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Abstract

Large Language Model (LLM) leaderboards
based on benchmark rankings are regularly
used to guide practitioners in model selection.
Often, the published leaderboard rankings are
taken at face value — we show this is a (poten-
tially costly) mistake. Under existing leader-
boards, the relative performance of LLMs is
highly sensitive to (often minute) details. We
show that for popular multiple-choice ques-
tion benchmarks (e.g., MMLU), minor pertur-
bations to the benchmark, such as changing
the order of choices or the method of answer
selection, result in changes in rankings up to
8 positions. We explain this phenomenon by
conducting systematic experiments over three
broad categories of benchmark perturbations
and identifying the sources of this behavior.
Our analysis results in several best-practice rec-
ommendations, including the advantage of a
hybrid scoring method for answer selection.
Our study highlights the dangers of relying on
simple benchmark evaluations and charts the
path for more robust evaluation schemes on the
existing benchmarks. The code for this paper is
available at https://github.com/National-Center-
for-AI-Saudi-Arabia/lm-evaluation-harness.

1 Introduction

The advent of transformer-based Large Language
Models (LLMs) (OpenAI, 2023; Deepmind, 2023;
Anthropic, 2023; Anil et al., 2023; Touvron et al.,
2023) has led to a generational leap in genera-
tive models, enabling interaction with computing
devices through natural language. This advance-
ment encompasses improvements that have ren-
dered many earlier benchmarks and leaderboards
obsolete (Laskar et al., 2023; Shen et al., 2023),
leading to the compilation of more challenging and
comprehensive tests. However, the current genera-
tion of leaderboards still does not satisfy many of
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the requirements of researchers and practitioners
looking to build on LLMs (Ethayarajh and Juraf-
sky, 2021; Dehghani et al., 2021). Since LLMs are
extremely expensive to both train and inference,
selecting the LLM (or LLM training recipe) is of-
ten the most costly decision for the entire project.
Stable leaderboards are critical to making the right
decision.

Leaderboards based on multiple choice ques-
tions (MCQ) for evaluation (Wang et al., 2018,
2019; Nie et al., 2019; Zhong et al., 2023;
Hendrycks et al., 2020) present both convenience
and significant limitations (Pezeshkpour and Hr-
uschka, 2023; Zheng et al., 2023). While MCQs
offer an automated and quantifiable means to as-
sess certain aspects of model ability (e.g., knowl-
edge), they fall short as a stable means to measure
performance. Figure 1 demonstrates the instability
of the leaderboard ranking of one popular bench-
mark, Massive Multitask Language Understanding
(MMLU) (Hendrycks et al., 2020), under small
perturbations.

Moreover, the reliance on MCQs raises concerns
about the models being overfit to these benchmarks,
potentially excelling in structured tests while lack-
ing real-world applicability. This discrepancy high-
lights the need for more holistic and diverse eval-
uation methods that transcend the simplicity of
MCQs (Liang et al., 2023). It also prompts critical
reflection on how these models might inadvertently
be trained to achieve high scores through spurious
correlations, pattern recognition, and optimization
for specific question formats rather than genuine
language comprehension or knowledge. As LLMs
continue to evolve, it is imperative to develop eval-
uation frameworks that can more accurately assess
their abilities in a way that mirrors the complexity
of real-world use.

Despite being widely used, benchmarking with
MCQs has turned out to be anything but sim-
ple. It requires the full synchronization of eval-
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Figure 1: Minor perturbations cause major ranking shifts on MMLU (Hendrycks et al., 2020). Models can move up
or down up to eight positions on the leaderboard under small changes to the evaluation format. Columns (from left):
1) Original ranking given by MMLU using answer choice symbol scoring (a common default). 2) Ranking under an
altered prompt for the same questions, where answer choice symbols are replaced with a set of rare symbols. 3)
Setting where the correct answer choice is fixed to a certain position (in this case, B). 4) Using the cloze method for
scoring answer choices. Under each new ranking, we report Kendall’s τ (Kendall, 1938) with respect to the original
ranking (lower kτ indicates more disagreement between rankings)

uation frameworks and results often vary wildly
due to nuanced differences. For example, minor
changes in prompting and scoring can produce in-
valid results for particular LLMs1. Recent studies
have investigated the issue of sensitivity in evalu-
ating LLMs, with some demonstrating that LLMs
are susceptible to the ordering of answer choices
and bias towards specific tokens/symbols (Zheng
et al., 2023; Pezeshkpour and Hruschka, 2023; Lu
et al., 2022), and others exploring different prompt
modifications and their effects in benchmarking
LLMs (Mizrahi et al., 2024; Sclar et al., 2023; We-
ber et al., 2023; Zhao et al., 2021).

In this work, we conduct a broad range of minor
perturbation experiments to MCQ benchmarks and
observe the disruption it causes to model rankings
on leaderboards. We also take additional steps to
precisely identify the limitations of LLMs on this
measurement approach.

The contributions of this paper can be summa-
rized as follows:

1https://huggingface.co/blog/
evaluating-mmlu-leaderboard

1. Existing model rankings on popular bench-
marks break down under slight perturba-
tions, particularly in the medium to small
model sizes.

2. This behavior can be explained by the suscep-
tibility of all tested LLMs to various forms of
bias in MCQ.

3. Some families of LLMs have an over-reliance
on format, pointing to potential benchmark
leakage.

4. We find that LLMs also exhibit bias to the
scoring method for answer choices in MCQ.

5. We demonstrate that some categories of mod-
ifications do not affect the benchmark rank-
ings.

2 LLM Evaluation with MCQs

Evaluating LLMs with MCQs has rapidly become
a standard for measuring the knowledge and reason-
ing capabilities of the model (OpenAI, 2023; Anil
et al., 2023; Deepmind, 2023; Jiang et al., 2023).
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Many such MCQ benchmarks have been used to
measure LLMs, including Massive Multitask Lan-
guage Understanding (MMLU) (Hendrycks et al.,
2020), Ai2 Reasoning Challenge (ARC) (Clark
et al., 2018a), and Common-sense Question An-
swers (CSQA) (Saha et al., 2018).

Mechanically, testing LLMs with MCQs is ac-
complished by presenting the question along with
the answer choices to the model and selecting the
choice deemed most probable by the model. Al-
though this setup appears straightforward, LLMs
react in unpredictable ways to formatting and other
minor changes to the questions or the answers.
LLM performance on an MCQ test can change with
the introduction of an extra space (e.g., between
the question and answer) or adding an additional in-
structional phrase (e.g., "Choices:"). In addition to
this brittleness, Pezeshkpour and Hruschka (2023)
found changes to the order in which answer choices
are presented to GPT4 and instructGPT can change
the model’s prediction.

These findings lead us to take a deeper look at
how MCQ-based benchmark results are affected
by small perturbations to question formats, LLM
prompts, presentation of few-shot examples, and
other dimensions. In particular, we introduce varia-
tions in three categories:

• Answer choice format and ordering: testing
the limits of LLM sensitivity to ordering and
formatting (Section 3.1).

• Prompt and scoring modifications: chang-
ing text included in the prompt and analyzing
different scoring schemes (Section 3.2).

• In-context knowledge manipulation: in-
serting relevant/irrelevant information in
the prompt and/or few-shot examples (Sec-
tion 3.3).

Our main aim is to quantify how these small
perturbations/variations change the rankings of
a set of models on a particular benchmark. As
MCQ benchmarks-based leaderboards are often
used to compare models and guide model selection,
we investigate the robustness of benchmarks for
this purpose. Figure 1 demonstrates how existing
benchmarks exhibit significant undesirable shifts
in rankings under small perturbations.

3 Methods

In this section, we describe and justify the pertur-
bations we apply in each category. We note that

some MCQ test changes, like modifying the or-
der of answer choices, can change performance
even for humans but the effect is typically not pro-
nounced (Lions et al., 2021). In general, our mod-
ifications are designed to be small perturbations
to the MCQ and prompts that should not affect
performance. The exception to this is some of the
in-context knowledge manipulations described
in Section 3.3, which are designed to improve or
degrade performance drastically.

3.1 Answer choice format and ordering

In light of earlier findings related to selection
bias (Zheng et al., 2023; Pezeshkpour and Hr-
uschka, 2023; Lu et al., 2022), we investigate the
effects of changes to the presented order of answer
choices and changes to the symbols associated with
answer choices.

Random choice order Our first study aims to
uncover how dependent MCQ benchmark perfor-
mance and rankings are on the original ordering of
the answer choices. We apply two simple schemes
to randomly change the order of answer choices
presented to the model: (i) swapping choices us-
ing a fixed set of swaps for all questions and (ii)
randomly assigning new positions to each choice
while ensuring each choice is moved to a different
position.

Biased choice order In this setting, the correct
answer choice is set to a fixed position across the
entire test to measure bias toward predicting an-
swers at particular positions. For zero-shot, we
simply set the correct answer choice to each of the
positions in turn.

In the few-shot case, we examine the influence
of biasing the correct answers in the examples to
the model’s inherent bias to particular positions.
For each question, we fix the correct answer of
the examples to each position in turn. We then
modify the test question in two ways: (i) unchanged
answer choices and (ii) correct choice fixed to the
same position as examples. This setup is shown in
Figure 2.

Answer choice symbols The symbols used for
the answer choices (e.g. A, B, C, D) also play
a role in model bias (Zheng et al., 2023). Thus,
we experiment with replacing the symbols with
alternative and less common tokens. This aims to
decouple the bias to particular positions from the
bias to symbols or the relative ordering in natural

13789



+

5-shots (Fixed to A)

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

unchanged

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

Original Question

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

fixed

Figure 2: Experiment setup for probing position bias
with few-shot examples.

symbols. We replace [’A’, ’B’,’ C’, ’D’] with the
following two sets of symbols:

• Set 1: ["$", "&", "#", "@"] compris-
ing of common tokens that are language-
independent.

• Set 2: ["œ", "§", "Ze (Cyrillic)", "ü"] consist-
ing of rare tokens in the vocabulary without
any implicit relative order.

In the few-shot setting, we test both assigning
fixed ordering for the replaced symbols in the ex-
amples as well as changing the ordering across
examples.

3.2 Prompt and scoring modifications
LLMs exhibit high sensitivity to variations in
prompt formatting (Sanh et al., 2021; Mishra
et al., 2022), forcing benchmark developers to
unify prompt templates within the same evaluation
scheme. However, it remains unknown if certain
models have an affinity towards any specific prompt
templating style. It is unclear how benchmarking
prompt choices advantage/disadvantage different
models. In addition to that, the scoring style may
change depending on how we are prompting the
context of a query. We distinguish three major
categories of scoring methods for MCQs.

• Symbol scoring: Prompt template is struc-
tured as question followed by answer choices.
The model chooses the answer based on the
likelihood scores for the answer choice sym-
bol. Used in Hendrycks et al. (2020).

• Hybrid scoring: Prompt template is struc-
tured as a question followed by answer
choices. The model chooses the answer based
on the likelihood scores for the answer choice
content normalized by length. Used in Raffel

et al. (2020); Sanh et al. (2021); Chowdhery
et al. (2022)

• Cloze scoring: Prompt templates are struc-
tured as a question followed by a single an-
swer choice. Maximum normalized likelihood
scores over all answer choices define the pre-
diction. Used in Clark et al. (2018a).

<initial prompt>

Question: <question>
A. <choice1> 
B. <choice2>
C. <choice3>
D. <choice4>
Answer: <answer
symbol>

<initial prompt>

Question: <question>
A. <choice 1> 
B. <choice 2>
C. <choice 3>
D. <choice 4>
Answer: <choice x>

Symbols Scoring Hybrid Scoring

<initial prompt>

Question: <question>
Answer: <choice x>

Cloze Scoring

Figure 3: Answer choice scoring methods for LLMs.
The symbols and hybrid scoring methods are most simi-
lar, sharing identical prompts. Cloze scoring does not
reflect a “true” MCQ style, as the model is not shown all
the options. However, due to its prevalence we compare
it to the other methods as a baseline.

Figure 3 gives an overview of each scoring
method. In addition, we also investigate further
modification of instruction and sentinel tokens in
the prompt template.

Prompt instructions To assess the impact of sub-
tle token alterations in prompt instructions, we con-
duct experiments on (i) removing question subject
information and (ii) adding "Correct" alongside the
answer. These targeted changes aim to identify the
robustness in response to certain tokens, particu-
larly when they carry crucial information, as well
as to evaluate the influence of contextual bias in-
troduced by minor modifications of the instruction
text.

3.3 In-context knowledge manipulation

In this category, we attempt to measure model and
benchmark robustness in the few-shot setting by
testing the entire spectrum of knowledge injected
in the few-shot examples. In particular, we experi-
ment under the following settings:

Correct answer provided We provide the target
question and the correct answer in the prompt as
an example to the model. This corresponds to the
simplest setting for the model, where it only needs
to look up the answer in the context.
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Incorrect answer provided This setting is the
opposite of the former. The target question is pro-
vided with an incorrect answer as an example. It is
challenging as the model must ignore the context
and determine the correct answer independently.

Trivial examples We replace few-shot examples
with simple questions the model is known to be able
to answer (typically related to the language/text
of the question itself). The only information the
examples convey is related to formatting (Soltan
et al., 2022). We create three versions of these
questions and answers using GPT-4 and ensure
the model can answer them correctly (as shown in
Figure 8).

Out of domain examples Instead of providing
examples from the same subject as the target ques-
tion, we add out-of-domain questions (from another
subject) as the few-shot examples. This setting cor-
responds to a difficulty level between the original
format and providing trivial examples.

4 Experiments

In the bulk of our experiments, we focus on the
MMLU benchmark due to the extensive nature of
our experiments (11 models, 22+ settings), and ex-
tend some experiments to ARC-challenge to show
generalizability.

MMLU (Hendrycks et al., 2020) is a commonly
used benchmark for comparing LLMs, consisting
of 57 subjects spanning four domains: humanities,
STEM, social sciences, and others. Each subject in-
cludes at least 100 multiple-choice questions with
4 answer choices. The entire benchmark contains
14,042 questions (Tables A.29 and A.30 have a
breakdown of the MMLU subjects and their distri-
butions).

Ai2 Reasoning Challenge (Clark et al., 2018b)
is a benchmark consisting of 7787 grade school
science questions. The benchmark is split into two
sets: Easy and Challenge. We conduct experiments
on the Challenge set (ARC-C) which is proven to
contain harder questions for existing models. The
questions in ARC-C have 3-5 answer choices.

Unless otherwise stated, the reported score for
each experiment/model combination on MMLU is
the mean accuracy across all 14,042 questions. All
tested model tokenizers encode the multiple-choice
answers as single tokens. Hence, the accuracy is
equivalent to the normalized accuracy. All baseline
and modified MMLU benchmarks were performed

using the LM Evaluation Harness (Gao et al., 2023)
library. Their implementation of MMLU measures
the log-likelihood of each of the answer tokens [’A’,

’B’, ’C’, ’D’] after the input prompt and chooses the
letter with the highest probability as the model’s
answer.

Some of our experiments require permuting the
answer choice order (Table 1, A.8, A.9, and A.10),
however, this can be confusing for questions where
the answer choices are dependent on their position,
such as “D. All of the above.”, or reference other
choices, such as “C. Both A and B.”. To circum-
vent this dependency, we manually inspected and
modified the questions from three subjects to en-
sure their answers are permutation-independent for
a subset of our experiments. The modified subjects
are college chemistry, college mathematics, and
global facts.

For each variation introduced to the MCQ bench-
marks, we calculate the change in accuracy (∆Acc)
and recall standard deviation (RStd) for each model.
RStd measures the bias of a model to a particu-
lar answer choice by computing the standard de-
viation of recalls for each answer choice (Zheng
et al., 2023). This metric quantifies how much the
model favors particular positions for the correct
answer choice. We typically observe whether RStd
changes (∆RStd) are significant across experimen-
tal settings.

To measure the change in ranking induced by an
applied perturbation to a benchmark, we measure
the normalized Kendall’s τ distance between two
rankings of n models (Kendall, 1938). Kendall’s
τ computes the number of swapped pairs between
two rankings normalized by the total number of
pairs n(n−1)

2 . We report kτ = τ+1
2 , where kτ = 1.0

indicates total agreement between rankings, and
kτ = 0 indicates complete disagreement by revers-
ing the original rankings.

5 Results & Analysis

In this section, we highlight the major findings
of our work and combine the results of multiple
lines of experimentation (detailed in Section 3) into
concise observations. Additional observations and
complete experimental results can be found in the
appendix (Section A.1).
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5.1 MCQ benchmarks are not robust to
perturbations

As shown in Figure 1, there exist perturbations
that cause dramatic shifts in the order of models
with respect to commonly accepted leaderboard
rankings. We find a significant number of small
perturbations demonstrate this effect, while other
perturbations are more benign.
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Figure 4: Change in accuracy and bias (RStd) on zero-
shot MMLU after swapping answer choice symbols with
two different sets of symbols (described in Section 3.1).
While accuracy always decreased, most models exhib-
ited even more selection bias with the new symbols. kτ
for Set1 and Set2 were 0.689 and 0.733 respectively

Sensitive perturbations Shuffling/changing the
presented order of the choices, swapping choice
symbols, and alternative scoring methods all cause
major shifts to the rankings (determined by thresh-
olding kτ ≤ 0.75). For example, in a controlled
experiment using a subset of MMLU, we randomly
shuffle the answer choices presented to the models
(Table 1). 5 out of 11 models change in ranking
after the perturbation and kτ drops to 0.564. A
similar pattern is seen for perturbations like fixing
the correct answer to a particular position (Table 2),
replacing the default choice symbols with other
sets (Figure 4), and alternative scoring methods
(Figure 7).

Some models elicit this behavior much more
strongly. For example, we observe that Yi-6b drops
from 3rd place to 7th or 8th place under some
benchmark perturbations in the group of 11 models
we tested (namely, the rare symbol and cloze per-
turbations). Other models in the same size range
are more stable (e.g., Mistral-7b, Llama2-7b), not
shifting more than one or two ranks under all pertur-
bations. The reasons for this are unclear but could
indicate overfitting to aspects of the benchmark
style. Since training data for these models is not
public, it is difficult for us to verify this hypothesis.

Unsensitive perturbations Changes that have
little effect on the model rankings are discussed in
Section 5.4.

Model Rank Acc (∆Acc) RStd (∆RStd)

phi-2 (7→7) 34.6 (-3) 14.2 (7.4)
Yi-6b (3→9) 33.0 (-8.3) 11.9 (1.8)
Mistral-7b (4→3) 40.0 (1.0) 9.8 (0.7)
Mistral-7b-Instruct (8→8) 33.3 (-1.7) 16.7 (3.5)
Llama2-7b (11→11) 24.3 (-5.0) 13.2 (-0.4)
Llama2-7b-chat (9→10) 28.6 (-3.7) 27.7 (7.9)
Llama2-13b (6→6) 37.0 (0.7) 22.7 (5.7)
Llama2-13b-chat (9→5) 37.6 (6.0) 26.7 (0.0)
Yi-34b (1→1) 45.0 (-5.0) 9.2 (-2.3)
Llama2-70b (2→2) 40.3 (-1.7) 9.07 (-5.5)
Llama2-70b-chat (5→4) 37.6 (0.3) 13.4 (-6.2)

Table 1: We show that model rankings can shift under
shuffling of the order of answer choices. The largest
change in rank is 5 positions (Yi-6b) followed by 4 po-
sitions (Llama2-13b-chat). This zero-shot experiment is
done on a subset of MMLU subjects (college chemistry,
college mathematics, and global facts) which we manu-
ally verified maintained correctness after shuffling an-
swer choice order (i.e. did not contain cross references
between answer choices). kτ = 0.564 for this experi-
ment, indicating a significant disagreement in rankings.

5.2 Revisiting selection bias: token bias vs.
position bias

Prior and concurrent work finds that LLMs answer-
ing MCQs are highly sensitive to the order that
choices are presented (Pezeshkpour and Hruschka,
2023; Robinson et al., 2023) (position bias) as well
as the symbols used as choice IDs (Zheng et al.,
2023) (token bias). We find selection bias is appar-
ent in all LLMs we test both in 0 and 5-shot setups,
as shown in Tables 2 and A.6. This confirms earlier
findings and highlights a major weakness of the
current methods of evaluating LLMs on MCQs.
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Figure 5: Accuracy and RStd change after randomly
shuffling the order of the choices alongside their option
IDs. Although (Zheng et al., 2023) use this experiment
as evidence that position bias has minimal effect on
selection bias, we find it inconclusive as variance in
∆RStd is large.

To disentangle these two sources of bias, we first
measure the change in bias (measured by RStd) as
we randomly shuffle the entire choice and symbols
together, as performed in (Zheng et al., 2023). We
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find that simply shuffling entire choices is incon-
clusive in ruling out the effect of position bias (vs.
token bias) as there is a wide variance in the bias
change across LLMs (Figure 5, Table A.7 ). In light
of this, we opt to isolate token bias from position
bias by replacing the default symbols (A/B/C/D)
with new/rare symbols from the LLM’s vocabulary
(without an implicit relative ordering) and shuffling
them. This experiment, displayed in Figure 6 and
Table A.8, shows that (i) LLMs always bias toward
the symbols representing the choice IDs and (ii)
even after shuffling the symbols, bias changes in
unpredictable ways.
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Figure 6: Using a set of rare symbols (Set2) we test two
modes of shuffling answer choices: shuffling the sym-
bols only (blue bars) and shuffling the answer choice
text only while fixing the symbols set (cyan bars). Even
using rare symbols, model selection bias changes unpre-
dictably, indicating token and position bias are difficult
to mitigate. This experiment was conducted using the
three-subject subset of MMLU.

5.3 Another source of bias: scoring bias
Beyond the ordering of choices and the symbols as-
sociated with them, LLMs exhibit varying amounts
of bias under the choice of scoring method for
MCQs. We studied the three scoring methods de-
scribed in Section 3.2: symbol scoring, cloze scor-
ing, and hybrid scoring. Symbol scoring has be-
come the dominant method for evaluating LLMs on
MCQs, largely due to the high accuracy achieved
by LLMs (Robinson et al., 2023). This, however,
comes at the cost of high selection bias. Cloze scor-
ing can essentially eliminate bias since the choices
are never presented to the model, but LLMs tend
to score poorly when using this method. This also
does not reflect a true MCQ setting. Figure 7 and

Model Baseline A B C D

phi-2 54.47
52.31
(-2.16)

56.53
(+2.07)

56.30
(+1.83)

50.19
(-4.28)

Yi-6b 61.12
62.53

(+1.41)
64.44

(+3.32)
58.59
(-2.53)

63.13
(+2.02)

Mistral-7b 59.56
52.19
(-7.38)

60.98
(+1.42)

63.84
(+4.27)

60.43
(+0.86)

Mistral-7b-Instruct 53.48
49.77
(-3.71)

54.67
(+1.18)

49.99
(-3.49)

57.74
(+4.26)

Llama2-7b 41.81
66.36

(+24.55)
30.40

(-11.42)
36.28
(-5.53)

23.37
(-18.44)

Llama2-7b-chat 46.37
30.84

(-15.53)
69.41

(+23.04)
50.05

(+3.68)
28.23

(-18.14)

Llama2-13b 52.08
35.82

(-16.26)
57.24

(+5.16)
68.65

(+16.57)
44.08
(-8.00)

Llama2-13b-chat 53.12
36.73

(-16.39)
56.72

(+3.60)
71.81

(+18.69)
42.63

(-10.49)

Yi-34b 73.38
66.16
(-7.22)

75.22
(+1.84)

78.07
(+4.69)

73.88
(+0.50)

Llama2-70b 65.44
56.47
(-8.97)

67.38
(+1.95)

69.92
(+4.48)

66.47
(+1.03)

Llama2-70b-chat 61.11
41.78

(-19.34)
62.24

(+1.13)
75.07

(+13.96)
57.71
(-3.41)

kτ - 0.455 0.527 0.527 0.855

Table 2: Performance on zero-shot MMLU when plac-
ing the correct answer at each possible position. All
the LLMs tested showed a clear preference for specific
positions/answer choice symbols, although the position
varied among models and even in model families. These
results corroborate the findings in (Zheng et al., 2023).

Table A.13 detail the results of these experiments.
Hybrid scoring, where cloze scoring is combined

with a prompt that reveals all answer choices to
the model, represents an acceptable balance be-
tween the two, reducing bias over symbol scoring
on MMLU and ARC-C, as shown in Figure 7. In
light of this, we recommend practitioners to replace
symbol scoring with hybrid scoring to mitigate the
effects of bias on model rankings.

5.4 Minor few-shot and prompt changes have
little effect on benchmark rankings

We ran several experiments to assess the effect
of the initial prompt on model performance and
rankings. We find that changing the informative-
ness of in-context examples, e.g. providing irrele-
vant/trivial examples (Figure 8, Tables A.17-A.19)
or examples from subjects other than the target
subject (Figure 9, Tables A.24- A.25), slightly
changes performance across models and reduces
bias compared to zero-shot settings but does not
change rankings drastically. This finding leads us
to conclude that adding few shot examples to bench-
mark evaluations can help reduce, but not eliminate,
leaderboard sensitivity.

We also experiment with removing subject in-
formation from instructions and ending the prompt
with "Correct Answer:" instead of "Answer:" (Fig-
ure 10, Tables A.20-A.23). We see little changes
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Figure 7: Comparing scoring method {symbol, cloze,
hybrid} across two tasks, MMLU and ARC-Challenge.
Note the baseline method for MMLU is symbol while
the baseline method for ARC-C is cloze. The general
trend for accuracy across models and tasks is symbol
scoring (highest accuracies) followed by hybrid scor-
ing/cloze depending on the model. The measured selec-
tion bias also follows this trend, with symbol scoring
resulting in the highest bias across models.

Prompt
trivial_examples = ["Which language the previous sentence is
written in? A. Russian. B. English. C. Spanish. D. Japanese
Answer: B", ...]
"[trivial_examples][question][choices]Answer:"

Version 2

Prompt
trivial_examples = ["The first word in this sentence is A. The.
B. first. C. sentence. D. word Answer: A", ...]
"[trivial_examples][question][choices]Answer:"

Version 3

Prompt
trivial_examples = ["The capital of France is A. Paris. B. Berlin. C.
Madrid. D. Rome Answer: A", ...]
"[trivial_examples][question][choices]Answer:"

Version 1

 Instruction
"The following are multiple choice questions (with answers)"
Prompt
"[question][choices]Answer:"

Orignal prompt template

Figure 8: Illustration of the three versions of the trivial
examples.

(kτ > 0.9) in these prompt modification experi-
ments.

5.5 LLMs readily reference knowledge
provided in-context (even if it is
misleading)

In our study of in-context knowledge injection, we
find that LLMs can, expectedly, read off answers

 Instruction
The following are multiple choice questions (with answers)
about [subject].
{{ few shot examples from [subject] }}
Prompt
[question][choices]Answer:

Orignal prompt template

Instruction
The following are multiple choice questions (with
answers) about [subject].
{{ few shot examples from different subject }}
Prompt
[question][choices]Answer:

Modification 1: Remove subject name 

 
Instruction
"The following are 5 multiple choice questions (with answers) on
various subjects, followed by a question about [subject]."
{{ few shot examples from different subject }}
Prompt
[question][choices]Answer:

Modification 2: Mention various subjects

Figure 9: Illustration of subject independent few-shot
prompting experiment. We ensure that we do not sample
from similar domains to the one being evaluated (e.g.
sampling college mathematics few-shots for high school
mathematics questions). (results are in Table A.24 &
A.25).

 Instruction
"The following are multiple choice questions (with answers) about
[subject]"
Prompt
"[question][choices]Answer:"

Orignal prompt template

 Instruction
"The following are multiple choice questions (with answers) about
[subject]" 
Prompt
"[question][choices]Answer:"

Experiment 1: Removing subject name 

 Instruction
"The following are multiple choice questions (with answers)
about [subject]"
Prompt
"[question][choices]Correct Answer:"

Experiment 2: Prompt Modification 

Figure 10: Illustration of minor prompt modifications.
Experiment 1 showcases the removal of the subject
name from the instruction. Experiment 2 shows the
prompt change by specifying "Correct Answer" instead
of "Answer". (results are in table A.20, A.22, A.23)

to questions when the answer is provided in the
context (Table A.27). However, when the question
is answered incorrectly in the LLM’s context (Ta-
ble A.26), all models (regardless of size) are unable
to reason correctly.

To investigate whether this behavior is due to
in-context knowledge acquisition or "incorrect an-
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swer" pattern following, previous work has shown
that smaller models tend to rely more on priors
learned during the pretraining stage while larger
models tend to be more influenced by knowledge
given in-context (Wei et al., 2023). This result
suggests that we would find that the magnitude of
changes in accuracies for small models is smaller
than that of larger models. However, we do not
observe a significant effect to support that finding
conclusively (when comparing A.1 with A.26).

This behavior is further studied in Wang et al.
(2023); Xie et al. (2023); Min et al. (2022); Yoo
et al. (2022) and indicates answer leakage in this
way could affect benchmark results.

To test whether LLMs can infer subtler patterns
in the few-shots examples, we fix all answers in
the few-shot examples to each of the positions
A/B/C/D. The results (Table 3) suggest that LLMs
also bias their answers to these kinds of (potentially
inadvertent) patterns in the context.

While we have not observed these vulnerabilities
in current benchmarks, we highlight them here as
(potential) sources of benchmark instability.

5-shot Baseline A B C D

phi-2 56.77
36.67

(-20.11)
41.33

(-15.44)
40.67

(-16.11)
41.67

(-15.11)

Yi-6B 63.22
36.67

(-26.56)
36.33

(-26.89)
37.67

(-25.56)
39.33

(-23.89)

Mistral-7B 62.36
34.67

(-27.70)
41.33

(-21.03)
43.00

(-19.36)
40.33

(-22.03)

Llama-2-7b 45.88
22.00

(-23.88)
31.00

(-14.88)
30.67

(-15.22)
34.33

(-11.55)

Table 3: Results of fixing the 5 few-shot example an-
swers to positions A/B/C/D on one model from each
family, averaged over 3 selected subjects. We can see
that performance drops across all cases/models, suggest-
ing that models refer to subtle patterns in the context
while answering. Full results are reported in Table A.28

6 Related Work

Benchmarks for the evaluation of LLMs (Chang
et al., 2023) such as MMLU (Hendrycks et al.,
2020), HELM (Liang et al., 2023), and BigBench
(Suzgun et al., 2022) have seen widespread adop-
tion recently. Depending on the ability that is be-
ing assessed (e.g., language generation, knowledge
understanding, complex reasoning) some bench-
marks are designed in the form of close-ended
problems like MCQs. To facilitate comparisons
among LLMs, a number of leaderboards aggregat-
ing these benchmarks have been established, such
as the OpenLLM Leaderboard (Beeching et al.,
2023) and OpenCompass (Contributors, 2023).

However, issues with the leaderboards and the
underlying benchmarks have emerged. In a case
study, Deng et al. (2023) discovered contamina-
tion/leakage of the MMLU benchmark in the train-
ing sets of multiple models. A significant portion
of models memorized benchmark questions and
was able to perfectly reconstruct the removed part
of some benchmark questions or answers. For in-
stance, GPT-4 correctly completed the questions in
29% of the prompts with URL hinting.

Even under the assumption of uncontaminated
data, the performance of models on the underly-
ing benchmarks are not robust to minor perturba-
tions. Pezeshkpour and Hruschka (2023) showed
that specific orderings of MMLU answer choices
resulted in up to ±30% deviations in GPT-4 perfor-
mance on various subjects. Similarly, Zheng et al.
(2023) demonstrate that models are biased to cer-
tain answer letters. On llama-30B, they showed
a 27% difference in MMLU accuracy by forcing
all correct answers to either position A or D. As
well, (Robinson et al., 2023) find that the accuracy
of LLMs improve (without regard to bias) when
evaluating using a pure multiple choice question
style vs a cloze question answering style.

While prior work has highlighted weaknesses in
LLMs themselves (Zheng et al., 2023; Pezeshkpour
and Hruschka, 2023), evaluation method (Robinson
et al., 2023), or the contents of benchmarks (De-
hghani et al., 2021) in our work we thoroughly
study the effects these factors have on existing
leaderboards and demonstrate where leaderboards
lack robustness.

7 Conclusion

Building robust leaderboards is a major challenge
for the community, as leaderboards help practition-
ers select the best methods and models for contin-
ued research. Given this importance, it is critical
to address the breakdown of existing leaderboards
to the slight perturbations we demonstrated in our
work. In addition to building our understanding of
the causes of this sensitivity (e.g., bias in LLMs
and bias in scoring methods), future work should
aim to adopt and design benchmark practices that
avoid these pitfalls.

8 Limitations

The limitations of our work fall into two main cate-
gories: (i) understanding the causes of LLM bias
and (ii) our limited success at overcoming leader-
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board sensitivity.
To explain LLM bias, we attempted to design

experiments that isolate each source of bias under
MCQ but were unable to quantify the relative ef-
fects of bias or conclude why they occur. This was
further complicated by our inability to access the
pretraining datasets of the LLMs to rule out bench-
mark contamination. Future work in this direction
will most likely require tools from interpretability
research (e.g. mechanistic interpretability).

One of our main contributions was to highlight
where MCQ-based leaderboards fail to deliver sta-
ble rankings. Although we succeeded in showing
this, we were unable to demonstrate a robust solu-
tion to this problem. Our recommendation to, for
example, use hybrid scoring methods is still not
completely robust to perturbations.

9 Potential Risks

In this work, we do not present a new leaderboard.
There is a risk that Figure 1 is interpreted as a
leaderboard or used for model selection. Our in-
tention was to demonstrate how minor changes can
affect model rankings.
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A.1 Appendix

We present a comprehensive collection of tables
containing the results of all our experiments. The
often complex nature of the observed behavior war-
rants a closer look that may inspire novel interpre-
tations for future studies. We believe providing
these detailed results will help researchers conduct
further analysis and generate hypotheses to help
drive research in LLM-benchmarking robustness
forward.

A.1.1 Baselines

This section lists the baselines referenced in differ-
ent experiments throughout the paper.

Model Acc 0shot RStd 0shot Acc 5shot RStd 5shot

phi-2 54.47 4.01 56.77 2.65
Yi-6B 61.12 3.57 63.23 2.54
Mistral-7B 59.56 4.13 62.36 1.64
Mistral-7B-Instruct 53.48 4.58 53.95 4.78
Llama-2-7b 41.81 8.49 45.88 8.92
Llama-2-7b-chat 46.37 16.11 47.22 12.15
Llama-2-13b 52.08 12.04 55.06 4.42
Llama-2-13b-chat 53.12 12.80 53.53 8.32
Yi-34B 73.38 5.17 76.39 2.16
Llama-2-70b 65.44 3.20 68.78 1.56
Llama-2-70b-chat 61.11 10.95 63.17 8.06

Table A.1: The baseline accuracies and RStd values
for the original MMLU implementation which uses the
Symbols scoring style mentioned in section 3.2. All
the models performed better in five-shot settings; the
highest model was Yi-34B model in both settings.

Model Acc 0shot RStd 0shot Acc 5shot RStd 5shot

phi-2 54.096 2.558 58.874 2.509
Yi-6B 50.512 2.114 55.034 0.737
Mistral-7B 53.584 2.578 59.556 1.037
Mistral-7B-Instruct 52.048 1.443 54.778 2.022
Llama-2-7b 46.331 4.094 53.072 0.837
Llama-2-7b-hf 44.283 2.175 51.877 1.399
Llama-2-13b 48.976 2.923 56.997 0.799
Llama-2-13b-chat 50.256 1.841 57.594 2.991
Yi-34B 61.519 2.537 64.505 1.48
Llama-2-70b 57.253 2.657 66.126 1.926
Llama-2-70b-chat 54.266 1.505 64.078 2.084

Table A.2: The baseline accuracies and RStd values
for ARC-C using the Cloze scoring style mentioned in
section 3.2 which is considered as the original ARC-C
implementation. As the table shows, the RStd values are
relatively low in both settings. Yi-34B has the highest
values on zero-shot while Llama-2-70b was the highest
on five-shots

A.1.2 Answer choice format and ordering

The following tables provide details on the choice
formatting manipulation on the three selected
MMLU subjects.

Model Acc 0shot RStd 0shot Acc 5shot RStd 5shot

phi-2 37.67 6.78 41.00 5.02
Yi-6B 41.33 10.17 40.67 14.07
Mistral-7B 39.0 9.17 41.00 12.08
Mistral-7B-Instruct 35.0 13.31 36.00 15.75
Llama-2-7b 29.33 13.64 33.33 17.69
Llama-2-7b-chat 32.33 19.83 33.33 21.39
Llama-2-13b 36.33 17.05 35.67 13.85
Llama-2-13b-chat 31.67 26.78 32.67 24.69
Yi-34B 50.00 11.49 49.33 9.35
Llama-2-70b 42.00 14.58 44.67 6.21
Llama-2-70b-chat 37.33 19.63 41.00 18.46

Table A.3: The selected three domains baseline average
results on zero-shot and five-shot using Symbols scoring
style on MMLU. MMLU mostly uses this scoring style.
This baseline was utilized in most experiments to ana-
lyze and comprehend the influence of each experiment
compared with this baseline in the selected domains
subset (it was used in A.4, A.5 and 1).

Model Task Acc (∆Acc) Task RStd (∆RStd)

phi-2 26.33(-11.3) 41.85 (35.0)
Yi-6B 32.60 (-8.7) 22.80 (12.7)
Mistral-7B 35.30 (-3.7) 18.79 (9.6)
Mistral-7B-Instruct 34.00 (-1.0) 26.90 (13.7)
Llama-2-7b 29.60 (0.3) 25.80 (12.2)
Llama-2-7b-chat 31.30 (-1.0) 27.00 (7.2)
Llama-2-13b 34.30 (-2.0) 26.10 (9.1)
Llama-2-13b-chat 34.00 (2.3) 21.90 (-4.8)
Yi-34B 42.60 (-7.3) 22.7 (11.3)
Llama-2-70b 39.60 (-2.3) 15.10 (0.5)
Llama-2-70b-chat 36.00 (-1.3) 29.50 (10.0)

kτ = 0.527

Table A.4: The baseline average zero-shot results for the
selected domains using symbols Set2 which replaced
the A/B/C/D choices symbols with œ/§/Ze (Cyrillic)/ü
as options as described in section 3.1 (it was used as
a baseline in A.9 and A.8). The deltas are calculated
compared with A.3. In this particular experiment, all
models encountered a decline in accuracy, coupled with
a significant increase in RStds values, except Llama-
13b-chat.

A.1.3 Prompt and scoring modifications
The following tables provide results on the effect of
different scoring styles of MCQs task on MMLU
and ARC-C.

A.1.4 In-context Knowledge Manipulation
This section provides the results from experimenta-
tion on in-context manipulation.

A.1.5 MMLU Overview
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Model Acc 0shot RStd 0shot Acc 5shot RStd 5shot
(∆Acc) (∆RStd) (∆Acc) (∆RStd)

phi-2 28.3 (-9.3) 6.0 (-0.7) 34.6 (-6.3) 5.7 (-1.04)
Yi-6B 35.0 (-6.3) 11.5 (1.4) 39.0 (-1.7) 13.5 (-0.6)
Mistral-7B 34.3 (-4.7) 10.7 (1.6) 44.0 (3.0) 16.3 (4.2)
Mistral-7B-Instruct 35.0 (0.0) 14.0 (0.7) 38 (2.0) 15.7 (0.0)
Llama-2-7b 31.3 (2.0) 12.6 (-1.0) 32.6 (-0.7) 16.9 (-0.7)
Llama-2-7b-chat 27.0 (-5.3) 12.5 (-7.3) 32.6 (-0.7) 13.3 (-8.0)
Llama-2-13b 37.0 (0.7) 14.0 (-3.0) 40.0 (4.3) 15.7 (1.9)
Llama-2-13b-chat 33.0 (1.3) 9.1 (-17.7) 37.6 (5.0) 17.33 (-7.4)
Yi-34B 46.6 (-3.3) 12.8 (1.4) 47.6 (-1.7) 10.1 (0.8)
Llama-2-70b 41.3 (-0.7) 10.5 (-4.0) 49.0 (4.3) 10.3 (4.2)
Llama-2-70b-chat 39.3 (2.0) 7.8 (-11.8) 42.6 (1.7) 11.9 (-6.5)

kτ 0.564 0.6

Table A.5: The average zero-shot results on the three
selected domains baseline using the Hybrid style men-
tioned in section 3.2. The deltas are compared with A.3
where the Rstd values exhibited a decrease and the ac-
curacies remained relatively stable, except phi-2, which
demonstrated the most significant decline in accuracy.

Model Baseline A B C D

phi-2 54.47
57.33

(+2.87)
44.00

(-10.47)
25.00

(-29.47)
32.33

(-22.13)

Yi-6B 61.12
49.67

(-11.45)
23.67

(-37.45)
18.33

(-42.78)
44.67

(-16.45)

Mistral-7B 59.56
77.00

(+17.44)
46.33

(-13.23)
48.33

(-11.23)
68.00

(+8.44)

Mistral-7B-Instruct 53.48
78.33

(+24.85)
42.33

(-11.15)
18.67

(-34.82)
49.33
(-4.15)

Llama-2-7b 41.81
79.00

(+37.19)
57.33

(+15.52)
24.67

(-17.14)
23.67

(-18.14)

Llama-2-7b-chat 46.37
16.67

(-29.70)
66.33

(+19.97)
38.67
(-7.70)

14.33
(-32.04)

Llama-2-13b 52.08
33.67

(-18.41)
37.33

(-14.75)
45.33
(-6.75)

39.33
(-12.75)

Llama-2-13b-chat 53.12
20.00

(-33.12)
23.00

(-30.12)
61.33

(+8.21)
15.67

(-37.45)

Yi-34B 73.38
59.00

(-14.38)
45.67

(-27.71)
53.67

(-19.71)
48.00

(-25.38)

Table A.6: Performance on five-shot MMLU when plac-
ing the correct answer at each possible position, for both
the examples and the question asked. Similar to the zero-
shot case mentioned in Section 5, all the LLMs tested
showed a clear preference for specific positions/answer
choice symbols, although the position varied among
models and even in model families.

Figure A.1: Illustration of the prompt that was used to
generate the trivial examples version 1 using GPT4.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 51.01 -3.45 8.82 4.82
Yi-6B 57.75 -3.37 6.29 2.72
Mistral-7B 55.63 -3.94 7.75 3.62
Mistral-7B-Instruct 52.09 -1.39 4.02 -0.57
Llama-2-7b 32.13 -9.68 23.72 15.23
Llama-2-7b-chat 42.52 -3.85 15.45 -0.66
Llama-2-13b 48.24 -3.84 8.29 -3.75
Llama-2-13b-chat 51.83 -1.29 5.24 -7.56
Yi-34B 69.56 -3.82 4.62 -0.55
Llama-2-70b 63.32 -2.12 3.33 0.13
Llama-2-70b-chat 58.80 -2.31 1.91 -9.04

Table A.7: Reproducing shuffling ablation experiment
from (Zheng et al., 2023). Randomly shuffling the order
in which the options are presented. Surprisingly, all
models demonstrated a decrease in accuracy, suggesting
a lack of decisiveness in the experiment. However, these
variations indicate a potential bias in the benchmark.

Model Task Acc (∆Acc) Task RStd (∆RStd)

phi-2 25.33 (-12.33) 42.35 (35.57)
Yi-6B 30.66 (-2.0) 26.68 (3.8)
Mistral-7B 34.00 (-1.3) 22.37 (3.6)
Mistral-7B-Instruct 30.33 (-3.7) 23.08 (-3.9)
Llama-2-7b 25.66 (-4.0) 24.98 (-0.9)
Llama-2-7b-chat 28.00 (-3.3) 28.49 (1.4)
Llama-2-13b 29.33 (-5.0) 26.75 (0.6)
Llama-2-13b-chat 29.66 (-4.3) 20.58 (-1.4)
Yi-34B 36.00 (-6.7) 19.48 (-3.3)
Llama-2-70b 37.33 (-2.3) 10.41 (-4.7)
Llama-2-70b-chat 31.66 (-4.3) 23.25 (-6.3)

kτ = 0.564

Table A.8: The average zero-shot results on the three
selected domains using Symbols Set2 (mentioned in
section 3.1 and shuffling the choices while fixing the
order of the choices symbols. The deltas are measured
compared with A.4. As displayed in the table, mostly all
the models faced a decrease in accuracy while the RStds
values were not decisive. The most affected model in
this experiment was phi-2.

Model Task Avg Acc (∆Acc) Task Avg RStd (∆RStd)

phi-2 29.00(-8.6) 12.4 (5.6)
Yi-6B 34.67 (2.0) 22.84 (0.0)
Mistral-7B 29.33 (-6.0) 16.52 (-2.3)
Mistral-7B-Instruct 28.33 (-5.7) 22.10 (-4.9)
Llama-2-7b 26.67 (-3.0) 28.62 (2.8)
Llama-2-7b-chat 32.00 (0.7) 15.64 (-11.4)
Llama-2-13b 26.33 (-8.0) 21.31 (-4.8)
Llama-2-13b-chat 34.00 (0.0) 16.97 (-5.0)
Yi-34B 41.00 (-1.7) 20.28 (-2.5)
Llama-2-70b 38.67 (-1.0) 7.65 (-7.5)
Llama-2-70b-chat 40.33 (4.3) 15.78 (-13.8)

kτ = 0.455

Table A.9: The average zero-shot results on the three
selected domains using Symbols Set2 mentioned in sec-
tion 3.1. This experiment focused on shuffling the sym-
bols while maintaining the original listing order of the
choices. Compared with A.4,Most of the models were
impacted in terms of accuracy and RStds, indicating that
randomization affects the models even after changing
the symbols.
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Model Acc 0shot RStd 0shot Acc 5shot RStd 5shot
(∆Acc) (∆RStd) (∆Acc) (∆RStd)

phi-2 30.6 (2.3) 12.8 (6.8) 32.6(-2) 13.6 (7.8)
Yi-6B 30.3 (-4.7) 12.0 (0.5) 34.3 (-4.7) 11.4 (-2.1)
Mistral-7B 31.6 (-2.7) 12.5 (1.8) 39 (-5) 11.1 (-5.2)
Mistral-7B-Instruct 32.66 (-2.3) 11.18 (-2.9) 37 (-1) 7.94 (-7.8)
Llama-2-7b 28.6 (-2.7) 11.4 (-1.2) 33.3 (0.7) 15.1 (-1.8)
Llama-2-7b-chat 29.3 (2.3) 16.2 (3.7) 35 (2.3) 16.6 (3.3)
Llama-2-13b 35.3 (-1.7) 10.1 (-3.9) 37.6 (-2.3) 12.1 (-3.6)
Llama-2-13b-chat 29.6 (-3.3) 10.9 (1.9) 35.3 (-2.3) 17.0 (-0.3)
Yi-34B 43 (-3.7) 5.4 (-7.4) 48.3 (0.7) 11.7 (1.6)
Llama-2-70b 40 (-1.3) 9.0 (-1.5) 48 (-1) 10.5 (0.1)
Llama-2-70b-chat 35 (-4.3) 11.1 (3.4) 41.3 (-1.3) 6.8 (-5.1)

kτ 0.527 0.382

Table A.10: The selected domains results after random-
izing the choices using Hybrid style mentioned in sec-
tion 3.2, the deltas are calculated from this table A.5
where it showed more consistency compared to the re-
sults of other randomization settings (1,A.8, and A.9).

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 31.92 -22.55 20.23 16.22
Yi-6B 46.87 -14.25 15.24 11.67
Mistral-7B 42.68 -16.88 29.07 24.94
Mistral-7B-Instruct 47.90 -5.58 15.06 10.48
Llama-2-7b 26.23 -15.58 33.78 25.29
Llama-2-7b-chat 41.01 -5.36 14.17 -1.94
Llama-2-13b 41.05 -11.03 23.54 11.50
Llama-2-13b-chat 48.09 -5.03 20.82 8.02
Yi-34B 66.56 -6.82 10.13 4.96
Llama-2-70b 57.94 -7.50 16.52 13.32
Llama-2-70b-chat 59.00 -2.11 10.09 -0.86

kτ = 0.6

Table A.11: The zero-shot results of MMLU on Sym-
bols Set1 mentioned in section 3.1. All of the models
demonstrated reduced accuracies, while most of them
showed an increase in RStds values compared with A.1.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 29.85 -24.62 39.10 35.09
Yi-6B 47.58 -13.54 26.09 22.52
Mistral-7B 52.63 -6.94 15.87 11.74
Mistral-7B-Instruct 48.33 -5.15 18.70 14.12
Llama-2-7b 29.76 -12.05 32.09 23.60
Llama-2-7b-chat 43.34 -3.03 18.20 2.09
Llama-2-13b 42.06 -10.02 23.75 11.70
Llama-2-13b-chat 49.23 -3.89 14.07 1.28
Yi-34B 67.03 -6.35 12.48 7.31
Llama-2-70b 62.60 -2.84 3.21 0.01
Llama-2-70b-chat 57.01 -4.10 18.53 7.59

kτ = 0.636

Table A.12: The zero-shot results of MMLU on Sym-
bols Set2 mentioned in section 3.1. Compared with the
original MMLU implementation that used A/B/C/D as
symbols(A.1), the majority of models in this experiment
had notably lower accuracies while the RStd values
increased.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 40.714 -13.751 1.398 -2.607
Yi-6B 42.40 -18.72 1.49 -2.08
Mistral-7B 45.69 -13.87 1.26 -2.87
Mistral-7B-Instruct 43.51 -9.98 1.53 -3.05
Llama-2-7b 40.81 -1.00 1.19 -7.30
Llama-2-7b-chat 40.44 -5.93 1.79 -14.32
Llama-2-13b 44.09 -7.99 1.29 -10.75
Llama-2-13b-chat 43.87 -9.25 1.86 -10.93
Yi-34B 49.33 -24.05 3.76 -1.41
Llama-2-70b 48.74 -16.70 0.99 -2.21
Llama-2-70b-chat 46.34 -14.77 1.57 -9.38

kτ = 0.527

Table A.13: The zero-shot results of MMLU using the
Cloze style mentioned in 3.2. As anticipated, employing
this style led to significantly low RStd values compared
with the Symbols scoring style in table A.1, but it also
had a considerable impact on accuracy, resulting in a
noticeable decrease in most models.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 38.47 -16.01 2.55 -1.45
Yi-6B 44.90 -16.22 3.80 0.23
Mistral-7B 42.94 -16.62 5.09 0.96
Mistral-7B-Instruct 39.27 -14.21 3.46 -1.12
Llama-2-7b 37.79 -4.02 3.79 -4.70
Llama-2-7b-chat 37.68 -8.69 3.52 -12.58
Llama-2-13b 43.88 -8.20 5.14 -6.91
Llama-2-13b-chat 39.14 -13.98 4.82 -7.98
Yi-34B 59.52 -13.86 2.63 -2.54
Llama-2-70b 55.11 -10.33 2.00 -1.20
Llama-2-70b-chat 47.26 -13.85 3.35 -7.60

kτ = 0.709

Table A.14: The zero-shot results of MMLU using the
Hybrid style mentioned in 3.2. This style resulted in
decreased accuracy but demonstrated more stability and
lower RStd values when comparing it with the Symbols
scoring style A.1. This style may help reduce the selec-
tion and token bias seen in prior experiments.

Model Task Acc (∆Acc) Task RStd (∆RStd)

phi-2 76.8 (22.7) 4.2 (1.6)
Yi-6B 78.3 (27.8) 2.6 (0.5)
Mistral-7B 74.8 (21.2) 5.9 (3.3)
Mistral-7B-Instruct 69.3 (17.3) 4.3 (2.9)
Llama-2-7b 42.4 (-3.9) 14.1 (10.0)
Llama-2-7b-chat 57.6 (13.3) 13.8 (11.6)
Llama-2-13b 62.0 (13.0) 8.9 (6.0)
Llama-2-13b-chat 65.3 (15.1) 12.7 (10.9)
Yi-34B 90.7 (29.1) 0.5 (-1.9)
Llama-2-70b 81.9 (24.7) 2.6 (0.025)
Llama-2-70b-chat 78.4 (24.1) 6.8 (5.3)

kτ = 0.855

Table A.15: The table displays the results of zero-shot
on ARC-C with Symbols scoring style mentioned in 3.2.
Compared with A.2, all models, except Llama-2-7b,
showed higher accuracies. An increase in Rstds values
was observed, particularly in the Llama-2 7b, 7b-chat,
and 13b models. This proves that if we provide choices
in the prompt, models will perform better.
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Model Task Acc (∆Acc) Task RStd (∆RStd)

phi-2 58.4 (4.3) 4.9 (2.4)
Yi-6B 59.9 (9.4) 8.4 (6.3)
Mistral-7B 52.6 (-0.9) 6.9 (4.3)
Mistral-7B-Instruct 54.1 (2.1) 4.3 (2.9)
Llama-2-7b 38.7 (-7.5) 7.8 (3.7)
Llama-2-7b-chat 46.6 (2.3) 2.7 (0.5)
Llama-2-13b 52.4 (3.4) 9.1 (6.1)
Llama-2-13b-chat 53.5 (3.3) 4.6 (2.7)
Yi-34B 83.0 (21.5) 3.8 (1.2)
Llama-2-70b 72.6 (15.4) 3.9 (1.3)
Llama-2-70b-chat 64.7 (10.4) 4.2 (2.7)

kτ = 0.782

Table A.16: The zero-shot results of ARC-C using the
Hybrid style discussed in 3.2. In some models, it ex-
hibits higher accuracy than the baseline (Table A.2) and
more stable RStd values (compared to A.15). The deltas
are calculated using this table A.2.

Model Task acc ∆Acc

phi-2 54.21 -0.26
Yi-6B 60.11 -1.00
Mistral-7B 58.45 -1.11
Mistral-7B-Instruct 51.14 -2.34
Llama-2-7b 42.77 0.96
Llama-2-7b-chat 46.35 -0.02
Llama-2-13b 51.72 -0.36
Llama-2-13b-chat 50.94 -2.18
Yi-34B 72.28 -1.10
Llama-2-70b 65.25 -0.18
Llama-2-70b-chat 59.79 -1.32

kτ = 0.927

Table A.17: Trivial examples few-shot results using the
version 1 examples with respect to zero-shot baseline
accuracy.

Model Task acc ∆Acc

phi-2 53.18 -1.28
Yi-6B 60.28 -0.84
Mistral-7B 59.41 -0.15
Mistral-7B-Instruct 50.95 -2.53
Llama-2-7b 43.52 1.71
Llama-2-7b-chat 46.82 0.46
Llama-2-13b 52.51 0.44
Llama-2-13b-chat 51.84 -1.27
Yi-34B 72.29 -1.09
Llama-2-70b 65.13 -0.31
Llama-2-70b-chat 60.28 -0.83

kτ = 0.891

Table A.18: Trivial examples few-shot results with ver-
sion 2 examples with respect to zero-shot baseline accu-
racy.

Model Task acc ∆Acc

phi-2 53.22 -1.25
Yi-6B 60.46 -0.66
Mistral-7B 59.27 -0.30
Mistral-7B-Instruct 50.58 -2.91
Llama-2-7b 44.47 2.66
Llama-2-7b-chat 46.90 0.53
Llama-2-13b 52.24 0.16
Llama-2-13b-chat 51.88 -1.24
Yi-34B 73.16 -0.22
Llama-2-70b 65.42 -0.02
Llama-2-70b-chat 60.02 -1.09

kτ = 0.891

Table A.19: Trivial examples few-shot results with ver-
sion 3 examples, with respect to zero-shot baseline ac-
curacy.
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Model Task acc ∆Acc Task RStd ∆RStd

phi-2 53.92 -0.54 4.07 0.07
Yi-6B 60.80 -0.31 3.43 -0.14
Mistral-7B 59.02 -0.54 3.73 -0.40
Mistral-7B-Instruct 53.29 -0.19 4.74 0.16
Llama-2-7b 41.80 -0.01 4.51 -3.99
Llama-2-7b-chat 46.68 0.31 14.93 -1.17
Llama-2-13b 51.92 -0.16 12.05 0.00
Llama-2-13b-chat 53.27 0.15 12.83 0.03
Yi-34B 72.94 -0.44 5.52 0.35
Llama-2-70b 64.83 -0.60 2.81 -0.40
Llama-2-70b-chat 61.14 0.03 10.94 -0.00

kτ=0.964

Table A.20: Zero-shot results of removing the subject
name from the prompt. (experiment 1 from figure 10).
There are minimal changes in performance when apply-
ing this perturbation.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 54.21 -0.26 4.21 0.20
Yi-6B 61.06 -0.06 2.33 -1.24
Mistral-7B 60.16 0.60 2.08 -2.06
Mistral-7B-Instruct 53.67 0.19 4.03 -0.56
Llama-2-7b 41.42 -0.39 15.05 6.56
Llama-2-7b-chat 47.22 0.85 14.22 -1.88
Llama-2-13b 53.46 1.38 10.46 -1.59
Llama-2-13b-chat 53.20 0.08 11.09 -1.71
Yi-34B 73.64 0.26 5.68 0.51
Llama-2-70b 65.48 0.04 3.51 0.30
Llama-2-70b-chat 61.20 0.09 10.31 -0.63

kτ=0.927

Table A.21: Zero-shot results on adding the “Correct"
token in the prompt. (experiment 2 from figure 10).
There are minimal changes in performance when apply-
ing this perturbation.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 56.69 -0.08 2.57 -0.08
Yi-6B 63.69 0.46 3.22 0.68
Mistral-7B 62.60 0.23 2.98 1.33
Mistral-7B-Instruct 53.99 0.04 4.62 -0.16
Llama-2-7b 45.80 -0.09 8.75 -0.17
Llama-2-7b-chat 47.42 0.20 12.03 -0.11
Llama-2-13b 55.47 0.41 5.04 0.62
Llama-2-13b-chat 53.58 0.05 8.32 0.00
Yi-34B 76.36 -0.02 2.14 -0.02
Llama-2-70b 68.71 -0.07 1.63 0.06
Llama-2-70b-chat 63.14 -0.03 8.49 0.43

kτ=1.0

Table A.22: Few-shot results of removing the subject
name from the prompt. (experiment 1 from figure 10).
There are minimal changes in performance when apply-
ing this perturbation.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 56.57 -0.21 3.95 1.30
Yi-6B 63.20 -0.03 4.01 1.47
Mistral-7B 62.79 0.43 3.51 1.87
Mistral-7B-Instruct 53.85 -0.10 5.51 0.73
Llama-2-7b 46.21 0.33 7.14 -1.78
Llama-2-7b-chat 47.48 0.26 10.42 -1.73
Llama-2-13b 55.18 0.11 4.79 0.37
Llama-2-13b-chat 53.75 0.23 6.58 -1.74
Yi-34B 75.98 -0.41 1.71 -0.46
Llama-2-70b 69.10 0.32 0.83 -0.73
Llama-2-70b-chat 62.86 -0.31 7.20 -0.86

kτ=1.0

Table A.23: Few-shot results on adding the “Correct" to-
ken in the prompt. (experiment 2 from figure 10). There
are minimal changes in performance when applying this
perturbation.

Model Task acc ∆Acc

phi-2 54.94 -1.84
Yi-6B 61.51 -1.72
Mistral-7B 59.56 -2.80
Mistral-7B-Instruct 51.72 -2.24
Llama-2-7b 44.10 -1.79
Llama-2-7b-chat 46.92 -0.30
Llama-2-13b 52.61 -2.46
Llama-2-13b-chat 52.63 -0.90
Yi-34B 73.89 -2.50
Llama-2-70b 66.26 -2.52
Llama-2-70b-chat 60.85 -2.31

kτ = 0.927

Table A.24: Subject independent five-shots example
results with the first prompt. (follow Figure 9 for de-
tails). With few exceptions, most models exhibit a 2%
drop from changing the few shots example domains.
For models that are not fine-tuned, we noticed a perfor-
mance that is halfway between the standard zero-shot
and five-shot. Indicating that these models utilize the
few shots for both formatting and knowledge domain
information.
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Model Task acc ∆Acc

phi-2 55.25 -1.52
Yi-6B 61.15 -2.08
Mistral-7B 59.68 -2.69
Mistral-7B-Instruct 52.12 -1.84
Llama-2-7b 44.12 -1.76
Llama-2-7b-chat 46.74 -0.48
Llama-2-13b 52.91 -2.16
Llama-2-13b-chat 52.19 -1.33
Yi-34B 73.62 -2.76
Llama-2-70b 66.06 -2.72
Llama-2-70b-chat 60.64 -2.53

kτ = 0.964

Table A.25: Subject independent five-shot example re-
sults with the second prompt. (follow figure 9 for de-
tails). Changes in the initial prompt only result in negli-
gible differences when compared to the first prompt in
Table A.24.

Model Task Acc Task Acc
1-shot 5-shot

phi-2 33.59 13.91
Yi-6B 36.13 17.97
Mistral-7B 19.51 13.20
Mistral-7B-Instruct 10.71 4.59
Llama-2-7b 24.25 23.63
Llama-2-7b-chat 16.24 28.11
Llama-2-13b 12.76 4.50
Llama-2-13b-chat 31.49 26.30
Yi-34B 32.08 37.42
Llama-2-70b 26.27 21.54
Llama-2-70b-chat 26.26 37.23

kτ 0.382 0.164

Table A.26: Providing the incorrect answer in-context.
Performance drastically drops across the board, indi-
cating that models are easily influenced by the answers
given in-context, even when they are incorrect.

Task Acc Task Acc
Model 1-shot 5-shot

phi-2 71.778 92.366
Yi-6B 90.91 97.09
Mistral-7B 97.45 98.99
Mistral-7B-Instruct 98.64 99.25
Llama-2-7b 61.00 63.82
Llama-2-7b-chat 87.77 80.15
Llama-2-13b 96.60 99.79
Llama-2-13b-chat 87.02 92.69
Yi-34B 99.10 98.50
Llama-2-70b 93.45 99.09
Llama-2-70b-chat 98.25 93.86

kτ 0.491 0.382

Table A.27: Results of the one-shot and five-shot
MMLU in-context cheating experiment. Performance
expectedly increases, indicating that models are readily
able to "cheat" from the given few-shot examples in
both five-shot and one-shot cases. However, no model
achieved 100% accuracy, so we encourage the investi-
gation of misclassified samples to validate their correct-
ness.

5-shot Baseline A B C D

phi-2 56.77
36.67

(-20.11)
41.33

(-15.44)
40.67

(-16.11)
41.67

(-15.11)

Yi-6B 63.23
36.67

(-26.56)
36.33

(-26.89)
37.67

(-25.56)
39.33

(-23.89)

Mistral-7B 62.36
34.67

(-27.70)
41.33

(-21.03)
43.00

(-19.36)
40.33

(-22.03)

Mistral-7B-Instruct 53.95
32.67

(-21.29)
33.33

(-20.62)
30.67

(-23.29)
35.33

(-18.62)

Llama-2-7b 45.88
22.00

(-23.88)
31.00

(-14.88)
30.67

(-15.22)
34.33

(-11.55)

Llama-2-7b-chat 47.22
31.00

(-16.22)
30.67

(-16.56)
28.67

(-18.56)
31.00

(-16.22)

Llama-2-13b 55.06
35.33

(-19.73)
36.33

(-18.73)
37.67

(-17.40)
32.67

(-22.40)

Llama-2-13b-chat 53.53
31.67

(-21.86)
33.00

(-20.53)
34.67

(-18.86)
33.67

(-19.86)

Yi-34B 76.39
49.67

(-26.72)
49.33

(-27.05)
50.33

(-26.05)
48.67

(-27.72)

Llama-2-70b 68.78
42.67

(-26.11)
44.67

(-24.11)
43.33

(-25.45)
44.33

(-24.45)

Llama-2-70b-chat 63.17
40.33

(-22.84)
42.33

(-20.84)
42.00

(-21.17)
41.33

(-21.84)

kτ - 0.855 0.818 0.782 0.636

Table A.28: Results of fixing the five-shot example
answers to positions A/B/C/D, averaged over the three
selected subjects. We can see that performance drops
across the board, suggesting that models get confused
when there is a clear pattern in the correct answers of
the few-shot examples.
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subject choice_A choice_B choice_C choice_D total
abstract_algebra 22 26 31 21 100
anatomy 25 34 45 31 135
astronomy 27 28 46 51 152
business_ethics 30 26 23 21 100
clinical_knowledge 57 71 58 79 265
college_biology 37 32 37 38 144
college_chemistry 20 21 18 41 100
college_computer_science 26 15 26 33 100
college_mathematics 21 23 25 31 100
college_medicine 36 36 43 58 173
college_physics 22 20 22 38 102
computer_security 28 24 30 18 100
conceptual_physics 62 76 48 49 235
econometrics 27 32 28 27 114
electrical_engineering 35 32 43 35 145
elementary_mathematics 79 97 101 101 378
formal_logic 36 25 19 46 126
global_facts 18 31 33 18 100
high_school_biology 55 79 78 98 310
high_school_chemistry 31 55 60 57 203
high_school_computer_science 25 23 33 19 100
high_school_european_history 36 40 47 42 165
high_school_geography 35 43 50 70 198
high_school_government_and_politics 38 40 44 71 193
high_school_macroeconomics 79 86 83 142 390
high_school_mathematics 57 71 71 71 270
high_school_microeconomics 50 55 50 83 238
high_school_physics 30 30 41 50 151
high_school_psychology 105 129 121 190 545
high_school_statistics 33 35 46 102 216
high_school_us_history 51 48 53 52 204
high_school_world_history 64 62 63 48 237
human_aging 70 84 45 24 223
human_sexuality 34 30 30 37 131
international_law 29 30 45 17 121
jurisprudence 28 32 25 23 108
logical_fallacies 36 40 49 38 163
machine_learning 35 32 27 18 112
management 18 26 20 39 103
marketing 68 60 60 46 234
medical_genetics 30 26 20 24 100
miscellaneous 186 225 212 160 783
moral_disputes 86 85 101 74 346
moral_scenarios 213 217 221 244 895
nutrition 69 70 77 90 306
philosophy 58 85 93 75 311
prehistory 70 86 95 73 324
professional_accounting 66 72 76 68 282
professional_law 377 367 415 375 1534
professional_medicine 50 55 45 122 272
professional_psychology 153 157 169 133 612
public_relations 24 38 23 25 110
security_studies 46 42 59 98 245
sociology 49 48 50 54 201
us_foreign_policy 28 21 25 26 100
virology 47 53 34 32 166
world_religions 55 36 50 30 171
total 3222 3462 3582 3776 14042

Table A.29: The MMLU subjects statistics in the test
split.

subject choice_A choice_B choice_C choice_D total
abstract_algebra 2 2 1 0 5
anatomy 0 1 2 2 5
astronomy 3 0 0 2 5
business_ethics 1 1 1 2 5
clinical_knowledge 1 2 2 0 5
college_biology 0 3 1 1 5
college_chemistry 2 0 1 2 5
college_computer_science 0 2 0 3 5
college_mathematics 0 2 1 2 5
college_medicine 2 1 1 1 5
college_physics 3 1 0 1 5
computer_security 1 1 1 2 5
conceptual_physics 2 1 2 0 5
econometrics 1 0 3 1 5
electrical_engineering 1 2 1 1 5
elementary_mathematics 1 4 0 0 5
formal_logic 0 1 3 1 5
global_facts 2 3 0 0 5
high_school_biology 1 0 1 3 5
high_school_chemistry 1 0 3 1 5
high_school_computer_science 0 1 3 1 5
high_school_european_history 2 1 1 1 5
high_school_geography 1 2 1 1 5
high_school_government_and_politics 1 0 2 2 5
high_school_macroeconomics 0 0 3 2 5
high_school_mathematics 0 1 2 2 5
high_school_microeconomics 0 1 2 2 5
high_school_physics 0 2 0 3 5
high_school_psychology 1 2 1 1 5
high_school_statistics 0 0 1 4 5
high_school_us_history 0 2 2 1 5
high_school_world_history 1 3 0 1 5
human_aging 1 2 2 0 5
human_sexuality 3 1 1 0 5
international_law 2 2 1 0 5
jurisprudence 2 0 0 3 5
logical_fallacies 0 1 2 2 5
machine_learning 1 1 2 1 5
management 3 0 1 1 5
marketing 1 1 0 3 5
medical_genetics 3 0 1 1 5
miscellaneous 1 2 2 0 5
moral_disputes 3 1 0 1 5
moral_scenarios 1 1 2 1 5
nutrition 1 1 2 1 5
philosophy 1 0 3 1 5
prehistory 2 1 1 1 5
professional_accounting 2 2 0 1 5
professional_law 2 2 0 1 5
professional_medicine 0 0 1 4 5
professional_psychology 2 0 0 3 5
public_relations 1 0 2 2 5
security_studies 0 2 2 1 5
sociology 1 3 1 0 5
us_foreign_policy 1 0 2 2 5
virology 2 1 1 1 5
world_religions 1 3 0 1 5
total 67 69 71 78 285

Table A.30: The MMLU subjects statistics in the dev
split, which is a fixed set of questions per subject used
in fewshots evaluation.
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