
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12896–12911
August 11-16, 2024 ©2024 Association for Computational Linguistics

XLAVS-R: Cross-Lingual Audio-Visual Speech Representation Learning
for Noise-Robust Speech Perception

HyoJung HanA∗ Mohamed Anwar∗ Juan PinoV Wei-Ning HsuV

Marine CarpuatA Bowen ShiV Changhan WangV

AUniversity of Maryland, USA V Meta AI, USA
hjhan@cs.umd.edu changhan@meta.com

Abstract

Speech recognition and translation systems per-
form poorly on noisy inputs, which are fre-
quent in realistic environments. Augmenting
these systems with visual signals has the po-
tential to improve robustness to noise. How-
ever, audio-visual (AV) data is only available in
limited amounts and for fewer languages than
audio-only resources. To address this gap, we
present XLAVS-R, a cross-lingual audio-visual
speech representation model for noise-robust
speech recognition and translation in over 100
languages. It is designed to maximize the ben-
efits of limited multilingual AV pre-training
data, by building on top of audio-only multi-
lingual pre-training and simplifying existing
pre-training schemes. Extensive evaluation on
the MuAViC benchmark shows the strength of
XLAVS-R on downstream audio-visual speech
recognition and translation tasks, where it out-
performs the previous state of the art by up to
18.5% WER and 4.7 BLEU given noisy AV in-
puts, and enables strong zero-shot audio-visual
ability with audio-only fine-tuning.

1 Introduction

Speech recognition and speech-to-text translation,
two core speech perception tasks, have witnessed
rapid developments in the past two years. Still,
the performance of state-of-the-art (SOTA) mod-
els such as Whisper (Radford et al., 2023) and
SeamlessM4T (Communication, 2023b) degrades
sharply in noisy environments (Anwar et al., 2023;
Communication, 2023a). Audio-only approaches
to make such systems more robust (Ng et al., 2023;
Zhu et al., 2023) remain challenged by frequent
noise types such as intense babble noise and over-
lapped speech (Shi et al., 2022b).

Complementing audio inputs with visual sig-
nals such as video frames of speaker’s lips of-
fers an alternative approach (Sumby and Pollack,
1954; Potamianos et al., 2004; Mroueh et al.,

∗ Work done at Meta AI

Hours Languages

A AV A AV

Audio-Only Pre-Training Data
AVFormer (Seo et al., 2023) 60K 0 1⋆ 0
FAVA (May et al., 2023) 2.8K 0 >100 0

Audio-Visual Pre-Training Data
AV-HuBERT (Shi et al., 2022a) 0 1.8K 0 1⋆

AV-data2vec (Lian et al., 2024) 0 1.8K 0 1⋆

AV2AV (Choi et al., 2023) 0 7K 0 >100

Audio-Only & Audio-Visual Pre-Training Data
u-HuBERT (Hsu and Shi, 2022) 0.5K 1.8K 1⋆ 1⋆

VATLM (Zhu et al., 2024) 4.3K 1.8K 1⋆ 1⋆

XLAVS-R (this work) 436K 1.2K 128 9
XLAVS-R (+ extended AV data) 436K 8.3K 128 100+

Table 1: Pre-training data type, amount and language
coverage in audio-visual speech perception models (A:
audio, AV: audio-visual). Compared to prior work,
XLAVS-R exploits audio-only speech data for effi-
cient data scaling and language coverage expansion.
⋆ English-only.

2015; Chung et al., 2017), with promising results
in audio-visual speech recognition (AVSR) and
audio-visual speech-to-text translation (AVS2TT)
tasks (Afouras et al., 2022; Ma et al., 2021; Shi
et al., 2022b; Anwar et al., 2023). Yet, as summa-
rized in Table 1, prior works are either restricted
to English (Hsu and Shi, 2022; Zhu et al., 2024;
Seo et al., 2023) or to a limited amount of audio-
visual data (Shi et al., 2022a; Choi et al., 2023;
Lian et al., 2024), limiting language coverage and
performance on downstream tasks.

To bridge this gap, we present XLAVS-R, a
cross-lingual audio-visual speech representation
learning model for noise-robust speech perception
across over 100 languages. Its training strategy
is designed to maximize the efficiency of multi-
lingual AV pre-training by injecting audio-visual
(AV) signals (§3.2) after pre-training on audio-
only (A-only) data that is easier to scale in size
and language coverage (§3.1). We improve AV-
HuBERT (Shi et al., 2022a) with simplified training
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protocol and updated model architecture, and scale
model size up to 2B parameters for performance in
the multilingual setting.

We conduct extensive evaluations on the
MuAViC benchmark (Anwar et al., 2023). XLAVS-
R yields SOTA performance on speech recognition
in 9 languages and speech-to-text translation in 6
X-to-English pairs (§5.1, §5.2), notably improv-
ing their robustness to noisy inputs. Furthermore,
XLAVS-R enables zero-shot audio-visual ability
in downstream tasks with audio-only fine-tuning
(FT): fine-tuning our XLAVS-R 2B model without
supervised AV downstream data achieves the best
audio-visual performances in noisy settings even
compared to the corresponding audio-visual super-
vised fine-tuned model (§5.4). This confirms the
benefits of our pre-training strategy and relaxes the
data requirements for downstream tasks, making it
possible to tackle AVSR and AVSTT tasks without
labeled—transcribed or translated—AV data.

2 Related Work

Self-supervised audio-only speech representa-
tion. Self-supervised learning (SSL) for speech
aims to establish a general speech representation
with unlabeled speech data applicable to various
downstream applications, including speech recogni-
tion and spoken language understanding tasks (wen
Yang et al., 2021). Many of today’s successful SSL
approaches (Baevski et al., 2020; Hsu et al., 2021;
Baevski et al., 2022; Chiu et al., 2022) are based
on masked span prediction. Specifically, wav2vec
2.0 (Baevski et al., 2020) applies a contrastive pre-
dictive coding-like (van den Oord et al., 2018) loss
on masked speech utterances. HuBERT (Hsu et al.,
2021) utilizes masked speech features to predict
hidden units derived from layerwise features. In-
stead of using discrete units, Data2vec (Baevski
et al., 2022) directly regresses dense features from
an exponential moving average (EMA) teacher.

SSL approaches notably reduce the need for la-
beled speech data. In ASR benchmarks (Panayotov
et al., 2015), they yield performance on par with or
better than fully supervised models with far fewer
transcriptions. This has motivated sustained efforts
toward multilingual SSL models such as XLSR-
53 (Conneau et al., 2021), XLS-R (Babu et al.,
2022), and MMS (Pratap et al., 2023), which par-
ticularly excel in low-resource language scenarios.

Self-supervised audio-visual speech represen-
tation. Audio-visual SSL approaches draw heavy

inspiration from their audio-only counterparts. AV-
HuBERT (Shi et al., 2022a) extends HuBERT (Hsu
et al., 2021) to the audio-visual setting by taking
the masked audio-visual stream as input and pre-
dicting the hidden units initialized with MFCC
clusters, iteratively refining them with layerwise
features. This framework has proven effective
for multiple downstream tasks, including lip read-
ing (Shi et al., 2022a), audio-visual speech recog-
nition and translation (Shi et al., 2022b; Anwar
et al., 2023). In AV2AV (Choi et al., 2023) and
our work of XLAVS-R, it has been extended to
a multilingual setting. RAVEn (Haliassos et al.,
2023) leverages modality-specific EMA teachers
to generate targets for masked prediction, thus
avoiding an iterative refinement process. Simi-
larly, AV-data2vec (Lian et al., 2024) is based
on data2vec (Baevski et al., 2022) and regresses
multimodal features with an audio-visual EMA
teacher. AV2vec (Zhang et al., 2023) further com-
bines AV-data2vec with the masked prediction ob-
jective in AV-HuBERT. Some prior works also
investigated the use of unpaired unimodal data,
notably audio, to improve multimodal represen-
tation. u-HuBERT (Hsu and Shi, 2022) augments
AV-HuBERT with audio-only speech during pre-
training, resulting in improved audio-visual speech
recognition performance. VATLM (Zhu et al.,
2024) further added text-only data and trained
the model on an arbitrary modality stream. Our
work builds on the insights of AV/u-HuBERT with
adaptations for continual SSL training with visual
modality injection to A-only model and for the
multilingual setting.

Audio-visual adaptation of audio-only speech
models. Recent work has begun to explore the
adaptation of audio-only speech models into audio-
visual models. MixSpeech (Cheng et al., 2023) de-
velops a visual speech translation model based on a
pre-trained audio-only speech translation model by
minimizing the discrepancy between the probabili-
ties from audio-only and multi-modal streams. AV-
Former (Seo et al., 2023) incorporates lightweight
modules into an audio-only speech recognizer to
adapt it into visually grounded speech recogni-
tion through two-stage fine-tuning. FAVA (May
et al., 2023) directly fine-tunes a pre-trained BEST-
RQ (Chiu et al., 2022) encoder for audio-visual
speech recognition with a randomly initialized vi-
sual encoder. FAVA connects to our work by ap-
plying this technique to a multilingual audio-only
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Figure 1: Overview of XLAVS-R. From the audio-only
SSL model, we generate unit targets for audio-visual
SSL pre-training (left box). We inject visual modality
into the first stage model (blue blocks) and fuse visual
modality with audio one (pink blocks) to continue train-
ing with audio-visual SSL pre-training. In AV SSL,
noises are added randomly to clean audio, and masked
prediction objectives (right top) are applied to the union
set of masked frames of audio and visual stream (bottom
gray).

model. However, its evaluation focuses on English
with labeled AV speech data for supervised fine-
tuning, while our approach focuses on AV SSL to
achieve competitive zero-shot results without AV
labeled data as well as state-of-the-art supervised
multilingual performance.

3 XLAVS-R

Our approach (Figure 1) requires first training an
audio-only SSL model, which is used to gener-
ate unit targets for audio-visual SSL pre-training.
We inject visual modality into the resulting model
to continue training with audio-visual SSL pre-
training. Through this process, XLAVS-R intro-
duces three key improvements over baseline ap-
proaches. First, we leverage the abundant availabil-
ity of audio-only speech data to enhance overall
performances and achieve greater robustness on
domain shift (§3.1), and inject visual modality to
build an audio-visual pre-training model on top of
audio-only pre-training model (§3.2). Second, we
use a learnable audio feature extractor to better cap-
ture the various phonetic information of multilin-
gual audios (§3.3). Third, we improve the training
efficiency of the audio-visual pre-training stage by
single-round training with unit targets from audio-
only contextualized representation (§3.4).

3.1 Audio-Only Pre-Training

Instead of training an audio-visual model in one
step with the mix of audio-only data and audio-
visual data, we first train an audio-only speech
model and adapt it to an audio-visual one via self-
supervised continual pre-training with audio-visual
data. This is motivated by the facts that audio-only
data is much more plentiful than audio-visual data,
particularly for low-resource languages, and that
audio-only models are much more computationally
efficient than audio-visual models with similar ar-
chitecture and size because of the cost of visual
feature extraction and bi-modal feature fusion. We
concentrate our computational resources on the
first stage of A-only SSL since audio-only data has
greater volume and the audio modality naturally
contains richer semantic information than the vi-
sual modality. We refer to the outcome model of
this audio-only self-supervised learning as XLS-R,
as we follow the XLS-R training settings (Babu
et al., 2022) and adopt its wav2vec 2.0 architecture
(Baevski et al., 2020).

3.2 Continued Audio-Visual Pre-Training
with Visual Modality Injection

After obtaining XLS-R through A-only pre-
training, we add a ResNet-based visual feature ex-
tractor (VFE) and a linear projection-based feature
fusion module to build up an audio-visual model
and continue AV pre-training.

For audio-visual self-supervised learning, we
follow Shi et al. (2022a,b) using AV-HuBERT
pre-training loss. Given temporally aligned au-
dio input Ia ∈ RTa×Ca and video speech input
Iv ∈ RTv×Cv×W×H , each modality feature ex-
tractor encode inputs into same length feature se-
quences fa, fv ∈ RT×D. Here, audio and visual
frames are masked independently by separate mask-
ing probabilities. Frame-wisely fused audio-visual
features Fusion(fa, fv) ∈ RT×D′

are processed
by the Transformer (Vaswani et al., 2017) to gen-
erate contextualized audio-visual representation.
Target units z ∈ {1, . . . ,K}T for each frame are
assigned by an unsupervised clustering method.
Given the output probability p from the fused repre-
sentation and the target units z, the model is trained
with the following loss:

L = −
∑

t∈M
log pt(zt)− α

∑

t/∈M
log pt(zt), (1)

where M is a union set of masked frames for the
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audio and visuals stream and α is weighing factor
for the unmasked regions.

As in AV/u-HuBERT, we apply modality
dropout to encourage the fusion of audio and vi-
sual representation space. In the modality fusion,
either sequence of fa or fv can be dropped out
by the modality dropout probability pm and filled
with zero. In the case of dropping out one of the
modalities, fa is selected with an audio dropout
probability pa to have Fusion(0, fv).

With the masked prediction objective on audio-
only targets, the continued training of audio-visual
SSL aligns audio-visual and visual-only represen-
tations to corresponding audio-only representation,
which is established in the previous A-only SSL.

Besides the audio-to-visual representation align-
ment, clean-to-noisy audio representation is also
aligned during the continued AV SSL training
phase by using potentially noised audio as audio
inputs. This is implemented by randomly adding
noises to clean speech audio during the training.

After self-supervised learning, we fine-tune with
sequence-to-sequence cross-entropy loss for down-
stream tasks.

3.3 Learnable Audio Feature Extractor

XLAVS-R has the same model architecture as
AV/u-HuBERT except for the nature of the au-
dio features provided as inputs to the Transformer
encoder. We jointly train a convolutional au-
dio feature extractor (AFE) as that in wav2vec
2.0 (Baevski et al., 2020) for high-dimensional au-
dio inputs. This differs from AV/u-HuBERT which
uses lower-dimensional filterbank features. Our
approach provides more capacity for multilingual
models and their cross-lingual inferences.

3.4 Single-Round AV Training with
Self-Supervised Audio-Only Targets

AV-HuBERT (Shi et al., 2022a,b) and u-HuBERT
(Hsu and Shi, 2022) require multiple pre-training
rounds, with training targets switching from quan-
tized audio-only local features to quantized audio-
visual contextualized representation. In each round,
the AV model is re-trained from scratch. Hence, the
model quality gains across training rounds come
from the updated training targets. While these iter-
ative rounds help the model encode more advanced
contextual and bi-modal information in the later
stage, the resulting training process is complex and
computationally expensive.

To improve training efficiency, we propose to
create first-round training targets from a contex-
tualized audio-only representation instead of lo-
cal features that have noisier, lower-level informa-
tion. This accelerates the masked prediction learn-
ing of high-level semantic information in the first
round and reduces the necessity for additional train-
ing rounds. We obtain audio-only contextualized
representation from a self-supervised multilingual
speech model described in Section 3.1.

4 Experiments

Data. For AV pre-training, we leverage a total
1.2K hours of data in 9 languages: English (En),
Arabic (Ar), German (De), Greek (El), Spanish
(Es), French (Fr), Italian (It), Portuguese (Pt) and
Russian (Ru). We also experiment with additional
data for domain and language coverage. On top of
the above 1.2K hour data, we add 7.1K hours of in-
house AV data in 100+ languages and train XLAVS-
R with a total of 8.3K hours in 100+ languages, as
summarized in the last row of Table 1. The number
of hours we use in the training of each experiment
setup for 9 language we focus on are shown in
Table 6.

For A-only pre-training, we follow Babu et al.
(2022) for training on 436K-hour data in 128 lan-
guages.

For all the pre-trained models, we perform mul-
tilingual fine-tuning on MuAViC labeled data for
audio-visual speech recognition (AVSR) in all 9
languages and audio-visual speech-to-text transla-
tion (AVS2TT) in 6 language pairs into English—
El, Es, Fr, It, Pt, Ru.

We use MuAViC for in-domain evaluation on
both audio-only and audio-visual test modes. We
use FLEURS (Conneau et al., 2023) for audio-only
out-of-domain (OOD) evaluation. We report an
average of all 9 languages for AVSR and 6 X-
to-English language pairs for AVS2TT in both in-
domain and out-of-domain evaluation.

We remove extremely short utterances (less than
0.2 seconds) and long utterances (more than 20
seconds) for better training stability.

Modeling. We build XLS-R (§3.1) and XLAVS-
R (§3) models in two model sizes: 300M and 2B.
The number of encoder layers/embedding dimen-
sion/feed forward dimension are 24/1024/4096 and
48/1920/7680 respectively. For audio-visual train-
ing targets of XLAVS-R, we extract audio-only
speech representation from the 36th layer of XLS-
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Model Test Mode
OOD In-Domain

Avg En Ar De El Es Fr It Pt Ru Avg

Clean environment, Test WER (%) ↓
AV-HuBERT (Shi et al., 2022b)

A 41.8 2.0 89.6 53.5 47.2 18.2 20.7 21.2 22.9 46.0 35.7
AV - 1.7 89.4 52.0 46.2 17.4 20.3 20.8 22.1 44.7 35.0

u-HuBERT (Hsu and Shi, 2022)
A 41.4 1.9 89.3 53.3 47.2 17.9 20.7 21.6 22.5 45.8 35.6

AV - 1.9 89.3 52.1 46.4 17.3 20.5 21.2 21.9 44.4 35.0

XLS-R 300M A 33.2 2.5 85.6 44.0 34.4 13.2 15.1 14.3 16.2 34.4 28.8

XLAVS-R

XLAVS-R 300M
A 32.5 2.5 82.4 45.6 24.2 11.3 14.6 12.9 13.7 33.0 26.7

AV - 2.4 81.7 44.7 24.3 10.9 14.4 12.8 13.2 32.7 26.3

XLAVS-R 2B
A 34.2 1.9 80.3 45.5 19.5 9.4 12.5 10.9 11.6 26.0 24.2

AV - 1.7 79.3 44.4 19.0 9.1 12.3 10.6 11.2 25.0 23.6

Noise environment, Test WER (%) ↓
AV-HuBERT (Shi et al., 2022b)

A 89.3 39.3 111.2 87.0 85.2 65.6 58.1 69.5 69.9 75.9 73.5
AV - 6.4 104.7 74.2 70.4 43.1 43.0 48.2 47.5 67.4 56.1

u-HuBERT (Hsu and Shi, 2022)
A 87.5 31.8 109.4 84.7 83.1 62.7 56.6 67.8 68.2 74.4 71.0

AV - 6.6 102.3 73.2 69.7 43.7 43.2 48.5 47.6 67.0 55.8

XLS-R 300M A 74.4 43.8 97.3 69.8 74.8 47.6 37.1 47.9 54.4 59.8 59.2

XLAVS-R

XLAVS-R 300M
A 79.8 42.4 100.1 69.4 56.2 39.9 33.4 40.5 45.4 53.0 53.4

AV - 5.8 95.8 61.4 44.7 28.0 27.2 29.4 30.6 47.8 41.2

XLAVS-R 2B
A 74.0 49.5 98.9 66.3 50.6 36.0 30.0 36.8 40.6 48.3 50.8

AV - 5.9 93.5 58.5 38.6 23.9 23.5 24.6 26.1 41.0 37.3

Table 2: Results of audio-visual speech recognition (AVSR) on in-domain (MuAViC) and out-of-domain (OOD,
FLEURS) evaluation in test mode of audio-only (A) and audio-video (AV). Our XLAVS-R model outperforms the
two English-only baselines of AV-HuBERT and u-HuBERT (both 300M sized) by up to 18% WER of in-domain
average in noisy AV mode.

R 2B and quantize it with 2000 k-means clusters.
For fine-tuning AVSR and AVS2TT models, we
follow Anwar et al. (2023) to add a Transformer
decoder that has 6 layers, an embedding dimension
of 768, and feed forward network dimension of
3072. The visual feature extractor of our model is
modified ResNet-18 as in AV-HuBERT and prior
lipreading works (Stafylakis and Tzimiropoulos,
2017; Martinez et al., 2020; Ma et al., 2021). For
XLAVS-R, we set both pm and pa to 0.5 for pre-
training which is the same with AV/u-HuBERT. For
fine-tuning all pre-trained models, we set pm and
pa to 0.5 and 0, where the models use 50% AV
modality and 50% A-only modality. We set α as
1.0 following the AV-HuBERT models1.

Noise Augmentation. Following Shi et al.
(2022b) and Anwar et al. (2023), we randomly
augment the input samples with additive noises at
0dB of signal-to-noise ratio. Noise audio clips are
sampled from the MUSAN dataset (Snyder et al.,
2015) as well as drawn from MuAViC train set
for babble type. We augment 25% of the input in

1https://facebookresearch.github.io/av_hubert

pre-training and 50% in fine-tuning with noises.
Evaluation. We evaluate AVSR and AVS2TT

in audio-only (“A”) and audio-visual (“AV”) test
modes, where the former leverages only audio
modality in inference while the latter leverages
both audio and visual modalities. We select the best
checkpoint by validation accuracy for inference.
We use beam search with default hyper-parameters
and beam size of 5. For AVSR, we apply Whisper
text normalizer (Radford et al., 2023) before cal-
culating WER (word error rate). For AVS2TT, we
compute BLEU (Papineni et al., 2002) using Sacre-
BLEU (Post, 2018) with default options and the
built-in 13a tokenizer. For the simulation of noisy
test environment, we add babble type of noises
drawn from MuAViC test set.

5 Results

5.1 Multilingual Speech Recognition
We compare our XLAVS-R representations against
the AV-HuBERT and u-HUBERT English-only
representations when fine-tuned for multilingual
speech recognition in Table 2, reporting WER on
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Model Test Mode
OOD In-Domain

Avg El-En Es-En Fr-En It-En Pt-En Ru-En Avg

Clean environment, Test BLEU ↑
AV-HuBERT (Shi et al., 2022b)

A 12.7 13.9 22.3 28.1 23.5 26.1 10.7 20.8
AV - 14.3 22.9 28.3 23.9 26.5 11.2 21.2

u-HuBERT (Hsu and Shi, 2022)
A 12.8 14.4 23.0 28.6 23.4 26.6 11.3 21.2

AV - 14.5 23.1 28.6 23.7 27.0 11.4 21.4

XLAVS-R

XLAVS-R 300M
A 14.0 18.9 23.7 29.7 24.9 28.5 12.6 23.0

AV - 19.1 23.8 29.8 25.0 28.8 13.0 23.2

XLAVS-R 2B
A 16.0 21.7 25.0 30.6 26.5 30.2 13.9 24.7

AV - 21.6 25.1 30.6 26.6 29.9 13.9 24.6

Noisy environment, Test BLEU ↑
AV-HuBERT (Shi et al., 2022b)

A 3.2 4.4 9.1 13.1 8.3 8.8 4.8 8.1
AV - 8.8 15.6 19.2 15.0 17.6 7.2 13.9

u-HuBERT (Hsu and Shi, 2022)
A 3.4 4.7 9.8 13.8 8.7 10.3 5.3 8.8

AV - 8.2 15.6 19.7 14.6 18.3 7.3 14.0

XLAVS-R

XLAVS-R 300M
A 4.3 8.3 13.9 20.4 15.2 15.1 8.2 13.5

AV - 13.2 17.4 23.8 18.7 21.8 9.4 17.4

XLAVS-R 2B
A 6.4 11.0 15.1 20.9 16.2 16.0 9.0 14.7

AV - 15.7 19.2 24.6 20.1 22.3 10.4 18.7

Table 3: Results of audio-visual speech-to-text translation (AVS2TT) on in-domain (MuAViC) and out-of-domain
(OOD, FLEURS) evaluation in test mode of audio-only (A) and audio-video (AV). Our XLAVS-R model outperforms
the two English-only baselines of AV-HuBERT and u-HuBERT (both 300M sized) for all language pairs in any
mode and by up to 4.8 BLEU of in-domain average in noisy AV mode.

both clean and noisy inputs in the upper and lower
half of the Table respectively.

In the clean setup, the XLAVS-R models per-
form on par or better than the baselines in both
audio-only and audio-visual test modes. The
XLAVS-R 300M model outperforms the AV-
HuBERT and u-HuBERT, English-only AV pre-
trained models of similar size, by up to 9% WER
and 8.7% WER respectively for average audio-only
and audio-visual test modes. Our larger XLAVS-R
2B outperforms the English-only baseline by an
average 11.5% WER and the average of 11.4%
WER respectively for the two modes. XLAVS-R
300M and 2B both outperform the baselines by
large margins in every non-English language. En-
glish WER slightly increased in XLAVS-R 300M
model compared to the English-only pre-trained
baseline by 0.5% WER. We attribute this effect to
inter-language competition (Conneau et al., 2020;
Chang et al., 2023), since XLAVS-R 300M cov-
ers 128 languages with the same capacity as the
English-only baselines (Table 1). Increasing the
XLAVS-R model capacity to 2B achieves the low-
est WER of all models in both A and AV modes.
The OOD results on FLEURS confirm that our

models also maintain reasonable Audio-only per-
formance on other existing benchmarks.

In the noisy setup, where we add multilingual
babble noises to clean speech inputs, the XLAVS-R
models improve performance across the board, in
all languages and in both modes. In the AV mode,
the average WER for XLAVS-R 2B drops signifi-
cantly to 37.3%, which remarkably approaches that
of the AV/u-HuBERT baseline in clean settings.

Overall, XLAVS-R models outperform the two
baselines by a large margin on average in clean
and noisy settings, while remaining competitive
with English-only pre-trained models in English.
Results of experiments with additional AV data
for domain and language coverage during AV pre-
training are available in Appendix 5.5 and Table 4.
We also show that the findings are consistent with
different types of noise in Appendix A, Table 7-8.

5.2 Multilingual Speech-To-Text Translation
Next, we evaluate models fine-tuned for the X-En
AVS2TT tasks (Table 3), reporting BLEU scores in
clean (top) vs. noisy settings (bottom).

In the clean setup, XLAVS-R 300M outper-
forms the English-only pre-trained AV/u-HuBERT
by up to 2.2 and 2 BLEU average scores for audio-
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Figure 2: Effectiveness of each component towards XLAVS-R and multilingual pre-training data starting from
AV-HuBERT model pre-trained only on MuAViC-En. All the components of XLAVS-R are shown to be effective.
Each ablated pre-trained models are fine-tuned and evaluated on multilingual audio-visual speech recognition with
identical training and test settings (A: audio, AV: audio+video). The numbers of the plots are in Appendix, Table 9.

only and audio-visual modes. It consistently outper-
forms the baseline by large margins in all directions
and test modalities, suggesting that multilingual
pre-training is essential for cross-lingual ability in
the downstream tasks. Our best model, XLAVS-R
2B outperforms the English-only baselines by even
wider margins (up to 3.9 and 3.4 BLEU average
scores respectively for the two modes).

In the noisy setup, we simulate noisy environ-
ments as in AVSR tasks by adding multilingual
babble noises to clean speech sources. XLAVS-R
300M outperforms the English-only baselines of
similar size largely by up to 5.4/3.5 average BLEU
improvement on A/AV, and 6.6/4.8 average BLEU
for 2B model.

Overall, these results show that our XLAVS-R
models outperform two baselines by a large mar-
gin in all translation directions for both clean and
noisy settings, both A-only and AV test modes, and
both in-domain and OOD. Results of experiments

with additional AV data for domain and language
coverage during AV pre-training are available in
Appendix 5.5 and Table 5.

5.3 Ablation Experiments of XLAVS-R

In Figure 22, we validate the effectiveness of
the key changes from AV-HuBERT to XLAVS-
R, step-by-step starting from AV-HuBERT pre-
trained on MuAViC-En. First, simplifying the
training process – single-round AV-HuBERT train-
ing with self-supervised contextualized audio-only
units from XLS-R (+ Single-round w/SSL
units) instead of the original 5 training rounds
– actually yields moderate improvements. Sec-
ond, switching to a learnable audio feature extrac-
tor (+ Learnable AFE) shows the biggest im-
provements in both clean and noisy settings, es-
pecially in the low-resource languages (El and

2Appendix Table 9 contains the exact numbers plotted.
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Figure 3: XLAVS-R shows greater zero-shot ability on audio-visual test mode with audio-only fine-tuned (FT,
striped) model compared to that of AV-HuBERT. Without fine-tuned on the labeled audio-visual set, the A-only FT
model from XLAVS-R shows 5% WER improvement on AV test mode compared to A test mode (purple), while
that of AV-HuBERT shows only 3% WER (orange) in a noisy environment. The bigger the XLAVS-R model size,
the greater the zero-shot ability—the gap of 9.8% WER between A and AV test mode of A-only FT 2B model in a
noisy environment). Values of individual languages are in Appendix, Table 10.

Ru). Third, augmenting AV pre-training with
multilingual data (+ MuAViC non-English)
is the second-highest improvement indicating
that multilingual audio-visual representation learn-
ing is critical in the self-supervised pre-training
stage. Last, the introduction of the audio-
only pre-training stage and multilingual audio-
only resources (+ A-only pre-training
(XLAVS-R)) further improves both A and AV per-
formance in the in-domain evaluations. It yields
even higher improvements in OOD evaluations,
suggesting that audio-only pretraining may en-
hance robustness against domain shift.

In sum, all of the design contributions of
XLAVS-R are shown to be effective.

5.4 Zero-shot Audio-Visual Inference

We compare the performance of A-only fine-tuning
vs. AV fine-tuning: this matters when labels for a
given language in downstream task are not avail-
able for AV fine-tuning, and thus we need to rely
on the zero-shot audio-visual ability from the pre-
trained AV representation. In A-only FT, we ex-
clude any visual modalities for all languages.

For 300M models (Figure 3a), XLAVS-R shows
only a mild performance degradation in the noisy
AV mode from AV FT to zero-shot A-only FT (41.2
WER to 48.2 WER, 17% increase rate) and almost
none in clean. By contrast, the AV-HuBERT base-

line shows severe degradation even in the clean
setting—56.1 to 79.8, 42.25% in noisy, and 27.7%
in the clean setting. The XLAVS-R model thus ef-
fectively transfers knowledge from the pre-trained
AV representation and leverages it for downstream
tasks, even though there is no visual modality in-
volved at all during the supervised fine-tuning.

For 2B models (Figure 3b), although AV FT has
better recognition performance in a clean setting
(23.6 vs 25.0 WER in AV mode), A-only FT model
has even better performances over AV FT mode
in noisy settings tested on AV mode (37.2 vs 37.3
WER), showing that the increased model capacity
improves its zero-shot ability. The result of the
scaled-up model suggests that XLAVS-R relaxes
the need for labeled AV datasets of downstream
tasks to have noise robustness.

5.5 Results with Additional Training Data

We also experiment with additional data for domain
and language coverage during the audio-visual self-
supervised learning phase.

Table 4 shows AVSR performances of 9 lan-
guages on OOD and in-domain test sets. On the in-
domain test set, the model pre-trained on a scaled-
up AV training set shows improved AV average
performances of 0.2% WER for both clean and
noisy environments. In contrast to the slight im-
provement or even the degradation for noisy A-only
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Model Test Mode
OOD In-Domain

Avg En Ar De El Es Fr It Pt Ru Avg

Clean environment, Test WER (%) ↓
XLAVS-R 300M

Basic AV data: 1.2K hours A 32.5 2.5 82.4 45.6 24.2 11.3 14.6 12.9 13.7 33.0 26.7
in 9 languages AV - 2.4 81.7 44.7 24.3 10.9 14.4 12.8 13.2 32.7 26.3

Extended AV data: 8.3K hours A 28.3 2.2 80.2 38.7 28.7 11.9 15.5 14.1 14.9 32.1 26.5
in 100+ languages AV - 2.1 80.0 38.0 28.1 11.7 15.3 13.8 14.4 31.2 26.1

Noise environment, Test WER (%) ↓
XLAVS-R 300M

Basic AV data: 1.2K hours A 79.8 42.4 100.1 69.4 56.2 39.9 33.4 40.5 45.4 53.0 53.4
in 9 languages AV - 5.8 95.8 61.4 44.7 28.0 27.2 29.4 30.6 47.8 41.2

Extended AV data: 8.3K hours A 73.7 44.0 97.2 62.4 60.7 41.0 36.2 44.5 48.0 51.0 53.9
in 100+ languages AV - 5.3 91.9 53.5 49.6 28.8 29.3 32.2 32.5 46.1 41.0

Table 4: AVSR comparison of XLAVS-R 300M models trained on different sizes of the AV pre-training dataset.

Model Test Mode
OOD In-Domain

Avg El-En Es-En Fr-En It-En Pt-En Ru-En Avg

Clean environment, Test BLEU ↑
XLAVS-R 300M

Basic AV data: 1.2K hours A 14.0 18.9 23.7 29.7 24.9 28.5 12.6 23.0
in 9 languages AV - 19.1 23.8 29.8 25.0 28.8 13.0 23.2

Extended AV data: 8.3K hours A 14.4 18.5 23.6 29.6 25.1 28.6 12.0 22.9
in 100+ languages AV - 18.3 23.9 29.8 25.1 28.9 12.1 23.0

Noisy environment, Test BLEU ↑
XLAVS-R 300M

Basic AV data: 1.2K hours A 4.3 8.3 13.9 20.4 15.2 15.1 8.2 13.5
in 9 languages AV - 13.2 17.4 23.8 18.7 21.8 9.4 17.4

Extended AV data: 8.3K hours A 5.8 11.1 14.8 20.0 15.4 15.4 8.5 14.2
in 100+ languages AV - 13.8 18.4 23.7 19.6 21.7 9.8 17.8

Table 5: AVS2TT comparison of XLAVS-R 300M models trained on different sizes of the AV pre-training dataset.

mode in the in-domain, the 8.3K model shows sig-
nificant improvements in OOD for both clean and
noisy settings by up to 6.1% WER on average.

Table 5 shows AVS2TT performances of six X-
to-En pairs on OOD and in-domain test sets, where
the trend of the prominent improvement in OOD
is similar to that of AVSR comparison. Additional
AV SSL dataset improves the average performance
of in-domain noisy setting by 0.7 BLEU for A-only
test mode and 0.4 BLEU for AV test mode, while
slightly degrades in clean settings by 0.1 BLEU
in A-only test mode and 0.2 in AV test mode on
average. In out-of-domain evaluation, augmented
data in AV SSL enhances the translation quality by
up to 1.5 BLEU on average in noisy environments.

Overall, scaling up audio-visual pre-training data
enhances robustness against domain shift while
also remains effective for noisy robustness with
audio-visual input in the in-domain.

6 Conclusion

We introduced XLAVS-R, a cross-lingual audio-
visual speech representation for noise-robust
speech perception in over 100 languages. Since
audio-visual data is harder to come by than audio-
only data, we injected the visual modality by con-
tinuing training an audio-only pre-trained model.
We also design a simpler yet more effective train-
ing scheme and improved architecture compared to
previous state-of-the-art models. Extensive evalua-
tion on the MuAViC benchmark shows XLAVS-R
achieves SOTA performance on both audio-visual
speech recognition and translation tasks, yielding
particularly large improvements in noisy settings.
We also show that XLAVS-R effectively leverages
unlabeled audio-only multilingual speech data and
audio-visual data in self-supervised learning result-
ing in enhanced zero-shot audio-visual ability for
downstream tasks, and extended AV pre-training
data augments robustness against domain shift.

12904



Limitations

Our findings are inherently limited by the settings
of our empirical evaluation. For instance, we sim-
ulate noisy environments only with the “babble”
sound in testing experimental setup (§4), and it re-
mains to be seen how other types of noise might
impact our model. In addition, while we include
a diverse set of languages with varying amounts
of resources in our evaluation, we did not eval-
uate translation out-of-English and between non-
English languages.

References
Triantafyllos Afouras, Joon Son Chung, Andrew Se-

nior, Oriol Vinyals, and Andrew Zisserman. 2022.
Deep audio-visual speech recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
44(12):8717–8727.

Mohamed Anwar, Bowen Shi, Vedanuj Goswami, Wei-
Ning Hsu, Juan Pino, and Changhan Wang. 2023.
MuAViC: A Multilingual Audio-Visual Corpus for
Robust Speech Recognition and Robust Speech-to-
Text Translation. In Proc. INTERSPEECH 2023,
pages 4064–4068.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei
Baevski, Alexis Conneau, and Michael Auli. 2022.
XLS-R: Self-supervised Cross-lingual Speech Rep-
resentation Learning at Scale. In Proc. Interspeech
2022, pages 2278–2282.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun
Babu, Jiatao Gu, and Michael Auli. 2022. data2vec:
A general framework for self-supervised learning in
speech, vision and language. In Proceedings of the
39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning
Research, pages 1298–1312. PMLR.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 12449–12460. Curran Asso-
ciates, Inc.

Tyler A. Chang, Catherine Arnett, Zhuowen Tu, and
Benjamin K. Bergen. 2023. When is multilinguality
a curse? language modeling for 250 high- and low-
resource languages.

X. Cheng, T. Jin, R. Huang, L. Li, W. Lin, Z. Wang,
Y. Wang, H. Liu, A. Yin, and Z. Zhao. 2023.
Mixspeech: Cross-modality self-learning with audio-
visual stream mixup for visual speech translation and

recognition. In 2023 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 15689–
15699, Los Alamitos, CA, USA. IEEE Computer
Society.

Chung-Cheng Chiu, James Qin, Yu Zhang, Jiahui Yu,
and Yonghui Wu. 2022. Self-supervised learning
with random-projection quantizer for speech recog-
nition. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages
3915–3924. PMLR.

Jeongsoo Choi, Se Jin Park, Minsu Kim, and Yong Man
Ro. 2023. Av2av: Direct audio-visual speech to
audio-visual speech translation with unified audio-
visual speech representation.

Joon Son Chung, Andrew Senior, Oriol Vinyals, and
Andrew Zisserman. 2017. Lip reading sentences in
the wild. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE.

Seamless Communication. 2023a. Seamless: Multilin-
gual expressive and streaming speech translation.

Seamless Communication. 2023b. Seamlessm4t: Mas-
sively multilingual & multimodal machine transla-
tion.

Alexis Conneau, Alexei Baevski, Ronan Collobert, Ab-
delrahman Mohamed, and Michael Auli. 2021. Un-
supervised Cross-Lingual Representation Learning
for Speech Recognition. In Proc. Interspeech 2021,
pages 2426–2430.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang,
Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara
Rivera, and Ankur Bapna. 2023. Fleurs: Few-shot
learning evaluation of universal representations of
speech. In 2022 IEEE Spoken Language Technology
Workshop (SLT), pages 798–805.

Alexandros Haliassos, Pingchuan Ma, Rodrigo Mira,
Stavros Petridis, and Maja Pantic. 2023. Jointly learn-
ing visual and auditory speech representations from
raw data. In The Eleventh International Conference
on Learning Representations.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM Trans. Audio, Speech
and Lang. Proc., 29:3451–3460.

12905

https://doi.org/10.1109/TPAMI.2018.2889052
https://doi.org/10.21437/Interspeech.2023-2279
https://doi.org/10.21437/Interspeech.2023-2279
https://doi.org/10.21437/Interspeech.2023-2279
https://doi.org/10.21437/Interspeech.2022-143
https://doi.org/10.21437/Interspeech.2022-143
https://proceedings.mlr.press/v162/baevski22a.html
https://proceedings.mlr.press/v162/baevski22a.html
https://proceedings.mlr.press/v162/baevski22a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
http://arxiv.org/abs/2311.09205
http://arxiv.org/abs/2311.09205
http://arxiv.org/abs/2311.09205
https://doi.org/10.1109/ICCV51070.2023.01442
https://doi.org/10.1109/ICCV51070.2023.01442
https://doi.org/10.1109/ICCV51070.2023.01442
https://proceedings.mlr.press/v162/chiu22a.html
https://proceedings.mlr.press/v162/chiu22a.html
https://proceedings.mlr.press/v162/chiu22a.html
http://arxiv.org/abs/2312.02512
http://arxiv.org/abs/2312.02512
http://arxiv.org/abs/2312.02512
https://doi.org/10.1109/cvpr.2017.367
https://doi.org/10.1109/cvpr.2017.367
http://arxiv.org/abs/2312.05187
http://arxiv.org/abs/2312.05187
http://arxiv.org/abs/2308.11596
http://arxiv.org/abs/2308.11596
http://arxiv.org/abs/2308.11596
https://doi.org/10.21437/Interspeech.2021-329
https://doi.org/10.21437/Interspeech.2021-329
https://doi.org/10.21437/Interspeech.2021-329
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.1109/SLT54892.2023.10023141
https://doi.org/10.1109/SLT54892.2023.10023141
https://doi.org/10.1109/SLT54892.2023.10023141
https://openreview.net/forum?id=BPwIgvf5iQ
https://openreview.net/forum?id=BPwIgvf5iQ
https://openreview.net/forum?id=BPwIgvf5iQ
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291


Wei-Ning Hsu and Bowen Shi. 2022. u-huBERT: Uni-
fied mixed-modal speech pretraining and zero-shot
transfer to unlabeled modality. In Advances in Neu-
ral Information Processing Systems.

Jiachen Lian, Alexei Baevski, Wei-Ning Hsu, and
Michael Auli. 2024. Av-data2vec: Self-supervised
learning of audio-visual speech representations with
contextualized target representations.

Pingchuan Ma, Stavros Petridis, and Maja Pantic. 2021.
End-to-end audio-visual speech recognition with con-
formers. In ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 7613–7617.

Brais Martinez, Pingchuan Ma, Stavros Petridis, and
Maja Pantic. 2020. Lipreading using temporal con-
volutional networks. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6319–6323.

Avner May, Dmitriy Serdyuk, Ankit Parag Shah, Otavio
Braga, and Olivier Siohan. 2023. Audio-visual fine-
tuning of audio-only asr models.

Youssef Mroueh, Etienne Marcheret, and Vaibhava Goel.
2015. Deep multimodal learning for audio-visual
speech recognition. In 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2130–2134.

Dianwen Ng, Ruixiong Zhang, Jia Qi Yip, Zhao Yang,
Jinjie Ni, Chong Zhang, Yukun Ma, Chongjia Ni,
Eng Siong Chng, and Binchao Ma. 2023. De’hubert:
Disentangling noise in a self-supervised model for ro-
bust speech recognition. ICASSP 2023 - 2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. 2015. Librispeech: An asr corpus
based on public domain audio books. In 2015 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5206–5210.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191.

Gerasimos Potamianos, Chalapathy Neti, Juergen Luet-
tin, and Iain Matthews. 2004. Audio-visual auto-
matic speech recognition: An overview. Issues in
visual and audio-visual speech processing, 22:23.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning
Hsu, Alexis Conneau, and Michael Auli. 2023. Scal-
ing speech technology to 1,000+ languages.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak super-
vision. In Proceedings of the 40th International Con-
ference on Machine Learning, ICML’23. JMLR.org.

Paul Hongsuck Seo, Arsha Nagrani, and Cordelia
Schmid. 2023. Avformer: Injecting vision into
frozen speech models for zero-shot av-asr. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 22922–22931.

Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Ab-
delrahman Mohamed. 2022a. Learning audio-visual
speech representation by masked multimodal cluster
prediction. In International Conference on Learning
Representations.

Bowen Shi, Wei-Ning Hsu, and Abdelrahman Mo-
hamed. 2022b. Robust Self-Supervised Audio-Visual
Speech Recognition. In Proc. Interspeech 2022,
pages 2118–2122.

David Snyder, Guoguo Chen, and Daniel Povey. 2015.
Musan: A music, speech, and noise corpus.

Themos Stafylakis and Georgios Tzimiropoulos. 2017.
Combining residual networks with lstms for lipread-
ing.

William H Sumby and Irwin Pollack. 1954. Visual con-
tribution to speech intelligibility in noise. The jour-
nal of the acoustical society of america, 26(2):212–
215.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. ArXiv, abs/1807.03748.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Shu wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-
I Lai, Kushal Lakhotia, Yist Y. Lin, Andy T. Liu,
Jiatong Shi, Xuankai Chang, Guan-Ting Lin, Tzu
hsien Huang, Wei-Cheng Tseng, Ko tik Lee, Da-
Rong Liu, Zili Huang, Shuyan Dong, Shang-Wen Li,
Shinji Watanabe, Abdel rahman Mohamed, and Hung
yi Lee. 2021. Superb: Speech processing universal
performance benchmark. In Interspeech.

Jing-Xuan Zhang, Genshun Wan, Zhen-Hua Ling, Jia
Pan, Jianqing Gao, and Cong Liu. 2023. Self-
supervised audio-visual speech representations learn-
ing by multimodal self-distillation. In ICASSP 2023
- 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1–5.

12906

https://openreview.net/forum?id=zrAUoI2JA2
https://openreview.net/forum?id=zrAUoI2JA2
https://openreview.net/forum?id=zrAUoI2JA2
http://arxiv.org/abs/2302.06419
http://arxiv.org/abs/2302.06419
http://arxiv.org/abs/2302.06419
https://doi.org/10.1109/ICASSP39728.2021.9414567
https://doi.org/10.1109/ICASSP39728.2021.9414567
https://doi.org/10.1109/ICASSP40776.2020.9053841
https://doi.org/10.1109/ICASSP40776.2020.9053841
http://arxiv.org/abs/2312.09369
http://arxiv.org/abs/2312.09369
https://doi.org/10.1109/ICASSP.2015.7178347
https://doi.org/10.1109/ICASSP.2015.7178347
https://api.semanticscholar.org/CorpusID:257232822
https://api.semanticscholar.org/CorpusID:257232822
https://api.semanticscholar.org/CorpusID:257232822
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://www.researchgate.net/publication/244454816_Audio-Visual_Automatic_Speech_Recognition_An_Overview
https://www.researchgate.net/publication/244454816_Audio-Visual_Automatic_Speech_Recognition_An_Overview
http://arxiv.org/abs/2305.13516
http://arxiv.org/abs/2305.13516
https://dl.acm.org/doi/10.5555/3618408.3619590
https://dl.acm.org/doi/10.5555/3618408.3619590
https://openaccess.thecvf.com/content/CVPR2023/html/Seo_AVFormer_Injecting_Vision_Into_Frozen_Speech_Models_for_Zero-Shot_AV-ASR_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Seo_AVFormer_Injecting_Vision_Into_Frozen_Speech_Models_for_Zero-Shot_AV-ASR_CVPR_2023_paper.html
https://openreview.net/forum?id=Z1Qlm11uOM
https://openreview.net/forum?id=Z1Qlm11uOM
https://openreview.net/forum?id=Z1Qlm11uOM
https://doi.org/10.21437/Interspeech.2022-99
https://doi.org/10.21437/Interspeech.2022-99
http://arxiv.org/abs/1510.08484
http://arxiv.org/abs/1703.04105
http://arxiv.org/abs/1703.04105
https://pubs.aip.org/asa/jasa/article-abstract/26/2/212/598972/Visual-Contribution-to-Speech-Intelligibility-in
https://pubs.aip.org/asa/jasa/article-abstract/26/2/212/598972/Visual-Contribution-to-Speech-Intelligibility-in
https://api.semanticscholar.org/CorpusID:49670925
https://api.semanticscholar.org/CorpusID:49670925
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://api.semanticscholar.org/CorpusID:233481577
https://api.semanticscholar.org/CorpusID:233481577
https://doi.org/10.1109/ICASSP49357.2023.10095029
https://doi.org/10.1109/ICASSP49357.2023.10095029
https://doi.org/10.1109/ICASSP49357.2023.10095029


Qiu-Shi Zhu, Long Zhou, Jie Zhang, Shu-Jie Liu, Yu-
Chen Hu, and Li-Rong Dai. 2023. Robust data2vec:
Noise-robust speech representation learning for asr
by combining regression and improved contrastive
learning. In ICASSP 2023 - 2023 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1–5.

Qiushi Zhu, Long Zhou, Ziqiang Zhang, Shujie Liu,
Binxing Jiao, Jie Zhang, Lirong Dai, Daxin Jiang,
Jinyu Li, and Furu Wei. 2024. Vatlm: Visual-audio-
text pre-training with unified masked prediction for
speech representation learning. IEEE Transactions
on Multimedia, page 1–11.

12907

https://doi.org/10.1109/ICASSP49357.2023.10095373
https://doi.org/10.1109/ICASSP49357.2023.10095373
https://doi.org/10.1109/ICASSP49357.2023.10095373
https://doi.org/10.1109/ICASSP49357.2023.10095373
https://doi.org/10.1109/tmm.2023.3275873
https://doi.org/10.1109/tmm.2023.3275873
https://doi.org/10.1109/tmm.2023.3275873


A Generalization to Different Types of
Noise

As we mentioned in the Limitation section, the
evaluation phase in the main tables is conducted on
a single type of synthetic noise, Babble. To confirm
the general effectiveness of XLAVS-R on noise ro-
bustness, we further experiment AVSR with differ-
ent types of noise, Music and Noise from MUSAN
dataset following Shi et al. (2022b).

Table 7 and 8 show the results in average and
language-wise WER of each models on different
types of noise. Overall, the noise robustness of
Audio-Visual speech processing still holds with dif-
ferent kinds of noises. All AV models manage to
get a higher quality of speech recognition with vi-
sual information than A-only mode in all new types
of noise. Babble turns out to be the toughest noisy
environment as shown in the above table, while
Music and Noise are even able to achieve scores
that are close to the clean environment with AV
mode, which is consistent with Shi et al. (2022b).

B Future Works: Visual-only Experiment

The main focus of this research is on having the
best noise-robust speech recognition and transla-
tion performance by leveraging stronger audio com-
ponents and visual information, rather than visual-
only input. Therefore, the presented AV mod-
els may not provide significant visual-only speech
recognition capabilities, especially in non-English
languages. The results of visual-only experiment
in English are 52.4 WER for AV-HuBERT and 55.9
WER for u-HuBERT, and non-English results are
around 90-100 WER. We plan to conduct com-
prehensive VSR experiment with XLAVS-R and
further explore how to develop zero-shot visual
speech recognition (VSR) ability while maintain-
ing state-of-the-art audio-visual performances as a
future work.

12908



Hours En Ar De El Es Fr It Pt Ru

Default 437 19 13 29 181 179 104 156 52
Extended 3378 142 381 40 465 444 228 563 346

Table 6: Statistics of training datasets in hours.

Noise Type Clean Babble Music Noise
Mode A AV A AV A AV A AV

AV-HuBERT 35.7 35.0 73.5 56.1 45.8 41.3 45.8 41.3
u-HuBERT 35.6 35.0 71.0 55.8 45.1 41.0 45.4 41.0
XLAVS-R 300M 26.7 26.3 53.4 41.2 33.0 30.6 33.1 30.5
XLAVS-R 300M (extended) 26.5 26.1 53.9 41.0 32.7 30.1 33.0 30.3
XLAVS-R 2B 24.2 23.6 50.8 37.3 30.4 27.8 30.5 27.7

Table 7: Average WER of AVSR with different types of noise of Music and Noise from MUSAN dataset. The noise
robustness of XLAVS-R is still the most effective with different kinds of noises.

Model Noise Type En Ar De El Es Fr It Pt Ru Avg

AV-HuBERT

Noisy-A (Music) 6.7 97.3 65.0 57.8 30.1 29.7 34.4 35.8 55.8 45.8
Noisy-AV (Music) 2.9 94.1 59.8 53.4 24.5 26.1 28.8 29.8 51.9 41.3
Noisy-A (Noise) 7.3 96.1 65.5 58.4 29.2 29.4 34.0 36.3 56.3 45.8
Noisy-AV (Noise) 3.2 94.3 59.7 53.6 24.2 26.5 28.1 30.0 52.4 41.3

u-HuBERT

Noisy-A (Music) 6.3 96.9 63.5 57.2 29.2 29.2 33.5 34.6 55.1 45.1
Noisy-AV (Music) 3.2 94.3 58.7 53.1 24.6 26.2 28.3 28.9 51.7 41.0
Noisy-A (Noise) 6.1 96.7 64.5 58.0 28.2 30.0 33.8 35.3 56.2 45.4
Noisy-AV (Noise) 2.9 93.5 59.1 53.9 23.8 26.6 28.1 29.2 52.0 41.0

XLAVS-R 300M

Noisy-A (Music) 5.3 87.7 53.3 33.6 17.1 19.3 19.6 21.7 39.5 33.0
Noisy-AV (Music) 3.2 85.8 50.3 30.6 15.2 17.7 16.8 18.3 37.4 30.6
Noisy-A (Noise) 6.0 87.1 54.0 33.2 17.2 19.3 19.3 21.8 40.3 33.1
Noisy-AV (Noise) 3.5 84.8 50.7 30.0 14.8 17.9 16.4 18.1 38.0 30.5

XLAVS-R 300M (extended)

Noisy-A (Music) 4.9 85.0 45.5 37.4 18.4 20.4 21.7 22.9 38.1 32.7
Noisy-AV (Music) 2.9 83.2 42.4 34.1 16.0 18.8 18.6 19.3 36.0 30.1
Noisy-A (Noise) 5.5 85.2 46.2 37.4 18.4 20.9 21.2 23.9 38.5 33.0
Noisy-AV (Noise) 2.9 83.1 42.8 34.2 15.7 19.3 17.9 20.0 36.5 30.3

XLAVS-R 2B

Noisy-A (Music) 4.9 86.5 52.5 28.1 15.7 16.3 17.0 19.0 33.9 30.4
Noisy-AV (Music) 2.4 83.8 50.1 24.8 13.3 15.2 14.2 15.6 31.0 27.8
Noisy-A (Noise) 5.4 86.2 52.6 27.5 15.2 16.9 17.0 19.2 34.2 30.5
Noisy-AV (Noise) 2.5 83.0 49.3 24.9 12.7 15.2 14.2 15.6 31.9 27.7

Table 8: Language-wise WER of AVSR with different types of noise of Music and Noise from MUSAN dataset.
The noise robustness of XLAVS-R is still the most effective with different kinds of noises.
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Model Test Mode
OOD In-Domain

Avg En Ar De El Es Fr It Pt Ru Avg

Clean environment, Test WER (%) ↓
AV-HuBERT (MuAViC-En)

A 45.5 4.3 92.3 56.4 48.9 19.4 22.2 23.5 25.0 48.3 37.8
AV - 2.2 91.1 54.7 47.7 18.6 21.6 22.6 23.8 46.5 36.5

+ Single-round w/ SSL units
A 44.6 3.9 89.7 56.4 48.7 20.1 23.0 24.4 25.9 48.3 37.8

AV - 2.6 89.3 54.4 47.5 18.7 22.5 23.7 24.6 46.3 36.6

+ Learned AFE
A 36.5 4.6 90.8 52.4 31.6 15.7 18.2 18.5 18.8 41.7 32.5

AV - 2.3 84.4 48.1 29.7 13.7 16.6 16.5 17.1 36.6 29.4

+ MuAViC non-English
A 35.1 3.1 83.7 50.0 28.1 12.7 16.9 15.9 16.6 37.1 29.3

AV - 2.8 82.2 48.4 27.0 12.1 16.6 15.2 15.6 35.1 28.3

+ A-only pre-training (XLAVS-R)
A 32.5 2.5 82.4 45.6 24.2 11.3 14.6 12.9 13.7 33.0 26.7

AV - 2.4 81.7 44.7 24.3 10.9 14.4 12.8 13.2 32.7 26.3

Noisy environment, Test WER (%) ↓
AV-HuBERT (MuAViC-En)

A 100.2 85.3 113.9 95.0 89.9 74.8 67.1 78.5 79.2 82.3 85.1
AV - 9.5 107.3 79.5 74.3 49.4 48.0 54.1 52.5 71.5 60.7

+ Single-round w/ SSL units
A 93.8 67.1 109.1 90.3 86.1 68.4 63.6 74.3 73.7 79.1 79.1

AV - 9.0 102.2 76.0 71.5 46.5 46.6 51.9 50.8 69.7 58.2

+ Learned AFE
A 102.4 183.6 119.5 85.2 77.4 58.1 51.1 63.2 63.5 76.9 86.5

AV - 6.5 99.5 66.8 54.6 36.1 34.7 39.7 40.2 56.6 48.3

+ MuAViC non-English
A 88.4 100.7 104.3 76.2 63.6 46.9 41.3 50.3 56.5 60.7 66.7

AV - 6.3 94.3 63.7 46.3 28.3 29.4 31.0 32.9 50.3 42.5

+ A-only pre-training (XLAVS-R)
A 79.8 2.4 100.1 69.4 56.2 39.9 33.4 40.5 45.4 53.0 53.4

AV - 5.8 95.8 61.4 44.7 28.0 27.2 29.4 30.6 47.8 41.2

Table 9: This is a table containing all the values of the plots in Section 5.3, Figure 2. Effectiveness of each
component towards XLAVS-R and multilingual pre-training data starting from AV-HuBERT model pre-trained only
on MuAViC-En. All the components of XLAVS-R are shown to be effective. Each ablated pre-trained models are
fine-tuned and evaluated on multilingual audio-visual speech recognition with identical training and test settings (A:
audio, AV: audio+video).
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Model Test Mode
OOD In-Domain

Avg En Ar De El Es Fr It Pt Ru Avg

Clean environment, Test WER (%) ↓
300M model

XLAVS-R A 30.3 2.2 81.7 45.6 23.6 11.2 14.8 12.7 13.5 32.9 26.5
(A-only fine-tuning) AV - 2.2 82.1 45.2 23.6 11.0 14.7 12.8 13.5 33.0 26.5

XLAVS-R A 32.5 2.5 82.4 45.6 24.2 11.3 14.6 12.9 13.7 33.0 26.7
(AV fine-tuning) AV - 2.4 81.7 44.7 24.3 10.9 14.4 12.8 13.2 32.7 26.3

2B model
XLAVS-R A 35.5 2.2 83.3 49.0 22.3 9.6 13.2 10.5 11.2 26.6 25.3
(A-only fine-tuning) AV - 2.0 83.7 48.2 21.6 9.4 13.2 10.4 10.9 26.0 25.0

XLAVS-R A 34.2 1.9 80.3 45.5 19.5 9.4 12.5 10.9 11.6 26.0 24.2
(AV fine-tuning) AV - 1.7 79.3 44.4 19.0 9.1 12.3 10.6 11.2 25.0 23.6

Noisy environment, Test WER (%) ↓
300M model

XLAVS-R A 78.1 45.1 102.2 68.1 55.1 39.2 33.2 39.9 44.9 52.3 53.3
(A-only fine-tuning) AV - 13.8 101.4 66.5 52.7 37.1 31.5 38.3 40.9 51.9 48.2

XLAVS-R A 79.8 42.4 100.1 69.4 56.2 39.9 33.4 40.5 45.4 53.0 53.4
(AV fine-tuning) AV - 5.8 95.8 61.4 44.7 28.0 27.2 29.4 30.6 47.8 41.2

2B model
XLAVS-R A 74.3 34.2 100.9 65.1 52.6 31.8 26.7 31.7 35.4 44.8 47.0
(A-only fine-tuning) AV - 4.3 96.3 60.3 41.6 23.0 22.1 22.9 24.7 39.3 37.2

XLAVS-R A 74.0 49.5 98.9 66.3 50.6 36.0 30.0 36.8 40.6 48.3 50.8
(AV fine-tuning) AV - 5.9 93.5 58.5 38.6 23.9 23.5 24.6 26.1 41.0 37.3

Table 10: This is a table containing all the values of the summarized plots in Section 5.4, Figure 3. XLAVS-R
shows greater zero-shot ability on audio-visual test mode with audio-only fine-tuned (FT) model compared to that
of AV-HuBERT. Without fine-tuned on the labeled audio-visual set, the A-only FT model from XLAVS-R shows 5%
WER improvement on AV test mode compared to A test mode (purple), while that of AV-HuBERT show only 3%
WER (orange) in noisy environment. The bigger the XLAVS-R model size, the greater the zero-shot ability—the
gap of 9.8% WER between A and AV test mode of A-only FT 2B model in a noisy environment).
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