
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1429–1450
August 11-16, 2024 ©2024 Association for Computational Linguistics

Enhancing Large Language Models in Coding
Through Multi-Perspective Self-Consistency

Baizhou Huang 1,2,∗ Shuai Lu 3,† Xiaojun Wan 1,2 Nan Duan 3

1Wangxuan Institute of Computer Technology, Peking University
2State Key Laboratory of Media Convergence Production Technology and Systems

3Microsoft Research Asia
{hbz19,wanxiaojun}@pku.edu.cn, {shuailu,nanduan}@microsoft.com

Abstract

Large language models (LLMs) have exhibited
remarkable ability in code generation. How-
ever, generating the correct solution in a sin-
gle attempt still remains a challenge. Prior
works utilize verification properties in soft-
ware engineering to verify and re-rank solu-
tions in a majority voting manner. But the
assumption behind them that generated veri-
fication properties have better qualities than
solutions may not always hold. In this paper,
we treat them equally as different perspectives
of LLMs’ reasoning processes. We propose the
Multi-Perspective Self-Consistency (MPSC)
framework incorporating both inter- and intra-
consistency across outputs from multiple per-
spectives. Specifically, we prompt LLMs to
generate diverse outputs from three perspec-
tives, Solution, Specification and Test case, con-
structing a 3-partite graph. With two mea-
sure functions of consistency, we embed both
inter- and intra-consistency information into
the graph. The optimal choice of solutions
is then determined based on analysis in the
graph. MPSC significantly boosts performance
of foundation models (ChatGPT in this paper)
on various benchmarks, including HumanEval
(+15.91%), MBPP (+6.43%) and CodeContests
(+9.37%), even surpassing GPT-4.1

1 Introduction

In recent years, pre-trained large language models
(LLMs) have demonstrated unprecedented profi-
ciency in understanding, generating, and reasoning
with human language (Brown et al., 2020; Chowd-
hery et al., 2022; OpenAI, 2023; Touvron et al.,
2023). Among the diverse applications of LLMs,
code generation stands out as pivotal task and
has been acknowledged as a fundamental task for
benchmarking (Liang et al., 2023). This task entails

∗Work done during internship at Microsoft.
†Corresponding author.

1 The code is available at https://github.com/skpig/
MPSC.

0 70 75 80 8575 70 65 60

60

65

70

75

20

15

10

5

Figure 1: Pass@1 of MPSC. With ChatGPT as the
foundation model, MPSC even surpasses GPT-4 and
achieves SOTA performance on all four benchmarks.

models to generate source codes from provided nat-
ural language intents. Many foundation models
have exhibited remarkable zero-shot performance
in code generation, such as ChatGPT and GPT4
(OpenAI, 2023), with successful deployments in
real-world applications like Github Copilot.

Despite the remarkable abilities, LLMs often
struggle to generate the correct code in a single
attempt. Therefore, previous works sample diverse
codes from LLMs and re-rank them by introduc-
ing verification properties from software engineer-
ing. For example, CodeT (Chen et al., 2022) gen-
erates test cases as a verification property, while
ALGO (Zhang et al., 2023) generates oracles, the
brute-force version of desired algorithms, as a ver-
ification property. These methods are essentially
variants of majority voting, making the assumption
that the correctness of experts (i.e. the verifica-
tion properties) is better than that of choices (i.e.
the desired code outputs). However, both verifica-
tion properties and desired code outputs are usually
generated by the identical model with respect to
the same question, and hence the preference over
verification properties is not always correct.

Instead, we believe that both desired code out-
puts and verification properties should be treated
equally, since they are different perspectives of

1429

https://github.com/skpig/MPSC
https://github.com/skpig/MPSC

LLM’s deliberate thinking process in face of iden-
tical questions. Aggregating various outputs from
different perspectives can lead to a more credible
result. To achieve this, we propose the Multi-
Perspective Self-Consistency (MPSC) framework
that incorporates both inter-consistency across mul-
tiple perspectives and intra-consistency within a
single perspective. In this way, MPSC can fully
leverage the consistency information within LLMs
and select the model output with the most consis-
tent functionality as the final answer.

In our framework, various verification tech-
niques from software engineering can be included
as extended perspectives for better reasoning.
Specifically, we prompt the LLM to simultane-
ously generate diverse outputs from three well-
established perspectives in software engineering,
namely Solution, Specification and Test case (Abra-
hamsson et al., 2017). Solutions implement the
desired functionality, specifications demonstrate
the intended properties in formal language, while
test cases outline the expected behavior for some
specific inputs. Then, we treat these model outputs
as vertices in a graph, and establish connections (i.e.
edges) based on the pairwise agreement of vertices
from different perspectives. Our goal is to iden-
tify the most reliable output using a score function,
which evaluates all vertices by considering both
intra- and inter-consistency information encoded in
the graph. Specifically, the intra-consistency infor-
mation guides the function to favor the most inter-
nally consistent output within a single perspective,
while inter-consistency ensures that the scores for
two outputs from different perspectives are similar
if they reach a consensus. We formalize the learn-
ing process of the score function as an optimization
problem adhering to these two consistency criteria
and leverage an iterative algorithm proposed by
Zhou et al. (2003b) to achieve this goal.

We evaluate MPSC on four widely used code
generation benchmarks, including HumanEval
(Chen et al., 2021), HumanEval+ (Liu et al., 2023),
MBPP (Austin et al., 2021) and CodeContests (Li
et al., 2022). Experimental results show that our
method boosts the performance of ChatGPT by a
large margin, 15.91% in HumanEval, 15.64% in
HumanEval+, 6.43% in MBPP and 9.37% in Code-
Contests. Our framework even surpasses GPT-4
(OpenAI, 2023) as shown in Figure 1.

2 Multi-Perspective Self-Consistency

A single perspective can often lead to an incomplete
understanding of a problem, akin to the parable of
“blind men describing an elephant". The reasoning
process of LLMs follows a similar pattern. LLMs
generally cannot guarantee the correctness of gen-
erated output in a single attempt, especially in code
generation, which necessitates proficient natural
language understanding, deliberate reasoning and
rigorous controllability.

However, a key aspect of human intelligence is
the ability to think from multiple perspectives, re-
sulting in a more comprehensive understanding of
situations and more accurate solutions to problems.
Inspired by the human cognition process, we pro-
pose a novel code generation method by reasoning
from three well-established perspectives, solutions,
specifications and test cases. Although noisy out-
puts may inevitably be included in the generated
outputs of every perspective, we can leverage both
intra-consistency and inter-consistency among the
diverse outputs to distinguish the best ones from
the noise. An overview of our proposed MPSC
method is illustrated in Figure 2.

2.1 Solution, Specification and Test Case

Given a user intent in natural language, we intro-
duce solution, specification and test case as three
perspectives to describe the desired functionality.
A solution is the source code implementing the
functionality denoted as g : X → Y, which is
also the target of code generation. A test case is
a pair of valid input and output satisfying the re-
quired functionality denoted as (x, y) ∈ X × Y.
Specification draws inspiration from Formal Veri-
fication in software engineering, which mathemat-
ically proves the correctness of one program by
ensuring its satisfaction of some certain formal
specifications. In the context of software engineer-
ing, formal verification is usually written in formal
programming languages, e.g. Coq (Team, 2023)
and Dafny (Leino, 2010), and conducted by accom-
panying verification tools. For the generalization of
the proposed method in different program language
scenarios, we adopt the idea of formal verification
and limit the specifications within pre-conditions
and post-conditions, which can be written as func-
tions in the same programming language like so-
lutions, without struggling with formal languages.
Specifically, a pre-condition constrains the require-
ments that a valid input should satisfy, while a

1430

assert median([-10, 4, 6, 1000, 10, 20]) == 8.0

Test case
assert median([-10, 4, 6, 1000, 10, 20]) == 8.0

Test case

Specification
Specification

def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:

return l[len(l)//2]
else:

return (l[len(l)//2 - 1] + l[len(l)//2]) / 2.0

Solution
def median(l: list):

l = sorted(l)
if len(l) % 2 == 1:

return l[len(l)//2]
else:

return (l[len(l)//2 - 1] + l[len(l)//2]) / 2.0

Solution

Specification
def preconditions(l):

assert isinstance(l, list)
assert all([isinstance(i, (int, float)) for i in l])

def postconditions(l, output):
assert isinstance(output, (int, float))
num_greater = sum([1 for i in l if i >= output])
num_less = sum([1 for i in l if i <= output])
assert num_greater == num_less

def median(l: list):
l = sorted(l)
if len(l) % 2 == 1:

return l[len(l)//2]
else:

return (l[len(l)//2 - 1] + l[len(l)//2]) / 2.0

Solution

assert median([-10, 4, 6, 1000, 10, 20]) == 8.0

Test case

""”
Given a list l, return median of elements in the list.
>>> median([3, 1, 2, 4, 5])

3
>>> median([-7, 4, 6, 100, 10, 20])

15.0
"""

User Instruction

Inter-consistency Measure
over Edges

Intra-consistency Measure
over Vertices

𝑣!
"#$%

𝑣&
"#$%

𝑣'
"#$%

𝑣!
()*%

𝑣&
()*%

𝑣'
()*%

𝑣!+*(+

𝑣&+*(+

𝑣'+*(+

Stage 1.
Multi-Perspectives Generation

Stage 2.
Multi-Perspective Consistency Measures

Stage 3.
Output Reranking

𝑣!
"#$%

𝑣&
"#$%

𝑣'
"#$%

𝑣!
()*%

𝑣'
()*%

𝑣&
()*%

𝑣&+*(+

𝑣'+*(+

𝑣!+*(+

Confident Score

Optimization
Objectives

!

high

low

Figure 2: Overview of our MPSC code generation method. (a) Stage 1: we require a LLM to generate diverse
solutions, specifications and test cases. A detailed example of the three perspectives of function median(l) from
HumanEval is presented. (b) Stage 2: we construct a 3-partite graph based on the generated outputs and then
calculate both inter- and intra-consistency measures over edges and vertices respectively. The magnitudes of
measurements are demonstrated by the shade of colors. (c) Stage 3: Incorporating the multi-perspective consistency
information, we then learn a score function to re-rank outputs within each perspective.

post-condition constrains the relationships that a
pair of valid inputs and outputs should satisfy. We
denote them as hpre : X → {False, True} and
hpost : X× Y→ {False, True}. Detailed exam-
ples of outputs are shown in Figure 2.

2.2 Graph Construction

We require LLMs to generate diverse outputs from
all three perspectives. We employ an 3-partite
graph representation to capture the relationships
among these generated outputs. Specifically, we
represent the generated solutions {g1, g2, ..., gI}
with a vertex set V func, the specification set
{(hpre1 , hpost1), ..., (hpreJ , hpostJ)} with V spec, the
test case set {(x1, y1), ..., (xK , yK)} with V test,
and hence construct a vertex set V = V func ∪
V spec ∪ V test. With edges connecting each pair
of vertices from two distinct sets, we construct
an undirected 3-partite graph G = (V,E). Our
goal is to leverage the graph to encode the multi-
perspective consistency information, and then learn
a score function f : V → R (also a vector
f , fi = f(vi)) from it to choose the most reliable
output among all.

2.3 Inter-Consistency between Different
Perspectives

We distinguish between two kinds of consis-
tency based on the perspectives involved. Intra-
consistency is defined as the degree to which a
given output aligns with others within the same per-
spective, following the original definition in Wang
et al. (2022). Conversely, inter-consistency is de-
fined as the degree of consensus between a pair of
outputs from two different perspectives.

With the well-established definitions of these
three perspectives in software engineering, each
output implicitly describes a latent functionality
regardless of whether it is a solution, a specifica-
tion or a test case. Consequently, we define the
inter-consistency between two vertices from dif-
ferent perspectives as the alignment of their latent
functionalities. And the most appealing aspect is
that we can quantify the alignments with a code
interpreter in a deterministic manner2. We for-
malize the inter-consistency as a measure function
ω(·, ·) : V × V → R (also the adjacency matrix

2We provide the Python code snippets implementing the
verification in Appendix B.

1431

W , where Wi,j = ω(vi, vj)) to weight different
edges in different ways as shown in Table 1.

Vertex Types Expression of ω(vi, vj)

vi ∈ V func, vj ∈ V spec Ex∈X[1hpre
j (x)→hpost

j (x,gi(x))
]

vi ∈ V func, vj ∈ V test 1gi(xj)=yj

vi ∈ V spec, vj ∈ V test 1hpre
i (xj)∧hpost

i (xj ,yj)

otherwise 0

Table 1: Mathematical expressions of different inter-
consistency measures ω(·, ·).

We then derive an optimization objective based
on inter-consistency measurements,

Linter =
∑

(vi,vj)∈E

Wi,j(f(vi)− f(vj))
2 = fTLf (1)

, where L = D −W is the laplacian matrix
of the graph G3. The loss function is the weighted
sum of the local variation of each edge on the graph.
An underlying assumption is that a pair of outputs
exhibiting consistency are either both correct or
both incorrect. Therefore, the difference between
scores of two connected vertices should be con-
strained by the penalty corresponding to the degree
of consistency, i.e. edge weight.

2.4 Intra-Consistency within the Same
Perspective

Following Wang et al. (2022), we define the intra-
consistency of one generated output as its similarity
to others within the same perspective, which is
denoted as a function φ(·) : V → R (also a vector
y, yi = φ(vi)).

Wang et al. (2022) limits the consistency to mere
equalities in final answers, thereby lacking efficacy
when applied to open-form tasks. In the scenario
of code generation, we extend the scope of intra-
consistency to lexical and semantic similarities.

Lexical intra-consistency by Bayes risk. Min-
imum Bayes risk decoding (Kumar and Byrne,
2004) selects the hypothesis h ∈ H that minimizes
the expected loss R(h) = Ey∼P (y)[L(y, h)] over
the distribution of label y. Because of the unavail-
ability of P (y), P (h) is usually used as a proxy
distribution in practice. Then the Bayes risk can be
rewritten as R(h) =

∑
h′∈H L(h′, h) ·P (h′), which

is in fact measure the consistency of h over the
hypothesis space. Specifically, we utilize negative

3In our experiment, we use the symmetric normalized
Laplacian Lsym = D− 1

2LD− 1
2 for more robust perfor-

mance.

BLEU metrics (Papineni et al., 2002) as the loss
function L aiming at lexical similarity and assume
the hypothesis distribution is uniform, i.e.

φ(vi) = C ·
∑

vj∈K(vi)

BLEU(vi, vj)

, where C is the normalizing constant so that mea-
sures of outputs in one perspective sum up to 1,
K(vi) represents the other outputs within the same
perspective as vi.

Semantic intra-consistency by structural equiv-
alence. In the realm of graph theory, two vertices
are deemed structurally equivalent if they share
identical weighted connections with the same third-
party vertices. Utilizing this equivalence relation,
we delineate V func, V spec, and V test into their
respective structural equivalence classes. Noted
that the weights assigned to edges reflect the align-
ments of latent functionalities associated with the
vertices, and hence outputs within each equivalence
class can be regarded as exhibiting consistent func-
tional behavior. Therefore, we define the intra-
consistency measure based on the structural equiv-
alence classes within each perspective. Suppose
vi belongs to the solution set V func. The struc-
tural equivalence class of vi is denoted as S(vi) ⊂
V func, and neighbor sets of vi can be partitioned
into two subsets {Nt(vi)|t ∈ {spec, test}} de-
pending on the perspective they belong to. Overall,
the lexical intra-consistency measure is defined as
the multiplication of these three sets, i.e.

φ(vi) = C · |S(vi)| ·
∏

t

|Nt(vi)|

, where C is the normalizing constant. The notation
is similar when vi belongs to other perspectives.

Intra-consistency is in fact an estimate of the
LLM’s uncertainty (Kuhn et al., 2023; Xiong et al.,
2023b) and reflects the confidence of the model
on one specific output. Therefore, we can utilize
the intra-consistency information as a supervision
signal by ensuring the closeness between the score
function f and the intra-consistency measure φ
with Mean Squared Error (MSE),

Lintra =
1

2

∑

vi∈V

|f(vi)− φ(vi)|2 =
1

2
||f − y||2 (2)

2.5 Optimization Formulation
After all, following the criteria of inter- and intra-
consistency, we can then formulate the learning

1432

process of f as an optimization problem that com-
bines both Linter (Eq. 1) and Lintra (Eq. 2):

min
f :V →R

{α · Linter + (1− α) · Lintra} (3)

To solve this optimization problem on the graph,
we adopt the iterative algorithm proposed by Zhou
et al. (2003b). The details of the algorithm can be
found in Appendix A.

3 Experiment

3.1 Experiment Settings
Dataset and metrics. We conduct experiments
on four widely used Python code generation
benchmarks, including HumanEval, HumanEval+,
MBPP and CodeContests. HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) are two
hand-written Python programming problems. Hu-
manEval+ (Liu et al., 2023) adds more unit tests
based on HumanEval. CodeContests (Li et al.,
2022) is a much more challenging dataset consist-
ing of competition problems from the Codeforces
platform. The evaluation metric is Pass@k (Chen
et al., 2021), which is an unbiased estimator of the
probability that at least one out of the k solutions
generated by the model passes unit tests. Details
about the metric can be found in Appendix C.

Implementation and baselines. We compare
several baselines from different LLMs for code like
ChatGPT4 (i.e. GPT-3.5-Turbo), GPT-4 (OpenAI,
2023), Code Llama (Rozière et al., 2024), Wiz-
ardCoder (Luo et al., 2023) and Deepseek Coder
(Guo et al., 2024), to other post-hoc approaches
enhancing LLMs during inference, including Self-
consistency (Wang et al., 2022), MBR-EXEC (Shi
et al., 2022), CodeT (Chen et al., 2022) and Self-
collaboration (Dong et al., 2023). For both MPSC
and other post-hoc augmentation approaches, we
employ GPT-3.5-Turbo as the foundation model to
generate 200 solutions. MPSC additionally gener-
ates 50 specifications and 100 test cases for each
problem. Following the original setting in Chen
et al. (2022), we additionally generate 500 test
cases for other baselines.

Variants of MPSC. As shown in Eq.2, the intra-
consistency measure φ(·) is essentially used as a
supervision signal without leveraging the seman-
tics of “consistency". Therefore, we include two
variants in our experiments: (1) MPSC-Uniform is

4https://chat.openai.com/

the baseline without any prior intra-consistency
information and treats every vertex equally, i.e.
φ(vi) = C. (2) MPSC-Label includes the public
example test cases in docstrings as silver labels, i.e.
φ(vi) = C · 1vi is label

5. Further details regarding
the implementation of our method and baselines
are provided in Appendix E.

3.2 Main Results

The experimental results on the four benchmarks
are presented in Table 2. We observe that MPSC
consistently enhances the code generation capa-
bilities of the foundation model (i.e. GPT-3.5-
Turbo) across all benchmarks with a remarkable
margin of improvement. Particularly, when k is
set to 1, which is the most prevalent scenario
in real-world applications, the performance im-
provement is notably significant (+15.91% on Hu-
manEval, +15.64% on HumanEval+, +6.43% on
MBPP and +9.37% on CodeContests). With the
foundation model GPT-3.5-Turbo, our MPSC can
even outperform GPT-4 in Pass@1 across all bench-
marks. Compared to other post-hoc augmenta-
tion approaches, even though they utilize more test
cases, our MPSC still shows consistent advantages
in all benchmarks, excluding the Pass@5 score in
MBPP benchmark. MPSC-Uniform serves as the
bottom line of MPSC framework and still achieves
great gains for the foundation model, which demon-
strates that relying on inter-consistency proves to be
entirely effective. Moreover, incorporating various
types of intra-consistency information leads to fur-
ther improvements. Specifically, MPSC-Label and
MPSC-Semantic exhibit particularly strong results.
They are two representative approaches leverag-
ing the external supervision signals or the internal
consistency information respectively. Surprisingly,
MPSC-Semantic can match or even surpass MPSC-
Label in some benchmarks, which further high-
lights the significance of consistency information
in LLMs. Besides, we also note that the perfor-
mance of MPSC-Semantic and MPSC-Lexical re-
mains largely unchanged as k increases. This phe-
nomenon aligns with the nature of MPSC, which
assesses solutions based on their consistency within
the foundation model. It implies that top-ranked
solutions exhibit semantic similarity and are con-
sistently either correct or incorrect. This reaffirms
the capability of our proposed MPSC to effectively

5The number of example test cases is two in average.
Noted that MBPP doesn’t provide test cases in docstrings.

1433

Benchmark HumanEval HumanEval+

Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

GPT4 81.48 86.31 90.46 70.52 75.48 79.54
GPT-3.5-Turbo 68.38 76.24 83.15 58.75 66.58 73.96
DeepSeekCoder 79.30 - - - - -
WizardCoder 73.20 - - - - -
Code Llama 62.20 - - - - -

Self-consistency 73.86+5.48 73.93-2.31 74.10-9.05 63.50+4.75 64.70-1.88 65.67-8.29
MBR-EXEC 72.96+4.58 76.47+0.23 79.00-4.15 62.12+3.37 67.08+0.50 71.38-2.58
CodeT 78.05+9.67 78.05+1.81 78.30-4.85 67.87+9.12 68.75+2.17 69.65-4.31
Self-collaboration 74.40+6.02 - - - - -

MPSC-Uniform 74.17+5.79 77.02+0.78 78.53-4.62 65.05+6.30 69.76+3.18 71.72-2.24
MPSC-Lexical 82.32+13.94 84.76+8.52 86.48+3.33 74.39+15.64 75.00+8.42 77.24+3.28
MPSC-Semantic 83.38+15.00 84.25+8.01 84.45+1.30 73.54+14.79 74.46+7.88 75.26+1.30
MPSC-Label 84.29+15.91 86.79+10.55 87.13+3.98 73.47+14.72 76.66+10.08 77.25+3.29

Benchmark MBPP CodeContests

Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

GPT-4 71.26 74.27 76.99 6.1 8.28 11.72
GPT-3.5-Turbo 66.80 72.34 76.60 2.57 4.22 7.16
DeepseekCoder 70.00 - - - - -
WizardCoder 61.20 - - 2.15 3.40 5.37
Code Llama 61.20 - - - - -

Self-consistency 71.70+4.90 71.73-0.61 71.82-4.78 8.10+5.53 8.42+4.20 8.48+1.32
MBR-EXEC 70.79+3.99 73.14+0.80 74.85-1.75 8.25+5.68 8.87+4.65 9.08+1.92
CodeT 71.90+5.10 71.95-0.39 72.02-4.58 9.92+7.35 10.18+5.96 10.30+3.14
Self-collaboration 68.20+1.40 - - - - -

MPSC-Uniform 69.34+2.54 70.06-2.28 71.85-4.75 4.71+2.14 6.65+2.43 8.31+1.15
MPSC-Lexical 68.38+1.58 70.26-2.08 71.43-5.17 5.45+2.88 5.45+1.23 6.06-1.10
MPSC-Semantic 73.23+6.43 73.29+0.95 73.55-3.05 10.09+7.52 10.29+6.07 10.30+3.14
MPSC-Label - - - 11.94+9.37 15.55+11.33 18.20+11.04

Table 2: The results on four code generation benchmarks. The foundation model for MPSC, Self-consistency,
MBR-EXEC, CodeT, Self-collaboration are all GPT-3.5-Turbo. The improvements are calculated between methods
and GPT-3.5-Turbo. The best and second best performance for each dataset are shown in bold and underline.

aggregate consistency information within LLMs,
thereby selecting the most consistent answers. We
have a more detailed discussion about this phe-
nomenon in Appendix C.

3.3 Further Analysis

Ablation study. We conduct an ablation study
to examine the impact of different perspectives on
MPSC. The results are presented in Table 4. Evi-
dently, both the specification and test case perspec-
tives play crucial roles in our framework. Addition-
ally, test cases contribute more to the improvements
than specifications. We attribute the observation
to the better quality of test cases, as generating an
accurate test case is considerably simpler than ab-
stracting a comprehensive and sound specification.

Qualities of three perspectives. We present the
accuracy6 of generated solutions, specifications and

6Accuracy is equal to pass@1.

test cases in Table 5. The quality of all three per-
spectives is insufficient individually. Indeed, the
generated verification properties (i.e. specifications
and test cases) are even poorer than the generated
solutions. It implies that prior works (Zhang et al.,
2023; Chen et al., 2022) relying on generated veri-
fication properties as experts for majority voting on
solutions may fail, as these experts perform worse
than the choices (i.e. solutions) themselves. Ad-
ditionally, it indicates that the significant improve-
ments brought by MPSC do not solely depend on
the high quality of verification properties. The
improvements come from the consistency informa-
tion within LLMs, which helps to distinguish noise
from high-quality solutions.

Generalization over different LLMs. MPSC
is designed as a model-agnostic framework that
assumes black-box access to the underlying foun-
dation model. In assessing the extent of MPSC’s

1434

Benchmark HumanEval HumanEval+

Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

GPT-4 (gpt4-0614) 81.48 86.31 90.46 70.52 75.48 79.54
+MPSC 92.15+10.67 91.62+5.31 91.80+1.34 81.72+11.2 81.77+6.29 82.12+2.58

WizzardCoder-34B† 67.84 72.12 75.98 58.70 62.88 66.88
+MPSC 74.06+6.22 75.00+2.88 75.07-0.91 65.45+6.75 65.71+2.83 66.19-0.69

Code Llama-34B 51.78 59.24 67.07 41.49 48.30 55.93
+MPSC 70.97+19.19 70.55+11.31 71.36+4.29 58.44+16.95 59.00+10.70 60.02+4.09

WizzardCoder-13B 60.35 66.10 72.01 50.25 56.00 61.98
+MPSC 73.60+13.25 74.96+8.86 74.57+2.56 61.33+11.08 62.99+6.99 62.67+0.69

Code Llama-13B 44.63 50.99 57.86 35.93 41.71 48.19
+MPSC 62.94+18.31 64.93+13.94 64.66+6.80 50.04+14.11 51.24+9.53 51.36+3.17

WizzardCoder-7B 53.81 59.62 66.06 45.06 50.83 57.69
+MPSC 63.85+10.04 64.04+4.42 67.32+1.26 53.69+8.63 55.07+4.24 59.45+1.76

Code Llama-7B 39.38 45.18 52.79 34.33 39.18 45.25
+MPSC 58.54+19.16 57.83+12.65 59.31+6.52 49.04+14.71 49.96+10.78 50.46+5.21

Deepseek Coder-6.7B 71.73 80.92 86.73 61.72 71.42 78.54
+MPSC 82.38+10.65 83.92+3.00 84.71-2.02 70.04+8.32 72.12+0.70 73.96-4.58

Table 3: The performance of MPSC-Semantic with different foundation models. †: We use nucleus sampling with
temperature as 0.2 instead of greedy generation in this experiment. The best performance is shown in bold.

Benchmark HumanEval HumanEval+ MBPP CodeContests

Ours 83.38 73.54 73.23 10.09
w/o Specification 82.32 73.52 70.18 9.17
w/o Test case 78.30 68.49 72.00 8.71
w/o Both 68.38 58.75 66.80 2.57

Table 4: The ablation study results (Pass@1) on four
benchmarks.

Perspective Solution Specification Test Case

HumanEval 68.38 45.93 63.82
MBPP 66.80 53.70 34.64

Table 5: Accuracy of solutions, specifications and test
cases generated by GPT-3-Turbo.

generalization, we employ many other LLMs in
addition to ChatGPT as foundation models. In spe-
cific, we consider the strongest model, GPT4, and
three highly proficient open-source coding LLMs,
Code Llama, WizardCoder and DeepSeek Coder
in Python. The experimental results presented in
Table 3 show that MPSC consistently yields sig-
nificant improvements across all models, which
demonstrates the robust generalization capabilities
embedded in our proposed framework.

Impact of edge sparsity. Our framework signif-
icantly depends on the inter-consistency informa-
tion between model outputs, which is represented
as edges within the constructed graph. A critical
question arises concerning the impact of edge spar-

[0k, 4k)
[4k, 8k)

[8k, 12k)

[12k, 16k)

[16k, 20k)

[20k, 24k)

[24k, 28k)

[28k, 32k)

[32k, 36k)

Sum of Edge Weights

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f P

as
s@

1=
10

0

CodeContests
HumanEval
MBPP

Figure 3: The correlation between the performance of
MPSC and the edge density.

sity on the framework’s efficacy. To address this,
we categorize all queries in the dataset into dis-
tinct bins based on the total edge weights in their
corresponding graphs and compute the perfect per-
formance ratio (i.e. Pass@1=100) for each bin. In
this experiment, we employ the MPSC-Uniform
configuration7. Figure 3 illustrates the correlation
between edge density and performance. The results
clearly demonstrate a positive correlation between
the number of edges and the overall performance
of our framework.

Impact of sampling number. To examine the
effect of the sampling number of different perspec-
tives, we conduct an analysis experiment by vary-

7The Uniform configuration is utilized to eliminate the
influence of intra-consistency information.

1435

#Specification #Test Case

10 20 50 100 200

10 78.93+10.55 80.08+11.7 83.82+15.44 83.96+15.58 84.17+15.79
20 77.17+8.79 80.13+11.75 83.82+15.44 83.42+15.04 85.44+17.06
50 80.23+11.85 80.24+11.86 82.24+13.86 83.38+15.00 83.57+15.19

100 80.39+12.01 80.9+12.52 80.92+12.54 81.55+13.17 84.17+15.79

Table 6: Pass@1 of MPSC-Semantic with different sam-
pling numbers on HumanEval.

ing the numbers of generated specifications and
test cases. As shown in Table 6, MPSC constantly
brings significant performance gains with varied
specifications and test cases. We note that MPSC
generally suffers a slight degradation in perfor-
mance when fewer specifications or test cases are
used, which is consistent with our intuition. But the
performance decline is relatively small (about 4%
with only 10% of specifications and test cases re-
tained). The observation indicts the remarkable per-
formance and efficiency of MPSC, suggesting the
potential for real-world application with reduced
computational costs.

4 Related Work

Prompting techniques on consistency. Based
on Chain-of-thought mechanism (Wei et al., 2022),
previous works have adopted various prompting
techniques and decoding strategies to reveal the
consistency of LLM outputs and further enhance
the capabilities of LLMs. One line of approaches
decodes multiple times from the same perspective
and aggregate the results (Wang et al., 2022; Zhou
et al., 2022; Jung et al., 2022; Sun et al., 2022; Chen
et al., 2023a). For example, Wang et al. (2022) tar-
gets tasks with fixed answer sets and scores each
answer based on the output frequency. Building
on this, Sun et al. (2022) introduces recitation as
context for augmentation. While Jung et al. (2022)
focus on the two-value entailment relations (True or
False) between statements and explanations. They
treat the inference process as a weighted MAX-
SAT problem and utilize a logistic solver to solve it.
Another line draws inspiration from the “Dual Pro-
cess" in cognitive science, which posits that human
reasoning is dominated by System 1 and System 2
(Daniel, 2017; Sloman, 1996). As a result, these ap-
proaches require LLMs to play different roles like
generator (i.e. System 1) and verifier (i.e. System
2), and optimize the result iteratively by a conversa-
tional way (Madaan et al., 2023; Shinn et al., 2023;
Zhu et al., 2023). Xiong et al. (2023a) also pro-
poses the concept of "inter-consistency". Instead of

referring to the consistency within the same LLM,
they focus to tackle the inter-inconsistency prob-
lem between different models with a formal debate
framework.

LLM for code. LLMs pretrained on large-scale
code data have demonstrated strong capabilities in
the field of code generation, such as Codex (Chen
et al., 2021), AlphaCode (Li et al., 2022), Code-
Gen (Nijkamp et al., 2023), InCoder (Fried et al.,
2022), StarCoder (Li et al., 2023), Code Llama
(Rozière et al., 2023), WizardCoder (Luo et al.,
2023), DeepSeekCoder (Guo et al., 2024). How-
ever, they remain unreliable, particularly in sce-
narios involving complex input-output mappings.
Because of the low tolerance of compilers and oper-
ating systems for bugs, the instability makes LLMs
hard to deploy into real-world applications. Sev-
eral methods have been proposed to mitigate the
phenomenon (Shi et al., 2022; Chen et al., 2022;
Zhang et al., 2022; Key et al., 2022; Ni et al., 2023;
Dong et al., 2023; Olausson et al., 2023; Chen et al.,
2023b; Zhang et al., 2023). The line of work with
the most direct relevance to ours is to re-rank gener-
ated solutions in a post-hoc manner. For example,
Shi et al. (2022) matches the execution results of
generated solutions for minimum Bayes risk selec-
tion. Zhang et al. (2022) prompts another model as
a reviewer to check whether generated programs
satisfy the given language instruction by measuring
p(instruction|program). CodeT (Chen et al., 2022)
additionally generates test cases to verify the gen-
erated solutions. Similarly, ALGO (Zhang et al.,
2023) additionally generates exhaustive search al-
gorithms as oracle programs to generate high qual-
ity test cases for verification.

Ranking on graph. In our framework, the final
stage is in fact a ranking problem in graph. There
exists some renowned graph ranking algorithms
like PageRank (Page et al., 1998) and HITS (Klein-
berg, 1999). While our approach is inspired by
manifold ranking (Zhou et al., 2003b), which is
built upon a regularization framework on discrete
spaces (i.e. graphs in this scenario) (Zhou et al.,
2003a; Zhou and Schölkopf, 2004, 2005).

5 Conclusion

In this paper, we present a novel code genera-
tion method, Multi-Perspective Self-Consistency
(MPSC), aimed at enhancing the performance of
LLMs in complex code generation tasks where a

1436

single attempt may not suffice to ensure the ac-
curacy of the output. Our proposed MPSC strat-
egy capitalizes on both intra- and inter-consistency
across three perspectives, solutions, specifications
and test cases, to identify the most reliable an-
swer. We systematically validate the effectiveness
of MPSC through comprehensive experiments con-
ducted on four widely used code generation bench-
marks. The evaluation results demonstrate that
MPSC outperforms existing methods and achieves
the state-of-the-art performance on all of them.

Limitations

Evaluation in the wild. Even though MPSC has
shown remarkable performance on most widely
used code generation benchmarks, its effectiveness
in real-world scenarios remains largely unexplored.
Existing code generation benchmarks often present
simplified code generation tasks compared to the in-
tricacies encountered in actual code developments,
where user intents are harder to understand and the
desired functionalities are more complex.

Generalization to other tasks. Since our pro-
posed MPSC framework is designed to be model-
agnostic and task-agnostic. We only conduct ex-
periments in the code generation task in this paper.
Actually, MPSC can be applied to other textual
generation tasks like math problem solving and
question answering. However, unlike code gen-
eration, where code interpreter can measure the
agreement between outputs in a deterministic way,
assessing the agreement between natural language
outputs is non-trivial. A general task-agnostic inter-
consistency measure is to solely rely on LLMs,
whose evaluation ability for arbitrary textual inputs
has been demonstrated recently. We leave it for
future works to discuss.

Acknowledgments

This work was supported by National Key
R&D Program of China (2021YFF0901502),
Beijing Science and Technology Program
(Z231100007423011) and Key Laboratory of
Science, Technology and Standard in Press
Industry (Key Laboratory of Intelligent Press
Media Technology). We sincerely thank Xinyu
Hu, Mingqi Gao, Xiao Pu and Xiang Chen for
providing insightful advice about this work. We
also appreciate the anonymous reviewers for their
helpful comments.

References
Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and

Juhani Warsta. 2017. Agile software development
methods: Review and analysis.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program Synthesis with Large
Language Models.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
CodeT: Code Generation with Generated Tests.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
Large Language Models Trained on Code.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Ke-
fan Xiao, Pengcheng Yin, Sushant Prakash, Charles
Sutton, Xuezhi Wang, and Denny Zhou. 2023a. Uni-
versal self-consistency for large language model gen-
eration.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023b. Teaching Large Language Mod-
els to Self-Debug.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,

1437

http://arxiv.org/abs/1709.08439
http://arxiv.org/abs/1709.08439
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2207.10397
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
http://arxiv.org/abs/2311.17311
http://arxiv.org/abs/2311.17311
http://arxiv.org/abs/2311.17311
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128

Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PaLM: Scaling Language
Modeling with Pathways.

Kahneman Daniel. 2017. Thinking, fast and slow.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023.
Self-collaboration Code Generation via ChatGPT.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brah-
man, Chandra Bhagavatula, Ronan Le Bras, and
Yejin Choi. 2022. Maieutic prompting: Logically
consistent reasoning with recursive explanations.
arXiv preprint arXiv:2205.11822.

Darren Key, Wen-Ding Li, and Kevin Ellis. 2022. I
Speak, You Verify: Toward Trustworthy Neural Pro-
gram Synthesis.

Jon M. Kleinberg. 1999. Authoritative sources in a
hyperlinked environment. J. ACM, 46(5):604–632.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-Risk Decoding for Statistical Machine Trans-
lation. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 169–176, Boston, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

K. Rustan M. Leino. 2010. Dafny: An automatic pro-
gram verifier for functional correctness. In Logic for
Programming, Artificial Intelligence, and Reasoning,
pages 348–370, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.

2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-Level Code Generation with Al-
phaCode. Science, 378(6624):1092–1097.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Lad-
hak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue
Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng,
Mert Yuksekgonul, Mirac Suzgun, Nathan Kim,
Neel Guha, Niladri Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2023. Holistic eval-
uation of language models.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
gpt really correct? rigorous evaluation of large lan-
guage models for code generation. arXiv preprint
arXiv:2305.01210.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-Refine: Iterative
Refinement with Self-Feedback.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-
anov, Wen-tau Yih, Sida Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. In International Con-
ference on Machine Learning, pages 26106–26128.
PMLR.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis.

1438

https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2304.07590
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
https://doi.org/10.48550/arXiv.2210.00848
https://doi.org/10.48550/arXiv.2210.00848
https://doi.org/10.48550/arXiv.2210.00848
https://doi.org/10.1145/324133.324140
https://doi.org/10.1145/324133.324140
http://arxiv.org/abs/2302.09664
http://arxiv.org/abs/2302.09664
https://aclanthology.org/N04-1022
https://aclanthology.org/N04-1022
https://aclanthology.org/N04-1022
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2203.13474

Theo X. Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2023. Demystifying GPT Self-Repair for Code Gen-
eration.

R OpenAI. 2023. Gpt-4 technical report. arXiv, pages
2303–08774.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1998. The PageRank Citation Rank-
ing: Bringing Order to the Web. Technical report,
Stanford Digital Library Technologies Project.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke
Zettlemoyer, and Sida I. Wang. 2022. Natural Lan-
guage to Code Translation with Execution. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3533–
3546, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Noah Shinn, Beck Labash, and Ashwin Gopinath. 2023.
Reflexion: An autonomous agent with dynamic mem-
ory and self-reflection.

Steven A Sloman. 1996. The empirical case for two sys-
tems of reasoning. Psychological bulletin, 119(1):3.

Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and
Denny Zhou. 2022. Recitation-Augmented Lan-
guage Models. In The Eleventh International Confer-
ence on Learning Representations.

The Coq Development Team. 2023. The coq proof
assistant.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022. Self-Consistency Improves
Chain of Thought Reasoning in Language Models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing
Qin. 2023a. Examining the Inter-Consistency of
Large Language Models: An In-depth Analysis via
Debate.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie
Fu, Junxian He, and Bryan Hooi. 2023b. Can llms
express their uncertainty? an empirical evaluation of
confidence elicitation in llms.

Kexun Zhang, Danqing Wang, Jingtao Xia,
William Yang Wang, and Lei Li. 2023. ALGO:
Synthesizing Algorithmic Programs with Generated
Oracle Verifiers.

Tianyi Zhang, Tao Yu, Tatsunori B. Hashimoto, Mike
Lewis, Wen-tau Yih, Daniel Fried, and Sida I. Wang.
2022. Coder Reviewer Reranking for Code Genera-
tion.

D. Zhou and B. Schölkopf. 2004. A Regularization
Framework for Learning from Graph Data. In ICML
2004 Workshop on Statistical Relational Learning
and Its Connections to Other Fields (SRL 2004),
pages 132–137.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason
Weston, and Bernhard Schölkopf. 2003a. Learning
with Local and Global Consistency. In Advances in
Neural Information Processing Systems, volume 16.
MIT Press.

Dengyong Zhou and Bernhard Schölkopf. 2005. Regu-
larization on Discrete Spaces. In Pattern Recognition,
Lecture Notes in Computer Science, pages 361–368,
Berlin, Heidelberg. Springer.

Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier
Bousquet, and Bernhard Schölkopf. 2003b. Ranking
on Data Manifolds. In Advances in Neural Informa-
tion Processing Systems, volume 16. MIT Press.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and Yu-
jiu Yang. 2023. Solving Math Word Problems via
Cooperative Reasoning induced Language Models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4471–4485.

1439

https://doi.org/10.48550/arXiv.2306.09896
https://doi.org/10.48550/arXiv.2306.09896
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://aclanthology.org/2022.emnlp-main.231
https://aclanthology.org/2022.emnlp-main.231
https://doi.org/10.48550/arXiv.2303.11366
https://doi.org/10.48550/arXiv.2303.11366
https://openreview.net/forum?id=-cqvvvb-NkI
https://openreview.net/forum?id=-cqvvvb-NkI
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2305.11595
https://doi.org/10.48550/arXiv.2305.11595
https://doi.org/10.48550/arXiv.2305.11595
http://arxiv.org/abs/2306.13063
http://arxiv.org/abs/2306.13063
http://arxiv.org/abs/2306.13063
https://doi.org/10.48550/arXiv.2305.14591
https://doi.org/10.48550/arXiv.2305.14591
https://doi.org/10.48550/arXiv.2305.14591
https://doi.org/10.48550/arXiv.2211.16490
https://doi.org/10.48550/arXiv.2211.16490
https://www.cs.umd.edu/projects/srl2004/srl2004_complete.pdf
https://www.cs.umd.edu/projects/srl2004/srl2004_complete.pdf
https://papers.nips.cc/paper_files/paper/2003/hash/87682805257e619d49b8e0dfdc14affa-Abstract.html
https://papers.nips.cc/paper_files/paper/2003/hash/87682805257e619d49b8e0dfdc14affa-Abstract.html
https://doi.org/10.1007/11550518_45
https://doi.org/10.1007/11550518_45
https://papers.nips.cc/paper_files/paper/2003/hash/2c3ddf4bf13852db711dd1901fb517fa-Abstract.html
https://papers.nips.cc/paper_files/paper/2003/hash/2c3ddf4bf13852db711dd1901fb517fa-Abstract.html
https://doi.org/10.18653/v1/2023.acl-long.245
https://doi.org/10.18653/v1/2023.acl-long.245

A Details of the Iterative Algorithm

Description of algorithm. The iterative algo-
rithm is shown in Algorithm 1.

Algorithm 1: Iterative Optimization
Input: degree matrix

D = diag(d1, ..., dN), initialization
score vector y, weighted adjacency
matrix W , threshold ϵ

Output: optimal confidence score vector
f∗

begin
f (0) ←− y

T ←−D− 1
2WD− 1

2

i←− 0
Do

f (i+1) ←− αTf (i) + (1− α)y
i←− i+ 1

While ||f (i) − f (i−1)|| ≤ ϵ

f∗ ←− f (i)

return f∗

Proof of Convergence We first expand the ex-
pression of f (n) according to the recursive formula

f (n) = αTf (n−1) + (1− α)y

= (αT)n−1f (0) + (1− α)

n−1∑

i=0

(αT)iy

Notice that T is similar to a stochastic ma-
trix WD−1 = D

1
2 (D− 1

2WD− 1
2)D− 1

2 =

D
1
2TD− 1

2 . Therefore the eigenvalues of αT are
in [−α, α]. With α ∈ (0, 1), we have

lim
n→∞

(αT)n = 0

lim
n→∞

n−1∑

i=0

(αT)i = (I − αT)−1

Therefore

f∗ = lim
n→∞

f (n) = (1− α)(1− αT)−1y

Proof of Equivalence Denote the optimization
function as

F = αfT (I −D− 1
2WD

1
2)f +

(1− α)

2
(f − y)2

= αfT (I − T)f +
(1− α)

2
(f − y)2

Differentiate F with respect to f , we have

∂F
∂f

= α(I − T)f + (1− α)(f − y)

Let the derivatives to 0, the solution f ′ =
(1 − α)(I − αT)−1y = f∗. Therefore, the itera-
tive algorithm is actually optimizing the objective
function.

Results of closed-form solution. Despite the ex-
istence of a closed-form solution for the optimiza-
tion problem, the required matrix inversion opera-
tion is computationally expensive. Conversely, the
iterative algorithm exhibits rapid convergence and
demonstrates strong empirical performance. Con-
sequently, we employ the iterative algorithm in our
experiments. Additionally, we provide the perfor-
mance of the closed-form solution in Table 7. Our
results indicate that the iterative algorithm achieves
a performance on par with that of the direct com-
putation of the closed-form solution.

Metric Pass@1 Pass@2 Pass@5

HumanEval

MPSC-Lexical 82.32/82.32 84.76/84.76 86.48/86.59
MPSC-Semantic 83.38/83.46 84.25/84.15 84.45/84.45

HumanEval+

MPSC-Lexical 74.39/74.39 75.00/75.00 77.24/77.34
MPSC-Semantic 73.54/73.97 74.46/75.04 75.26/75.96

CodeContests

MPSC-Lexical 5.45/5.45 5.45/5.45 6.06/6.06
MPSC-Semantic 10.09/10.26 10.29/10.30 10.30/10.30

MBPP

MPSC-Lexical 68.38/68.38 70.26/70.26 71.43/71.43
MPSC-Semantic 73.23/73.27 73.29/73.55 73.55/73.56

Table 7: Performance of MPSC optimized by the it-
erative algorithm or calculating closed-form solution
directly. The results are presented in form of (iterative
algorithm / closed-form solution).

1440

B Implementation of Inter-Consistency

We present the code snippets measuring the inter-
consistency between each pair of perspectives in
Listing 1, 2, 3. After execution with Python inter-
preter, the final_result is acquired as ω(vi, vj).

1 """ Generated specifications """
2 # Pre -conditions
3 def preconditions(input):
4 ...
5

6 # Post -conditions
7 def postconditions(input , output):
8 ...
9

10 """ Generated test cases """
11 test_case = {'input ': ...,
12 'output ': ...}
13

14 """ Check inter -consistency """
15 def check ():
16 pass_result = None
17 try:
18 preconditions(test_case['input '

])
19 postconditions(test_case['input '

], test_case['output '])
20 pass_result = True
21 except Exception as e:
22 pass_result = False
23 return pass_result
24 global final_result
25 final_result = check()

Listing 1: Inter-consistency between specifications and
test cases.

1 """ Generated solutions """
2 def entry_point(input):
3 ...
4

5 """ Generated specifications """
6 # Pre -conditions
7 def preconditions(input):
8 ...
9

10 # Post -conditions
11 def postconditions(input , output):
12 ...
13

14 """ Generated casual inputs """
15 casual_inputs = [...]
16

17 """ Check inter -consistency """
18 def check ():
19 pass_result = []
20 for ci in casual_inputs:
21 try:
22 output = entry_point(ci)
23 postconditions(ci, output)
24 pass_result.append(True)
25 except Exception as e:
26 pass_result.append(False)
27 return sum(pass_result) / len(

pass_result)
28 global final_result

29 final_result = check()

Listing 2: Inter-consistency between solutions and
specifications.

1 """ Generated solutions """
2 def entry_point(input):
3 ...
4

5 """ Generated test cases """
6 test_case = {'input ': ...,
7 'output ': ...}
8

9 """ Check inter -consistency """
10 def check():
11 try:
12 output = entry_point(test_case['

input '])
13 pass_result = (output ==

test_case['output '])
14 except Exception as e:
15 pass_result = False
16 return pass_result
17 global final_result
18 final_result = check()

Listing 3: Inter-consistency between solutions and test
cases.

1441

C Discussion about Pass@k

In this section, we discuss the flaws of Pass@k
in Chen et al. (2021) and propose a variant for
evaluating methods involved selection and filtering.

Chen et al. (2021) propose an unbiased estimator
called Pass@k, which estimates the probability of a
model passing unit tests within k attempts. In spe-
cific, Chen et al. (2021) first samples a total of n
solutions with c of them are correct, randomly sam-
ples k solutions for testing, and use the probability
of passing tests for estimation,

Pass@k = 1−
(
n−c
k

)
(
n
k

)

Although their implementation serves as an ef-
fective measure of the code generation ability of
different foundation models (referred to as the first
category of methods in the following), it is not
suitable to evaluate methods involving filtering or
selection during the inference stage (Li et al., 2022;
Chen et al., 2022) (referred to as the second cate-
gory of methods in the following), as the n gener-
ated solutions are identical.

To address the limitation, we implement a vari-
ant of Pass@k. We assume each method provides
a score function over the n generated solutions,
which provides a unified view for the two method
categories and hence enables a fair comparison.
The first category can be regarded as assigning
an identical score to each solution. Similar to
the original definition of Pass@k, we evaluate the
method by testing the top-k solutions with the high-
est scores. As the score function may assign the
same score to multiple solutions, the test result of
the top-k is not deterministic but an expected value.

Mathematically, let’s assume that a method se-
quentially arranges outputs into an ordered list
{s1, ..., sn}, such that ∀i > j, si ⪯ sj accord-
ing to their scores. We define a set of solutions
Sk = {si|sk ⪯ si}, which represents the solution
set selected by the method. Suppose the cardinalily
of Sk is n̂, the number of correct solutions within
Sk is ĉ. Noted that n̂ ≥ k, and thus we uniformly
sample k solutions {s′1, ..., s′k} from Sk for estima-
tion,

Pass@k (Ours) = Es′1,...,s
′
k
[1∪k

i=1s
′
i is correct]

= Pr(∪ki=1s
′
i is correct)

= 1− Pr(∩ki=1s
′
i is incorrect)

= 1−
(
n̂−ĉ
k

)
(
n̂
k

)

For a the first category of methods, n̂ equals n
since it treats each solution equally. As a result,
our implementation of Pass@k is identical to the
original implementation in Chen et al. (2021).

Pass@k of MPSC when k is large As shown in
Table 2, the performance of MPSC-Semantic and
MPSC-Lexical remains largely unchanged as k in-
creases. This phenomenon aligns with the nature
of MPSC, which assesses solutions based on their
consistency, hence assigning similar scores to so-
lutions with similar semantics. Consequently, all
solutions will aggregate into many clusters depend-
ing on whether the assigned scores are identical,
resulting in a lack of diversity within each clus-
ter. Therefore, the pass rate of solutions selected
by MPSC will remains constant even in more at-
tempts (i.e. varying k), if the number of attempts is
still less than the top-ranked cluster size. A trivial
method to address the problem is to increase the di-
versity by adopting a round-robin selection from all
clusters, rather than selecting solutions according
to scores from highest to lowest. The correspond-
ing results are presented in Table 8. We can see
the performance of Pass@5 is improved compared
with that of Table 2.

Method Pass@1 Pass@2 Pass@5

HumanEval

GPT-3.5-Turbo 68.38 76.24 83.15
MPSC-Lexical 82.32 84.76 86.59
MPSC-Semantic 83.35 86.08 89.75

HumanEval+

GPT-3.5-Turbo 58.75 66.58 73.96
MPSC-Lexical 74.39 75.0 77.44
MPSC-Semantic 73.08 77.89 83.20

MBPP

GPT-3.5-Turbo 66.80 72.34 76.60
MPSC-Lexical 68.38 70.26 71.43
MPSC-Semantic 73.24 74.46 78.01

CodeContests

GPT-3.5-Turbo 2.57 4.22 7.16
MPSC-Lexical 5.45 5.45 6.06
MPSC-Semantic 10.07 10.18 11.39

Table 8: Performance of MPSC evaluated by the Pass@k
metric in a round-robin way.

1442

Method Pass@1 Pass@2 Pass@5

HumanEval

MPSC 74.17 77.02 78.53
+ 1 test case 85.37 86.59 85.13
+ 2 test cases 85.98 86.18 85.36
+ 5 test cases 88.41 89.23 88.69
+ 10 test cases 89.02 90.24 88.81

HumanEval+

MPSC 65.05 69.76 71.72
+ 1 test case 85.37 86.59 85.13
+ 2 test cases 85.98 86.18 85.36
+ 5 test cases 88.41 89.23 88.69
+ 10 test cases 89.02 90.24 88.81

MBPP

MPSC 69.34 70.06 71.85
+ 1 test case 69.85 71.99 72.69
+ 2 test cases 70.78 72.46 73.04
+ 5 test cases 71.25 72.93 73.47
+ 10 test cases 71.72 73.4 73.27

Table 9: Performance of MPSC with different numbers
of golden test cases.

C.1 Analysis of Other Perspectives

MPSC not only selects the optimal output from the
target perspective but also chooses outputs from
auxiliary perspectives, thereby generating corre-
sponding by-products. In the context of code gen-
eration, which is the primary focus of this paper,
MPSC can additionally identify more reliable test
cases and specifications. We evaluate the quality
of these by-products and present the results in Ta-
ble 11. The experimental results demonstrate that
MPSC is proficient in selecting high-quality out-
puts across all relevant perspectives.

D More Analysis

D.1 MPSC with User-provided Test Cases

In practical applications of code generation, users
often provide a limited number of test cases to out-
line the desired functionality, thereby assisting the
model in generating code that aligns with the re-
quirements. In Table 2, MPSC-Label has shown
remarkable performance. In this study, we investi-
gate the potential performance improvements of the
method in such scenarios by incorporating various
quantities of golden test cases. These golden test
cases are generated and then validated using canon-
ical solutions provided in the benchmarks. We con-
duct experiments on the HumanEval and MBPP

Metric Pass@1 Pass@2 Pass@5

HumanEval

WizzardCoder-34B 66.04±1.27 70.95±0.84 75.51±0.43
+MPSC 76.32±1.82 76.50±1.20 75.93±0.68

WizzardCoder-13B 58.62±1.23 65.05±0.75 71.81±0.14
+MPSC 74.96±0.96 75.51±0.44 75.33±0.57

WizzardCoder-7B 52.20±2.17 58.16±1.94 64.73±1.68
+MPSC 65.09±1.83 65.54±1.38 66.51±0.83

HumanEval+

WizzardCoder-34B 56.12±1.83 60.54±1.66 64.67±1.56
+MPSC 65.21±0.20 64.85±1.10 64.74±1.36

WizzardCoder-13B 49.42±0.59 54.91±0.77 60.81±0.83
+MPSC 63.12±1.35 63.68±0.63 63.77±0.94

WizzardCoder-7B 43.74±2.34 49.48±2.37 56.26±2.30
+MPSC 54.64±1.21 56.55±1.05 58.21±0.88

Table 10: The average performance of MPSC with
three sample sets under different random seeds. We
use MPSC-Semantic configuration in this experiment.

dataset 8 and present the results in Table 9. The
substantial performance enhancements achieved
with the inclusion of merely five golden test cases
underscore the feasibility of implementing MPSC
in user-interactive application scenarios.

D.2 Time Overhead

The additional time overhead imposed by MPSC
mainly comes from inter-consistency measure-
ments and the iterative algorithm (Alg. 1). For the
former, we need to process a total of (200× 50 +
50×100+100×200) = 35000 edges with a time
limit of 0.001 seconds per edge. In contrast, CodeT
(Chen et al., 2022), the strongest baseline, requires
to process a total of 200 × 500 = 100000 edges.
Moreover, this process can be fully parallelized.
For the latter, the iterative algorithm converges
rapidly, typically within an average of about 50
rounds, requiring less than 0.1 second. Overall, the
time overhead of MPSC is acceptable in most code
development scenarios, laying the groundwork for
real-world deployments.

D.3 Stability of MPSC

We explore the stability of MPSC with respect to
the sampling process. We conduct the sampling
process of WizardCoder with three random seeds
and then assess the performance of MPSC on the
generated solutions. The average results are shown

8CodeContests doesn’t provide canonical solutions. There-
fore, we cannot conduct evaluation of test cases.

1443

Benchmark HumanEval MBPP

Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

Specification

GPT-3.5-Turbo 45.93 58.76 72.26 53.7 62.37 70.60
MPSC 73.58 73.59 74.38 71.86 71.38 73.40

Test case

GPT-3.5-Turbo 63.83 80.71 93.23 34.64 44.32 53.19
MPSC 96.95 96.95 96.95 55.72 55.95 57.18

Table 11: The quality of specifications and test cases selected by MPSC. They can also be evaluated in Pass@k. We
use MPSC-Semantic configuration in this experiment.

Benchmark HumanEval HumanEval+

Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

WizzardCoder-34B† 67.84 72.12 75.98 58.70 62.88 66.88
+CodeT 73.17+5.33 73.17+1.05 72.03-3.95 64.21+5.51 64.36+1.48 63.41-3.47
+MPSC 74.06+6.22 75.00+2.88 75.07-0.91 65.45+6.75 65.71+2.83 66.19-0.69

Code Llama-34B 51.78 59.24 67.07 41.49 48.30 55.93
+CodeT 67.99+16.21 68.17+8.93 68.28+1.21 55.26+13.77 56.70+8.4 57.90+1.97
+MPSC 70.97+19.19 70.55+11.31 71.36+4.29 58.44+16.95 59.00+10.70 60.02+4.09

WizzardCoder-13B 60.35 66.10 72.01 50.25 56.00 61.98
+CodeT 66.86+6.51 67.18+1.08 67.93-4.08 58.23+7.98 58.72+2.72 58.99-2.99
+MPSC 73.60+13.25 74.96+8.86 74.57+2.56 61.33+11.08 62.99+6.99 62.67+0.69

Code Llama-13B 44.63 50.99 57.86 35.93 41.71 48.19
+CodeT 57.99+13.36 58.25+7.26 57.91+0.05 50.03+14.1 50.46+8.75 50.48+2.29
+MPSC 62.94+18.31 64.93+13.94 64.66+6.80 50.04+14.11 51.24+9.53 51.36+3.17

WizzardCoder-7B 53.81 59.62 66.06 45.06 50.83 57.69
+CodeT 63.17+9.36 63.36+3.74 63.41-2.65 54.13+9.07 55.05+4.22 55.74-1.95
+MPSC 63.85+10.04 64.04+4.42 67.32+1.26 53.69+8.63 55.07+4.24 59.45+1.76

Code Llama-7B 39.38 45.18 52.79 34.33 39.18 45.25
+CodeT 51.68+12.30 51.83+6.65 51.90-0.89 44.06+9.73 44.47+5.29 44.71-0.54
+MPSC 58.54+19.16 57.83+12.65 59.31+6.52 49.04+14.71 49.96+10.78 50.46+5.21

Table 12: The performance of MPSC-Semantic with different foundation models. †: We use nucleus sampling with
temperature as 0.2 instead of greedy generation in this experiment. The best performance is shown in bold.

in Table 10. It is evident that the improvement
brought by MPSC is very stable.

D.4 MPSC with Limited API Calls

We here discuss another setting, where MPSC uti-
lizes 100 solutions, 50 specifications and 50 test
cases, requiring identical API calls to the founda-
tion model baselines. The results shown in Table
13 again prove the supreme performance of MPSC
over baselines under fair comparison.

D.5 Comparison on Other Foundation Models

Table 3 demonstrates the generalization of MPSC
on other foundation models. We also conduct an
experiment to compare MPSC with CodeT, the
strongest baseline, under this setting. The results
are presented in Table 12.

E Experiment Settings and Baselines

We incorporate various baselines in code gen-
eration. First of all, we include many strong
large language models like ChatGPT (gpt-3.5-
turbo 0614 version), GPT-4 (gpt4-0614 version),
Code Llama-Instruct-34B, WizardCoder-Python-
34B and DeepSeekCoder-7B-Instruct. The spe-
cific hyper-parameters for inference of ChatGPT
and GPT4 are shown in Table 14. MPSC requires
an additional hyper-parameter α, which controls
the balance between inter-consistency and intra-
consistency in the algorithm. Given that the quality
of inter-consistency significantly depends on the
edge density of the graph, we utilize the mean edge
weight to determine the value of α. Empirically,
we assign a relatively small value of α (0.01) when
the edges are sparse on the graph, indicated by the

1444

Benchmark HumanEval HumanEval+ MBPP CodeContest

Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

GPT-3.5-Turbo 68.38 76.24 83.15 58.75 66.58 73.96 66.80 72.34 76.60 2.57 4.22 7.16
GPT-4 81.48 86.31 90.46 70.52 75.48 79.54 71.26 74.27 76.99 6.1 8.28 11.72
MPSC 81.5 83.7 91.05 72.18 75.2 81.22 72.78 74.24 78.25 10.77 12.64 13.84

Table 13: The performance of MPSC with 100 solutions, 50 specifications and 50 test cases

mean edge weight less than 0.16. Other, we as-
sign a large value of α (0.95) otherwise to better
leverage inter-consistency.

Temperature 0.8
Top P 0.95

Frequency Penalty 0
Presence Penalty 0

Table 14: The Inference hyper-parameters of LLMs.

We also include several baselines like Self-
Consistency MBR-EXEC, CodeT and Self-
collaboration, which enhance the inference capa-
bility of LLMs in a post-hoc manner.

• CodeT: This baseline first uses generated test
cases to verify each solution by code execution.
Then it utilizes RANSAC algorithm to create
consensus sets based on execution results. The
size of consensus set is then used to rank so-
lutions. We generate 500 test cases for CodeT
following the original implementation in Chen
et al. (2022).

• Self-Consistency: We implement this baseline
following Chen et al. (2022). If two solution
pass the same set of generated test cases and
specifications, we regard them “consistent”.
Then we take a majority voting to rank solu-
tions following Wang et al. (2022).

• MBR-EXEC: This baseline ranks solutions by
minimum Bayes risk decoding based on the ex-
ecution results in the 500 generated test cases.

For a fair comparison between our proposed
MPSC and these baselines, we employ the same
solutions generated by ChatGPT for them to rerank.
In specific, we sample 200 solutions following the
conventional setting. Since some methods leverage
generated test cases and specifications as well, we
use the same set of test cases and specifications
generated by ChatGPT for both MPSC and these
baselines.

We don’t include ALGO (Zhang et al., 2023)
as baseline, because it requires to keep generating

oracle programs until they pass all public example
test cases, whose complexity is unlimited.

1445

F Prompt for MPSC

Prompt for Generating Specifications

I want you to act as a python programmer.
Given a docstring about a python method,
you need to write its pre-conditions in one
test function “def preconditions(input)"
and post-conditions in another test function
“def postconditions(input, output):". You
should ensure invalid input or output of
the method will raise error in the two test
functions.

```Python
{Demonstration Docstrings 1}
pass
#Pre-conditions
{Demonstration Preconditions 1}
#Post-conditions
{Demonstration Postconditions 1}
```

```Python
{Demonstration Docstrings 2}
pass
#Pre-conditions
{Demonstration Preconditions 2}
#Post-conditions
{Demonstration Postconditions 2}
```

```Python
{Docstrings}
pass

Prompt for Generating Solutions

I want you to act like a Python programmer.
I will give you the declaration of a function
and comments about its property. You need
to implement the body of the function in
the code block. Do not modify any code I
provide. Do not provide any explanations.

Here is the question.
```Python
{Docstrings}
```

Prompt for Generating Test Cases

```Python
Given a docstring, continue to write the
following code with 10 valid assertion
statements to check the correctness of the
function. Provide diverse test cases.
{Docstrings}
pass

check the correctness of with 10
different valid assertion statements in the
form of “assert {entry point}(...) == ..."
assert

G Case Study

We present some cases from HumanEval, MBPP,
CodeContests in the following pages.

1446

1 """ User Intent """
2 def get_row(lst , x):
3 """
4 You are given a 2 dimensional data , as a nested lists ,
5 which is similar to matrix , however , unlike matrices ,
6 each row may contain a different number of columns.
7 Given lst , and integer x, find integers x in the list ,
8 and return list of tuples , [(x1, y1), (x2, y2) ...] such that
9 each tuple is a coordinate - (row , columns), starting with 0.

10 Sort coordinates initially by rows in ascending order.
11 Also , sort coordinates of the row by columns in descending order.
12

13 Examples:
14 get_row ([
15 [1,2,3,4,5,6],
16 [1,2,3,4,1,6],
17 [1,2,3,4,5,1]
18], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
19 get_row ([], 1) == []
20 get_row ([[], [1], [1, 2, 3]], 3) == [(2, 2)]
21 """
22

23

24 """ Solution selected by MPSC """
25 def get_row(lst , x):
26 result = []
27 for row_index , row in enumerate(lst):
28 for col_index , val in reversed(list(enumerate(row))):
29 if val == x:
30 result.append ((row_index , col_index))
31 result.sort(key=lambda x: x[0])
32 return result
33

34

35 """ Solution selected by CodeT """
36 def get_row(lst , x):
37 result = []
38 for i, row in enumerate(lst):
39 if x in row:
40 for j, val in sorted(enumerate(row), key=lambda x: -x[1]):
41 if val == x:
42 result.append ((i, j))
43 return result

Listing 4: Cases from HumanEval.

1447

1 """ User Intent """
2 def count_first_elements(test_tup):
3 '''
4 Write a function to find the number of elements that occurs before the tuple

element in the given tuple.
5 '''
6

7

8 """ Solution selected by MPSC """
9 def count_first_elements(test_tup):

10 count = 0
11 for i in range(len(test_tup)):
12 if isinstance(test_tup[i], tuple):
13 break
14 count += 1
15 return count
16

17

18 """ Solution selected by CodeT """
19 def count_first_elements(test_tup):
20 count = 0
21 for i in range(len(test_tup)):
22 if test_tup[i] == test_tup [0]:
23 break
24 count += 1
25 return count

Listing 5: Cases from MBPP.

1448

1 """ User Intent """
2 def solution(inputs: str) -> str:
3 '''
4 You are given an array a of length n.
5 Let's define the eversion operation. Let x = a_n. Then array a is partitioned

into two parts: left and right. The left part contains the elements of a that
are not greater than x (<= x). The right part contains the elements of a that
are strictly greater than x (> x). The order of elements in each part is kept
the same as before the operation , i. e. the partition is stable. Then the array
is replaced with the concatenation of the left and the right parts.

6 For example , if the array a is [2, 4, 1, 5, 3], the eversion goes like this: [2,
4, 1, 5, 3] -> [2, 1, 3], [4, 5] -> [2, 1, 3, 4, 5].

7 We start with the array a and perform eversions on this array. We can prove that
after several eversions the array a stops changing. Output the minimum number k
such that the array stops changing after k eversions.

8

9 Input:
10 Each test contains multiple test cases. The first line contains the number of

test cases t (1 <= t <= 100). Description of the test cases follows.
11 The first line contains a single integer n (1 <= n <= 2 * 10^5).
12 The second line contains n integers a_1 , a_2 , ..., a_n (1 <= a_i <= 10^9).
13 It is guaranteed that the sum of n over all test cases does not exceed 2 * 10^5.
14

15 Output:
16 For each test case print a single integer k - the number of eversions after

which the array stops changing.
17 Example
18 assert solution ('3\n5\n2 4 1 5 3\n5\n5 3 2 4 1\n4\n1 1 1 1') == '1\n2\n0'
19 '''
20 """ Solution selected by MPSC """
21 def solution(inputs: str) -> str:
22 def eversion(a):
23 n = len(a)
24 l, r = [], []
25 x = a[-1]
26 for i in range(n - 1):
27 if a[i] <= x:
28 l.append(a[i])
29 else:
30 r.append(a[i])
31 return l + [x] + r
32

33 def is_same(a, b):
34 return len(a) == len(b) and all(ai == bi for ai, bi in zip(a, b))
35

36 res = []
37 inputs = inputs.strip().split('\n')
38 t = int(inputs [0])
39 idx = 1
40 for _ in range(t):
41 n = int(inputs[idx])
42 a = list(map(int , inputs[idx +1]. split()))
43 idx += 2
44 cnt = 0
45 while True:
46 new_a = eversion(a)
47 cnt += 1
48 if is_same(a, new_a):
49 break
50 a = new_a
51 res.append(str(cnt - 1))
52 return '\n'.join(res)

1449

53 """ Solution selected by CodeT """
54 def solution(inputs: str) -> str:
55 # split the input into list of test cases
56 test_cases = inputs.strip().split('\n')[1:]
57 result = []
58

59 # loop through each test case
60 for i in range(0, len(test_cases), 2):
61 n = int(test_cases[i])
62 a = list(map(int , test_cases[i+1]. split()))
63 k = 0
64

65 # perform eversion operation until array stops changing
66 while True:
67 x = a[-1]
68 left , right = [], []
69 for j in range(n-1):
70 if a[j] <= x:
71 left.append(a[j])
72 else:
73 right.append(a[j])
74 new_a = left + [x] + right
75 if new_a == a:
76 break
77 a = new_a
78 k += 1
79

80 result.append(str(k))
81

82 # join the results and return
83 return '\n'.join(result)

Listing 6: Cases from CodeContests.

1450

