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Abstract

This paper presents the findings of the third iter-
ation of the AmericasNLP Shared Task on Ma-
chine Translation. This year’s competition fea-
tures eleven Indigenous languages found across
North, Central, and South America. A total of
six teams participate with a total of 157 sub-
missions across all languages and models. Two
baselines – the Sheffield and Helsinki systems
from 2023 – are provided and represent hard-
to-beat starting points for the competition. In
addition to the baselines, teams are given access
to a new repository of training data which con-
sists of data collected by teams in prior shared
tasks. Using ChrF++ as the main competition
metric, we see improvements over the baseline
for 4 languages: Chatino, Guarani, Quechua,
and Rarámuri, with performance increases over
the best baseline of 4.2 ChrF++. In this work,
we present a summary of the submitted systems,
results, and a human evaluation of system out-
puts for Bribri, which consists of both (1) a
rating of meaning and fluency and (2) a qual-
itative error analysis of outputs from the best
submitted system.

1 Introduction

Though the field of natural language processing
(NLP) has seen a steep increase in interest and
impressive performance improvements over the
past decade, a large performance gap still remains
between a handful of so-called “high-resource,"
mostly colonial, languages and the remaining ma-
jority of the world’s languages (Blasi et al., 2022).
The Indigenous languages of the Americas exem-
plify this reality, representing nearly 15% of the
world’s linguistic diversity (Eberhard et al., 2024)
and yet, until recently, receiving little attention in
NLP research.

∗ Equal contribution.

Language Family Train Extra Syn. Dev.

Asháninka (cni) Arawak 3,883 - 13,195 883
Aymara (aym) Aymaran 6,531 24,331 16,750 996
Bribri (bzd) Chibchan 7,508 - - 996
Chatino (ctp) Oto-Manguean 357 2,246 - 499
Guarani (gn) Tupi-Guarani 26,032 42,186 40,516 995
Nahuatl (nah) Uto-Aztecan 16,145 2,493 9,222 672
Otomí (oto) Oto-Manguean 4,889 9,012 - 599
Quechua (quy) Quechuan 125,008 6,469 60,399 996
Rarámuri (tar) Uto-Aztecan 14,720 2,254 - 995
Shipibo-Konibo (shp) Panoan 14,592 16,721 23,595 996
Wixarika (hch) Uto-Aztecan 8,966 2,653 511 994

Table 1: Languages of the shared task, their ISO codes,
language families, and dataset statistics.

The AmericasNLP Shared Task on Machine
Translation (MT), now in its third iteration (2021,
2023, and 2024), is focused on pushing the perfor-
mance of MT on this group of languages through
two main avenues: by applying modeling and archi-
tectural advancements, and through the creation of
new linguistic resources which support the training
and evaluation of these systems.

This year’s shared task continues to focus on
the eleven Indigenous languages from the last com-
petition. While this year’s competition does not
feature new data for evaluation, competitors are
given access to a new repository of training data
which extends the original set of parallel examples
with additional data collected by teams in prior
years. This repository represents the first step in
creating a new living source of data which can
grow through contributions from teams participat-
ing in future iterations of the shared task. This
year’s competition also features two baselines: the
University of Sheffield (Gow-Smith and Villegas,
2023) and University of Helsinki (De Gibert et al.,
2023) systems which each achieved the best perfor-
mance for a subset of languages in 2023 (Ebrahimi
et al., 2023). These baselines are strong and hard-
to-beat; across 157 submissions from 6 different
teams, we see improvements for only 4 of the 11
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languages: Chatino, Guarani, Quechua, and Rará-
muri. As two of these four languages are the rela-
tively highest-resourced, this finding may indicate
that we are approaching a plateau in performance
gains achievable purely through modeling and ar-
chitectural approaches; therefore, a focus on col-
lecting additional training data may yield the most
future improvements.

The paper is structured as follows. In Section
2, we provide a brief overview of the data and
languages provided by the organizers at the be-
ginning of the competition. Section 3 contains
summary descriptions of the approaches used by
each team. Section 4 discusses the results of the
competition. In Section 5, we conduct a human
evaluation of system outputs for Bribri. In the first
part of this evaluation, we follow the prior shared
tasks in quantitatively rating a sample of outputs
on two axes: meaning and fluency. For the sec-
ond part, we conduct a qualitative error analysis,
comparing baseline systems to the best submitted
system. In Section 6, we conclude with a brief
discussion of future directions in improving MT
quality for Indigenous languages of the Americas.

2 Data and Languages

The shared task features 11 Indigenous languages
of the Americas. The language direction we are
interested in is from Spanish into the low-resource
language.

We use the AmericasNLP 2021 data for devel-
opment and evaluation. It consists of a multi-way
parallel dataset of the Spanish XNLI test set into
10 languages of the Americas (Asháninka, Aymara,
Bribri, Guarani, Nahuatl, Otomí, Quechua, Rará-
muri, Shipibo-Konibo, and Wixarika). The task
also includes Chatino, for which the data comes
from Mexican court proceedings. Chatino was in-
troduced as a surprise language in last year’s edi-
tion (Ebrahimi et al., 2023). For an in-depth review
of development and evaluation data, please refer to
Ebrahimi et al. (2022) and Mager et al. (2021).

For training data, besides the data used in previ-
ous editions, this year we include the data collected
by De Gibert et al. (2023) as part of their Helsinki-
NLP submission. This consists of extra data,
made up of different sources listed in their system
description paper, as well as syn, which refers to
synthetic data obtained through backtranslation. Ta-
ble 1 provides an overview of the languages, their
linguistic families, and the total number of parallel

sentences with Spanish. While there is no new data
for Bribri, this year’s data sizes increased consid-
erably for Shipibo-Konibo, Aymara, Quechua and
Guarani, with over 40k added sentences (although
the majority comes from backtranslations). The
test data for all languages consists of 1,003 sen-
tences, except for Chatino, which contains 1,000
sentences.

We publicly release the training and develop-
ment data in our Github repostitory.1

3 Metrics

For evaluation, we use the automatic metric ChrF++
(Popović, 2017) as implemented in SACREBLEU
(Post, 2018). It is an overlap-based metric at the
character-level, which is adequate for our task since
most languages are morphologically rich.

While teams are not required to submit a system
for all languages, the final score for each submis-
sion (ChrF++ column in Table 3) is calculated by
taking an average over all eleven languages; if there
is no model output for a given language, the score
is taken as 0.

4 Baselines and Submitted Systems

In this section, we describe the 2024 baseline sys-
tems and each team’s approach. We present a sum-
mary of all approaches in Table 2.

4.1 Baselines
This year, we consider two different baselines,
based on the strongest submissions of the previous
edition of our shared task, shown to be competitive
among each other. The overall winning team in the
previous edition was Sheffield (Gow-Smith and Vil-
legas, 2023). They exploited the knowledge from
different distilled versions of NLLB (Costa-jussà
et al., 2022), a large pretrained model. We use their
Submission 3, which chooses a single checkpoint
with best average ChrF across all languages.

We also include Helsinki-NLP’s Submission 6
(De Gibert et al., 2023), given that it outperforms
the previous system on several language pairs.
Their winning model is a multilingual one-to-many
system, pretrained on Spanish–English data.

4.2 Submitted Systems
BSC The BSC team submitted systems for two
languages: Quechua and Guarani, and followed the

1https://github.com/AmericasNLP/
americasnlp2024/tree/master/ST1_
MachineTranslation
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Team Models Data Overview

BSC
Gilabert et al.
(2024)

• NLLB-200 (1.3B) • Length-based data filtering
• Train set deduplication
• Embedding-based sentence
similarity

• Multilingual and bilingual fine-tuning of NLLB-200
• Low-Rank Adaptation (LoRA; 15% trainable params.) and full finetuning achieves

NordicAlps
Attieh et al. (2024)

• From-scratch trans-
former encoder–decoder
models

Various tokenizations:
• Byte-level BPE
• SentencePiece
• Redundancy-driven tokeniza-
tion

2 stage training:
• First focus on Spanish-English data
• Second, reduce Spanish-English to 50% with the other 50% sampled to equal amounts from the 11 TGT
languages

DC_DMV
DeGenaro and
Lupicki (2024)

• NLLB-200 (600M,
distil.)
• State-space model
(Mamba) from scratch

• Partition data into three stages,
with deduplication

• Fully fine-tune a distilled NLLB-200 model using two data stages
• Train a 3-layered Mamba network from scratch followed by a language model head using three data
stages

Edinburgh
Iyer et al. (2024)

• Llama-2 (7B)
• Mistral (7B)
• MaLA-500

• Collect additional data
through OCR
• Grammar and Education
books, Scientific Papers, Dictio-
naries, and Books as sources

• Fine-tune LLama-2, Mistral and MaLA-500 models using a 2-stage training
• LoRA fine-tuning with monolingual data first, then continue with instruction tuning
• Regularize outputs using model averaging of the 4 last checkpoints

Table 2: Summary overview of each team’s approach.

prior year’s baseline approach of finetuning NLLB-
200. In addition to the data provided by the orga-
nizers, the team collected new data from multiple
sources, including the Monolingual-Quechua-IIC
dataset (Zevallos et al., 2022), Flores-200 (Team
et al., 2022), and other online datasets.2 After col-
lection, the data is cleaned in a multi-step process
to remove duplicates and filter sentences. In the
first step, sentences with more than 150 tokens and
sentence pairs with a length ratio greater than 3 are
removed. Next, various libraries are used to further
clean the data, including Bifixer (Ramırez-Sanchez
and Zaragoza-Bernabeu, 2020) and NLPDedup.3

Finally, an embedding-based approach is used to
calculate similarities between the source and tar-
gets side of a sentence pair; similarity scores are
used with various thresholds to determine the final
training examples.

NLLB is finetuned separately for each target
language, and parallel sentences between each tar-
get and English, Portuguese, and Spanish are used.
Two model sizes are considered: the 3.3B and 1.3B
parameter version. Interestingly, the larger model
only shows improvements for Quechua while per-
formance decreases for Guarani; this relationship
depends on the finetuning method used. Increasing
the similarity score threshold offers better perfor-
mance up to a point, after which performance be-
gins to decrease, likely due to the greatly reduced
amount of available data for finetuning. Overall,
the best performance is found by using NLLB 1.3B
with full finetuning for Guarani, improving over

2https://huggingface.co/
datasets/somosnlp-hackathon-2022/
spanish-to-quechua

3https://github.com/saattrupdan/
NLPDedup

the prior best model by 1.91 ChrF++. For Quechua,
NLLB 1.3B + LoRA (Hu et al., 2021) finetuning
improves over the prior best score by 4.2 ChrF++.
For these two languages, both systems achieved the
highest performance across all submitted systems
in this year’s shared task.

NordicAlps The NordicAlps team submitted sys-
tems for all eleven languages of the shared task,
building on the Helsinki system (De Gibert et al.,
2023) from the 2023 shared task. The final models
are one-to-many, trained to output translations in
any of the competition languages as well as En-
glish. Target language tags are used to specify the
output language. Data used is similar to the prior
year’s system, but this year’s submission does not
include Bible data. Preprocessing steps include
whitespace normalization, Unicode normalization,
and punctuation tokenization; these steps were im-
plemented using the Moses tokenizer as well as
through handwritten rules. The models do not
make use of additional meta-data tags describing
the language variant or quality on the input side. Of
the three submitted systems, the main difference
lies in the tokenization: a traditional byte-level
BPE tokenization, SentencePiece tokenization, and
BPE-MR tokenization, which consists of a BPE
subword tokenizer trained using only 300 merges.
BPE-MR tokenization is motivated by prior work
on text compression through tokenization, and the
finding that monolingual text can be compressed
optimally using a small number of merge opera-
tions. Model training is carried out in stages, with
the first stage covering a high-resource language
pair (Spanish–English), and the second stage intro-
ducing more Indigenous language pairs (up to 50%
of the examples used for training). Of the three sub-
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RANK TEAM VER. COUNT TOT. BLEU TOT. CHRF TOT. CHRF++ AVG. BLEU AVG. CHRF AVG. CHRF++ BLEU CHRF CHRF++

1 NordicsAlps 1 11 55.48 321.69 287.60 5.04 29.24 26.15 5.04 29.24 26.15
2 DC_DMV 4 11 40.14 288.67 256.51 3.65 26.24 23.32 3.65 26.24 23.32
3 DC_DMV 3 11 39.63 287.64 255.49 3.60 26.15 23.23 3.60 26.15 23.23
4 DC_DMV 1 11 38.97 284.66 252.38 3.54 25.88 22.94 3.54 25.88 22.94
5 DC_DMV 5 11 37.84 284.26 252.21 3.44 25.84 22.93 3.44 25.84 22.93
6 DC_DMV 6 11 37.95 284.04 251.77 3.45 25.82 22.89 3.45 25.82 22.89
7 DC_DMV 2 11 34.15 272.59 243.83 3.10 24.78 22.17 3.10 24.78 22.17
8 NordicsAlps 2 11 27.28 265.46 232.41 2.48 24.13 21.13 2.48 24.13 21.13
9 UEdin 3 11 23.41 236.36 208.56 2.13 21.49 18.96 2.13 21.49 18.96
10 UEdin 1 11 24.04 235.42 208.34 2.19 21.40 18.94 2.19 21.40 18.94
11 UEdin 2 11 19.62 224.50 198.44 1.78 20.41 18.04 1.78 20.41 18.04
12 NordicsAlps 3 11 18.03 195.03 171.81 1.64 17.73 15.62 1.64 17.73 15.62
13 Z-AGI_Labs 1 4 8.35 103.03 87.32 2.09 25.76 21.83 0.76 9.37 7.94
14 DC_DMV 9 11 2.08 96.67 83.69 0.19 8.79 7.61 0.19 8.79 7.61
15 BSC 3 2 16.48 85.68 76.95 8.24 42.84 38.47 1.50 7.79 7.00
16 BSC 4 2 16.10 84.56 75.83 8.05 42.28 37.91 1.46 7.69 6.89
17 BSC 2 2 16.09 84.56 75.73 8.04 42.28 37.86 1.46 7.69 6.88
18 BSC 1 2 15.89 84.42 75.63 7.95 42.21 37.82 1.44 7.67 6.88
19 BSC 5 1 11.53 38.37 35.73 11.53 38.37 35.73 1.05 3.49 3.25
20 ND-NAIST 1 1 2.60 38.51 32.88 2.60 38.51 32.88 0.24 3.50 2.99

Table 3: Main ranking of all submitted systems. COUNT denotes the number of languages a particular system was
submitted for, with the AVG.* columns showing the average metric score across submitted systems. The final three
columns represent the average over all 11 languages of the shared task, with CHRF++ being used to calculate the
overall ranking.

missions, the model using BPE-MR tokenization
offered the best performance and achieved the best
result for 5 of the shared task languages, and 2nd
for 2 other languages.

DC_DMV The DC_DMV team submitted a sys-
tem for each of the eleven languages, and followed
two main approaches: finetuning a single version
of the distilled 600m version of NLLB-200 for all
the languages, as well as using a state-space model
based on the Mamba architecture (Gu and Dao,
2023). Similar to the BSC team, duplicate exam-
ples are filtered, and the data is split into mutually
exclusive stages. Stage 1 contains the largest set of
data with over 700k examples, while Stages 2 and 3
have 100k and 200k examples, respectively. For the
NLLB approach, the model is fully finetuned us-
ing data from the latter two stages, and the various
submitted systems following this approach differ in
the amount of training done using data from each
stage. For the Mamba approach, a model is trained
from scratch using all available data. While this
approach did not yield strong results, likely due to
the lack of pretraining, an NLLB-based submission
achieved the best result across all submitted sys-
tems for Aymara, Shipibo-Konibo, and Rarámuri,
while a different NLLB model achieved the best
results for Bribri.

University of Edinburgh The University of Ed-
inburgh participated with three system submissions

for each of the eleven languages. These are the
best performing systems in a series of experiments
where the authors explore finetuning three well-
known open-source LLMs: Llama-2 7B (Touvron
et al., 2023), Mistral 7B (Jiang et al., 2023) and
MaLA-500 (Lin et al., 2024). The finetuning con-
sists of a two-stage training process employing
Low-Rank Adaptation (LoRA) (Hu et al., 2021)
and instruction tuning. In a nutshell, the first stage
consists of finetuning LoRA adapters by continued
pretraining on the LLM monolingual data, to adapt
the models to specific linguistic features of each of
the target languages. This setup includes using di-
verse data sets such as MADLAD-400 (Kudugunta
et al., 2023) and Glot500 (ImaniGooghari et al.,
2023). The second stage focuses on instruction
tuning where models are finetuned using a com-
bination of human-annotated and synthetic cross-
lingual data, which helps improve the models’ ef-
ficiency in real translation tasks. Furthermore, the
authors explore n-last checkpoint averaging, with
different beam search, and sampling setups to boost
model performance at inference time.

5 Results

The overall ranking for the shared task can be found
in Table 3, and the best per-language performance
for each team can be found in Table 4. The full
results for all submissions and teams can be found
in Table 6.
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TEAM

LANG. AYM BZD CNI CTP GN HCH NAH OTO QUY SHP TAR

Baseline - Helsinki 29.36 23.47 24.92 29.84 37.02 28.67 22.78 13.32 28.81 30.21 16.98
Baseline - Sheffield 31.84 25.58 24.76 37.05 35.76 28.28 23.28 12.87 34.01 30.06 16.25

BSC - - - - 38.93 - - - 38.21 - -
DC_DMV 30.97 23.47 22.98 16.52 33.31 26.46 21.63 12.63 36.02 29.37 17.03
ND-NAIST - - - - - - - - 32.88 - -
NordicsAlps 29.39 23.32 23.20 37.38 36.23 27.64 22.87 12.98 32.98 27.04 14.57
UEdin 21.89 16.54 14.82 20.70 29.20 24.41 18.98 9.19 25.23 22.86 9.65
Z-AGI_Labs 11.89 - 22.65 - - - 21.71 - 31.07 - -

Table 4: The best CHRF++ scores for each team (across all submitted systems) across all languages. Bold values
represent the best performing system overall, while underlined values are the best performing submission to this
year’s shared task.

The first place in the shared task, across all
eleven language pairs, is awarded to the Nordi-
cAlps team (Submission 1). Their overall score sig-
nificantly surpasses those of the second and third
place teams, DC_DMV and UEdin, respectively.
Notably, only three of the six teams submit entries
for all eleven languages.

NordicAlps secures the top performance on five
language pairs (Spanish to Asháninka, Chatino,
Wizarika, Nahuatl, and Otomí), although they only
exceed the baseline for Chatino. Similarly, the
second-ranked team, DC_DMV, leads for four lan-
guage pairs (Spanish to Aymara, Bribri, Shipibo-
Konibo, and Rarámuri) but surpasses the baselines
solely for Rarámuri. These results highlight the
importance of meticulous pipeline design for data
preprocessing and segmentation, as implemented
by NordicAlps and the use of large multilingual
models (NLLB) for finetuning, as employed by
DC_DMV, for achieving robust results across most
language pairs.

Finally, the BSC team, which participates for
only two language pairs, Spanish to Guarani and
Quechua, achieves the highest performance on
both, surpassing the established baselines. Their
strategic focus on finetuning a large multilingual
model (NLLB) and gathering new data for these
languages is key to their success.

6 Human Evaluation

Following prior AmericasNLP shared tasks (Mager
et al., 2021; Ebrahimi et al., 2023), we also conduct
a human evaluation of system outputs, focusing on
Bribri.

6.1 Quantitative Analysis
As the test set has remained consistent across these
competitions, we extend the prior evaluation using
the best performing system from this year’s shared
task: Submission 4 by DC_DMV (DeGenaro and
Lupicki, 2024). We consider the same 50 test inputs
as in the prior analysis for this experiment, and a
speaker of Bribri rates the system output on two
axes: meaning and fluency. We consider a 5-point
scale for evaluation, with a score of 5 being the
best, and present results in Figure 1.

Similar to the pattern shown by the automatic
metrics, we see a decrease in the perceived qual-
ity of translations from the best 2024 system as
compared to the baseline (Gow-Smith and Villegas,
2023); i.e., scores suffer more, with a larger propor-
tion being rated with a score of 1. For both metrics,
scores of 5 are non-existent, showing a decrease
in top-end performance as well. To further gain
insights into the errors, we qualitatively look at the
system outputs from the best 2024 system.

6.2 Qualitative Analysis
Table 5 shows examples of Bribri sentences trans-
lated by the best performing submission, organized
by their score for meaning. The sentence with a
score of 4 is readable and the original meaning
is understandable, but there are parts that are not
quite correct. In this example, "Yes, you know she
was great", the hypothesis is very good, but it has
at least one spelling mistake (*ujchen instead of
ujchén for "it’s known"), and the word ‘good’, bua’,
is missing the intensifier {-ë} that it would need in
order to become bua’ë ‘great’. In the case of the
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Figure 1: Results of the human evaluation for Bribri.
Figure presents the proportion of evaluated example
for each rating classification, with 1 representing the
lowest quality and 5 representing the best. Values for
the Baseline 2021, Best 2021, and Best 2023 systems
are taken from (Ebrahimi et al., 2023).

sentence with the score 3, the words in the hypothe-
sis still allow for an understanding of the meaning,
but there are more mistakes. The example "Hm,
afterwards we moved to a new house", has at least
one spelling mistake: *pâali instead of one of the
other documented spellings of ‘new’, for example
pàali or páli. More importantly, it has a reflexive
pronoun e’ which does not belong in the sentence,
and the verb is missing the plural marker {-yal} in
the verb mìneyal ‘went.PL’.

The remaining hypotheses from Table 5 have
more significant issues in their meanings. The ex-
ample for meaning score 2, "I spoke to Ramona
again", has some words correct, but there are errors
and entire components missing. The translation is
missing the postposition ta ‘with’, which would be
necessary to link the oblique argument ‘Ramona’ to
be verb ujté ‘spoke’. It is possible that the system
hallucinated the word tamalé, which resembles the
word tamáli ‘cuajiniquil fruit, Inga spuria’ because
the word starts with the same letters as the post-
position ta. But, in doing so, the system changed
the meaning of the translation. A factor that might
contribute to the hallucination is that there is an iter-

ative morpheme, {-male}, which can mean ‘again’
when it is attached to verbs (e.g. ie démale ‘he
came again’ (Constenla et al., 2004, 119)). Un-
fortunately this morpheme is only found attached
to verbs, not to postpositions,4 and this makes the
system hypothesis more difficult to understand.

Finally, the example for meaning score 1 can
be translated, in its gold-standard version, as "I
am finishing with my project for next week". The
hypothesis produced by the system can be trans-
lated approximately as "I am working[sic], finish,
other[sic] weapon". The verbs in the Bribri version
are not connected properly, and the meaning of
‘week’ is not present in the translation. Moreover,
the system hallucinated the word móköl ‘weapon,
rifle’, and it used the wrong numerical classifier to
describe the rifle, *ië̀k ‘another [round] one’, when
it should have used the classifier for long objects
(e.g. rifles): ië̀töm. These errors combined make it
so that the meaning of the original sentence cannot
be inferred from the system’s translation.

In summary, while we have made considerable
progress as a community in the translation of In-
digenous languages of the Americas, there is still
much work ahead of us, both in terms of data col-
lection and algorithm development.

7 Future Directions

In this section, we briefly discuss several possible
future directions for the AmericasNLP shared task,
given the results from the current as well as prior
competitions.

Evaluation Data One bottleneck in the advance-
ment of language technologies for low-resource,
and particularly Indigenous, languages is the avail-
ability of evaluation data. High quality, gold stan-
dard data in target low-resource languages supports
many important roles in the NLP research pipeline.
First, and most importantly, it is the single resource
which is necessary for experimentation; without
held out data for evaluation, there cannot be any
idea of how well a system performs for a given
language. Second, the domain and source of data
is important, as, over time, models are created to
perform best on the data they are evaluated on. Par-
ticularly for low-resource languages, where there
may not be great diversity in available data, it be-
comes vital to consider what data is used for evalu-

4There is a Bribri iterative morpheme, {-ne}, which can
be attached to adverbs and verbs, but it has not been observed
with postpositions either.
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MS Bribri English translation

4
Tö́, be’ én a iàna tö ie’ dör bua’ë. Yes, you know she was great.
Tö́, be’ wa i ujchen tö ie’ bák bua’. Yes, you know[sic] that she was good.

3
Hum, ukö̀ki sa’ mìneyal ù páli a. Hm, afterwards we moved to a new house.
Um, e’ ukö̀ki sa’ e’ mìne ù pâali a. Hm, after that we went us to a new[sic] house.

2
Ramona ta ye’ ujté skàne I spoke to Ramona again.
Ye’ ujté Ramona tamalé. I spoke, Ramona, [cuajiniquil] fruit [sic].

1
Ye’ tso’ kanè maúk èwewa semana ië̀t wa. I am finishing with my project for next week.
Ye’ tso’ kanèbalök ènuk móköl ië̀k. I am working[sic]. Finish. Other[sic] weapon.

Table 5: Examples of Bribri sentences for each of the meaning scores (MS), accompanied by their translations in
English. The first sentence is the gold standard, and the second sentence is the hypothesis by the best performing
system.

ation. Future shared tasks should strive to continue
creating new evaluation sets, both for currently sup-
ported languages (in order to increase diversity) as
well as for new languages. Evaluation sets which
contain data which is relevant to speakers and con-
tain minimal biases increases the chances that good
performance on the evaluation set is correlated with
good real-world performance.

Additional Training Data This iteration of the
shared task marks the first where performance did
not increase for the majority of languages in the
shared task. Of the four languages which did see
improvements, two are relatively high-resource and
have recently been included in large pretrained
models (Costa-jussà et al., 2022). As such, ad-
ditional data for training likely plays a large role
in improving the performance for these languages.
While teams continue to find new digital data for
training, other non-digital sources may need to be
considered for future systems.

Language Identification One of the main bot-
tlenecks for gathering additional data is that every
process of collecting resources from online sources
starts with a good language identifier. Investing
efforts into developing a language identification
system for the shared task languages could boost
the collection of additional training data.

New Language Pairs The performance of low-
resource language pairs in multilingual MT models
can benefit from incorporating additional data from
other language pairs. Furthermore, our goal is to
expand the scope of our shared task in future edi-
tions to include more underserved languages of
the Americas. To achieve this, we plan to engage
more researchers who have developed and pub-
lished resources for the Indigenous languages of

the Americas, both at our workshop and in other
venues.

8 Conclusion

In this work, we present the results of the Americ-
asNLP 2024 Shared Task on Machine Translation.
Overall, 6 teams participated in the shared task, and
submitted a combined 157 submissions across all
eleven supported languages. Prior to the start of the
competition, the organizers provided two strong
baselines and a training data set which includes
data collected from prior submissions. While there
were improvements for four languages in this year’s
shared task, the majority of languages did not see
any performance gains over the baselines, which
were the strongest systems from 2023.
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Maja Popović. 2017. chrF++: Words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, page 186.
Association for Computational Linguistics.

Gema Ramırez-Sanchez and Jaume Zaragoza-Bernabeu.
2020. Bifixer and Bicleaner: Two open-source tools
to clean your parallel data.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No Language Left Behind: Scaling Human-
Centered Machine Translation.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,

Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models.

Rodolfo Zevallos, John Ortega, William Chen, Richard
Castro, Núria Bel, Cesar Toshio, Renzo Venturas,
Hilario Aradiel, and Nelsi Melgarejo. 2022. Intro-
ducing QuBERT: A Large Monolingual Corpus and
BERT Model for Southern Quechua. In Proceedings
of the Third Workshop on Deep Learning for Low-
Resource Natural Language Processing, pages 1–13,
Hybrid. Association for Computational Linguistics.

244

https://doi.org/10.48550/arXiv.2401.13303
https://doi.org/10.48550/arXiv.2401.13303
https://doi.org/10.48550/arXiv.2401.13303
https://doi.org/10.18653/v1/2021.americasnlp-1.23
https://doi.org/10.18653/v1/2021.americasnlp-1.23
https://doi.org/10.18653/v1/2021.americasnlp-1.23
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.48550/arXiv.2207.04672
https://doi.org/10.48550/arXiv.2207.04672
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2022.deeplo-1.1
https://doi.org/10.18653/v1/2022.deeplo-1.1
https://doi.org/10.18653/v1/2022.deeplo-1.1


Appendix
Lang. Team Ver. BLEU ChrF ChrF++

aym DC_DMV 2 3.49 35.43 30.97
aym NordicsAlps 1 3.23 33.46 29.39
aym DC_DMV 4 2.74 32.36 28.32
aym DC_DMV 3 2.52 32.24 28.12
aym DC_DMV 6 2.24 31.43 27.48
aym DC_DMV 1 2.27 31.26 27.36
aym DC_DMV 5 2.37 30.91 27.09
aym NordicsAlps 2 1.99 30.37 26.37
aym UEdin 3 1.13 25.14 21.89
aym UEdin 1 1.14 24.94 21.77
aym UEdin 2 1.06 24.56 21.37
aym NordicsAlps 3 1.10 17.55 15.77
aym Z-AGI_Labs 1 0.74 13.30 11.89
aym DC_DMV 9 0.15 9.51 8.69

bzd DC_DMV 4 4.84 22.23 23.47
bzd DC_DMV 5 4.56 22.15 23.41
bzd DC_DMV 3 4.63 22.02 23.32
bzd NordicsAlps 1 5.00 22.27 23.32
bzd DC_DMV 1 4.68 21.97 23.19
bzd DC_DMV 6 4.75 21.99 23.15
bzd DC_DMV 2 3.44 18.11 19.60
bzd NordicsAlps 2 1.72 15.98 17.23
bzd UEdin 1 2.21 15.43 16.54
bzd UEdin 2 1.89 15.17 16.32
bzd UEdin 3 1.75 14.53 15.56
bzd NordicsAlps 3 1.39 13.17 12.24
bzd DC_DMV 9 0.09 4.36 4.72

cni NordicsAlps 1 2.41 27.76 23.20
cni DC_DMV 6 3.49 26.15 22.98
cni DC_DMV 3 3.56 26.05 22.87
cni Z-AGI_Labs 1 3.22 26.75 22.65
cni DC_DMV 5 3.41 25.63 22.53
cni DC_DMV 4 3.51 25.53 22.46
cni DC_DMV 1 3.56 25.48 22.44
cni DC_DMV 2 3.52 22.13 19.89
cni NordicsAlps 2 0.06 20.13 15.45
cni NordicsAlps 3 1.68 17.30 15.23
cni UEdin 1 0.41 17.54 14.82
cni UEdin 3 0.43 17.08 14.50
cni UEdin 2 0.37 16.26 13.68
cni DC_DMV 9 0.14 11.83 9.81

ctp NordicsAlps 1 13.44 40.37 37.38
ctp NordicsAlps 2 4.65 26.61 23.64
ctp UEdin 2 4.30 23.01 20.70
ctp UEdin 1 3.35 19.50 17.66
ctp UEdin 3 3.38 19.50 17.57
ctp DC_DMV 1 1.73 20.58 16.52
ctp DC_DMV 3 1.68 20.18 16.17
ctp DC_DMV 5 1.68 20.06 16.11
ctp DC_DMV 6 1.75 19.90 16.04
ctp DC_DMV 4 1.74 19.59 15.78
ctp NordicsAlps 3 1.78 14.97 12.96
ctp DC_DMV 2 0.96 9.72 8.06
ctp DC_DMV 9 0.00 3.38 2.62

gn BSC 3 12.04 41.81 38.93
gn BSC 4 11.28 40.66 37.64
gn BSC 2 11.37 40.69 37.63
gn BSC 1 11.04 40.38 37.42
gn NordicsAlps 1 8.82 39.36 36.23
gn BSC 5 11.53 38.37 35.73
gn DC_DMV 2 5.46 36.78 33.31

Lang. Team Ver. BLEU ChrF ChrF++

gn DC_DMV 3 6.30 35.72 32.58
gn DC_DMV 4 6.42 35.51 32.44
gn NordicsAlps 2 6.81 35.23 32.32
gn DC_DMV 6 5.82 34.69 31.66
gn DC_DMV 1 5.97 34.66 31.58
gn DC_DMV 5 5.66 34.18 31.22
gn UEdin 1 3.38 32.22 29.20
gn UEdin 3 3.21 32.31 29.13
gn UEdin 2 1.78 27.61 24.61
gn NordicsAlps 3 1.60 16.11 14.80
gn DC_DMV 9 0.32 10.10 8.91

hch NordicsAlps 1 10.08 31.13 27.64
hch DC_DMV 1 9.62 29.83 26.46
hch DC_DMV 4 8.51 29.54 26.23
hch DC_DMV 5 8.64 29.21 25.97
hch DC_DMV 6 8.83 28.95 25.66
hch DC_DMV 3 8.85 28.75 25.60
hch UEdin 1 9.87 27.40 24.41
hch UEdin 3 9.60 27.50 24.37
hch NordicsAlps 2 6.46 26.92 23.47
hch UEdin 2 7.03 24.51 22.03
hch DC_DMV 2 3.29 22.36 19.56
hch NordicsAlps 3 1.35 18.43 15.97
hch DC_DMV 9 0.49 8.10 7.12

nah NordicsAlps 1 2.30 26.91 22.87
nah Z-AGI_Labs 1 1.09 26.29 21.71
nah DC_DMV 1 1.79 25.58 21.63
nah DC_DMV 4 1.73 25.41 21.44
nah DC_DMV 5 1.86 25.35 21.43
nah DC_DMV 6 1.78 25.24 21.41
nah DC_DMV 3 1.85 24.84 21.07
nah NordicsAlps 2 1.52 24.84 20.77
nah UEdin 3 0.44 22.86 18.98
nah DC_DMV 2 1.75 21.69 18.52
nah UEdin 1 0.48 21.75 18.12
nah UEdin 2 0.37 20.78 17.21
nah NordicsAlps 3 1.64 17.08 14.57
nah DC_DMV 9 0.12 13.14 10.46

oto NordicsAlps 1 1.42 14.95 12.98
oto DC_DMV 1 1.55 14.61 12.63
oto DC_DMV 3 1.66 14.30 12.42
oto DC_DMV 4 1.50 14.34 12.42
oto DC_DMV 5 1.52 14.29 12.40
oto DC_DMV 6 1.36 14.14 12.20
oto NordicsAlps 2 0.20 13.80 11.63
oto DC_DMV 2 1.46 13.05 11.50
oto NordicsAlps 3 1.41 13.14 11.22
oto UEdin 3 0.44 10.87 9.19
oto UEdin 1 0.43 10.56 8.91
oto UEdin 2 0.21 9.32 7.81
oto DC_DMV 9 0.04 4.39 3.63

quy BSC 1 4.85 44.04 38.21
quy BSC 4 4.83 43.91 38.19
quy BSC 2 4.72 43.87 38.10
quy BSC 3 4.44 43.86 38.02
quy DC_DMV 2 5.41 41.43 36.02
quy DC_DMV 4 4.32 39.67 34.29
quy DC_DMV 3 4.13 39.49 34.08
quy DC_DMV 5 3.91 39.33 33.94
quy DC_DMV 1 4.01 39.24 33.91
quy DC_DMV 6 4.05 38.95 33.56
quy NordicsAlps 1 4.08 37.92 32.98
quy ND-NAIST 1 2.60 38.51 32.88
quy Z-AGI_Labs 1 3.29 36.69 31.07
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Lang. Team Ver. BLEU ChrF ChrF++

quy NordicsAlps 2 2.65 33.36 28.81
quy UEdin 1 1.32 29.54 25.23
quy NordicsAlps 3 2.77 28.99 25.15
quy UEdin 3 1.31 29.37 25.04
quy UEdin 2 0.94 26.69 22.77
quy DC_DMV 9 0.40 13.08 11.42

shp DC_DMV 2 4.45 32.95 29.37
shp NordicsAlps 1 4.14 30.55 27.04
shp DC_DMV 4 3.90 27.77 24.74
shp DC_DMV 3 3.44 26.86 23.84
shp DC_DMV 5 3.17 26.58 23.59
shp DC_DMV 6 3.07 25.91 23.05
shp UEdin 3 1.55 25.90 22.86
shp UEdin 2 1.56 25.52 22.43
shp DC_DMV 1 2.95 25.04 22.25
shp NordicsAlps 2 1.09 25.68 22.20
shp UEdin 1 1.34 25.08 22.04
shp NordicsAlps 3 2.60 23.83 21.28
shp DC_DMV 9 0.27 11.13 9.67

tar DC_DMV 2 0.92 18.94 17.03
tar DC_DMV 3 1.01 17.20 15.42
tar DC_DMV 4 0.93 16.72 14.92
tar DC_DMV 6 0.81 16.69 14.57
tar NordicsAlps 1 0.55 17.03 14.57
tar DC_DMV 5 1.04 16.58 14.51
tar DC_DMV 1 0.86 16.41 14.39
tar NordicsAlps 3 0.73 14.49 12.63
tar NordicsAlps 2 0.12 12.54 10.53
tar UEdin 1 0.11 11.46 9.65
tar UEdin 2 0.11 11.07 9.49
tar UEdin 3 0.15 11.32 9.48
tar DC_DMV 9 0.07 7.65 6.64

Table 6: Full results of the shared task.
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