: 25-08-2023 14:30 Discharged on:
28-08-2023 10:00 Patient Type: Normal Consultant: Dr. Rohan Sharma Discharge Type: Normal
Discharge Correspond. Address:, Distt. State Uttar Pradesh Pin No. Phone No +91-9812345678
FOLLOW UP: Appointment on 15/10/2023 Morning Block-Upto 09:00 A.M.INVESTIGATION
RESULTS: 25/08/2023 09:30 AM Blood Urea 40 mg/dL 25/08/2023 09:30 AM Serum Creatinine
1.2 mg/dL 25/08/2023 09:30 AM Hb 12.5 g/dL
Admission Details: Patient was admitted to the hospital with a diagnosis of Acute Kidney Injury
(AKI) due to dehydration. He was a known hypertensive and diabetic patient. He presented with
symptoms of fatigue, weakness, and decreased urine output.
Diagnosis/Chief Complaints: Primary Diagnosis: Acute Kidney Injury (AKI) Secondary Diagnosis:
Hypertension, Diabetes Mellitus
Allergies: None reported
Physical Examination: The patient was conscious and oriented. He had a pulse rate of 100 beats
per minute, blood pressure of 160/100 mmHg, and respiratory rate of 20 breaths per minute. He
had bilateral pedal edema and decreased urine output.
Medical History: The patient had a history of hypertension and diabetes mellitus. He was taking
medications for these conditions, including metformin and lisinopril.
Family Medical History: The patient’s father had a history of hypertension and heart disease.
Treatment Plan: The patient was treated with intravenous fluids and medications to manage his
symptoms. He was also started on dialysis to manage his acute kidney injury.
Investigations: The patient underwent the following investigations: Blood Urea 40 mg/dL Serum
Creatinine 1.2 mg/dL Hb 12.5 g/dL.
Medications: The patient was prescribed the following medications at discharge: Metformin 500
mg twice daily Lisinopril 10 mg daily Furosemide 20 mg daily Hydrochlorothiazide 25 mg daily
Aspirin 75 mg daily
Follow-up Instructions: The patient was advised to follow up with his primary care physician in
two weeks for a check-up and to monitor his blood sugar and blood pressure levels.
Procedures/Lab Tests Conducted: The patient underwent the following procedures and lab tests
during his hospital stay: Blood tests: Blood Urea 40 mg/dL, Serum Creatinine 1.2 mg/dL, Hb 12.5
g/dL Urine tests: Urine output decreased, proteinuria Dialysis: Three sessions of dialysis were
performed
Special Instructions: The patient was advised to follow a strict fluid intake and to monitor his urine
output closely. He was also advised to take his medications as prescribed and to follow up with his
primary care physician regularly.
Prepared by (Dr. Rakesh Kumar ) Signature of Consultant Printed on 29-08-2023 14:30:15 Temp
Employee Male @ 192.168.1.100 Page 2 /2

Table 14: Example summary generated using llama-3-8B-Instruct

Original tags Mapped Tags

Treatment_Date, Patient_ DOB, Investigation_Date, Admission Date,

DATE
Procedure_Date, Date
Ward_Location, Hospital_Name, Department HOSPITAL
Patient_ID, Misc_Medical_ID, Employee_ID, Admission Number ID
Age AGE
Doctor_Name, Staff Name, Prepared by, Signature, Doctor_Signature,

. DOCTOR

Signature of Consultant
Patient_Name, Gaurdian_Name, Patient_Signature, Patient_Spouse, PATIENT

Family_Member_Name

Zip, Phone_No, Landline, IP_Address, Phone, Contact_Info,
Contact_Number, Contact_No, Mobile, Phone Number, Patient_Phone, CONTACT
Email, Email_ID, Contact Information, Phone No

City, State, Country, Street, Other_Location, Correspondence_Address,
Contact_Address, Contact Information, Pin, Pin Code, Pin_No, LOCATION
Postal_Code, Address, Contact_Address

Table 15: Tag mapping from PHI entities in the different datasets to the PHI entity set of n2¢2-2006 dataset, and
all other non-PHI entities are mapped with Others tag
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