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Abstract

Domain adaptation aims to enable Large Lan-
guage Models (LLMs) to generalize domain
datasets unseen effectively during the training
phase. However, factors such as the size of
the model parameters and the scale of training
data are general influencers and do not reflect
the nuances of domain adaptation performance.
This paper investigates the fine-grained factors
affecting domain adaptation performance, an-
alyzing the specific impact of ‘words’ in train-
ing data on summarization tasks. We propose
quantifying dataset learning difficulty as the
learning difficulty of generative summarization,
which is determined by two indicators: word-
based compression rate and abstraction level.
Our experiments conclude that, when consider-
ing dataset learning difficulty, the cross-domain
overlap and the performance gain in summa-
rization tasks exhibit an approximate linear re-
lationship, which is not directly related to the
number of words. Based on this finding, pre-
dicting a model’s performance on unknown do-
main datasets is possible without undergoing
training. Source code and scripts are available
at https://github.com/li-aolong/
Word-Matters.

1 Introduction

With the continuous development of Large Lan-
guage Models (LLMs), remarkable capabilities
have been demonstrated in knowledge compre-
hension (Thirunavukarasu et al., 2023a; Sun
et al., 2023), logical reasoning (Hao et al., 2023;
Miao et al., 2023), problem-solving (Chan et al.,
2023; Talebirad and Nadiri, 2023), and other as-
pects (Zhao et al., 2023; Wen et al., 2023).

As a result, LLMs have been widely applied to
various summarization tasks on different domains
to improve productivity like law (Shukla et al.,
2022), medicine (Veen et al., 2023), finance (Li
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et al., 2023) and so on, including both natural and
social science study (Glickman and Zhang, 2024;
Xu et al., 2024). However, when LLMs are ap-
plied to specific domains, it often necessitates the
selection of corresponding domain-specific knowl-
edge bases for training (Zhang et al., 2023; Cui
et al., 2024; Thirunavukarasu et al., 2023b; Yu et al.,
2021). This results in a limitation where a model
trained in one domain struggles to be effectively
applied in others (Dada et al., 2023), leading to a
waste of resources.

This constraint arises from the disparity in the
distribution between the training data and the target
domain data (Zhang et al., 2022). In light of this
limitation, effective methods must be taken to fix
the gap and then enhance the model’s adaptability
and efficiency in summarization tasks. Domain
adaptation aims to train a model from multiple
source domains, enabling it to generalize well to
unseen domains (Li et al., 2018; Dou et al., 2019).
Consequently, enhancing domain adaptation perfor-
mance is a key objective for large-scale models in
improving downstream tasks (Zhou et al., 2021a).
It is worthwhile to explore which factors can affect
the domain adaptation performance (Wang et al.,
2021).

Schaeffer et al. (2023) proposes that metrics
based on nonlinear or non-contiguous tokens are
crucial to a model demonstrating emergent abilities
and that ROUGE-L-Sum shows sharper variations.
This has inspired us to consider the performance
changes of models in domain adaptation from the
perspective of more granular units. Tokens typi-
cally do not possess complete semantics, whereas
words are the basic language units with specific
meanings or functions. Therefore, we consider
exploring the impact on model performance in do-
main adaptation from the perspective of words.

Summarization tasks involve generating con-
cise texts that encapsulate the main components
of longer documents, considering factors such
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as coherence, information diversity, and cover-
age scope (Alomari et al., 2022). This differs
from other downstream tasks like machine transla-
tion (Klimova et al., 2022) and classification (Bird
et al., 2020). Fatima et al. (2022) note that reduc-
ing summary extractors’ size or compression ratio
can lead to losing vital content, features, concepts,
and other significant information. Therefore, we
explore how the degree of information extraction
between input documents and target summaries
impacts domain adaptation performance in summa-
rization tasks.

This paper investigates how words impact the
domain adaptation of summary tasks. We first in-
troduce two indicators, compression rate, and ab-
straction level, to quantify the learning difficulty
of datasets, thereby more accurately reflecting the
performance gain of models. Then, we identify
two key aspects affecting domain adaptation: cross-
domain overlap and word count, hypothesizing a
linear relationship between them and model perfor-
mance. Experiments are conducted with models
of various sizes on summarization datasets from
four domains. The results indicate that the cross-
domain overlap exhibits an approximately linear re-
lationship with performance gain when considering
dataset learning difficulty. In contrast, word count
shows no significant correlation. Based on this
linear relationship, it is possible to predict model
performance without undergoing training by us-
ing the cross-domain overlap calculated from the
dataset. Our contributions can be summarized as
follows:

• We propose two factors affecting the domain
adaptation of summarization tasks: (1) Learn-
ing difficulty coefficient of the dataset more
accurately reflects the performance gain; (2)
Cross-domain overlap directly represents the
closeness between the source and target do-
mains.

• Our experiments show that cross-domain over-
lap has an approximately linear relationship
with performance gains based on the learning
difficulty coefficient, revealing the connection
between datasets and domain adaptation from
the perspective of words.

• We demonstrate that without undergoing train-
ing, it is possible to predict a model’s perfor-
mance on unknown domain datasets solely
based on the learning difficulty coefficient

and cross-domain overlap. This provides a
resource-efficient and rapid validation method
for models regarding domain adaptation.

2 Related Work

Domain Adaptation (DA) has emerged as a crucial
methodology for enhancing model performance
across varying domains (Farahani et al., 2020). DA
aims to enhance the performance of LLMs in a tar-
get domain, where annotated data may be scarce or
absent, by leveraging knowledge from a related do-
main with a sufficient amount of labeled data (Fara-
hani et al., 2020). Many methods have been de-
veloped to tackle the out-of-domain adaptation is-
sue (Zhou et al., 2021b; Fan et al., 2021; Cha et al.,
2021; Wang et al., 2022; Ling et al., 2023). There
are three pivotal strategies related to our work: (1)
Continual pre-training, (2) Alignment of distribu-
tions, and (3) Adaptation tuning.

Continual Pre-training Continual pre-training
uses similar training objectives as continual self-
supervised training to update pre-trained mod-
els with new data instead of retraining from
scratch (Gupta et al., 2023). Continual pre-training
is studied for domain adaptation where the new
dataset comes from a new domain, which is re-
ferred to as continual domain-adaptive pre-training
(DA-training) (Gururangan et al., 2021; Scialom
et al., 2022; Ke et al., 2023a). DAP-training meth-
ods can achieve better results by training LLMs
with a large unlabeled domain corpus before end-
task fine-tuning (Alsentzer et al., 2019; Lee et al.,
2019; Gururangan et al., 2020; Ke et al., 2023b).
However, the effectiveness of this method is contin-
gent upon the relevance of the pre-trained LLMs to
the target domain and requires substantial domain-
specific data to achieve optimal performance.

Alignment of Distributions Aligning the statis-
tical attribution of the source and target domains
to match their distributions has emerged as a prin-
cipal method (Peng et al., 2019; Nguyen-Meidine
et al., 2020). The general way of aligning the dis-
tributions is by minimizing the distance between
domains. The most used distance measures in do-
main adaptation are maximum mean discrepancy,
Kullback-Leibler divergence, and contrastive do-
main discrepancy (Long et al., 2015; Ganin and
Lempitsky, 2015). The strength of this approach
lies in its theoretical rigor and the potential for pre-
cise domain alignment. Nevertheless, the challenge
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of selecting appropriate distance metrics and the
computational complexity of these calculations can
pose significant obstacles. Compared with this, we
adopt word-based statistical metrics to calculate
the similarity between texts from different domains
directly.

Adaptation Tuning LLMs may not capture suffi-
cient knowledge for specific tasks or domains even
when trained on vast amounts of general text data.
Adapting models to a smaller, domain-specific
dataset can significantly improve their performance
in that specific area. Here are three primary meth-
ods for adapting LLMs: (1) Prompt engineering
has shown its power to quickly adapt LLMs to
unseen domains without updating the inner param-
eters. Prompts define unseen tasks with or without
several illustrative examples to LLMs in natural
language (Ben-David et al., 2022; Kojima et al.,
2023). Continuous prompts are sequences of to-
kens attached with the input sentence that can be
learned from the downstream dataset by prompt
tuning (Ye et al., 2022; Vu et al., 2022; Razdaibied-
ina et al., 2023). Su et al. (2022) demonstrate the
transferability of continuous prompts in both cross-
task as well as cross-model settings; (2) Adapter
fine-tuning, such as Low-rank adapters (Hu et al.,
2021) and DyLora (Valipour et al., 2023), adds
a small number of extra parameters to LLMs to
enhance performance without major modifications;
(3) Full fine-tuning is still the most fundamental
and wildly used method to improve the model’s
adaptation performance. Instruction fine-tuning
has proven to be highly successful in enhancing
the model’s adaptation capabilities (Chung et al.,
2022; Menick et al., 2022; Wei et al., 2022; Huang
et al., 2023). However, how to select suitable data
to cultivate LLMs’ adapting capacity and predict
transferring results remain a problem.

3 What and How does Word Influence
Domain Adaptation?

In this section, we explore how words can affect
aspects of domain adaptation and their impact. We
first hypothesize that datasets of varying learning
difficulties affect model performance and investi-
gate the influence of words on the learning diffi-
culty of target domain datasets. We propose two in-
dicators to reflect the learning difficulty of datasets:
Compression Ratio and Abstraction Level. Sec-
ondly, from the perspective of words, we propose
two aspects that could affect domain adaptation:

cross-domain overlap and word count. Finally, we
hypothesize a linear relationship between these as-
pects and domain adaptation performance based on
dataset learning difficulty. This hypothesis is tested
in subsequent experiments.

3.1 Word Influence On Target Domain
Dataset Learning Difficulty

We assume that different datasets have varying lev-
els of learning difficulty, and training models on
datasets with low learning difficulty can lead to
higher metric improvements on the test set. In con-
trast, the metric improvement is relatively small for
datasets with high learning difficulty. To quantita-
tively assess the learning difficulty of datasets for
the generative summarization task, we introduce
two indicators: Compression Ratio and Abstraction
Level.

Compression Ratio The Compression Ratio re-
flects the learning difficulty of a dataset in terms
of form, which describes the degree of length re-
duction of the original text relative to the generated
text. A higher compression Ratio indicates a more
challenging dataset because the model needs to
compress the content of the original documents to
a greater extent, which places a higher demand on
the model’s text comprehension and information
extraction capabilities. The Compression Ratio α
for a dataset containing n samples is represented as
the average Compression Ratio across all samples
and is calculated using the following formula:

α =
1

n

n∑

i=1

|Di|
|Si|

, (1)

where |Di| and |Si| represent the word count of the
i-th document and summary in the dataset, respec-
tively.

Abstraction Level Considering only the Com-
pression Ratio cannot fully reflect the dataset’s
learning difficulty. For example, if the reference
summaries in the dataset are verbatim excerpts of
specific sentences from the source document, even
though the Compression Ratio may be high, the
model only needs to learn to copy parts of the
document to achieve high performance. This is
a straightforward extractive pattern and does not
truly reflect the model’s summarization capability.
Therefore, we introduce Abstraction Level that re-
flects the learning difficulty of a dataset in terms
of content, which we define as the reciprocal of
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the average ROUGE score between the original
documents in the test set and the corresponding
summaries, with the formula represented as fol-
lows:

β =
n

n∑
i=1

ROUGE(di,si)

(2)

ROUGE is essentially a method for calculating
overlap. We argue that the overlap between doc-
uments and summaries can, to some extent, rep-
resent the co-occurrence of knowledge within the
dataset. A lower ROUGE value indicates lower
content relevance between the document and the
summary, making improving performance on that
dataset. Hence, we use the reciprocal of Abstrac-
tion Level to reflect the learning difficulty of the
dataset in terms of content.

Learning Difficulty Coefficient According to
the proposed two indicators influencing dataset
learning difficulty, we define a dataset’s learning
difficulty coefficient λ as the product of Compres-
sion Ratio and Abstraction Level, represented by
the following formula:

λ = αβ (3)

3.2 Possible Impact Aspects Cross Different
Domains Based on Words

We investigate the influence of words on domain
adaptation performance. Due to the limitations of
the original metric for summarization tasks, such
as ROUGE, in reflecting how well a model gener-
alizes across different domains, we introduce an
evaluation metric suitable for assessing domain
adaptation performance and explore the potential
factors that might affect this metric.

Summarization Gain The commonly used eval-
uation metric in summarization tasks, ROUGE, re-
flects performance on a specific dataset, whereas
the performance of domain adaptation is more evi-
dent in the change in absolute performance. There-
fore, we employ the ROUGE gain as a fundamental
measure of domain adaptation performance, with
the formula as follows:

Gain = ROUGEfine-tuned−ROUGEbase, (4)

where ROUGEbase represents the original
model’s ROUGE value calculated through direct

inference on the test set, while ROUGEfine-tuned
represents the ROUGE value obtained after the
model has been fine-tuned.

Cross-domain Overlap When considering per-
formance adaptation across different domains, in-
tuitively, they are more similar if there are more
overlapping words between datasets from different
domains. We assume this similarity can lead to per-
formance improvement in domain adaptation. We
propose cross-domain overlap to characterize the
word-level overlap ratio between different domains.
For source domain S containing n datasets and tar-
get domain T containing m datasets, the formula
for cross-domain overlap is expressed as follows:

γ =
1

n ·m
n∑

i=1

m∑

j=1

∑l
k=1Count(w

Tj

k , Si)

|Si| (5)

where Si and Ti represent the i-th dataset for the do-
main S and T respectively, l is the total number of
unique words in Tj , wTj

k represents the k-th unique
word in Tj , and Count(w

Tj

k , Si) is the number of
occurrences of word w

Tj

i in Si.

Word Count Word count refers to the total num-
ber of words across all samples in a dataset. Gener-
ally, the larger the number of training set samples
within a specific range, the better the model per-
formance. However, whether a higher total word
count in all samples is also beneficial is worth ex-
ploring. Therefore, we consider word count as
one aspect affecting the model’s domain adaptation
performance.

3.3 How to influence?
We posit that the metrics of cross-domain overlap
and Word Count notably influence domain adap-
tation performance, particularly when accounting
for dataset learning difficulty. The higher the cross-
domain overlap, the more similarity between the
source domain’s data and the target domain’s data.
Consequently, the model is more likely to lever-
age data from source domains to learn knowledge
that is closer to the target domain, resulting in bet-
ter adaptation to that domain. Regarding Word
Count, it is intuitive to assume that a larger train-
ing dataset size, and consequently a higher Word
Count, leads to better model performance. How-
ever, whether this correlation consistently extends
to domain adaptation performance remains an open
question for investigation.
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Dataset Domain
Training

Set
Test
Set

Document
Words (Avg.)

Summary
Words (Avg.)

CNNDM News
35,000 500 663 56

(287113) (11490) (781) (56)

PubMed Science
35,000 500 1064 190

(119,924) (6,658) (3,049) (202)

SAMSum Conversation
14,732 500 93 20

(14,732) (819) (92) (20)

WikiHow General
35,000 500 523 52

(157,252) (5,577) (580) (62)

Table 1: The statistics of datasets. The data in parenthe-
ses represent the total data from the original datasets.

LD-Gain When dataset learning difficulty is fac-
tored into domain adaptation performance, for
more challenging datasets, a model should require a
smaller performance gain to achieve the same level
of performance as when difficulty is not considered
since the dataset’s complexity impedes the model’s
ability to generalize across domains. Hence, we
hypothesize that cross-domain overlap and Word
Count are linearly related to the product of dataset
learning difficulty and performance gain, which is
referred to LD-Gain. The proposed hypotheses are
as follows:

Hypothesis1 :γ ∝ λGain = LD-Gain,

Hypothesis2 :WC ∝ λGain = LD-Gain,
(6)

where WC represents Word Count. The following
experiments section will verify the two hypotheses.

4 Experiments

We use four summarization datasets, CNN/Daily
Mail (Hermann et al., 2015), PubMed (Cohan et al.,
2018), SamSum (Gliwa et al., 2019) and Wiki-
How (Koupaee and Wang, 2018), each originating
from the news, science, conversation, and general
domains respectively. Due to the significant dif-
ferences in the number of samples across differ-
ent datasets, we sample 35,000 samples from the
CNNDM, PubMed, and WikiHow datasets for the
training set while retaining the entire SAMSum
dataset. We sample 500 test samples from all the
test sets of these datasets. The detailed statistical
data of the datasets are shown in Table 1.

To verify the above two hypotheses, we config-
ure different experimental setups for cross-domain
overlap and Word Count. All experiments are based
on the Bloom (Scao et al., 2022) and Llama2 (Tou-
vron et al., 2023) series of models. Due to resource
constraints, different experiments use models of
various sizes. The prompts used to train the Llama2
and Bloom models are presented in appendix A.

4.1 Setup for Cross-domain Overlap

Cross-domain overlap is calculated between the dif-
ferent source and target domains. Considering the
potential impact of the number of source domains
on the results, we set up two experiments: single-
domain adaptation and multi-domain adaptation.

Single-domain Adaptation Single-domain adap-
tation refers to training on a single source domain
and testing on different target domains. We first test
the basic performance of models on test sets across
four domains and then fine-tune the models using
training sets from the three domains, excluding the
test set domain. For a model, this results in hav-
ing models trained on three single-domain datasets,
which are then tested for their performance on the
test sets. Finally, we calculate the change in perfor-
mance. The Bloom-1.1B, Bloom-3B, and Llama-2
7B models are trained on 4 RTX 3090 GPUs in
this experiment. For the Bloom-1.1B and 3B mod-
els, we conduct full-parameter fine-tuning for one
epoch with a learning rate 2e-5 and a batch size of
4. For the Llama2-7B model, we use LoRA (Hu
et al., 2021) for fine-tuning over three epochs, with
the other hyperparameters remaining unchanged.

Multi-Domain Adaptation Multi-domain adap-
tation refers to training on multiple source domains.
When one of the four domain datasets is selected
as the test set, the datasets from the other three
domains are combined to serve as the training set.
In this experiment, we use the Bloom-1B and 3B
models. The basic performance of the two mod-
els on the four domain test sets has already been
tested in the single-domain adaptation, so we use
the mixed dataset from the three domains, exclud-
ing the test set domain, for training to calculate the
performance change. The training hyperparame-
ters are the same as those used in the single-domain
adaptation.

4.2 Setup for Word Count

To minimize the interference of other factors in
investigating the relationship between word count
and domain adaptation, we use only one domain
dataset, CNNDM, for training. Then, we test on the
same domain’s test set and the test sets of the other
three domains to observe the impact of word count
on the results. The CNNDM training set is evenly
divided into ten chunks, each used for training in
separate stages. Training is conducted in ten stages,
starting with the first chunk as the training set. In

13240



Training Set Test Set
Compression

Rate
Abstract

Level
Learning Difficulty

Coefficient
ROUGE

Base
ROUGE

Fine-tuned
ROUGE

Improvement
Cross-domain

Overlap
LD-Gain

PubMed
CNNDM 12.95 20.22 261.85 8.10

7.84 -0.26 2.35% -68.08
SAMSum 10.23 2.13 8.89% 557.74
WikiHow 8.47 0.37 4.47% 96.88
CNNDM

PubMed 7.08 13.13 92.96 7.42
10.65 3.28 2.90% 304.91

SAMSum 6.80 -0.62 3.51% -57.64
WikiHow 6.42 -1.00 3.56% -92.96
CNNDM

SAMSum 4.86 16.76 81.45 5.22
6.36 1.14 1.62% 92.85

PubMed 4.61 -0.61 0.64% -49.68
WikiHow 2.99 -2.23 1.26% -181.63
CNNDM

WikiHow 13.05 39.23 511.95 4.562
5.075 0.513 3.30% 262.63

PubMed 4.506 -0.056 2.25% -28.67
SAMSum 5.39 0.83 7.53% 424.92

Table 2: Results of single-domain adaptation on the Llama-2 7B model.

(a) Bloom-1.1B (b) Bloom-3B (c) Llama2-7B

Figure 1: Single-domain adaptation. The dotted line reflects a changing trend fitting the scatter data. The light-
colored area represents a standard deviation of plus or minus.

(a) Multi-Domain (b) Mixed-Domain

Figure 2: The left is the result of multi-domain adap-
tation for Bloom-1.1B and 3B. The right contains the
results of both single-domain and multi-domain adapta-
tion.

subsequent stages, each phase uses the training
set from the previous stage plus the next chunk,
continuing until the final stage, where the entire
dataset of the source domain is used for training.
Each stage involves training for one epoch.

5 Results and Analysis

We analyze the results from different perspectives.
Both single-domain and multi-domain experiment
results supported our hypothesis that cross-domain
overlap is linearly correlated with performance.

Due to this finding, we could make a quantitative
prediction about the transferred result of certain
given training and evaluating datasets. On the other
hand, we found that word count is unrelated to
domain adaptation, which further emphasizes the
significance of choosing high-quality data rather
than a large amount of data.

To solidify the universality of our findings, we
conduct a prediction study and it turns out that
our hypothesis can successfully predict domain
adaptation performance with cross-domain overlap.
There is only a slight gap between our prediction
data and observed data.

5.1 Cross-domain overlap is linearly
correlated with performance

Single-Domain Adaptation The results of the
single-domain adaptation for Llama2-7B are shown
in Table 2, and the results of Bloom-1.1B and 3B
are shown in Table 5 and Table 6 of Appendix B.
The compression rate, abstraction level, and the
learning difficulty coefficient calculated based on
them only relate to the test set. Therefore, these
indicators remain constant for the same test set,
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Model CNNDM PubMed SAMSum WikiHow
Compression

Rate
Abstract

Level
Learning Difficulty

Coefficient
ROUGE

base
ROUGE

Fine-tuned
ROUGE

Improvement
Cross-domain

Overlap
LD-Gain

Bloom-1B

 # # # 12.95 20.22 261.85 3.72 3.91 0.19 3.13% 49.75
#  # # 7.08 13.13 92.96 4.13 4.65 0.52 3.18% 48.34
# #  # 4.86 16.76 81.45 1.75 1.65 -0.1 1.05% -8.15
# # #  13.05 39.23 511.95 2.51 2.49 -0.02 2.60% -10.24

Bloom-3B

 # # # 12.95 20.22 261.85 4.06 5.48 1.42 3.13% 371.83
#  # # 7.08 13.13 92.96 4.84 6.87 2.03 3.18% 188.71
# #  # 4.86 16.76 81.45 1.81 2.17 0.36 1.05% 29.32
# # #  13.05 39.23 511.95 2.59 3 0.41 2.60% 209.90

Table 3: Multi-domain Adaptation.  represents the test sets, while # constitutes the training sets together.

even if the training set changes. Similarly, the base
ROUGE value of the model on the test set also
remains unchanged.

Figure 1 illustrates the relationship between
cross-domain overlap and LD-Gain for three dif-
ferent models. It can be observed that when there
is a low overlap between the target domain and
the source domain, the model fails to general-
ize well to the target domain. Conversely, the
model performance tends to exhibit significant im-
provement when there is high vocabulary over-
lap. We also utilize another similarity calculation
method, BERTScore (Zhang et al., 2019), to re-
place ROUGE values in computing LD-Gain. The
results for single-domain adaptation on bloom-3b
and llama2-7b are depicted in the figure 5 of Ap-
pendix C. We observe that the relationship be-
tween LD-Gain computed based on BERTScore
and cross-domain overlap is similar to the results
obtained with ROUGE-based calculations. Based
on this discovery, we believe that there exists a
linear correlation between vocabulary overlap and
model performance gain, factoring in dataset learn-
ing difficulty.

Multi-Domain Adaptation Table 3 presents the
results obtained by training with multiple domain
data and testing with a single domain. It can be
observed that the ROUGE improvement of Bloom-
1B on CNNDM is 0.19, which is smaller than 0.52
compared to the improvement on PubMed. How-
ever, the learning difficulty coefficient for the CN-
NDM test set is higher at 261.85, exceeding the
value of 92.96 for PubMed. Therefore, the LD-
Gain of the model on CNNDM, adjusted by the
learning difficulty coefficient, is higher than that of
PubMed.

The relationship between cross-domain overlap
and LD-Gain for multi-domain adaptation is illus-
trated in Figure 2a. We also combine the results
of single-domain and multi-domain adaptation and
plot them in a single graph, as shown in Figure 2b.

It can be observed that as the cross-domain over-
lap increases, the model’s actual gains gradually
increase. This finding reveals that cross-domain
overlap has a linear relationship with performance
in domain adaptation.

5.2 Word count is not related to performance

The word count results are presented in Table 4.
It can be observed that the word count within a
chunk is relatively similar, indicating that the word
count can be controlled by increasing the number
of chunks. On the other hand, the overlap within
a domain does not vary significantly. It remains
stable within a small range, allowing for the ob-
servation of the relationship between overlap and
performance across different domains.

The visual results from Figure 3 demonstrate
that there is no clear upward or downward trend in
model performance across different domains as the
word count increases. Instead, there is oscillation
within a specific range. The fluctuations are most
prominent for the target domains CNNDM and
SAMSum, which remain relatively stable within a
specific range. Consequently, we conclude that the
influence of word count on domain adaptation per-
formance is unrelated. There are instances where
performance may even decline with an increase in
word count.

Meanwhile, we also calculate the overlap of each
chunk to observe whether there is still a linear rela-
tionship between the improvement of model perfor-
mance and overlapping data at different domains.
Although the cross-domain overlap is relatively
similar within the same domain, a linear correlation
exists between cross-domain overlap and LD-Gain
across different domains. Specifically, the model
exhibits higher actual gains as the cross-domain
overlap increases.

5.3 Predictability

The preceding experiments have confirmed a lin-
ear correlation between the cross-domain overlap
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Test Set Chunk0 Chunk1 Chunk2 Chunk3 Chunk4 Chunk5 Chunk6 Chunk7 Chunk8 Chunk9

Word Count 2,608,429 2,594,348 2,591,597 2,573,224 2,641,309 2,558,078 2,582,793 2,594,890 2,607,471 2,614,820

Cross-domain
Overlap

CNNDM 7.37% 7.35% 7.39% 7.35% 7.28% 7.29% 7.33% 7.28% 7.25% 7.34%
PubMed 2.93% 3.00% 2.94% 2.87% 2.91% 2.92% 2.92% 2.95% 2.93% 2.84%

SAMSum 1.59% 1.56% 1.74% 1.57% 1.60% 1.55% 1.60% 1.60% 1.64% 1.76%
WikiHow 3.58% 3.57% 3.64% 3.60% 3.56% 3.55% 3.54% 3.55% 3.48% 3.55%

LD-Gain

CNNDM 851.00 775.07 971.45 735.79 960.98 995.02 1091.91 811.73 976.69 1099.76
PubMed 43.69 31.61 21.38 26.96 33.47 49.27 25.10 26.03 35.32 40.90

SAMSum 6.52 0.81 13.03 -24.44 -1.63 -24.44 -20.36 -8.96 -38.28 -17.11
WikiHow -102.39 -15.36 25.60 -66.55 -30.72 30.72 112.63 -35.84 20.48 -66.55

Table 4: Results of different chunks on test sets across various domains. The word count is increasing from Chunk0
to Chunk9.

Figure 3: Relationship between word count and LD-
Gain. As word count increases, there is no significant
trend in LD-Gain change.

and performance, taking into account dataset learn-
ing difficulty. Based on this observation, we can
extrapolate performance predictions for unknown
domain datasets using the results from existing do-
main datasets. As depicted in Figure 1a, a linear
fit to the scatter plot of single-domain data yields
a performance prediction trend for Bloom-1.1B
in single-domain adaptation, as illustrated by the
dashed line in Figure 4.

We re-sample 500 different examples, distinct
from the previous datasets. Subsequently, we com-
pute the compression ratio and abstraction level val-
ues for the four new test sets, obtaining the learning
difficulty coefficient λ. Based on the metrics from
the training set used in the previous single-domain
experiments, we calculate the cross-domain over-
lap γ value. Ideally, we can use λ and γ to predict
the model’s performance gain on the new dataset,
thereby obtaining the predicted ROUGE value with

Figure 4: The dotted line is the predicted line from the
previous experiment, while the solid line is drawn with
the testifying dataset.

the formula as follows:

ROUGEpredicted = Gain+ROUGEbase,

Gain =
LD-Gain

λ
,

LD-Gain = β0 + β1γ,

(7)

where β represents the parameters of the fitting line
under the existing data of the model.

We conduct experiments using the Bloom-1.1B
model. The results of the new dataset, along with
the fitted curve, are shown in Figure 4 as scatter
points and a solid line. It can be observed that the
predicted fitted line and the actual experimental
results’ fitted line exhibit a similar trend, with a
relatively small difference. This indicates that we
can estimate the performance for unseen domain
datasets based on the dataset’s characteristics and
existing performance results, thereby obtaining a
rough performance expectation before actual infer-
ence.
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6 Conclusion
We investigate the impact of words on domain adap-
tation performance in summarization tasks. We
propose two indicators to represent the learning dif-
ficulty from a dataset and introduce a performance
evaluation method based on learning difficulty. We
find that word overlap is an essential factor affect-
ing domain adaptation and exhibits a linear cor-
relation with model performance. However, the
influence of word count on domain adaptation does
not show a regular pattern. We will investigate this
phenomenon further in future work.

Furthermore, by predicting the performance of
new domain data based on its cross-domain overlap
with existing domains, it becomes possible to pre-
emptively assess the model’s suitability for specific
domains without the need for extensive retraining
or fine-tuning. This predictive capability can signif-
icantly streamline the adaptation of language mod-
els to new domains and save many resources, fi-
nally improving their practical utility in real-world
applications.

7 Limitations

The approaches of domain adaption mainly involve
continual pre-training, alignment of distributions,
and adaptation tuning. Our findings are related to
the third one and, therefore, limited to discussing
the influence factors of pre-training data, model
parameters, and so on. For the adaptation tuning
method, our paper focuses on exploring word im-
pact on domain adaptation. Other factors, such as
the quality of summarization training data, instruc-
tion diversity, and quality, are out of our considera-
tion and may bring additional noise.

Due to resource constraints, this paper employed
LoRA fine-tuning for a 7B model without investi-
gating the effects of different fine-tuning methods
on domain adaptation. In future work, we will ex-
plore in more detail the impact of dataset quality
and different training methods on domain adapta-
tion.
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A The training prompts

The prompt used to train the Llama2 model.

<s> [INST] «SYS» You are a helpful, respectful and honest assistant. Always
answer as helpfully as possible while being safe. Your answers should not
include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal
content. Please ensure that your responses are socially unbiased and positive in
nature.

If a question does not make any sense, or is not factually coherent, explain
why instead of answering something not correct. If you don’t know the answer to
a question, please don’t share false information. «/SYS»

Summarize the following paragraph
<Dodument>
[/INST]

The prompt used to train the Bloom model.

<s>A chat between a curious user and an artificial intelligence assistant. The
assistant gives helpful, detailed, and polite answers to the user’s questions.
summarize the following paragraph <Document>

B Results of Bloom-1.1B and 3B

C Results of BERTScore
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Training Set Test Set
Compression

Rate
Abstract

Level
Learning Difficulty

Coefficient
ROUGE

Base
ROUGE

Fine-tuned
ROUGE

Improvement
Cross-domain

Overlap
LD-Gain

PubMed
CNNDM 12.95 20.22 261.85 3.72

3.33 -0.39 2.35% -102.12
SAMSum 6.13 2.41 8.89% 631.06
WikiHow 4.38 0.66 4.47% 172.82
CNNDM

PubMed 7.08 13.13 92.96 4.13
3.87 -0.26 2.90% -24.17

SAMSum 4.78 0.65 3.51% 60.42
WikiHow 5.2 1.07 3.96% 99.47
CNNDM

SAMSum 4.86 16.76 81.45 1.75
1.32 -0.43 1.62% -35.03

PubMed 2.04 0.29 0.64% 23.62
WikiHow 2.37 0.62 1.26% 50.50
CNNDM

WikiHow 13.05 39.23 511.95 2.51
2.43 -0.08 3.30% -40.96

PubMed 2.66 0.15 2.25% 76.79
SAMSum 2.46 -0.05 7.53% -25.6

Table 5: Results of single-domain adaptation on the Bloom-1.1B model.

Training Set Test Set
Compression

Rate
Abstract

Level
Learning Difficulty

Coefficient
ROUGE

Base
ROUGE

Fine-tuned
ROUGE

Improvement
Cross-domain

Overlap
LD-Gain

PubMed
CNNDM 12.95 20.22 261.85 6.348

7.38 1.03 2.35% 269.71
SAMSum 8.91 2.56 8.89% 670.34
WikiHow 5.61 -0.74 4.47% -193.77
CNNDM

PubMed 7.08 13.13 92.96 8.60
7.64 -0.96 2.90% -89.24

SAMSum 9.20 0.61 3.51% 56.71
WikiHow 6.66 -1.94 3.56% -180.34
CNNDM

SAMSum 4.86 16.76 81.45 5.19
9.16 3.97 1.62% 323.36

PubMed 3.22 -1.97 0.64% -160.46
WikiHow 0.66 -4.53 1.26% -368.97
CNNDM

WikiHow 13.05 39.23 511.95 3.709
4.77 1.06 3.30% 542.67

PubMed 3.44 -0.27 2.25% -138.23
SAMSum 5.00 1.30 7.53% 665.54

Table 6: Results of single-domain adaptation on the Bloom-3B model.

(a) Bloom-3B (b) Llama2-7B

Figure 5: Results of single-domain adaptation calculated by BERTScore.
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