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Abstract
Recent advancements in instruction-following
models have made user interactions with mod-
els more user-friendly and efficient, broaden-
ing their applicability. In graphic design, non-
professional users often struggle to create visu-
ally appealing layouts due to limited skills and
resources. In this work, we introduce a novel
multimodal instruction-following framework
for layout planning, allowing users to easily
arrange visual elements into tailored layouts
by specifying canvas size and design purpose,
such as for book covers, posters, brochures,
or menus. We developed three layout rea-
soning tasks to train the model in understand-
ing and executing layout instructions. Ex-
periments on two benchmarks show that our
method not only simplifies the design process
for non-professionals but also surpasses the per-
formance of few-shot GPT-4V models, with
mIoU higher by 12% on Crello (Yamaguchi,
2021). This progress highlights the potential of
multimodal instruction-following models to au-
tomate and simplify the design process, provid-
ing an approachable solution for a wide range
of design tasks on visually-rich documents.

1 Introduction

The creation of visually-rich documents (e.g.,
posters, brochures, book covers, digital advertise-
ments, etc) using available visual components,
poses a significant challenge for both profession-
als and amateurs in the design field. Central to
this challenge is the task of arranging these com-
ponents in an efficient and aesthetically pleasing
manner, a process known to be both tedious and
time-consuming. Existing toolkits such as Adobe
Express1, Canva2, and PicsArt3, usually provide
fixed templates to users. These templates, while
useful, often fail to fully accommodate the var-
ied and evolving design needs of users, thereby

1https://www.adobe.com/express/
2https://www.canva.com/
3https://picsart.com/

How can I design a flyer with the following components? 
The flyer should have a width of 128 and a height of 128.

You can arrange the components like this:
component#0 {left: 0; top: 0; width: 128; height: 128; layer: 0;}
component#1 {left: 22; top: 8; width: 84; height: 84; layer: 2;}
component#2 {left: 20; top: 96; width: 88; height: 30; layer: 1;}
component#3 {left: 0; top: 0; width: 128; height: 128; layer: 3;}

Figure 1: An example of a model conducting automatic
layout planning following human-provided instructions
and arranging visual contents for design purpose.

potentially limiting creative expression. Existing
research on automatic layout planning (Hsu et al.,
2023; Yamaguchi, 2021; Inoue et al., 2023) often
requires detailed annotations and poses addition
constraints on fixed canvas ratios, thereby dimin-
ishing user-friendliness and adaptability.

Recent advancements in large language models
(LLMs) have showcased their remarkable ability
to follow human instructions and execute specified
tasks (Brown et al., 2020; Ouyang et al., 2022; Ope-
nAI, 2023a), introducing a new level of flexibility
and control in human-computer interaction. Along-
side these developments, we have witnessed the
emergence of instruction-tuned multimodal mod-
els (Ye et al., 2023; Li et al., 2023a,b; Awadalla
et al., 2023; OpenAI, 2023b), extending the capabil-
ities of LLMs to understand and process informa-
tion across both textual and visual domains. This
progression naturally raises the question of the po-
tential application of instruction-following models
in the complex domain of multimodal layout plan-
ning. However, employing these models for layout
planning presents significant challenges, as the task
requires intricate reasoning abilities, including but
not limited to, cross-referencing multiple images
and performing numerical calculations.
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Coordinates Predicting Layout Recovering Layout Planning
The first figure is the background canvas of a design 
poster with a width of 128 and a height of 128. The 
following images are a few text components or logos 
to be added to the poster. Predict the bounding box 
coordinates of each component so that it would not 
occlude the main object. 

The first figure is a Facebook AD with a width of 128 
and a height of 128; and it composes of various 
components as listed in the following images. Predict 
the bounding box coordinates of each component.

The first figure is a design template with a width of 128 
and a height of 128; and it composes of various 
components. Predict the bounding box coordinates of 
the component as specified in the second image.

(a) (b) (c)

Multimodal Instruction-Following Model

component#0 {left: 4; top: 17; width: 79; height: 12;} 
component#1 {left: 26; top: 31; width: 34; height: 7;} 
component#2 {left: 29; top: 7; width: 27; height: 7;} 

rendered result ➡

Prediction:Prediction:Prediction:
component#0 {left: 10; top: 84; width: 81; height: 18; layer: 3;}
component#1 {left: 0; top: 0; width: 128; height: 77; layer: 0;}
component#2 {left: 0; top: 77; width: 96; height: 50; layer: 1;}
component#3 {left: 96; top: 77; width: 31; height: 50; layer: 2;}

component#0 {left: 0; top: 14; width: 25; height: 90; layer: 0;}

Figure 2: Example inputs and outputs of the three layout reasoning tasks. (a) and (b) are examples from Crello (Ya-
maguchi, 2021), while (c) is an example from PosterLayout (Hsu et al., 2023).

In this study, we propose DocLap, aiming to
address the challenge of visually-rich document
layout planning using instruction-following mod-
els. To equip these models with the necessary
knowledge beyond their primary focus on natu-
ral language processing, we have devised three
instruction-following tasks focusing on layout rea-
soning. We evaluated our instruction-tuned Do-
cLap model across two benchmark datasets, and
the findings reveal that our approach not only suc-
ceeds in this novel application but also outperforms
the baseline established by few-shot GPT-4(V). Our
main contributions are:
• We propose a novel method for solving the layout

planning task using instruction-following mod-
els, opening new avenues for research in design
automation.

• We develop an instruction dataset featuring three
layout reasoning tasks, aiming to enrich the re-
sources available for future research.

• Through experiments on two benchmark datasets,
we validate the feasibility of our approach and
demonstrate its competitive performance against
few-shot GPT-4(V) models.

2 Instruction-Guided Layout Planning
for Visually-Rich Documents

Task Definition Visually-rich documents consist
of diverse design elements distributed across a can-
vas. To maintain the integrity of original text de-
signs, text content is converted into images in our
setup. The layout planning task involves arranging
these design components, provided as a sequence
of images i1, i2, ...in, where n represents the com-
ponent count, onto a canvas for specific application

scenarios a (e.g., posters, Instagram posts, book
covers) with defined dimensions w (width) and h
(height). The canvas may either be blank or have a
predefined background.

Instruction-Following Format To offer a more
adaptable solution and enhance user experience,
we approach this visually-rich layout planning task
in an instruction-following manner (Ye et al., 2023;
Li et al., 2023a,b; Awadalla et al., 2023; OpenAI,
2023b). The model, in addition to receiving the se-
quence of design components i1, i2, ...in, will also
be given instructions I detailing the application
scenarios a and the canvas size pw,hq. It is tasked
with predicting the layout of each component in
a structured format (Feng et al., 2023; Lin et al.,
2023). We adopt CSS to encapsulate layout proper-
ties including top, left, width, height, and
another property layer that manages the stacking
order of potentially overlapping elements.

Instruction-Following Format The task of lay-
out planning encompasses challenges such as fol-
lowing instructions, cross-modal understanding,
and numerical reasoning. To equip the model with
essential knowledge, we designed three interrelated
tasks, as illustrated in Figure 2: (a) Coordinates
Predicting, where the model predicts the coordi-
nates of a specific component within a given design
template; (b) Layout Recovering, which involves
predicting the coordinates of each component in
a template given a sequence of components; and
(c) Layout Planning, where the model arranges a
sequence of components on a canvas by predicting
their coordinates. During preprocessing, compo-
nents smaller than 5% of the canvas size are ex-
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Express Crello PosterLayout

Train
Coordinates Predicting 581k 57k 26k
Layout Recovering 160k 18k 9k
Layout Planning 160k 18k 9k

Val Design Layout - 1493 591

Table 1: Number of examples contained in each training
or validation tasks for the datasets used in this study.

cluded, and all templates are resized to ensure the
longest edge does not exceed 128. While all three
tasks contribute to model training, only the Layout
Planning task is evaluated during inference.

Model DocLap extends mPLUG-Owl (Ye et al.,
2023), a multimodal framework integrating an
LLM, a visual encoder, and a visual abstractor mod-
ule. Specifically, it employs Llama-7b v1 (Touvron
et al., 2023) as the LLM and CLIP ViT-L/14 (Rad-
ford et al., 2021) as the visual encoder. The visual
abstractor module converts CLIP’s visual features
into 64 tokens that match the dimensionality of text
embeddings, allowing for the simultaneous pro-
cessing of multiple visual inputs. We extended the
Llama v1 vocabulary with numerical tokens rang-
ing from 0 to 128. The embeddings of the extended
tokens are randomly initialized, and then tuned in
further instruction tuning.

3 Experimental Setup

Datasets We conduct experiments on layout plan-
ning for visually-rich documents with the following
two benchmarks: (1) Crello (Yamaguchi, 2021) is
built upon design templates collected from online
service. This task begins with an empty canvas,
challenging the model to organize the layouts of
the provided visual components. (2) PosterLay-
out (Hsu et al., 2023) starts from non-empty canvas
(background image for posters), and requires the
model to strategically place text, labels, and lo-
gos. Our training data is supplemented with design
templates from Adobe Express. Detailed dataset
statistics are available in Table 1. To ensure fair
comparison, validation examples are limited to no
more than 4 images, aligning with the input con-
straints of GPT-4V at the time of our submission.
Illustrative examples from both datasets are pre-
sented in Figure 2.

Baselines For Crello, we compare with Canvas-
VAE (Yamaguchi, 2021) and FlexDM (Inoue et al.,
2023). For PosterLayout, we compare with DS-
GAN (Hsu et al., 2023). Additionally, we include

Model mIoU Left Top Width Height

#1 CanvasVAE 42.39 29.31 30.97 27.58 29.99
#2 FlexDM 50.08 34.98 34.03 30.04 33.08

#3 GPT-4 0-shot 30.75 24.36 24.07 13.63 15.11
#4 GPT-4 1-shot 29.97 26.09 23.71 13.94 13.33
#5 GPT-4V 0-shot 28.81 19.96 18.09 10.45 10.08
#6 GPT-4V 1-shot 35.17 22.77 20.90 13.16 14.11

#7 DocLap (Ours) 43.75 33.46 35.61 19.18 22.79

Table 2: Automatic evaluation results on Crello showing
mIoU and the accuracy for left, top, width and height.

Model Occ.Ó Uti.Ò Rea.Ó
#1 DS-GAN 21.57 23.92 20.16

#2 GPT-4 0-shot 50.61 43.09 25.87
#3 GPT-4 1-shot 47.92 38.00 25.34
#4 GPT-4V 0-shot 36.67 33.26 24.39
#5 GPT-4V 1-shot 36.39 20.24 26.03

#6 DocLap (Ours) 23.01 22.46 21.00

Table 3: Evaluation results on PosterLayout. Occ.: oc-
clusion rate; Uti.: utility rate; Rea.: unreadability.

comparative evaluations with text-only versions of
GPT-4 and GPT-4V (OpenAI, 2023a,b,c; gpt, 2023)
across both tasks. For the text-only GPT-4 evalua-
tions, visual components are not directly supplied.
Instead, we employ BLIP-2 (Li et al., 2023c) to
generate textual descriptions of each component.

Metrics For Crello evaluation, we measure mean
Intersection-over-Union (mIoU) between predicted
and actual bounding boxes, along with accuracy in
width, height, left, and top dimensions following
FlexDM (Inoue et al., 2023). Accuracy is quan-
tified by assigning a score of 1 if the predicted
value falls into the same 64-bin quantized range as
the ground truth; otherwise, it scores 0. In assess-
ing PosterLayout, we follow DS-GAN (Hsu et al.,
2023) and employ content-aware metrics, includ-
ing (1) occlusion rateÓ, indicating the percentage
of primary objects obscured by design elements;
(2) utility rateÒ, reflecting the extent to which de-
sign components cover non-primary object areas;
and (3) unreadabilityÓ, measuring the uniformity
of areas where text-containing elements are placed.

4 Results & Analysis

Quantitative Results Table 2 shows the auto-
matic evaluation results on Crello dataset. The first
two lines are results from models that are trained
with supervised learning. Line #3-#6 show few-
shot GPT-4(V) results, in which we notice that GPT-
4V surpasses text-only GPT-4, and that providing
demonstrative examples leads to better results com-
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(a)

(b)

Figure 3: (a) mIoU variation with the number of visual
components in design templates. (b) IoU correlation
with the relative size of a single visual component. Both
plots pertain to Crello.

pared to zero-shot prompting. Our DocLap’s per-
formance (#7) surpass the few-shot GPT-4(V) on
both mIoU and aspect accuracies, but still falls
behind a bit compared to FlexDM (#2).

Table 3 presents the PosterLayout evaluation re-
sults, which reveals a trade-off between occlusion
rate and utility rate across models. GPT-4(V) mod-
els (#2-#5) exhibit high occlusion and utility rates,
indicating a propensity for predicting larger bound-
ing boxes. Our DocLap shows a reduced occlusion
rate, accompanied by a decrease in utility rate. Re-
garding unreadability, DocLap outperforms GPT-
4(V), though DS-GAN (#1) achieves the highest
performance, underscoring the efficacy of super-
vised models in this context.

Effects of #Component Figure 3(a) reveals that
all listed models exhibit high mIoU for templates
with a single component. FlexDM’s mIoU shows
slight fluctuations, stabilizing around 50%. In con-
trast, mIoU for DocLap and GPT-4(V) decreases
as the number of components increases, indicating
that more complex scenarios involving more vi-
sual components might pose challenges to current
instruction-following models.

Effects of Component Size Figure 3(b) demon-
strates a linear correlation between the relative size
of a single visual component and the IoU of the
model prediction with the ground truth for all mod-
els assessed. This suggests that smaller visual com-
ponents pose a greater challenge for precise place-
ment in accordance with the ground truth during
layout planning. Typically, these small compo-
nents, such as logos, small text boxes, or decora-

Ground-truthOursGPT4VFlexDM Ground-truthOursGPT4VDS-GAN

Figure 4: Qualitative comparisons for layout planning
results on Crello. GPT-4V w/ 1-shot learning.

Ground-truthOursGPT4VFlexDM

Ground-truthOursGPT4VDS-GAN

Figure 5: Qualitative comparisons for layout planning
results on PosterLayout. GPT-4V w/ 1-shot learning.

tive elements, have a degree of positional flexibility,
allowing for multiple valid placements.

Demonstrative Examples Figure 4 shows exam-
ples from Crello while Figure 5 shows examples
from PosterLayout.

5 Conclusion

This study demonstrates the potential of instruction-
following models in addressing the intricate task of
layout planning for visually rich documents. The
positive outcomes observed from our experiments
on two distinct benchmarks affirm the viability and
effectiveness of our methodology. This research
paves the way for future explorations into the ap-
plication of instruction-following models across
various domains, highlighting their potential to rev-
olutionize tasks that require a nuanced understand-
ing of both language and visual elements.
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Limitations

This study, while pioneering in its approach to
simplifying the graphic design process through
instruction-following models, acknowledges sev-
eral limitations. First, the performance of our
model, DocLap, and GPT-4(V) diminishes as the
complexity of the layout increases, particularly
with the addition of more visual components. This
suggests a need for improved model robustness and
adaptability in handling more intricate design sce-
narios. Additionally, the evaluation metrics, such
as mIoU and the binary accuracy measurement
for layout attributes, may not fully capture the nu-
ances of aesthetic and functional design quality.
The reliance on these metrics might overlook the
subjective and context-specific nature of effective
design, indicating a potential area for developing
more comprehensive evaluation frameworks.

Ethics Statement

Our work on instruction-following models for lay-
out planning, while innovative, introduces potential
risks including over-reliance on automation, which
may impede the development of design skills and
creativity. Importantly, our model does not gener-
ate new visual content; all predictions are based on
existing components provided by users. The out-
puts are solely layouts in text formats, mitigating
risks related to copyright infringement and original-
ity. However, the reliance on automated tools could
lead to a homogenization of design aesthetics and
potentially amplify biases present in the input data.
Addressing these challenges requires careful con-
sideration of the ethical implications of automated
design tools and the promotion of responsible us-
age to complement human creativity. Noted here
that we utilize ChatGPT to polish the writing and
ensure clarity and conciseness in the presentation
of our research, without altering the fundamental
nature of the work or its implications.

References
2023. Chatgpt can now see, hear, and

speak. https://openai.com/blog/
chatgpt-can-now-see-hear-and-speak.

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hes-
sel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
Yonatan Bitton, Samir Yitzhak Gadre, Shiori Sagawa,
Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel
Ilharco, Mitchell Wortsman, and Ludwig Schmidt.
2023. Openflamingo: An open-source framework for

training large autoregressive vision-language models.
ArXiv, abs/2308.01390.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Weixi Feng, Wanrong Zhu, Tsu-Jui Fu, Varun Jampani,
Arjun Reddy Akula, Xuehai He, S Basu, Xin Eric
Wang, and William Yang Wang. 2023. LayoutGPT:
Compositional visual planning and generation with
large language models. In Thirty-seventh Conference
on Neural Information Processing Systems.

Hsiao-An Hsu, Xiangteng He, Yuxin Peng, Hao-Song
Kong, and Qing Zhang. 2023. Posterlayout: A new
benchmark and approach for content-aware visual-
textual presentation layout. 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 6018–6026.

Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu
Otani, and Kota Yamaguchi. 2023. Towards flexi-
ble multi-modal document models. 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 14287–14296.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Fanyi Pu, Jingkang Yang, C. Li, and Ziwei Liu.
2023a. Mimic-it: Multi-modal in-context instruc-
tion tuning. arXiv preprint arXiv:2306.05425.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Jingkang Yang, and Ziwei Liu. 2023b. Otter: A
multi-modal model with in-context instruction tuning.
arXiv preprint arXiv:2305.03726.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H.
Hoi. 2023c. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large
language models. In International Conference on
Machine Learning.

Jiawei Lin, Jiaqi Guo, Shizhao Sun, Zijiang James Yang,
Jian-Guang Lou, and Dongmei Zhang. 2023. Lay-
outprompter: Awaken the design ability of large lan-
guage models. In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

OpenAI. 2023a. Gpt-4 technical report.

OpenAI. 2023b. Gpt-4v(ision) system card.

OpenAI. 2023c. Gpt-4v(ision) technical work
and authors. https://cdn.openai.com/
contributions/gpt-4v.pdf.

171

https://openai.com/blog/chatgpt-can-now-see-hear-and-speak
https://openai.com/blog/chatgpt-can-now-see-hear-and-speak
https://api.semanticscholar.org/CorpusID:261043320
https://api.semanticscholar.org/CorpusID:261043320
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=Xu8aG5Q8M3
https://openreview.net/forum?id=Xu8aG5Q8M3
https://openreview.net/forum?id=Xu8aG5Q8M3
https://api.semanticscholar.org/CorpusID:257771707
https://api.semanticscholar.org/CorpusID:257771707
https://api.semanticscholar.org/CorpusID:257771707
https://api.semanticscholar.org/CorpusID:257900939
https://api.semanticscholar.org/CorpusID:257900939
https://arxiv.org/abs/2306.05425
https://arxiv.org/abs/2306.05425
https://arxiv.org/abs/2305.03726
https://arxiv.org/abs/2305.03726
https://api.semanticscholar.org/CorpusID:256390509
https://api.semanticscholar.org/CorpusID:256390509
https://api.semanticscholar.org/CorpusID:256390509
https://openreview.net/forum?id=EF56cv8B3b
https://openreview.net/forum?id=EF56cv8B3b
https://openreview.net/forum?id=EF56cv8B3b
http://arxiv.org/abs/2303.08774
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/contributions/gpt-4v.pdf
https://cdn.openai.com/contributions/gpt-4v.pdf


Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In International Conference on Machine
Learning.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Kota Yamaguchi. 2021. Canvasvae: Learning to gener-
ate vector graphic documents. 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 5461–5469.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming
Yan, Yi Zhou, Junyan Wang, Anwen Hu, Pengcheng
Shi, Yaya Shi, Chenliang Li, Yuanhong Xu, Hehong
Chen, Junfeng Tian, Qiang Qi, Ji Zhang, and Feiyan
Huang. 2023. mplug-owl: Modularization empowers
large language models with multimodality. ArXiv,
abs/2304.14178.

172

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:236881543
https://api.semanticscholar.org/CorpusID:236881543
https://api.semanticscholar.org/CorpusID:258352455
https://api.semanticscholar.org/CorpusID:258352455

