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Abstract

Long-tailed multi-label visual recognition
(LTML) task is a highly challenging task due
to the label co-occurrence and imbalanced data
distribution. In this work, we propose a uni-
fied framework for LTML, namely prompt tun-
ing with class-specific embedding loss (LMPT),
capturing the semantic feature interactions be-
tween categories by combining text and im-
age modality data and improving the perfor-
mance synchronously on both head and tail
classes. Specifically, LMPT introduces the
embedding loss function with class-aware soft
margin and re-weighting to learn class-specific
contexts with the benefit of textual descrip-
tions (captions), which could help establish
semantic relationships between classes, espe-
cially between the head and tail classes. Fur-
thermore, taking into account the class imbal-
ance, the distribution-balanced loss is adopted
as the classification loss function to further
improve the performance on the tail classes
without compromising head classes. Extensive
experiments are conducted on VOC-LT and
COCO-LT datasets, which demonstrates that
our method significantly surpasses the previous
state-of-the-art methods and zero-shot CLIP in
LTML. Our codes are fully public at https:
//github.com/richard-peng-xia/LMPT.

Introduction

Long-tailed multi-label visual recognition
(LTML) (Wu et al., 2020; Guo and Wang, 2021)
is a common and practical task owing to the highly
imbalanced data distribution (Zhang et al., 2021b)
and diverse objects of real-world images (Wang
et al., 2017; Ju et al., 2023). Compared with long-
tailed recognition and multi-label recognition tasks,
LTML is more complex and challenging, because it
requires capturing multiple categories and the label
co-occurrence in individual images (Chen et al.,
2019a), which needs to compensate for the nega-
tive impacts caused by the long-tailed distribution
(i.e., low performance on the tail classes).
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Figure 1: The class distribution is long-tailed and the
VLM compares image embeddingsx to text embed-
dingseM /. of the class, which means the closer the dis-
tance between the embeddings of different modalities,
the higher the probability that the category of the text
embeddings matches the image. (a) Person and horse in
the image belong to the head classes and the tail classes
respectively. (b) Zero-Shot CLIP. (c) Exsiting Prompt
Tuning w/o CSE loss. (d) LMPT (Ours) w/ CSE loss.

Several approaches have been proposed to ad-
dress the LTML problem from different perspec-
tives, such as re-sampling (Buda et al., 2018; Dong
et al., 2017; Guo and Wang, 2021), re-weighting
(Cao et al., 2019; Wu et al., 2020) and model-
ing more powerful structures (Chen et al., 2019a;
Wang et al., 2016, 2017). Despite their great con-
tributions, these works neglect to take into account
two crucial aspects. First of all, the importance of
semantic feature interaction between classes to cap-
ture label co-occurrence. However, these methods
are limited to balancing the distribution of cate-
gories from the perspective of samples, without
considering the feature correlation between differ-
ent classes. Second, synchronous improvements in
head-to-tail category performance, while some of
these works improve the performance of tail classes
at the expense of the head classes.

Recently, graphic models have been introduced
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to model the semantic label correlation in a few
works (Chen et al., 2019a; Wang et al., 2016),
whereas these works are complex and are model-
ing label dependencies mainly based on the image
modality without additional semantic information
from other modal data. Vision-language models
(VLMs) (Radford et al., 2021; Jia et al., 2021; Tian
et al., 2022; Huang et al., 2022; Xia et al., 2024a)
demonstrate the huge potential of text modality
on semantic context feature for downstream vi-
sual tasks, especially for the prompt tuning meth-
ods (Schick and Schiitze, 2021; Shin et al., 2020;
Yao et al., 2021; Xia et al., 2023), which provide an
efficient way to transfer pre-trained VLMs to down-
stream tasks by learning the task-specific prompts
rather than finetuning the entire model. Nonethe-
less, the existing prompt tuning methods (Zhou
et al., 2022b,a; Sun et al., 2022) for visual recog-
nition simply minimize prediction errors using the
classification loss (e.g., cross-entropy loss) with
respect to the learnable prompts, which may lead
to learning general embeddings or inaccurate class-
related embeddings. For instance, when presented
with an image (Fig.1a) that contains both a head
class [person| and a tail class [horse], the zero-shot
method (Fig.1b) relies solely on the rich knowledge
of the pre-trained VLMs to assess the similarity
between the image and the word embeddings of
the class names, while the existing prompt tun-
ing method (Fig.1c) further learns more general-
ized prompt tokens to improve model performance.
However, these methods do not consider the inter-
class relationships, particularly between head and
tail classes, which is a critical factor for LTML.
This underscores the need for approaches that incor-
porate such relationships to improve performance
in such scenarios.

Therefore, to address these issues, we present the
class-specific embedding loss for prompt tuning on
long-tailed multi-label visual recognition, called
LMPT. The abundance of image-caption data fa-
cilitates prompt learning that encompasses more
nuanced and specific textual descriptions, as well
as the semantic inter-dependencies between cat-
egories (Fig.1d) that share information, such as
similar features or common descriptions. This
attribute is particularly critical in the identifica-
tion of both head and tail classes. More specifi-
cally, we propose the class-specific embedding loss
to enhance the inclusivity of class-related embed-
dings within prompts. By gradually approaching
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the embeddings of the corresponding caption, our
proposed approach enables prompt tokens to ef-
fectively judge the association between different
classes with the aid of textual modality. Aiming
for class imbalance and consistency improvements
between head classes and tail classes, we integrate
class-aware soft margin and re-weighting into the
class-specific embedding loss, which serves to as-
sign larger margins and more weights to tail classes.
Notably, for images containing both head and tail
classes, our approach outperforms visual models
and current prompt tuning methods. Moreover,
we adopt the distribution-balanced loss (Wu et al.,
2020) as the classification loss. To sum up, the
main contributions of this work include:

* We propose the LMPT framework to adapt pre-
trained VLMs to tackle long-tailed multi-label vi-
sual recognition, where captions are easily acces-
sible from public image-caption datasets or gen-
erated by powerful image-caption models (Wang
etal., 2022).

* We present a novel class-specific embedding loss
with class-aware soft margin and re-weighting
to learn more fine-grained and class-related em-
beddings that build semantic relationships across
head and tail classes with shared semantic infor-
mation. Such design can benefit performance in
tail classes and hard-to-recognize classes with
the help of text modality.

* We verify the effectiveness of the proposed
method by achieving new state-of-the-art (SOTA)
results on two datasets, which outperform previ-
ous SOTA (Guo and Wang, 2021) by 9/6% and
zero-shot CLIP by 6/2% on VOC-LT / COCO-
LT.

2 Related Work
2.1 Long-Tailed Visual Recognition

Real-world training data usually exhibits long-
tailed distribution (Zhang et al., 2021b), which
presents a challenge for traditional methods due
to the imbalanced class distribution. To address
this problem, several approaches (Cui et al., 2022;
Menon et al., 2020; Ouyang et al., 2016; Samuel
and Chechik, 2021; Xia et al., 2024b) have been
proposed from different aspects. One common
method is to directly re-sample the training data
to balance the class distribution (Drummond et al.,
2003; Buda et al., 2018; Dong et al., 2017), by ad-
justing the sampling rate of head classes and tail
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Figure 2: Overview of the architecture of our proposed method. The color blocks are defined as shown in Fig. 1.

classes, yet it might lead to the overfitting of tail
classes. A better solution is to design re-weighted
loss functions (Khan et al., 2017; Huang et al.,
2016; Cao et al., 2019) that assign more weight to
tail classes or ignore negative gradients (Tan et al.,
2020) for tail classes. In addition, researchers also
propose to use techniques such as transfer learn-
ing (Liu et al., 2019; Zhu and Yang, 2020) and
self-supervised learning (Kang et al., 2020; Zhang
et al., 2021a) to alleviate the class imbalance prob-
lem. Recently, some studies (Ma et al., 2021; Tian
et al., 2022) also explore the possibility of text
modality by refining visual-language representa-
tions on the long-tailed recognition tasks.

2.2 Multi-Label Visual Recognition

For multi-label visual recognition, some early
methods include treating it as multiple binary im-
age classifications (Tsoumakas and Katakis, 2007;
Zhang and Zhou, 2013) or finding k-nearest neigh-
bors (Zhang and Zhou, 2007). To locate regions
of interest, some researchers (Wang et al., 2016,
2017) proposed to introduce recurrent neural net-
works (e.g., RNN, LSTM) to learn a joint image-
label embedding. In addition, Chen ef al. (Chen
et al., 2019a) proposed to model the label corre-
lations by constructing a graph based on the la-
bel co-occurrence and Ye et al. (Ye et al., 2020)
updated static graph to dynamic graph convolu-
tional network (GCN) for robust representation.
Wu et al. (Wu et al., 2020) proposed a distribution-
balanced loss and Guo et al. (Guo and Wang, 2021)
adopted collaborative training on the uniform and
re-balanced samplings to alleviate the class imbal-
anced problem. There is also a popular trend to
align between visual and textual features (Xu et al.,
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2022; Liu et al., 2021; Huang et al., 2022; Ridnik
et al., 2023) for multi-label recognition.

2.3 Prompt Tuning for Vision-Language
Models

Prompt tuning (Schick and Schiitze, 2021; Shin
et al., 2020; Yao et al.,, 2021) is a parameter-
efficient technique used to utilize the representation
ability of pre-trained vision-language models to
achieve better performance instead of fine-tuning
the whole model on downstream tasks. Mean-
while, large-scale vision-language models (e.g.,
CLIP (Radford et al., 2021), ALIGN (Jia et al.,
2021)) have demonstrated impressive power to
learn visual and textual features. CoOp (Zhou
et al., 2022b) learns soft prompts via minimizing
the classification loss and CoCoOp (Zhou et al.,
2022a) further formulates the prompts in an image-
conditional way to improve its generalization to
unseen classes. DualCoOp (Sun et al., 2022) firstly
adapts CLIP to multi-label image recognition by
learning pairs of positive and negative prompts for
each class, then Tal-DPT (Guo et al., 2023) extracts
both coarse-grained and fine-grained embedding
by treating texts as images in prompt tuning. Dif-
ferent from the above work, LMPT focuses on ex-
ploring the transfer ability to address long-tailed
multi-label visual recognition.

3 Methodology

In this section, we present our proposed prompt-
ing tuning method, i.e., LMPT, for adapting pre-
trained vision-language models for long-tailed
multi-label visual recognition.



3.1 Preliminaries

Consider D as the dataset we use, N as the num-
ber of the dataset, C' as the number of classes,
and L as the fixed length of contexts for op-
timization. Then (z*,y*,t*) € Diin, k €
{1,..., N}, where z¥ is an input single image, y* =
[yf, ey yg] € {0, 1}0 is the multi-label ground-
truth and t¥ = [t’f, ...,t’z] is the corresponding
text embedding of text description (caption). But
during the test phase, only (:pk , yk) € Diest. Let
n; = chvzl y¥ denote the number of training ex-
amples that contain class ¢. Please note that labels
for computing the class-specific embedding loss
need to be processed into ¥ = [g]’f s ey gj’(ﬂ
[2 b —1,..,2% yé - 1] e {-1, 1}0, where
{—1, 1} indicates negative and positive.

3.2 Approach Overview

In order to make effective use of the linguistic
modality in the long-tailed multi-label visual recog-
nition task, we propose a novel framework (i.e.,
LMPT), as depicted in Fig. 2. Text encoder from
the pre-trained CLIP is used to encode the prompts
and text descriptions (captions) of images. Only
the parameters in the prompts are optimized, while
the text encoder and image encoder are both kept
frozen. We introduce two sorts of trainable prompts
to obtain class embedding, which are jointly op-
timized by the classification loss L.;; and class-
specific embedding loss L. Details of the afore-
mentioned loss functions will be introduced in the
later sections.

3.3 Prompt Tuning

Formally, the vision-language model consists of
an image encoder f(-) and a text encoder g(-).
Following (Zhou et al., 2022a), a prompt is defined
as:

oilt!

V], [V, - [V],, - [V] [CLASS], (1)

where i € {1,..,C}, m € {l,..,M}, the
[CLASS] token is replaced by the specific class
name (e.g., “cat,” “dog”, “car”), each [V], is a
learnable word embedding with the same dimen-
sion as normal word embeddings in the vocabulary
(i.e., 512 for CLIP), and M is a hyper-parameter
specifying the number of context tokens. The pre-

diction probability (classification output) z is then
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Figure 3: The class margins (dotted lines) are enforced
for generated samples by updating the decision bound-
ary with respect to class margins.

computed as:

(z)) /7)
(cos (g (o), f (x)) /7)
2
where 7 is a temperature parameter learned by
CLIP and cos(-, -) represents cosine similarity.

exp (cos (g (0;) ,

C
Zj:l exp

ply=ilz)=

3.4 Class-Specific Embedding Loss

We introduce the class-specific embedding
(CSE) loss to optimize the trainable fine-grained
instance prompts by learning from text embeddings
of captions. It tries to minimize the cosine distance
of matching patches and to increase the cosine dis-
tance of non-matching patches above the margin.
Embedding loss is then computed as

A7, it g =1,
Lepa = B e <k
max (O,M—Ai), if g7 =-1, (3

AF =1 — cos (tf,oﬂ%) ,

where 1 is the margin factor. Intuitively the embed-
ding loss penalizes positive (i.e., prompts of match-
ing classes) pairs that have large distances and neg-
ative (i.e., prompts of non-matching classes) pairs
that have small distance (less than ).

LDAM (Cao et al., 2019) has inspired the devel-
opment of a decision boundary that is both robust
and generalizable, capable of accurately classifying
features that vary within a certain range. However,
when applied to long-tailed datasets characterized
by a significant class imbalance, models tend to
exhibit greater sensitivity to more frequent classes.
As a result, the performance of these models in less
frequent classes is often poor.

To address this issue, CSE loss employs the
class-aware soft margin strategy to encourage the
model to have the optimal trade-off between per-
class margins by stimulating the minority classes
to have larger margins, which can be viewed as



regularization (Wei et al., 2018). More specifi-
cally, as illustrated in Fig. 3, blue samples (head
classes) are classified incorrectly, and the model up-
date gradient is shown with pointed arrows.

samples (medium classes) are classified correctly
outside of the margin and the gradient is shown. In-
tuitively, the embedding loss does not give special
consideration to the minority categories, but with
the help of class-aware soft margin, the trade-off of
w1 (in Fig. 3) can be optimized by shifting the deci-
sion boundary to encourage the tail classes to have
larger margins. So samples (tail classes) are
classified correctly outside of the original margin
but within the enlarged margin, and the embedding
loss has no gradient for these samples. Following
the trade-off between the class margins, we adopt a
class-aware margin for multiple classes of the form

—-1/4 _ N
? nzl/4

“

[ X n

Here 7 is a hyper-parameter to be tuned. There-
fore, when yf = —1, the loss can be computed as
max {0, 7; — AF}.

Meanwhile, our loss can be combined with a
re-weighting strategy to be more efficient when it
comes to long-tailed distribution data. We then
define the reference weight based on the empirical
class frequencies {n1, ..., n¢} on the training set:

(1/ni)”

C Y
> i1 (1/na)?
where 7 is a scale hyper-parameter to provide more

flexibility. Hence, the re-weighted class-specific
embedding loss is defined as:

&)

P =

g Jwily if gF=1,
T \max {0, w; (@ — AF)}, i gF =1,
(6)
_ Dt lese
Lese = =5 (7)

The overall process of class-specific embedding
loss is outlined in Algorithm 1.

3.5 Multi-Label Classification Loss

Our method can be easily combined with the ex-
isting multi-label classification loss functions (Rid-
nik et al., 2021; Lin et al., 2017; Cui et al., 2019;
Wu et al., 2020), regardless of whether they are
designed for long-tailed distributions or not. By
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Algorithm 1: Class-Specific Embedding
Loss

Input: Text embeddings of textual descriptions
(captions) t, labels 3, prompt o
Output: Class-Specific Embedding Loss L¢se
1 fork=1,2,.... Ndo

2 ecse - O;

3 fori=1,2,....,Cdo

4 Calculate class-aware soft margin j1; by
Eq. 4;

5 Calculate weight w; by Eq. 5;

6 Calculate A¥ =1 — cos (tf, 0; %),

7 if 7 = 1 then

8 ‘ écse = 'UJ1A'IL€7

9 else

10 | Lese = ReLU (w; (i — AF));

1 Calculate L ;. by Eq. 7.

blending the classification loss functions with our
proposed CSE loss, our method facilitates prompt
learning of more refined class descriptions and se-
mantic relationships between categories, particu-
larly between head and tail classes.

In this study, we introduce the distribution-
balanced loss (Wu et al., 2020) as the classification
loss function, which can be formulated as:

) -

1
n; N
- —0

r:a—l—a(ﬂx (Z

C

i=1 n;

1

’Ui:—/ix—log<’n/i/jv—1>, (9)

’ —r (1 = qf)vlog (qf) , if yf =1,

ls = .

T e (@) og (L—gf), it yF=-1,
(10)
where qZ’-C =0 (,zfC — vi) is for positive instances,
q¥ = o (¢ (2F —v;)) is for negative ones and

a, B,60, k,( are hyperparameters. Then L., =
N
k=1 gcls /N
Hence, the overall training loss can be written
as:

L= )\ﬁcls + (1 - )\Ecse) ’ (1 1)

where A € [0,1] is a hyperparameter to balance
Ecls and Ecse-

4 Experiment

4.1 Benchmark Setting

Following (Wu et al., 2020; Guo and Wang, 2021),
we conduct experiments on two datasets for long-
tailed multi-label visual recognition: VOC-LT and
COCO-LT (Wu et al., 2020). They are artificially



Datasets VOC-LT COCO-LT

Methods total | head | medium | tail total | head | medium | tail
RN-50

ERM 70.86 | 68.91 80.20 | 65.31 || 41.27 | 48.48 | 49.06 | 24.25
RW 74.70 | 67.58 82.81 73.96 || 42.27 | 48.62 | 45.80 | 32.02
Focal Loss (Lin et al., 2017) 1ccv17 73.88 | 69.41 81.43 | 71.56 || 49.46 | 49.80 | 54.77 | 42.14
RS (Shen et al., 2016) eccv’ie 75.38 | 70.95 8294 | 73.05 || 46.97 | 47.58 | 50.55 | 41.70
ML-GCN (Chen et al., 2019b) cver'19 || 68.92 | 70.14 | 76.41 62.39 || 44.24 | 44.04 | 48.36 | 38.96
OLTR (Liu et al., 2019) cver'19 71.02 | 70.31 79.80 | 64.95 || 45.83 | 47.45 50.63 38.05
LDAM (Cao et al., 2019) Neurips'19 70.73 | 68.73 80.38 69.09 || 40.53 | 48.77 | 48.38 22.92
CB Focal (Cui et al., 2019) cver'19 7524 | 70.30 | 83.53 | 72.74 || 49.06 | 47.91 53.01 44.85
BBN (Zhou et al., 2020) cver20 73.37 | 71.31 81.76 | 68.62 || 50.00 | 49.79 | 53.99 | 4491
DB Focal (Wu et al., 2020) eccv2o 7894 | 73.22 | 84.18 | 79.30 || 53.55 | 51.13 57.05 | 51.06
LTML (Guo and Wang, 2021) cver21 || 81.44 | 75.68 | 85.53 82.69 || 56.90 | 54.13 | 60.59 | 54.47
CLIP (Radford et al., 2021) cmL21 84.30 | 63.60 | 88.03 | 97.03 || 56.19 | 35.73 60.52 | 68.45
CoOp (Zhou et al., 2022b) ucv'22 81.34 | 65.10 | 81.54 | 93.37 || 54.94 | 38.06 | 56.67 | 67.51
CoCoOp (Zhou et al., 2022a) cver22 78.63 | 64.33 80.51 87.94 || 46.02 | 36.02 | 50.57 | 48.82
DualCoOp (Sun et al., 2022) Neuries22 || 81.03 | 66.45 80.53 | 92.33 || 53.11 | 40.48 | 5520 | 62.11
Tal-DPT (Guo et al., 2023) cver23 83.75 | 66.27 85.17 | 94.57 || 56.23 | 40.52 | 58.40 | 66.09
LMPT (ours) 85.44 | 66.62 | 88.11 97.86 || 58.97 | 41.87 | 61.60 | 69.60
ViT-B/16

CLIP (Radford et al., 2021) cmr21 85.77 | 66.52 | 88.93 | 97.83 || 60.17 | 3852 | 65.06 | 72.28
CoOp (Zhou et al., 2022b) ucv'22 86.02 | 67.71 88.79 | 97.67 || 60.68 | 41.97 | 63.18 | 73.85
CoCoOp (Zhou et al., 2022a) cver22 84.47 | 64.58 87.82 | 96.88 || 61.49 | 39.81 64.63 | 76.42
LMPT (ours) 87.88 | 72.10 | 89.26 | 98.49 || 66.19 | 44.89 | 69.80 | 79.08

Table 1: mAP performance of the proposed method and comparison methods. Above the dotted line is the
performance of image-only models and below is that of vision-language models.

sampled from two multi-label recognition bench-
marks, PascalVOC (Everingham et al., 2015) and
MS-COCO (Lin et al., 2014), respectively.

4.2 Experimental Settings

Metrics. As in (Liu et al., 2019), the classes are
split into three groups by the number of their train-
ing examples: head classes each contain over 100
samples, medium classes each have between 20 and
100 samples, and tail classes with under 20 sam-
ples each. We use mean average precision (mAP)
to evaluate the performance of long-tailed multi-
label visual recognition for all the classes.

Implementation Details. We adopt CLIP ResNet-
50 (He et al., 2016) or ViT-B/16 (Dosovitskiy et al.,
2020) as the visual encoder and use the correspond-
ing CLIP Transformer as the text encoder. During
training, the parameters of both the two encoders
are kept frozen, and only learnable prompts are op-
timized. SGD optimizer is adopted to learn prompt
tokens, and the training epochs are set to 30. The
learning rates for COCO-LT and VOC-LT are em-
pirically initialized with 1e-4, Se-4, and decay by
the cosine annealing rule during training. For loss
functions, 7 in Eq. 4, v in Eq. 5 and A\ in Eq. 11 are
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set as 1.0, 1.0 and 0.5, respectively. Other hyper-
parameters in DB loss are set as the same as (Wu
et al., 2020).

4.3 Long-Tailed Multi-Label Visual
Recognition

To evaluate the effectiveness of the proposed
method, firstly we compare it with previous meth-
ods of image-only models on the two long-tailed
multi-label datasets. The compared methods in-
clude Empirical Risk Minimization (ERM), a
smooth version of Re-Weighting (RW) using the
inverse proportion to the square root of class fre-
quency, Re-Sampling (RS) (Shen et al., 2016), Fo-
cal Loss (Lin et al., 2017), ML-GCN (Chen et al.,
2019b), OLTR (Liu et al., 2019), LDAM (Cao
et al., 2019), Class-Balanced (CB) Focal (Cui
et al., 2019), BBN (Zhou et al., 2020), Distribution-
Balanced (DB) Focal (Wu et al.,, 2020) and
LTML (Guo and Wang, 2021). The mAP perfor-
mance of different methods is shown in Table 1.
The prior best performance is achieved by LTML —
mAP of 81.44% over all classes on VOC-LT and
56.90% over all classes on COCO-LT.

Furthermore, we compare zero-shot and prompt



Datasets VOC-LT
Methods total head | medium tail
BCE 82.18 | 64.90 83.17 94.30
MLS 84.30 | 64.31 84.82 97.47
Focal Loss 85.37 | 66.17 87.70 97.52
CB Loss 85.25 | 65.37 87.71 97.20
R-BCE-Focal 84.56 | 66.01 86.61 97.67
ASL 86.40 | 69.12 88.79 98.07
DB Focal 87.88 | 72.10 89.26 98.49
Datasets COCO-LT
Methods total head | medium tail
BCE 58.04 | 41.79 58.86 73.90
MLS 61.26 | 41.71 64.11 74.58
Focal Loss 54.40 | 37.60 59.36 62.33
CB Loss 56.45 | 34.61 58.77 74.52
R-BCE-Focal || 60.13 | 38.11 64.87 72.79
ASL 64.89 | 43.18 68.22 78.43
DB Focal 66.19 | 44.89 69.80 79.08

Table 2: mAP performance of the proposed method with
different multi-label loss functions.

learning methods based on CLIP on the two bench-
marks. The mAP performance of these methods is
shown in Table 1 as well. For a fair comparison, we
initialize the prompt as the default hand-crafted one
“a photo of a" for all the methods. The results show
that when using ViT-B/16 as the backbone, even
the overall mAP performance of zero-shot CLIP
reaches 85.77% and 60.17%, which outperforms
previous SOTA LTML by 4.33 points (85.77%
vs.81.44%) and 3.27 points (60.17% vs.56.90%)
on the two datasets, respectively. Therefore, it is
meaningful to explore how to use prompt tuning
based on CLIP effectively for better performance.
From the perspective of prompt tuning methods,
when using ResNet-50 as the backbone, the perfor-
mance of our method on VOC-LT is more promis-
ing, which is 4.1 points, 6.81 points, 4.41 points
and 1.69 points better than CoOp, CoCoOp, Du-
alCoOp and Tal-DPT, which are popular prompt
learning methods for single-label and multi-label
recognition. The performance on COCO-LT is
similar to that on VOC-LT, which is 4.03 points,
12.95 points, and 5.86 points better than CoOp, Co-
CoOp, and DualCoOp. When replacing the back-
bone with ViT-B/16, the overall mAP performance
of our method can further boost up to 87.88% and
66.19% on VOC-LT and COCO-LT, which is the
current new state-of-the-art of the two datasets.

4.4 Ablation Analysis

Components Analysis. To further analyze which
component makes our methods performant for
LTML, we conduct a set of ablation studies and
report the results in Table 3. We first conduct exper-
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iments with CLIP and the mAP performances are
85.77% on VOC-LT, 60.17% on COCO-LT, which
surprisingly outperforms the prior SOTA LTML. It
indicates that pre-trained VLMs demonstrate a ro-
bust capability for visual recognition, providing
a solid foundation for our approach. However,
the mAP performance of the tail classes outper-
forms the head classes by nearly 30 points on both
VOC-LT and COCO-LT. Then CoOp is benefited
from soft prompts and the mAP performance is
improved to 86.02% on VOC-LT and 60.68% on
COCO-LT, with 0.25% and 0.51 % increments. Be-
sides, we design the class-specific embedding loss
with class-aware soft margin and re-weighting to
learn more fine-grained and class-related prompts
that build semantic relationships across different
classes, especially for the tail classes by encour-
aging those classes to have larger margins and
weights. The mAP performances of head, medium,
and tail classes after adding the embedding loss
are all significantly improved and the overall mAP
surpasses CoOp by 1.26% and 4.66% on VOC-LT
and COCO-LT, which demonstrates our embedding
loss can help prompts learn fine-grained classes de-
scriptions and semantic relationships across the
classes. Finally, the integration of CASM and RW
strategy further improves the mAP performance
slightly, mainly for the tail performance by 0.65 %
and 1.12% on VOC-LT and COCO-LT.
Multi-Label Classification Loss Functions. We
compare a number of multi-label classification loss
functions, including Binary Cross-Entropy Loss
(BCE), Multi-Label Soft Margin Loss (MSL), Fo-
cal Loss, CB Loss, R-BCE-Focal, Asymmetric
Loss (ASL) and DB Focal. As illustrated in Ta-
ble 2, DB Focal loss that takes the co-occurrence
of labels and the dominance of negative labels into
account works significantly better than other multi-
label classification loss for the LTML task.
Effectiveness of Text Supervision. We further
compare our method with fine-tuning CLIP’s im-
age encoder when using ResNet-50 as the back-
bone to explore whether the significant effect of
our approach is due to text supervision or simply
because the CLIP’s image encoder is so powerful.
In order to prevent interference with the trained
CLIP’s image encoder during the fine-tuning phase,
we only fine-tune a fully connected layer added
at the end of the image encoder. The results are
shown in Fig. 4. Obviously, fine-tuning the image
encoder shows promising results, but still largely



Soft Embedding | Class-Aware Re-weichtin VOC-LT ve A COCO-LT A
Prompt Loss Soft Margin c-weighting total head | medium tail ave. total head | medium tail ave.
85.77 | 66.52 88.93 97.83 60.17 | 38.52 65.06 72.28
4 86.02 | 67.71 88.79 97.67 +0.29 || 60.68 | 41.97 63.18 73.85 4091
v v 87.28 | 71.07 89.01 97.84 +0.51 || 65.34 | 44.27 69.39 77.96 4523
v 4 v 87.62 | 72.01 89.26 98.13  +1.99 || 65.81 | 44.90 69.71 78.76  +5.79
v v v v 87.88 | 72.10 89.26 9849 4217 || 66.19 | 44.89 69.80 79.08 +5.98

Table 3: Ablation analysis on different components of the our method. “avg.A" average performance improvement.

underperforms LMPT, which suggests that the gra-
dients that went through the text encoder provide
more useful information.
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Figure 4: mAP performance of different methods w/o
text supervision on two datasets. (a) VOC-LT. (b)
COCO-LT.

4.5 Case Analysis

To better understand how our method deals with
long-tailed multi-label data, we performed qualita-
tive experiments with ResNet, CLIP, and ours on
COCO-LT and VOC-LT. Fig. 5 shows several cases
where the model justifies its abilities for the pre-
diction. For example, in the third column, ResNet
only recognizes [person] (belongs to head classes)
and fails to classify the image to [train] (belongs
to tail classes), which is a pervasive challenge en-
countered by image-only models. The emergence
of CLIP is a great remedy for this issue, owing to
its huge training data and effective text supervision.
Nevertheless, simple hand-crafted templates as
prompts still cannot accurately identify categories
as they cannot describe the characteristics of each
category. Understanding the inter-class relation-
ships, particularly among head and tail categories,
presents a formidable challenge in multi-label vi-
sual recognition, which is essential for achieving
optimal performance in this domain. With the aid
of our approach, utilizing prompts that learn from
a large corpus of image-caption data, it has be-
come feasible to discern the semantic relationships
between categories and accurately predict the rele-
vant categories of simple objects, even in challeng-
ing scenarios such as identifying [stop sign] from
images. Therefore, our proposed method demon-
strates significant advantages in effectively address-

voC-LT i €OCo-LT

[ et H Input Image

y - K~
person person person, chair
stop sign

person: 84.77

person: 4.22 stop sign: 2.81 chair: 12.48
car: 1.35 person: 1.56
dog: 0.53

ion ][ our

person: 45.70
car: 3.52 chair: 36.16

CLIP's

person: 1.47

|
il

ResNet's

Figure 5: Example decisions from our model, CLIP, and
ResNet.

ing the intricate relationship among multiple labels
and the long-tailed problem with the aid of text
supervision.

5 Conclusion

In this work, we propose a new view of prompt tun-
ing for long-tailed multi-label visual recognition
by learning class-specific contexts from the align-
ment of prompts and textual description (caption),
which complements more fine-grained features and
builds semantic relationships across head and tail
classes. Considering the class imbalance, a novel
class-specific embedding loss with the class-aware
soft margin and re-weighting strategy is introduced
to promote increased generalization among the tail
classes. Furthermore, we integrate a distribution-
balanced loss as the classification loss function in
consideration of its empirical efficacy compared to
alternative loss functions. Our method exhibits sig-
nificant improvement over the previous state-of-the-
art (SOTA) and zero-shot CLIP on VOC-LT and
COCO-LT. Additionally, We hope our approach
will inspire future work in this field.
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