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Abstract
The lack of comprehensive and standardised
databases containing Pharmacokinetic (PK) pa-
rameters presents a challenge in the drug de-
velopment pipeline. Efficiently managing the
increasing volume of published PK Parameters
requires automated approaches that centralise
information from diverse studies. In this work,
we present the Pharmacokinetic Relation Ex-
traction Dataset (PRED), a novel, manually cu-
rated corpus developed by pharmacometricians
and NLP specialists, covering multiple types of
PK parameters and numerical expressions re-
ported in open-access scientific articles. PRED
covers annotations for various entities and rela-
tions involved in PK parameter measurements
from 3,600 sentences. We also introduce an
end-to-end relation extraction model based on
BioBERT, which is trained with joint named
entity recognition (NER) and relation extrac-
tion objectives. The optimal pipeline achieved
a micro-average F1-score of 94% for NER and
over 85% F1-score across all relation types.
This work represents the first resource for train-
ing and evaluating models for PK end-to-end
extraction across multiple parameters and study
types. We make our corpus and model openly
available to accelerate the construction of large
PK databases and to support similar endeavours
in other scientific disciplines.

1 Introduction

Pharmacokinetics (PK) aims to quantify drug expo-
sure through the study of drug absorption, distribu-
tion, metabolism and excretion (ADME). Drug PK
profiles inform the selection of drug candidates and
establish therapeutically relevant doses and dos-
ing schedules (Morgan et al., 2012; Reichel and
Lienau, 2016). Population PK models, i.e. nonlin-
ear mixed-effects models, have played a significant

role over the last decades in characterising PK prop-
erties through parameterising PK time series data.
This has contributed to improved accuracy of pre-
dicting PK profiles across all stages of the drug
development process.

Prior data from similar drug compounds are of-
ten used to initialise Population PK models and
are also relevant for pre-clinical PK predictions
for novel compounds (Dearden, 2007; Berellini
and Lombardo, 2019; Wang et al., 2019). How-
ever, the primary challenge in collating prior PK
data is the lack of comprehensive, standardised
and open-access databases of PK parameter esti-
mates, which has been recognised as a significant
limitation in the drug development pipeline (Ku-
mar et al., 2021; Mould and Upton, 2013; Grze-
gorzewski et al., 2021; Wang et al., 2009). Existing
databases (Grzegorzewski et al., 2021; Wong et al.,
2019) are manually curated from scientific litera-
ture and are limited to a few drugs. Consequently,
researchers must manually compile PK informa-
tion from the scientific literature (Grzegorzewski
et al., 2021; Lombardo et al., 2018). The ability to
automatically extract and centralise PK data from
the scientific literature is of great interest to solid-
ify existing PK knowledge and improve parameter
predictions.

Annotated biomedical datasets have facilitated
the development of state-of-the-art models for iden-
tifying many biomedical entities and their relation-
ships in free text. However, no such annotated
data exists for PK. In this work, we present a new
dedicated corpus for Named Entity Recognition
(NER) and Relation Extraction (RE) of PK data
from scientific articles. This corpus is manually
annotated at the sentence level by domain experts
and involves entities and relations between PK pa-
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rameter names, estimated values, deviation values,
units and comparative terms. We also develop an
end-to-end relation extraction architecture based
on adapting the SpERT model (Eberts and Ulges,
2019) and training it on our corpus to assess the
feasibility of automated extraction of PK parameter
estimates. Our contributions are as follows:

• The PRED corpus, a publicly available cor-
pus1 of manually annotated entities and rela-
tions between PK parameter names, the cen-
tral and deviation values, their units and com-
parative terms. PRED consists of 1764 entity
mentions and 2016 relations annotated across
3600 sentences from scientific articles.

• A novel RE pipeline2, trained and evaluated
on PRED, for tackling the extraction of PK
parameter estimates from the scientific liter-
ature. We compare architectures that model
NER and RE jointly against models that opti-
mise for a single task and assess the effect of
domain-specific pre-training.

2 Related Work

Automated text mining approaches have been ex-
tensively explored regarding drugs and chemi-
cals (Krallinger et al., 2015; Lee et al., 2020; Sung
et al., 2022), drug-drug interactions (Herrero-Zazo
et al., 2013; Segura Bedmar et al., 2013; Kolchin-
sky et al., 2013, 2015), and biochemical kinetics
(e.g. enzyme kinetics) (Hakenberg et al., 2004;
Spasić et al., 2009; Tsay et al., 2009). However,
little research has been conducted on automatically
extracting PK data from text.

Wang et al. (2009) explored pattern-based ap-
proaches for a single PK parameter for one drug.
However, extending this approach to other PK pa-
rameters, drugs, and study designs becomes un-
feasible due to the high diversity of surface forms.
Instead, approaching PK information extraction
with machine learning approaches has the potential
to model a higher variability of PK parameters and
relations effectively. Previously, Hernandez et al.
(2021) presented an automated pipeline to iden-
tify scientific publications reporting PK parameter
estimates measured in vivo. Subsequently, Hernan-
dez et al. (2024) released a large annotated dataset
of PK parameter mentions in the scientific liter-
ature and fine-tuned BioBERT (Lee et al., 2020)

1https://zenodo.org/records/11187303
2https://github.com/PKPDAI/PKRelations

to perform NER of PK parameters. However, to
our knowledge, no study has yet tackled the task
of end-to-end relation extraction of PK parameter
estimates, which represents a crucial step to auto-
matically construct PK databases useful for drug
development.

3 Methods

3.1 Corpus construction

The PRED corpus was developed to train and eval-
uate end-to-end pipelines that extract PK measure-
ments from sentences and can be found at https:
//zenodo.org/records/11187303. All the rela-
tions tackled in this task appeared between entities
within the same sentence.

Data Source
The following pipeline was applied to create a can-
didate pool of sentences. A PubMed search for

“pharmacokinetics” was initially conducted in June
2020 to retrieve articles. The pipeline from Gon-
zalez Hernandez et al. (2021) retrieved 114,921
relevant publications reporting PK parameters. Out
of these, 10,132 articles (8.82%) were accessible in
full text from the PMC OA subset3, while only ab-
stracts were available for the rest. Both, abstracts
and full-text articles were downloaded in XML
format from PubMed4 and PMC5 FTP sites. The
PubMed Parser (Titipat and Acuna, 2015) was used
to parse the XML files, and paragraphs from the
introduction section were excluded. The scispaCy
sentence segmentation algorithm (Neumann et al.,
2019) split abstracts and paragraphs into sentences.
The resulting sets were randomly sampled to pro-
duce a candidate pool of 1,443,044 sentences, with
a balanced proportion of sentences from the ab-
stract and full-text. Noticeably, 16.4% of sentences
from the initial candidate pool mentioned PK pa-
rameters. Therefore, a filtering protocol was ap-
plied to promote the development of a corpus with a
wide variety of PK mentions and relation instances.
The PK NER model from Hernandez et al. (2024)
was first applied to all the candidate pool sentences.
Then, we selected sentences that at least had (1)
one PK mention detected by the NER model and
(2) a numerical value. From the resulting pool of
sentences, 3600 instances were randomly sampled

3https://www.ncbi.nlm.nih.gov/pmc/tools/
openftlist/

4https://www.nlm.nih.gov/databases/download/
pubmed_medline.html

5https://ftp.ncbi.nlm.nih.gov/pub/pmc/

https://zenodo.org/records/11187303
https://github.com/PKPDAI/PKRelations
https://zenodo.org/records/11187303
https://zenodo.org/records/11187303
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://ftp.ncbi.nlm.nih.gov/pub/pmc/
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without replacement and divided into 2100, 500
and 1000 instances for the training, development
and test sets, respectively.

Annotation
The annotation team comprised 12 individuals with
extensive PK expertise and familiarity with the
different parameters and study types in PK liter-
ature. Annotation guidelines were developed and
distributed to the annotators before labelling and
updated as new complex cases emerged during an-
notation. To ensure consistency, annotations were
performed in batches of 200 sentences, following
a three-step procedure: (1) initial annotation by
one PK expert, (2) review by another PK annotator
and (3) final check focusing on span boundary con-
sistency by an annotator with bio-NLP experience.
After the second step in each batch, comments from
the first and second steps were reviewed, and feed-
back regarding incorrect annotation patterns was
given to the annotators. Inter-annotator agreement
was examined using the pair-wise F1 score on 200
sentences, and the mean was computed across each
pair of annotators. For further details on the an-
notation guidelines and interface, please see Ap-
pendix A.

Task Definition
End-to-end RE aims to identify named entities and
extract relations between them. Given some input
text X , the output of any end-to-end RE system
is a list of triplets in the form of (si, sj , r) where
si, sj ∈ S and r ∈ R and S denote all the possible
spans in X and R the set of pre-defined relation
types (Zhong and Chen, 2020). Hence, the an-
notated data was represented as a list of sentences,
each with their corresponding list of relation triplets
and compared to model predictions in the same for-
mat. Because end-to-end RE systems need to (1)
identify candidate spans and (2) predict relation
classes for pairs of spans, this task is often decom-
posed into two sub-tasks:

1. Named Entity Recognition: which at-
tempts to detect the list of entity men-
tions (i.e. spans) and their type E =
{PK,Units, V alue,Range, Compare}
from the input text X .

2. Relation Extraction: which com-
pares all pairs of spans in X and
outputs a relation class for each pair
R = {Centralval, Deviationval, Related}.

For step 1, the following entities were considered
and annotated at the sentence level:

1. PK: Mentions of parameters. This entity
refers to spans mentioning PK parameters, and
it is the same concept as the entity described
by Hernandez et al. (2024).

2. Units: Spans of text corresponding to units of
numerical PK estimations.

3. Value: Spans encapsulating numerical estima-
tions related to PK parameters (i.e. central
and deviation values).

4. Range: Two values defining the boundaries
of a PK estimation.

5. Compare: Textual mentions that pro-
vided information about whether a specific
value/range mention was the extreme of an es-
timated parameter. This entity appeared with
low frequency, but it was important for de-
tecting extracted measurements that were not
central estimations of a certain parameter.

For step 2, three relations classes were consid-
ered between entities to extract structured informa-
tion from raw sentences in a usable format. Please
note the directionality of relations is not considered
in this work as it is not necessary for the desired
tabular output (see Figure 1):

1. Centralval6: This relation type happened be-
tween PK parameter mentions and their esti-
mated values or ranges. This involved central
measurements of the parameter but not mea-
sures of deviation or % of increase concerning
other experimental conditions. The entities be-
tween which this relation could happen were:

• PK ↔ Value/Range

2. Deviationval
7: This relation type informed

whether a specific measurement was the devi-
ation of a central measurement and only hap-
pened between the entities:

• Value/Range ↔ Value/Range (involved
in a Centralval relation)

3. Related: This relation type complemented
values/ranges with their units or compare
terms and only happened between the follow-
ing entities:

6Abbreviated as C_VAL in the annotation interface.
7Abbreviated as D_VAL in the annotation interface.
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• Compare ↔ Value/Range
• Units ↔ Value/Range

3.2 Pipeline
Recent work has shown that sharing token repre-
sentations and modelling NER and RE tasks si-
multaneously in a multi-task setting can enhance
performance in both tasks (Bekoulis et al., 2018;
Luan et al., 2019; Eberts and Ulges, 2019). This
might be especially relevant in our corpus, where
spans were only considered entities if they were
part of a relation. For this reason, we propose an
architecture to model NER and RE jointly to share
encoded knowledge from both tasks.

Multi-task Architecture
Our multi-tasking architecture (illustrated in Fig-
ure 2), was inspired by the architecture in the
SpBERT model developed by Eberts and Ulges
(2019). The main modification was using sequen-
tial BIO labelling (Palen-Michel et al., 2021; Gu
et al., 2021) instead of a span-based approach, as
the PRED data does not contain overlapping spans.
There was also no need to predict the directional-
ity of relations for our work, so entity pairs were
arranged in order of appearance in the original text.
Finally, due to only one relation type existing be-
tween entity pairs in PRED, a softmax activation
was used instead of a sigmoid activation.

Using the BERT tokenizer, an input sentence is
initially tokenised into a sequence of sub-words.
Then, tokens are passed through an encoder that
aims to incorporate contextual information in each
token’s representation. The output embeddings
from the encoder (T1, T2, ...TN ) are then used to
(1) recognise entities through the token classifier
using the BIO scheme, (2) generate candidate pairs
of predicted entities and (3) classify all pairs of
recognised entities with a relation classifier. NER
and RE use the same encoder to generate contextual
representations of input tokens and have one task-
specific classification layer for each sub-task. We
assessed the effect of domain-specific pretraining
by comparing BERTBASE (Devlin et al., 2018) and
BioBERT v1.1 (Lee et al., 2020) as the encoder.

Named Entity Recognition Task
NER was treated as a sequential labelling prob-
lem where each output token representation from
the encoder (Ti) was classified into one unique
BIO scheme class using a feed-forward layer with
a sigmoid activation function. The model was

trained with cross-entropy loss over token-level
labels LNER.

Relation Extraction Task
After NER is performed in a specific sen-
tence, all potential pairs of predicted spans
are arranged and filtered before going to
the relation classifier. Then, each candidate
entity pair was classified into one relation
class [Centralval, Deviationval, Relation,No
Relation]. Following Taillé et al. (2020), the
representation of those spans composed of mul-
tiple tokens was generated by max-pooling their
contextual token embeddings. Given the effective
results of the max-pooling strategy presented by
Eberts and Ulges (2019), no other fusion functions
were analysed. The input to the relation classifier
x(s1, s2) was the concatenation of the two-span
representations e(s1) and e(s2) with their context
representation c(s1, s2):

x(s1, s2) = [e(s1); c(s1, s2); e(s2)] (1)

The context representation for two spans was
generated by max-pooling all tokens strictly be-
tween them. If there were no tokens present be-
tween two spans c(s1, s2) = 0. Relations between
entities were symmetric (non-directional) in the
PRED corpus, and no overlapping spans were an-
notated. As a consequence, e(s1) and e(s2) were
arranged according to their relative position in the
sentence from left to right. Analogous to the token
classifier, a single-feed forward layer was used to
classify each candidate span pair. Since only one
relation class could be associated between two enti-
ties, a softmax operation was used as an activation
function. The model was trained with cross-entropy
loss over relation classes, LRE .

Training and Optimisation
All the parameters from the encoder, the token and
the relation classifier were fine-tuned during the
training phase. Given sentences with annotated
entities and relations, the loss was computed jointly
by adding the NER and RE losses:

L = LNER + LRE (2)

Both losses were averaged over each batch’s sam-
ples. Each batch consisted of B sentences from
which samples were drawn for both classifiers. For
the token classifier, the loss was computed for all
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Figure 1: The top panel shows a sentence where all entities and relations have been annotated. The bottom panel
shows how the annotated entities and relations can be mapped into a tabular format that can be integrated into a
database of PK measurements.

Figure 2: The model first receives a sequence of token embeddings (blue boxes, Ei) and goes through the encoder
layers to generate a sequence of contextual token embeddings (green boxes, Ti), which are shared in both tasks.
Then, (A) contextual token embeddings go through the token classifier (feed-forward layer) to output BIO labels that
will allow recognising entities. (B) Entities and contexts (span between two entities) are represented by max-pooling
their contextual token embeddings. Finally, pairs of entities are concatenated with their context representation and
passed through the relation classifier (feed-forward layer).

tokens in the batch using the BIO labels. For the
relation classifier, ground truth (annotated) entities
were used to generate candidate pairs at training
time. Negative samples (No Relation class) were
generated with all candidate entity pairs not la-
belled with a relation during the annotation phase.
At inference time, only those entities predicted by

the NER module were passed to the RE classifier
instead of using ground truth entities.

Models were trained for 50 epochs and evaluated
on the development set after each epoch, saving the
model state with the highest Centralval F1 score.
The maximum sequence length for all experiments
was set to 256, the batch size to 8, and the learning
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rate to µ = 2e−5. The Adam Optimizer with a
linear weight decay of 0.05 was used, and a dropout
probability of 0.1 was applied on all layers. All
experiments were run on a single GPU, NVIDIA
Titan RTX (24GB).

Evaluation
Precision, Recall, and F1 scores were computed
for NER and RE. For NER, scores were based on
strict matching of entity boundaries and types. F1

scores were calculated per entity, with macro and
micro-averages across entity types for overall sys-
tem evaluation. In RE, focus was on F1 score of
Centralval relations, as predicting Deviationval

or Related relations without Centralval renders
extracted data useless. Micro-averaged F1 scores
for NER and Centralval relations for RE served
as the main metrics for comparing different archi-
tectures on the PRED corpus.

4 Results and Discussion

4.1 Corpus Statistics
The main statistics for the PRED dataset are pre-
sented in Table 1. A total of 3,600 sentences were
annotated, from which 56.42% contained annotated
entities and relations. Sentences were evenly sam-
pled from full-text and abstract sections. A total
of 13,404 entity mentions were annotated. 12,411
relations were annotated, most coming from the
Related and Centralval classes. The number of
annotated Centralval relations was over 2.5 times
the number of Deviationval, indicating that mea-
sures of deviation are not often reported along with
central measures of PK parameters (only in 35.8%
of cases).

4.2 Annotator Agreement
The average micro and macro-F1 scores for NER
were 88.74% and 92.36%, respectively, exhibiting
high agreement on entity surfaces on the first anno-
tation phase. For RE, the average pair-wise scores
were 93.02%, 94.47% and 83.2% for Related,
Deviationval and Centralval, respectively. A
lower agreement was obtained between central
values and their PK parameter mentions, mostly
caused by disagreement on parameter span bound-
aries.

4.3 Multitask Model Performance
The effect of using a multi-task (MT) learning ap-
proach, jointly optimising NER and RE, was com-
pared against a model only optimising for NER.

BioBERT was used as an encoder in both cases.
The MT architecture saved the model with the
best Centralval F1 on the development set, while
micro-averaged F1 was used as a metric to select
the best model for the no-MT experiment. Table 2
shows the NER performance on the test set for each
entity type and the macro and micro-averaged F1
scores after ten runs of each experiment. Higher
performance was obtained when using the MT ar-
chitecture for all entities in the PRED corpus. Al-
though the performance gain was relatively low
(≈+∆F1 0.5%), the consistency of this gain across
all entity types suggests that having the RE objec-
tive combined with NER helped the model per-
form better on NER. Finally, we noted higher in-
terquartile variance for Range and Compare enti-
ties, which were the ones with the least number of
annotations.

Although the performance gain of the MT archi-
tecture was small, such an approach also helped
reduce the number of parameters required to model
the task by only having one encoder. These results
indicate that sharing token representations and op-
timising a single loss for NER and RE is beneficial
for extracting PK measurements from the scientific
literature compared to treating both tasks indepen-
dently.

The MT solution’s performance on the RE task
is summarized in Table 3. Results show success-
ful linking of deviation measurements and units
in most cases. Notably, when values and units
are correctly detected, their relation often requires
minimal context, especially with a short distance
between them. Additionally, the context between
units and values typically lacked other units, sim-
plifying extraction. Similarly, the context between
central and deviation values often lacked other
value entities. Therefore, with high NER perfor-
mance for V alue and Units, few errors were ob-
served for Deviationval and Related relations.
Centralval relation showed relatively high perfor-
mance, indicating consistency in dataset annota-
tion and effective end-to-end modeling. Errors in
Centralval predictions mostly stemmed from in-
correct NER predictions and sentences mention-
ing multiple parameters and values. However,
some incorrect predictions of PK entities partially
matched PK parameters, suggesting Centralval
performance could be a lower bound for PK mea-
surement extraction. F1 scores in Table 3 were
close to or exceeded inter-annotator agreement:
93.02% vs. 93.66% for Related, 94.47% vs.
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Table 1: Corpus statistics summarising the sentences, entities and relations in the dataset stratified by the training,
development and test sets.

Training Development Test Total
Amount # 2100 500 1000 3600

Sentences with relations (%) 57.05 53.00 56.80 56.42†

from full-text (%) 48.71 50.00 50.30 49.33†

PK 1890 394 856 3140
Units 2286 474 1056 3816

Entities Value 3524 702 1557 5783
Range 314 74 174 562

Compare 51 18 34 103
Centralval 2794 571 1312 4677

Relations Deviationval 1049 207 419 1675
Related 3643 764 1652 6059

† Weighted average across datasets.

Table 2: Named Entity Recognition results on the test set for the model using multi-task (MT) learning, NER +
RE, against a model only optimising for NER (no-MT). The metrics reported consider strict matching over entity
mentions. Results are displayed as the median over ten runs with their interquartile variance in subscript.

Precision Recall F1

Entity MT no-MT MT no-MT MT no-MT
PK 90.824.02 89.983.86 90.573.76 90.093.05 90.392.1 90.021.72

Units 95.491.87 95.791.66 96.172.07 95.693.85 95.650.68 95.561.52
Value 94.832.78 94.962.87 96.183.17 95.215.94 95.542.53 95.042.02
Range 93.494.9 93.286.24 90.268.22 87.3910.33 91.664.41 90.43.71

Compare 88.236.81 88.2316.99 66.679.09 68.1811.44 76.535.82 75.648.12
Micro-average 94.031.63 93.691.60
Macro-average 90.022.23 89.562.45

93.53% for Deviationval, 83.2% vs. 86.1% for
Centralval, for inter-annotator and MT model
cases, respectively. These results imply that poste-
rior reviews and standardization of span boundaries
significantly improved dataset consistency, and the
model developed competes well with the expected
agreement between pharmacometricians.

4.4 Encoders and Context

To analyse the effect of domain-specific pre-
training in the encoder, the BioBERT model was
replaced with BERTBASE , which was pre-trained
on general-domain English text. As shown in Table
4, there was a significant benefit of pre-training
in biomedical text, with BioBERT exhibiting over
3% gains in all metrics compared to BERTBASE .
The largest gain (≈ ∆6%) was observed in the
Centralval relation, indicating that pre-training
on biomedical text highly improved PK NER and
the understanding between parameter mentions
and their measurements. These results are in line

with previous findings from Wadden et al. (2019)
and Eberts and Ulges (2019). Previous work on
end-to-end relation extraction showed improve-
ments between 1.1-4.4% on the SciERC and GE-
NIA datasets with in-domain pre-training (Wadden
et al., 2019; Eberts and Ulges, 2019). However,
5.9% improvement was obtained in this task for
Centralval, suggesting that in-domain pre-training
is particularly useful. Hence, it is likely that fur-
ther pre-training on PK literature helps the model
performance, and it might be a promising area for
future work.

The effect of removing the local context between
entities was studied. For this, the input to the RE
layer was simplified to the entity embeddings. In
other words, the yellow vector from Figure 2 B
was removed. Table 5 shows the results of this
experiment. Surprisingly, it was observed that the
local context improved not only RE but also NER.
Both micro and macro-F1 scores were slightly im-
proved, suggesting that explicitly encoding local
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Table 3: End-to-end relation extraction results on the test set for the MT model configuration. Results are displayed
as the median over ten runs with their interquartile variance in subscript.

Relation P R F1

Centralval 85.775.04 85.465.07 86.13.49
Deviationval 92.331.9 94.396.27 93.533.01

Related 93.831.69 94.082.51 93.661.52

Table 4: Results on the test set when using different encoder models. Results are displayed as the median over ten
runs with their interquartile variance in subscript. NER metrics are the micro- and macro-averaged F1 scores over
all entities, and RE metrics are the F1 scores for each relation class.

NER RE
Encoder macro-F1 micro-F1 Related Deviationval Centralval

BERTBASE 85.824.07 90.811.77 89.441.69 90.272.2 80.164.14
BioBERT 90.022.23 94.031.63 93.661.52 93.533.01 86.13.49

Table 5: Results on the test set when using different representations as input to the relation classifier. Local context
is the max-pooling of all tokens strictly between two entities. No context only used the concatenation of each
entity representation in a specific relation. Results are displayed as the median over ten runs with their interquartile
variance in subscript. NER metrics are the micro- and macro-averaged F1 scores over all entities, and RE metrics
are the F1 scores for each relation class.

NER RE
RE layer representaiton macro-F1 micro-F1 Related Deviationval Centralval

Local context 90.022.23 94.031.63 93.661.52 93.533.01 86.13.49
No context (E1E2) 89.472.16 93.691.0 91.611.84 90.524.44 81.042.96

context between entities in RE layers can also help
recognise entities better.

For relation extraction, local context seemed to
provide a significant improvement for all relation
types, and especially for the Centralval. This re-
sult suggests that entity embeddings might cap-
ture local information around the entity mentioned
while failing to incorporate longer-range dependen-
cies. The results obtained in this experiment are
in-line with Eberts and Ulges (2019). Although re-
current and Transformer models have improved the
detection of long-range dependencies in sequential
inputs, the noise introduced with long context still
represents a challenge in relation extraction (Eberts
and Ulges, 2019; Zhong and Chen, 2020). Using
this local context, the model can focus on those
tokens that might be more informative about the
dependencies between both entities. Nonetheless,
future studies might benefit from further exploring
different contextual representations for RE of PK
measurements.

5 Conclusion and Future work

We introduce the PRED corpus, a large and com-
prehensive public corpus consisting of PK entities

and relations annotated in sentences from the scien-
tific literature. This dataset facilitates training and
benchmarking models for extracting PK measure-
ments from the scientific literature. We also train
and release a new end-to-end RE model based on a
BioBERT encoder. This model initially performs
NER to identify spans of interest in text, followed
by predicting relations between spans. Our bench-
mark results on the PRED dataset are promising,
achieving a micro-average F1-score of 94% for
NER and over 85% F1-score across all PK relation
types. Our dataset and model can accelerate the
construction of ADME datasets from the scientific
literature, which can benefit drug development and
off-label dosing.
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Irena Spasić, Evangelos Simeonidis, Hanan L. Messiha,
Norman W. Paton, and Douglas B. Kell. 2009. KiPar,
a tool for systematic information retrieval regarding
parameters for kinetic modelling of yeast metabolic
pathways. Bioinformatics, 25(11):1404–1411.

Mujeen Sung, Minbyul Jeong, Yonghwa Choi,
Donghyeon Kim, Jinhyuk Lee, and Jaewoo Kang.
2022. Bern2: an advanced neural biomedical named
entity recognition and normalization tool. arXiv
preprint arXiv:2201.02080.

Bruno Taillé, Vincent Guigue, Geoffrey Scoutheeten,
and Patrick Gallinari. 2020. Let’s stop incorrect com-
parisons in end-to-end relation extraction! arXiv
preprint arXiv:2009.10684.

Achakulvisut Titipat and Daniel Acuna. 2015. Pubmed
Parser: A Python Parser for PubMed Open-Access
XML Subset and MEDLINE XML Dataset.

Jyh Jong Tsay, Bo Liang Wu, and Chang Ching Hsieh.
2009. Automatic extraction of kinetic information
from biochemical literatures. 6th International Con-
ference on Fuzzy Systems and Knowledge Discovery,
FSKD 2009, 5:28–32.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
arXiv preprint arXiv:1909.03546.

Yuchen Wang, Haichun Liu, Yuanrong Fan, Xingye
Chen, Yan Yang, Lu Zhu, Junnan Zhao, Yadong
Chen, and Yanmin Zhang. 2019. In silico predic-
tion of human intravenous pharmacokinetic param-
eters with improved accuracy. Journal of chemical
information and modeling, 59(9):3968–3980.

Zhiping Wang, Seongho Kim, Sara K Quinney, Yingy-
ing Guo, Stephen D Hall, Luis M Rocha, and Lang Li.
2009. Literature mining on pharmacokinetics numer-
ical data: a feasibility study. Journal of biomedical
informatics, 42(4):726–735.

Chi Heem Wong, Kien Wei Siah, and Andrew W Lo.
2019. Estimation of clinical trial success rates and
related parameters. Biostatistics, 20(2):273–286.

Zexuan Zhong and Danqi Chen. 2020. A frustrat-
ingly easy approach for entity and relation extraction.
arXiv preprint arXiv:2010.12812.

A Appendix: Corpus Construction

A.1 Annotation Guidelines

The annotation guidelines for annotating entities
and relations of PK estimations from scientific
sentences can be found at https://github.
com/PKPDAI/PKRelations/blob/master/docs/
Annotation_Guidelines_PKRelations.pdf.
Annotators were asked to base their labelling
decisions on these guidelines, which were updated
accordingly as new cases appeared.

Final Annotation Check. After multiple expert
annotators had annotated the development and test
sets, a final check involved comparing model pre-
dictions against their annotated version. This al-
lowed for identifying potentially missed entities
and relations during the annotation.

A.2 Annotation Interface

The annotation interface (see Figure 3) was de-
veloped in Prodigy (Montani, Ines and Honnibal,
2018) and allowed annotation of both entities and
relations at the sentence level. The annotators were
presented with a single sentence at a time and could
swap between the entity and relation annotation
modes. The annotations of named entities were
represented at the character level, and relations
were defined with the unique identifiers of each
entity and their relation class. Candidate values
and ranges were pre-highlighted in the interface
using a rule-based system. PK terms were pre-
highlighted using the NER model from Hernandez
et al. (2024), and a list of dictionary terms was used
to pre-annotate Compare entities.

A.3 Corpus Limitations

The main limitation of PRED is the potential bias
in selecting candidate sentences. The sampled
sentences went through two filtering stages that
involved model predictions: (1) selection of PK-
relevant documents identified by the document clas-
sifier from Hernandez et al. (2021) and (2) selec-
tion of sentences that at least had one PK entity
recognised by our PK RE model. As a result, if
the document classifier missed specific types of
documents, these would not appear on this dataset.
Using the trained PK NER model from Hernandez
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Figure 3: Screenshot of the interface used to annotate entities and relations from scientific text. The example
displays a single sentence after entities and relations were annotated.

et al. (2024) for filtering instances with PK param-
eter mentions might exclude sentences where the
NER model missed a single PK mention. Further-
more, if a specific sentence mentioned more than
one parameter and only one match (partial or not)
was detected by the NER model, the sentence was
included in the candidate pool, and these incorrect
predictions were later corrected during the anno-
tation process. Overall, it is important to consider
that training RE models on this dataset and directly
applying them to sentences in the literature without
additional filtering might result in the extraction of
non-PK measurements due to the filtering approach
performed in the sampling stage. For this reason,
when deploying systems in production, it is impor-
tant to combine models trained on this dataset with
filtering approaches to discard irrelevant measure-
ments (e.g. pre-tagging PK parameters or posterior
EL of PK mentions recognised with RE models).
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