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Abstract

Multi-modal large language models (MLLMs)
are expected to support multi-turn queries of
interchanging image and text modalities in
production. However, the current MLLMs
trained with visual-question-answering (VQA)
datasets could suffer from degradation, as
VQA datasets lack the diversity and complex-
ity of the original text instruction datasets
with which the underlying language model was
trained. To address this degradation, we first
collect a lightweight, Sk-sample VQA prefer-
ence dataset where answers were annotated by
Gemini for five quality metrics in a granular
fashion and investigate standard Supervised
Fine-tuning, rejection sampling, Direct Pref-
erence Optimization (DPO) and SteerLM algo-
rithms. Our findings indicate that with DPO,
we can surpass the instruction-following ca-
pabilities of the language model, achieving a
6.73 score on MT-Bench, compared to Vicuna’s
6.57 and LLaVA’s 5.99. This enhancement
in textual instruction-following capability cor-
relates with boosted visual instruction perfor-
mance (+4.9% on MM-Vet, +6% on LLaVA-
Bench), with minimal alignment tax on vi-
sual knowledge benchmarks compared to the
previous RLHF approach. In conclusion, we
propose a distillation-based multi-modal align-
ment model with fine-grained annotations on a
small dataset that restores and boosts MLLM’s
language capability after visual instruction tun-
ing.

1 Introduction

Recent advancements in artificial intelligence have
led to the rise of multi-modal large language mod-
els (MLLMs), which combine textual and visual
interpretation capabilities in a single model (Shen
et al., 2023). However, effectively blending multi-
modality in one system has proven non-trivial. In-
tegrating diverse data forms often creates internal
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representation conflicts, giving rise to the issue
known as "catastrophic forgetting”" (Kirkpatrick
et al.,, 2017). The diversity constraint in visual
question answering (VQA) datasets could be at-
tributed as a source of the issue. VQA tasks typi-
cally focus on descriptive queries about image con-
tents, whereas textual datasets encompass a broader
range of complex cognitive tasks, including rea-
soning, writing, summarization, and coding. This
discrepancy in dataset complexity is a key factor
contributing to the observed performance degrada-
tion in MLLMs. Our evaluation of models such
as BLIP-2, InstructBLIP, and LLaVA against lan-
guage instruction-following benchmarks like MT-
Bench (Zheng et al., 2023) and AlpacaEval (Li
et al., 2023b) revealed diminished language ca-
pabilities in comparison to their linguistic back-
bones. For instance, LLaVA, built on the Vicuna-
13b LLM, demonstrated a decline in MT-Bench
performance from 6.57 to 5.92, even underperform-
ing the Vicuna-7B model.

Driven by the limitations observed in distillation-
based instruction tuning, particularly its con-
strained generalizability and the narrow perfor-
mance improvements on tasks outside the training
distribution, this study investigates the efficacy of
distillation-based preference alignment in address-
ing modality conflict in MLLMSs. The decision to
explore this avenue is predicated on the hypothesis
that integrating Al-generated preference data can
provide a more granular and nuanced alignment
with human expectations, potentially mitigating
the adverse effects of modality conflict.

This study rigorously evaluates three baseline
methodologies—Direct Preference Optimization
(DPO), SteerLM, and Rejection Sampling—as po-
tential solutions to utilize the distilled preference
data to enhance the instruction-following capabil-
ities and address the modality conflict inherent in
MLLMs. Each of these methods offers a unique
approach to model alignment, from the direct opti-
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mization of preferences in DPO to the conditional
supervision in SteerLM and the selective accep-
tance in Rejection Sampling. Our empirical anal-
ysis reveals that DPO, in particular, demonstrates
a pronounced efficacy in reconciling the perfor-
mance disparities observed between textual and
visual modalities. By leveraging a refined pref-
erence dataset, fine-tuned with the DPO objec-
tive and supplemented with comprehensive anno-
tations from advanced Al models, DPO not only
addresses the modality conflict but also signifi-
cantly enhances the model’s performance across
a spectrum of benchmarks. The results indicate
that, through the application of DPO, MLLMs can
achieve a more robust alignment with human-like
preferences, thereby mitigating the adverse effects
of catastrophic forgetting and modality conflict and
elevating the models’ capabilities to a level that
surpasses traditional instruction tuning methods.

Our main contributions are:

Exploration of Modality Degradation: This
work is the first to identify and address modality
degradation in MLLMs, a phenomenon where vi-
sual instruction tuning detrimentally impacts lan-
guage instruction capabilities. Our systematic in-
vestigation into this issue contributes novel insights
to the field, laying the groundwork for further re-
search in mitigating such degradation.

Efficient and scalable preference alignment
pipeline as remedy Our data collection strategy
employs a granular quality metric annotation for-
mat, leveraging cost-effective commercial APIs.
This scalable approach enables the efficient pro-
duction of high-quality datasets. We are able to
surpass LLaVA and Vicuna’s language instruction-
following capability with DPO on a 6k dataset.

2 Related Work
2.1 MLLMs and Visual Instruction Tuning

Incorporating another modality into large language
models represents a natural evolution for these sys-
tems. Modality expansion can be achieved through
system-level enhancements at inference time, with
approaches such as Mm-react (Yang et al., 2023),
Visual ChatGPT (Wu et al., 2023), and Hugging-
GPT (Shen et al., 2023) enabling the LLM to in-
voke off-the-shelf vision models and APIs. An al-
ternative strand of research involves the training of
end-to-end MLLMs. To avoid the prohibitive costs
associated with pre-training from scratch, these
models often integrate pre-trained vision models

with large language models, applying various de-
grees of modality adaptation. Mini-GPT4 (Gong
et al., 2023) focuses solely on training a linear
projection matrix to connect CLIP-based (Radford
etal., 2021) vision representations with the LLaMA
model (Touvron et al., 2023a); BLIP-2 introduces
a cross-attention module to extract vision tokens
relevant to the query. Both LLaVA (Liu et al,,
2023b) and mPlug-OWL (Ye et al., 2023a) fea-
ture cross-modality connectors between the vision
and language domains, but they also fine-tune the
LLM and vision encoder, respectively. Flamingo
(Alayrac et al., 2022), in contrast, incorporates new
cross-attention layers directly into the LLM.

In the language domain, Wei et al. (2022) dis-
covered that fine-tuning a base LLLM with instruc-
tions described in natural language enhances the
model’s ability to follow those instructions. In a
similar vein, MLLMs are typically fine-tuned with
visual instructions; Mini-GPT4 (Gong et al., 2023)
utilized template instructions based on image-text
pairs, while InstructBLIP (Dai et al., 2023), Otter
(Li et al., 2023a), and LLaVA (Liu et al., 2023b)
employed human-written visual question-answers
or synthetically generated question-answer pairs by
prompting GPT-4 with COCO captions and bound-
ing boxes (Liu et al., 2023b). However, consid-
ering that both LLaVA and Instruct-BLIP utilize
Vicuna (Chiang et al., 2023), it remains a topic
of debate whether their steps of visual instruction
tuning genuinely add to the model’s instruction-
following capabilities or merely conform to the
instruction-following format.

2.2 Mitigating Modality Conflict in MLLMs

In response to modality conflicts, LLaVA (Liu et al.,
2023b) and mPLUG-OWL (Ye et al., 2023b) rein-
corporate language instruction data from ShareGPT
into their training datasets. Despite this, LLaVA
1.5’s language instruction-following degrades sig-
nificantly. As measured by MT-Bench, LLaVA-
1.5-13B lags behind its Vicuna-V1.5-13b (5.99 vs
6.57) or even the smaller Vicuna-V1.5-7b (5.99 vs
6.17). While mPLUG-OWL-2 shows promise on
text benchmarks and addresses modality conflicts
with new architecture features, it does so at the cost
of increased complexity and a higher parameter
count, rising from 7.2 billion to 8.2 billion. These
modifications necessitate greater computational re-
sources and complicate the inference process due to
separate processing pathways for different modali-
ties.
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2.3 Distillation-based Instruction Tuning

Smaller open-source models, including Vicuna
(Chiang et al., 2023), Alpaca, and more recently
ShareGPT4V (Chen et al., 2023) have been fine-
tuned using the outputs of large proprietary mod-
els, yet this approach often falls short in terms
of broadening the models’ generalization capabili-
ties. Gudibande et al. (2023) criticizes the reliance
on imitation for instruction tuning, noting that it
fails to substantially bridge the performance gap
for tasks beyond the training data’s scope. Our
findings suggest that such strategies do not effec-
tively extend to out-of-distribution scenarios. In
fact, small-scale distillation efforts tend to overly
specialize the model, diminishing its performance
on general benchmarks. This issue was highlighted
in an experiment where fine-tuning LLaVA with
a 5k VQA dataset from Gemini Pro-generated an-
swers led to notable declines across textual and
visual benchmarks. Our research takes a novel ap-
proach by exploring alignment-based methods such
as Direct Preference Optimization (DPO), which
not only preserves but enhances the model’s capa-
bilities across diverse benchmarks, thereby offering
a more effective solution to the limitations of tradi-
tional distillation-based instruction tuning.

2.4 Preference Alignment

The Instruct-GPT series (Ouyang et al., 2022)
has shown that merely employing supervised fine-
tuning (SFT) on Large Language Models (LLMs)
is insufficient for aligning them with human prefer-
ences. The technique of Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al.,
2022) addresses this by constructing a reward
model that encapsulates human preferences and
then applying reinforcement learning to maximize
this reward. The Direct Preference Optimization
(DPO) approach posits that directly tuning the pref-
erence dataset can serve as an effective substitute
for reward modeling, offering the added benefit
of reduced computational complexity. SteerLM
has recently been identified to achieve perfor-
mance akin to RLHF by incorporating human-
annotated quality metrics before generation, serv-
ing as a conditional SFT-based strategy for align-
ment (Dong et al., 2023). Rejection sampling se-
lects the highest-rated self-generated sampling and
applied SFT and has been used in combination with
RLHF in works such as LLaMA-2 (Touvron et al.,
2023b). Our experiments with DPO, SteerLLM, and

rejection sampling are compared to the prior work
applying RLHF to LLaVA models as a baseline.

2.5 Distilling AI Feedback for Preference
Alignment

In the realm of alignment methods, reliance on
human-annotated preference annotations is com-
mon. While effective on a large scale, this approach
incurs substantial costs and operational complexi-
ties (Touvron et al., 2023b). The effectiveness of
reward models based on pairwise ranking is con-
strained by the inherent subjectivity of human pref-
erences, with LLaMA’s reward model achieving
an accuracy range of 64.3-70.6% and the LLaVA-
RLHF model reaching 67%. In response to these
limitations, Zephyr (Tunstall et al., 2023) and Ul-
traFeedback (Cui et al., 2023) have utilized pref-
erence annotations distilled from GPT-4 to train
models with 7B parameters and achieve promising
performance. Motivated to adapt this distillation-
preference alignment approach for MLLMs, our
work introduces a chain-of-thought prompting cou-
pled with a granular annotation guide spanning five
assessment metrics.

3 Method

The focus of this study is to investigate improving
the text instruction following of MLLMs while re-
taining or potentially enhancing their multi-modal
capabilities. For this purpose, we propose to har-
ness alignment methods that utilize self-sampled
responses and preference annotations in addition
to Supervised Fine-Tuning (SFT) as a baseline.

3.1 Data Collection

Sources of Multi-modal Prompts. We have cu-
rated 5,000 samples from SciGraphQA (Li and
Tajbakhsh, 2023) and LRV-Instruct (Liu et al.,
2023a) to assemble the image-text prompts for our
multi-modal preference dataset. SciGraphQA is
a multi-turn question-answering dataset regarding
scientific graphs. The LRV-Instruct dataset is a
visual instruction dataset aimed at mitigating hal-
lucinations by incorporating both positive prompts
(inquiring about objects present in the image) and
negative prompts (requesting information about ab-
sent objects) (Liu et al., 2023a). Including negative
examples encourages the multi-modal LLM to crit-
ically evaluate the prompts and identify instances
where the requested objects are absent in the image.
The LRV-Instruct dataset enhanced its performance
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Figure 1: From a visual-instruction-tuned pre-trained model, we generate 4 completions for a given image-question
prompt. These answers are then presented to Gemini to obtain granular annotations given a labeling guide. We
construct a preference dataset of (image-text prompt, preferred completion) and (image-text prompt, rejected
completion). We benchmarked DPO, Rejection sampling, and SteerLM alignment methods, in addition to a pure

SFT baseline using Gemini-provided answers directly.

Table 1: Granular annotation format and labelling guide proposed in HelpSteer (Wang et al., 2023) used in VQA
annotation collection. LLaVA-1.5-13b generates 4 candidates. Using the HelpSteer labeling guide, images, and
questions, Gemini rates each completion with a score of 0-4 in each metric.

Metric Description

Helpfulness | Measures if the response fully addresses the prompt’s request.

Correctness | Assesses the accuracy and relevance of the information, ensuring it’s free from errors or
misinformation.

Coherence Evaluates the clarity and logical consistency of the response.

Complexity | Looks at the level of sophistication in the language used, from simple to advanced.

Verbosity Considers the brevity or lengthiness of the response in relation to the prompt’s needs.

Table 2: Data mixture: We applied about 2.5K from
the LRV-Instruct, an instruction tuning dataset aiming
at addressing hallucination with ’negative examples’ re-
ferring to nonexistent objects, and SciGraphQA (Li and
Tajbakhsh, 2023), a multi-turn question-answer dataset
regarding scientific graphs. Our SFT method relied
on answers from the respective datasets directly, while
DPO, SteerLM, and rejection sampling methods use
self-generated instead.

Data Type Data Name  Size
VQA LRV-Instruct 2562

SciGraphQA 2522
Total 5084

in reducing hallucinations, as evidenced by its ap-
plication in the Pope framework (Liu et al., 2023a).

Granular Annotation: We generate 4 comple-
tions for the dataset above using LLaVA-1.5-13B
with a temperature of 0.7 and then prompt Gemini-
Vision (Team et al., 2023) with the labeling guide
of HelpSteer gave to Scale Al workers (Wang et al.,
2023), images, questions, and the 4 completions,
obtaining granular annotations for various quality

metrics, including helpfulness, correctness, and co-
herence, providing multifaceted insights into the
model’s outputs. We leveraged Zero-Shot Chain-of
Thought prompting (Kojima et al., 2022) such that
the Gemini gives the reasoning for rating each re-
sponse, an inner calibration monologue, and ratings
as shown in 1. The appendix provides two annota-
tion examples from the LLaVA-RLHF dataset (Sun
et al., 2023) to visualize how Gemini reasons and
rates each metric compared to binary preference
annotations provided by crowd-sourced workers.

We selected Gemini Pro (dated 01/01/2024) for
its performance, cost efficiency, and bias mitigation
(Team et al., 2023). Leading the OpenCompass
multi-modal leaderboard with an average rank of
1.89, outperforming GPT-4V’s 2.89 (ope, 2023),
its generous free tier supports extensive data col-
lection. Crucially, as GPT-4 is used as a judge in
multiple instruction-following benchmarks, using
GPT-4(V) for both benchmark judging and data
labeling could introduce bias, potentially skewing
our models towards GPT-4’s preferences. This con-
sideration led us to opt for Gemini to ensure a more
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objective evaluation of our fine-tuning efforts.

3.2 Alignment Methods

Self-sampled SteerLM: SteerLLM, a conditional
Supervised Fine-Tuning (SFT) technique, aligns
LLMs by augmenting prompts with a description
of the desired response quality, as introduced by
(Dong et al., 2023). This method conditions SFT
on granular annotation generated by Gemini and
surpasses traditional SFT and alignment strategies.
We construct a conditional prompt template for this
technique by incorporating a conditional prompt
following HelpSteer guidelines. For instance,
Rejection Sampling: Following Constitutional Al
(Bai et al., 2022) and LLaMA-2 (Touvron et al.,
2023b), we adopt a simplified rejection sampling
approach. Specifically, we select the top-scoring re-
sponse from the four completions described above
based on Gemini’s aggregated scores for helpful-
ness, correctness, and coherence. We apply stan-
dard SFT based on the selected responses without
additional prompt conditions, following a straight-
forward format: (image, prompt, best response).
Direct Preference Optimization (DPO): In the
DPO approach, we first convert our dataset of gran-
ular annotations into a preference set. This conver-
sion involves evaluating four responses per sample,
each scored by Gemini on metrics including Help-
fulness and Correctness. To form the preference set,
we aggregate these scores to determine the overall
quality of each response. The response with the
highest aggregated score is designated as the ’pre-
ferred’ response. The rejected response is selected
from the remaining options. To qualify as a ’re-
jected’ response, it must have a summed score that
is at least 2 points lower than that of the preferred
response. This selection process filters out pairs
of preferred and rejected responses that could not
be clearly distinguished. This method allows us to
harness robust preference signals that enhance the
training of the DPO model, ensuring that it aligns
more closely with granular quality signals. We fol-
low the method outlined in (Rafailov et al., 2023)
for implementing the loss function, which effec-
tively utilizes these preference pairs to optimize the
model’s performance.

SFT from Gemini Responses This is an important
baseline not using self-sampling but using answers
from Gemini directly for pure SFT. Gemini was
prompted with the questions and images from our
dataset. We gather the answer directly from Gemini
answering the question and use the same hyper-

parameters in SteerLM and Rejection Sampling.

4 Experiments

4.1 Experimental Setup

For training, we utilize Azure Cloud (NC-A100
series) with 4 A100-80G GPUs. In all experiments,
LoRA is employed for parameter-efficient tuning.
For the SFT experiments, including standard SFT
with Gemini responses, rejection sampling, and
self-sampled SteerLM, we adhered to the same
hyperparameters used in LLaVA-v1.5’s instruction
tuning.

We conducted a hyperparameter search to opti-
mize the performance of the DPO model on the
LLaVA bench, an open-ended instruction tuning
benchmark. Our experiment involved 1,000 sam-
ples to evaluate the influence of the beta term,
which we hypothesized to significantly determine
the divergence of the finetuned DPO model from
the original model, potentially leading to knowl-
edge catastrophic forgetting. The results are in the
Appendix 9

Based on these results, we selected the optimal
hyperparameter set: Beta of 0.1, not using average
log probability and a learning rate of Se-5. This
configuration led to the highest LLaVA-bench score
of 77.4, indicating superior performance in instruc-
tion tuning. The LLaVA bench, while primarily
an instruction tuning benchmark, does not exclu-
sively focus on knowledge. Future work will need
to consider whether to fit a knowledge benchmark
exclusively or a mix of knowledge and instruction
tuning benchmarks to further validate the robust-
ness and applicability of the DPO model.

In our DPO experiments, we performed a hy-
perparameter search based on 1000 samples on
LLaVA Bench, exploring various values for beta
(0.1, 0.2, and 0.3, averaged and non-averaged log
probabilities, and learning rates of 5e-5 and Se-
6. We pre-computed the log probabilities of the
reference model (LLaVA-v1.5-13b) for our prefer-
ence dataset before training. The complete list is
provided in the Appendix.

4.2 Benchmarks

We have the following three sets of benchmarks.

Visual Instruction Benchmarks

* MM-Vet: MM-Vet measures six core visual-
language capabilities across 128 tasks, pro-
viding a comprehensive evaluation of multi-
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Table 3: Model parameters and hyperparameters setup for reproduction. The base model is LLaVA-v1.5-13b,
derived from Vicuna-1.5-13b (LLama-2-13b). The training was conducted using Deepspeed Stage-3 on a 4x A100
80GB GPU machine with LoRA for parameter-efficient fine-tuning. DPO and SFT (including SteerLM and rejection
sampling) employed distinct hyperparameter sets optimized for performance.

Parameter Settings

Name

Value

Model architecture

Lora Setting

DPO Setting

SFT Setting

Common settings

Pre-trained model
Language Backbone
Vision Tower
Multi-modal Adapter

LLaVA-v1.5-13b
Vicuna-v1.5-13B

clip-vit-large

2-layer Multi-layer-Perception

Lora Rank 128
Lora Alpha 256
Average Log Probability False
Fine-grained DPO False
Beta 0.1
Learning Rate 5e-5
Gradient Accumulation Steps 4

Per device train batch size 8
Model Max length 3000
Learning Rate 4e-4
Per device train batch size 16
Model Max Length 2048
Hardware 4X A100 80G
Distributed Learning Zero-3
Use BF-16 True
Learning Rate Scheduler Cosine
Learning Rate Warm up 0.003
Weight Decay False

modal understanding. It blends math, reason-
ing, and visual knowledge. Each task is scored
by GPT-4 based on the correctness of the
model’s response relative to GPT-4-generated
ground truth, with scores ranging from 0 to
1, aggregated across 187 samples (Yu et al.,
2023).

¢ LLaVA-Bench: LLaVA-Bench (in the wild)
comprises 60 tasks designed to test visual
instruction-following and question-answering
capabilities in natural settings. Scoring fol-
lows the same methodology as MM-Vet,
where GPT-4 generates the ground truth an-
swers and scores the model’s responses from
0to 1 (Liu et al., 2023b).

Visual Multi-Choice Benchmarks

* PoPE: An object hallucination benchmark
with 8,440 samples aimed at evaluating the
model’s ability to accurately discern and de-
scribe visual content. This benchmark uses
yes-no binary classification evaluations, re-
porting F-1 scores, and questions are struc-
tured to probe the model on the presence of
objects within images, such as ‘Is there a car
in the image’ (Li et al., 2023c).

* MM-Bench: A comprehensive multi-modal
benchmark with 4.7K samples featuring

14193

multiple-choice visual knowledge and reason-
ing tasks. To prevent bias towards any par-
ticular answer choice, questions are assessed
through rotational augmentations (e.g., ABC,
BAC), and a question is considered correctly
answered only if all rotational formats are cor-
rect. Overall success is reported as a total
accuracy percentage (Liu et al., 2023c).

Language Instruction-Following Benchmarks
* MT-Bench: Utilizes LL.Ms to approximate

human preferences with over 80% agreement,
focusing on measuring the helpfulness of re-
sponses across 160 samples in single-turn and
multi-turn settings. The benchmark evaluates
responses based on their alignment with GPT-
4-generated preferred responses (Zheng et al.,
2023).

AlpacaEval: Leverages GPT-4 to assess the
percentage of cases where the candidate LLM
outperforms the GPT-3 API (text-davinci-003)
across 160 evaluations. This benchmark high-
lights advancements in LLM capabilities over
previous model iterations (Li et al., 2023b).

We run benchmark code once on the target
model, with greedy decoding by default. In case a
benchmark uses a different decoding setting offi-
cially, we follow the benchmark’s settings.



Table 4: Performance comparison among alignment strategies. The results demonstrate DPO-13B’s superior
performance, particularly in reconciling language capabilities while enhancing visual task performance, validating
the DPO methodology’s efficacy in multi-modal alignment.

Model Name Visual Instruction Benchmark | Visual Multi-Choice Benchmark | Text Instruction Benchmark
MM-Vet LLaVA-bench |PoPe MM-Bench MT-bench AlpacaEval
Vicuna-1.5-13b (Chiang |- - - - 6.57 81.4
et al., 2023)
LLaVA-1.5-13b (Liu |36.3 73.1 0.859 67.4 5.99 79.3
et al., 2023b)
LLaVA-RLHF-13b 37.2 76.8 0.869 60.1 6.18 81.0
(Sun et al., 2023)
Alignment method we benchmarked, finetuning LLaVA-1.5-13b
Standard SFT 36.5 63.7 0.850 65.4 5.01 50.2
SteerLM 35.2 67.0 0.878 65.1 5.70 68.8
Rejection-sampling 38.0 70.6 0.883 67.6 6.22 74.9
DPO 41.2 79.1 0.870 66.8 6.73 86.4
4'3 Results MT-Bench Score vs. Percentage of DPO Data Subset

Table 4 illustrates a comparative analysis of var-
ious alignment methods, including RLHF, Stan-
dard SFT, SteerLM, Rejection Sampling, and DPO,
aimed at enhancing the language capabilities of
the LLaVA model that were compromised post-
visual instruction tuning. Vicuna, the base language
model of LLaVA, is tested on language tasks. Af-
ter visual instruction tuning, LLaVA experiences a
decline in language benchmark scores from Vicuna
(from 6.57 to 5.99 on MT-Bench and from 81.4 to
79.3 on AlpacaEval). However, DPO, among the
alignment strategies on the Sk multi-modal dataset,
not only mitigates the degradation problem but also
surpasses Vicuna’s performance on both bench-
marks.

In open-ended visual instruction tasks, DPO sig-
nificantly outperforms the baseline LLaVA and
LLaVA-RLHF models on both the MM-Vet and
LLaVA-bench. These open-ended benchmarks,
structured similarly to MT-Bench where GPT-4
assesses the responses against a gold standard, re-
vealed a relatively high 0.73 Pearson Correlation
between MM-Vet and MT-Bench (n=7, p=0.1).

In visual multi-choice benchmarks, PoPe, which
evaluates for hallucination, and MM-Bench, which
assesses world knowledge and reasoning, rejection
sampling emerged as the most effective method,
whereas DPO showed lesser efficacy. While DPO
improved open-ended benchmarks, it slightly de-
creased LLaVA’s MM-Bench score from 67.4 to
66.8, contrasting with LLaVA-RLHF’s notable
drop from 67.4 to 60.1, indicating a less signifi-
cant alignment tax. Figure 2 illustrates the effect of
scaling the DPO dataset on the MT-Bench scores,
signifying the efficacy of DPO in advancing the

—e— DPO
6.7} --- vicuna-v1.5-13b
== LlaVA-1.5-13b

6.5
64 //

MT-Bench Score
o
w

o
N

6.1

30 40 50 60 70 80 90 100
Percentage of DPO Data Subset

Figure 2: Advances in MT-Bench scores via DPO data
scaling

performance of the LLaVA-v1.5-13b model after
visual instruction tuning. The baseline at 0% DPO
data, marked at a score of 5.99, represents the ini-
tial performance of LLaVA-v1.5-13b. As the DPO
dataset’s size increases, a notable rise in MT-Bench
scores is observed, peaking at 6.73 with 100% data
utilization. Remarkably, the performance surpasses
that of the Vicuna-v1.5-13b benchmark using less
than 75% or 4.2K of the DPO data, underlining
DPO’s data efficiency. This data scaling trend em-
phasizes DPO’s potential as an effective alignment
strategy for MLLMs, addressing the challenge of
performance degradation due to visual instruction
tuning.

5 Discussion

5.1 Limitation of collecting multi-modal
preference data manually

The scarcity, high cost, and inconsistency of exist-
ing multi-modal preference datasets present signifi-
cant challenges to model alignment. Our manual la-
beling of a selected subset from the LLaVA-RLHF
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Table 5: Impact of data noising on model performance.

Data Noising Level MT-Bench Score
No flip (baseline) 6.73
25% flip 6.35
50% flip 6.26
75% flip 5.99

human preference dataset underscored the difficulty
in achieving consensus or identifying clear prefer-
ences, shedding light on the inherent subjectivity
of these datasets. To quantify these observations,
we embarked on a targeted experiment involving
500 samples. Gemini annotated two distinct re-
sponses from the dataset employed in the LLaVa-
RLHF reward model’s data collection (Sun et al.,
2023). This facilitated a direct comparison between
Gemini’s annotations and human preferences. The
correlation heatmap depicted in Figure 3 reveals
a notably weak correlation between human pref-
erences from LLaVA-RLHF and Gemini scores,
with correlation coefficients falling below 0.1. This
observation was corroborated by further manual in-
spections, which frequently resulted in an inability
to definitively determine clear preferences. This
finding underscores the high subjectivity and in-
dividual bias within the LLaVA-RLHF preference
data.

5.2 Empirical validation of data quality

To further validate the quality and reliability of our
annotations, we conducted a data noising exper-
iment by randomly flipping the polarity of (pre-
ferred, rejected) pairs in the annotations and mea-
sured the trained model’s MT-Bench score 5. We
hypothesized that if our annotations contained sig-
nificant noise, flipping the polarity would not sub-
stantially affect the model’s performance. However,
the results of the experiment indicate otherwise,
with a clear trend showing performance degrada-
tion as the level of data noising increased. These
findings suggest that the original annotations pos-
sess a strong and consistent signal. The model’s
performance degradation with increased noise lev-
els substantiates the reliability of our annotation
process with Gemini, affirming that the annota-
tions effectively capture meaningful distinctions
between preferred and rejected responses.

Table 6: Performance improvements with multi-modal
preference data application.

Model Name MT-Bench Score  MM-Vet Score
Vicuna-7B-v1.5 6.17 N/A
LLaVA-V1.5-7b 5.87 30.5

DPO-7b (ours) 6.228 39.8

5.3 Robustness of the model with noisy
context

We introduced a variant of the language instruction-
following capability benchmark MT-Bench by
sending a random image sampled from the CoCo-
2017 train set to simulate real-world use cases. we
also note that as 7 showed, our DPO model is more
robust than other baselines in real-world conditions
where the user may have an irrelevant image in the
context.

5.4 Cross-model transfer ability: Can
preference dataset generated by one
model be transferred to other models?

To investigate if the preference alignment dataset
needs to be sampled and fine-tuned on the same
model, we investigated applying preferences sam-
pled from LLaVA-13b to fine-tune a smaller model,
LLaVA-7b. Notably, this approach yielded signifi-
cant enhancements, as demonstrated by the perfor-
mance improvements on key benchmarks. The fol-
lowing table encapsulates the performance metrics
observed in these experiments: This cross-model
transfer ability not only corroborates the versatility
of our proposed approach but also implies a scal-
able pathway for improving multi-modal language
models without necessitating the construction of
new preference data for each model iteration.

5.5 Multi-modal preference alignment as a
data-efficient remedy to instruction tuning
capabilities

The superficial alignment hypothesis states that
a model’s knowledge capabilities are largely ac-
quired during its initial pre-training stage (Zhou
et al., 2023). A corollary of this hypothesis is that
alignment tuning refines the model output genera-
tion with a preferred response format rather than
knowledge acquisition. As a result, models can
be effectively realigned post-visual instruction us-
ing a relatively small set of examples (Kirstain
et al., 2022). This principle applies to MLLMs as
well, which acquire multi-modal knowledge repre-
sentation via visual instruction tuning (Liu et al.,
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Table 7: This benchmark adds an irrelevant image in
context when benchmarking MT-Bench, testing for ro-
bustness in a real-world condition. Vicuna-7B and
Vicuna-13B are baseline references.

Model LLM Noisy-image MT-Bench
Vicuna 13B v1.5 Vicuna;sp 6.57
Vicuna 7B v1.5 Vicunarp 6.17
BLIP-2 FlanT5 1.93
InstructBLIP Vicunarp 4.73
LLaVA-v1.5-13b Vicuna;sp 5.92
DPO (ours) Vicunaisp 6.63

2023b). However, existing work mixed large-scale
text instruction data (518K out of 1.23 million in
the case of mPlug-OWL 2 and 40K in the case of
LLaVA-1.5). We hypothesize that the data ineffi-
ciency above is attributed to the underlying align-
ment strategy and demonstrate that one would need
only a small alignment dataset so long as a proper
alignment strategy such as DPO is utilized.

As suggested by Table 4, Direct Preference Opti-
mization (DPO) emerges as a computationally effi-
cient solution for enhancing model performance in
the mixed-modal alignment space. Unlike the mix-
ing text instruction as described above or LLaVA-
RLHEF, which used a large 82K dataset and com-
plex training pipeline involving reward modeling
and PPO, DPO achieves significant improvements
in language capabilities with a smaller dataset
and one-stop training setup. A notable advantage
of DPO is its minimal alignment tax, which cur-
tails the degradation of existing knowledge, as ev-
idenced by its performance on benchmarks like
MM-Bench, where DPO shows minimal impact.
This method not only enables effective alignment
of multi-modal models post-visual instruction tun-
ing but also ensures the preservation of model per-
formance. Our methodology exhibits notable profi-
ciency in value alignment and data efficiency, yet
it is imperative to acknowledge certain limitations
and potential risks. One key consideration is the
scalability of our approach. While our data scaling
analysis suggests significant improvements up to
a 6K preference dataset, the full extent of scalabil-
ity beyond this threshold remains unexplored. As
the foundational open-sourced models like LLaVA
evolve in complexity and size, the effectiveness
of our distillation-based approach might encounter
diminishing returns.

6 Limitations

This research, while pioneering advancements in
Direct Preference Optimization (DPO) and multi-
modal large language models (MLLMs), confronts
several limitations. The preference dataset, derived
from artificial annotations, may not fully capture
the nuanced spectrum of human values, potentially
affecting the model’s alignment with true human
preferences and exacerbating existing biases in au-
tomated decision-making. Additionally, the gener-
alizability of these findings across different multi-
modal contexts and languages is yet to be thor-
oughly tested, and the deployment of such models
in critical domains raises significant safety risks
due to the potential unreliability of responses un-
der varied real-world conditions. These limitations
highlight the need for cautious application, further
empirical validation, and ongoing research to mit-
igate ethical concerns and enhance model robust-
ness and fairness.

7 Conclusion

In this paper, we investigated and addressed the per-
formance decline of the widely-used multi-modal
LLM, LLaVA, on language instruction-following
benchmarks. We investigated various alignment
strategies to enhance the model’s language instruc-
tion capabilities, including standard SFT, SteerLM,
and DPO. Our comprehensive benchmark evalu-
ations revealed that DPO stands out as the most
effective method, not only restoring but also sur-
passing the language capabilities of LLaVA’s lan-
guage backbone (Vicuna) on both MT-Bench and
AlpacaEval. Specifically, LLaVA’s performance on
MT-Bench had dipped from Vicuna’s 6.57 to 5.99,
whereas our DPO model advanced to 6.73. Be-
yond language proficiency, DPO also bolstered per-
formance on multi-modal benchmarks, enhancing
accuracy by 4.9% on MM-Vet and 6% on LLaVA-
Bench. Remarkably, DPO achieved this with
just 5k preference examples, proving more data-
efficient than other strategies like RLHF, which
typically demand over 80k training examples. Our
findings highlight DPO’s minimal alignment tax
effectively boosting one performance area with-
out substantially detracting from another. This as-
pect is particularly valuable for practitioners aiming
to maintain the pre-training knowledge and avoid
catastrophic forgetting.
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Table 8: Examples of Annotation

Gemini-Annotation example

Question

What aspects of the room might
have artistic or creative signifi-
cance?

What do you see happening in this image?

Response 1

In this image, the room has some
artistic or creative significance due
to the presence of several sculptures
placed on a long wooden table. The
sculptures appear to be made from
various materials, such as stone and
wood. Additionally, the room fea-
tures a chair and a light fixture that
resembles a boot. These elements,
combined with the assortment of
sculptures, give the room an eclec-
tic and artistic atmosphere, suggest-
ing that the space might be used for
displaying art, inspiration, or as a
workspace for an artist or designer.
The presence of the boot-shaped
light also adds a unique and imag-
inative touch to the room’s overall
aesthetic.

The image features a person running along a
beach near the water’s edge. Behind the person,
multiple birds are flying in the sky, creating a
dynamic and lively scene. The man is wearing
a swimsuit and appears to be enjoying his time
at the beach. The birds’ positions vary across
the sky, with some flying closer to the person
and others further away, spreading out across
the background.

Gemini-Rating for Response 1

Helpfulness:4, Correctness 4, Co-
herence: 4, Complexity: 3, Ver-
bosity: 3.

Helpfulness:3, Correctness 4, Coherence: 4,
Complexity: 2, Verbose: 2

Response 2

In the room, a collection of wooden
shoes on a long table next to a chair
can be considered as having artis-
tic or creative significance. The
display of shoes may represent a
unique form of artistic expression
or a design concept. Additionally,
the white-walled setting with a dim
light allows for a minimalist and vi-
sually striking atmosphere that en-
hances the shoes’ display and cre-
ates a sense of depth and artistic in-
terest in the space.

The image captures a beach scene where a man
is running along the shore near the water, with
waves crashing behind him. The man is in mo-
tion, as he is probably enjoying an invigorating
run on the beach. In the sky above, several
birds fly in a line, adding a sense of movement
and liveliness to the scene. The birds’ positions
vary, with some being closer to the water and
others higher up in the sky. The overall atmo-
sphere of the image suggests a pleasant, active
day at the beach.

Gemini-Rating for Response 2

Helpfulness:3, Correctness 3, Co-
herence: 3, Complexity: 2, Ver-
bosity: 3.

Helpfulness:4, Correctness 4, Coherence: 4,
Complexity: 3, Verbosity: 3.

14199



Gemini-Annotation example (continued)

Gemini Chain-of-thought Reasoning Both responses are relevant to thel think that Response 2 is the best response be-

question and provide good descrip-cause it is the most detailed, engaging, and ac-
tions of the room. However, the firstcurate. It provides the most information about
response is more detailed and pro-the image and uses the most vivid language.
vides more analysis of the potential Response 1 is also good, but it is not as de-
artistic or creative significance oftailed or engaging as Response 2.

the room. I will give the first re-

sponse a slightly higher rating for

Helpfulness, Correctness, and Com-

plexity.

LLaVA-RLHEF rated preference Reponse 2

Response 2

Our preference Response 1

Response 2

Table 9: Results of DPO hyperparameter search on
LLaVA bench.

Beta Value Average Log Probability Learning Rate

LLaVA-bench

0.1 True 5e-5 60.4
0.1 False 5e-5 77.4
0.1 True S5e-6 73.8
0.1 False S5e-6 74.4
0.5 True 5e-5 59.1
0.5 False 5e-5 75.3
0.5 True Se-6 74.1
0.5 False Se-6 73.1

1.0
HelpfulnessDiff
0.8
CorrectnessDiff
-0.6
CoherenceDiff
-0.4
ComplexityDiff - 0.67
-0.2
VerbosityDiff - 0.50
0.0
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Figure 3: Pearson Correlation Heatmap among the dif-
ference in Gemini-Annotated data attributes and LLaVA-
RLHF human annotated preference (n=500).
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