
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12871–12882
August 11-16, 2024 ©2024 Association for Computational Linguistics

LoRA-Flow: Dynamic LoRA Fusion for
Large Language Models in Generative Tasks

Hanqing Wang∗1 Bowen Ping*2 Shuo Wang†3 Xu Han3,4,5

Yun Chen†1 Zhiyuan Liu3,4,5 Maosong Sun3,4,5

1Shanghai University of Finance and Economics 2Peking University
3Dept. of Comp. Sci. & Tech., Tsinghua University, Beijing, China

4Institute for AI, Tsinghua University, Beijing, China
5Beijing National Research Center for Information Science and Technology

Abstract

LoRA employs lightweight modules to cus-
tomize large language models (LLMs) for each
downstream task or domain, where different
learned additional modules represent diverse
skills. Combining existing LoRA modules to
address new tasks can enhance the reusability
of learned LoRA modules, particularly ben-
eficial for tasks with limited annotated data.
Most prior works on LoRA combination pri-
marily rely on task-level weights for each in-
volved LoRA, making different examples and
tokens share the same LoRA weights. How-
ever, in generative tasks, different tokens may
necessitate diverse skills to manage. Taking the
Chinese math task as an example, understand-
ing the problem description may depend more
on the Chinese LoRA, while the calculation
part may rely more on the math LoRA. To this
end, we propose LoRA-Flow, which utilizes
dynamic weights to adjust the impact of differ-
ent LoRA modules. The weights at each step
are determined by a fusion gate with extremely
few parameters, which can be learned with only
200 training examples. Experiments across six
generative tasks demonstrate that our method
consistently outperforms baselines with task-
level fusion weights. This underscores the ne-
cessity of introducing dynamic fusion weights
for LoRA combination.1

1 Introduction

Large language models (LLMs) have demonstrated
superior performance over previous smaller models
across a wide range of tasks (OpenAI, 2023; Anil
et al., 2023; Touvron et al., 2023a,b), thereby ex-
tending the applicability of AI systems to numerous
real-world scenarios. Because of their substantial
model size, training all parameters of LLMs can

* Equal Contribution.
† Corresponding authors.
1 Code and models will be publicly available at https:

//github.com/thunlp/LoRAFlow.

设 …301 x 6假 …

…

…

…

…

LoRA-Hub weights

LoRA-Flow weights

Zh Chat En Math

Figure 1: Illustration of the proposed LoRA-Flow
method. For the token yt at the t-th step, we use a gate
that conditions on the prefix y<t to determine the fu-
sion weights. The dynamic fusion weights are intended
to control the influence of different LoRA modules, to
better cope with various types of tokens in generative
tasks. Red and blue rectangles represent the weights
assigned to the two involved LoRA modules.

often be prohibitively expensive. Therefore, sev-
eral researchers have proposed a set of parameter-
efficient fine-tuning (PEFT) approaches (Houlsby
et al., 2019; Li and Liang, 2021). Among these,
LoRA (Hu et al., 2022) stands out as one of the
most popular due to its efficiency and simplicity.

The basic idea of LoRA is to learn an addi-
tional module for each downstream domain or task.
Rather than solely employing a single LoRA to
address learned tasks, several recent studies have
delved into the potential of combining existing
LoRA modules to tackle unseen tasks (Zhang et al.,
2023; Huang et al., 2024; Chronopoulou et al.,
2023). This direction holds the potential to sub-
stantially enhance the reusability of learned param-
eters, facilitating the integration of diverse model
capabilities.

Most existing LoRA fusion approaches employ
a task-level weight distribution when combining
different LoRA modules. This implies that all test
examples and tokens share the same fusion ratio.

12871

https://github.com/thunlp/LoRAFlow
https://github.com/thunlp/LoRAFlow

However, for some complex generative tasks (e.g.,
solving mathematical problems or generating code
according to provided instructions), the LLM may
need to dynamically employ various types of ca-
pabilities to address the entire problem effectively.
Figure 1 illustrates an example, where we have
trained a Chinese chat LoRA (i.e., Zh Chat) and
an English math LoRA (i.e., En Math), and our
objective is to address a Chinese math problem.
Intuitively, comprehending the Chinese problem
description may rely more on the Chinese chat
LoRA, whereas performing the calculation might
depend more on the English math LoRA.

In this work, we propose LoRA-Flow, which
can dynamically determine the token-level weights
of different LoRA modules for generative tasks.
At each time step, the fusion weights are gener-
ated by a gate module that conditions the current
prefix. The fusion gate comprises an extremely
small number of parameters, accounting for only
approximately 0.2% of those in a LoRA. We find
through experiments that the fusion gate can be
learned through only 200 training examples. Fig-
ure 1 gives an example of LoRA-Flow. We also
observe significant variations in weights across dif-
ferent model layers, suggesting that the impact of
LoRA modules differs across layers. In summary,
the contributions of this work can be outlined as
follows:

• We propose LoRA-Flow, a method that com-
bines existing LoRA modules with dynamic
fusion weights to effectively control the in-
fluence of each LoRA module across various
generation steps.

• We verify the effectiveness of LoRA-Flow on
six different generation tasks, and the results
show that LoRA-Flow can consistently outper-
form the baselines that use task-level fusion
weights (e.g., LoRA-Hub).

• By carefully designed analyses from various
aspects, we provide deeper insights into the in-
tegration of LoRA modules. We consider this
journey to be fruitful in constructing a flexible
plug-and-play community for LLMs, enabling
developers to leverage plugins created by oth-
ers to build up their own LLM applications.

2 Background

Large Language Models Most recent LLMs
utilize a decoder-only architecture, comprising

stacked layers of identical structure to form the
large-scale model. For a sequence y, an LLM esti-
mates its probability in the following way:

P (y|θbase) =
T∏

t=1

P (yt|y<t;θbase), (1)

where yt denotes the token at the t-th step and
y<t is the prefix before t. θbase represents the
parameters of the basic LLM.

LoRA LoRA (Hu et al., 2022) is a parameter-
efficient fine-tuning method that can achieve com-
parable performance to full fine-tuning in certain
scenarios but at a significantly lower cost. Specif-
ically, for a given matrix W ∈ Rm×d within
the model, we can learn two low-rank matrices
A ∈ Rr×d and B ∈ Rm×r to approximate the
parameter update for W :

∆W = BA. (2)

LoRA Fusion Each trained LoRA possesses
unique capabilities, and their combination can in-
tegrate various skills of LLMs. Formally, we use
∆W1 = B1A1 and ∆W2 = B2A2 to represent two
existing LoRA modules. Zhang et al. (2023) pro-
pose to merge two LoRA modules in the following
way:

h′ = Wx+ λ∆W1x+ (1− λ)∆W2x, (3)

where λ is a hyper-parameter that needs to be man-
ually tuned.

LoRA-Hub (Huang et al., 2024) further improve
the fusion method in the following ways:

h′ = Wx

+ (w1B1 + w2B2)(w1A1 + w2A2)x,
(4)

where the fusion weights w1 and w2 are learned in
a few-shot manner. While LoRA-Hub can automat-
ically determine fusion weights for different LoRA
modules, the weights across different tokens re-
main the same for a given task. This shared weight
scheme may constrain the expressive capacity of
the involved LoRA modules, particularly in com-
plex generative tasks that entail diverse types of
context.

3 Approach

To handle generative tasks more flexibly, we pro-
pose LoRA-Flow, which employs dynamic fusion

12872

Q K V

self attention
softmax

W

⨁

" ∆"! ∆""

weighted
sum

"#

fusion gate

feed forward

add bias

Figure 2: Left: we use layer-wise fusion gates to facilitate dynamic LoRA fusion, which project input hidden states
of each layer into fusion weights. Right: for a certain module, the provided fusion weights are used to aggregate the
outputs of different LoRA modules. Since our goal is to leverage the abilities acquired by existing LoRA modules to
address new tasks, we only train the fusion gate with a few examples, while keeping both the model and the LoRA
modules frozen. The number of parameters of the fusion gate is only approximately 0.2% of those in a LoRA.

weights at each generation step. Subsequently, we
will first introduce the way we calculate the fusion
weights in Section 3.1, and then detail how we in-
tegrate the weights into the model in Section 3.2.
Finally, we describe the training algorithm in Sec-
tion 3.3.

3.1 Calculating Fusion Weights

At the t-th step, we aim to determine the fusion
weights using the prefix y<t, which captures the
context of the current token. Given that the back-
bone model has already compressed the context
information into hidden vectors, we propose di-
rectly utilizing the hidden state at the t-th step to
avoid redundant computations.

There are three levels of hidden states, each con-
taining different granularities of information:

• Step-level hidden states xt: the input word
embedding at the t-th step.

• Layer-level hidden states xl
t: the input repre-

sentation to the l-th layer at the t-th step.

• Module-level hidden states xl,type
t : the input

vector to a specific module (e.g., the query
projection in the self-attention network).

As found in some previous studies, the hidden
states in various layers may lie in different mani-
folds (Voita et al., 2019). Therefore, simply using
the step-level hidden state xt to compute the fusion
weights for the entire model may be not sufficiently
effective. On the other side, using module-level hid-
den states would introduce plenty of new parame-
ters for the fusion gates, as each module requires

an independent gate to cope with its input states
xl,type
t . We thus use the layer-level hidden state

xl
t. Empirical studies in Section 6.1 indicate that

layer-wise fusion weights can outperform the other
two types of counterparts.

As shown in Figure 2, for the l-th layer, the
fusion gate takes in the input representation xl

t and
then projects it into fusion weights:

wl = softmax
(
W l

gatex
l
t

)
+ bl, (5)

where W l
gate ∈ Rk×d and bl ∈ Rk×1. k is the

number of LoRA modules. Both W l
gate and bl

are learnable parameters. Given that k is typically
substantially smaller than d and r, the number of
parameters within the fusion gates is negligible
compared to that of the LoRA. For instance, in
Llama-2-7b (Touvron et al., 2023b), a LoRA for
the entire model contains 117.44M parameters with
r = 64, while the gates for combining two LoRA
modules only consist of 0.26M parameters in total.

3.2 Integrating Fusion Weights
As mentioned in Section 3.1, we use layer-wise
fusion weights in LoRA-Flow. Once we get the fu-
sion weights at the l-th layer, we feed the weights
wl to all the modules that contain LoRA modules.
Different from LoRA-Hub (Huang et al., 2024) that
separately composes LoRA A matrices and LoRA
B matrices (as shown in Eq (4)), we integrate the
outputs of different LoRA modules, treating each
LoRA as a complete module. The reason for this
operation is to combine LoRA modules with differ-
ent middle ranks. Let ∆h = [∆h1; · · · ; ∆hk] ∈
Rd×k denote the outputs of all the involved LoRA

12873

modules, the fusion process can be expressed by

h′ = h+∆hwl, (6)

where h is the module’s output in the backbone.
Figure 2 shows an example.

3.3 Training

For a backbone model θbase and a set of learned
LoRA modules θLoRA = {θ1

LoRA, · · · ,θk
LoRA},

we train the fusion gate θfusion on the new task:

θ̂fusion = argmax
θfusion

{L(θtotal|Dnew)} , (7)

where θtotal = θbase∪θLoRA∪θfusion denotes the
total parameters. The likelihood is defined as

L(θtotal|Dnew) =
N∑

i=1

P (yi|θtotal), (8)

where N is the number of training examples on
the new task. We follow LoRA-Hub (Huang et al.,
2024) to learn the fusion modules in a few-shot
manner, where N is set to 200 in our experiments.
We investigate the effect of N in Section 6.4. Since
θfusion consists of only a few parameters, these
limited training examples are adequate for learning
an effective fusion mechanism.

4 Experiment

4.1 Setup

Base Model We use Llama-2 (Touvron et al.,
2023b) as our base LLM to examine the perfor-
mance of various LoRA fusion approaches, as it is
among the most widely used open-source LLMs.
Due to computational constraints, we use Llama-2-
7b by default.

LoRA Training To conduct LoRA fusion experi-
ments, we first learn several LoRA modules on the
tasks with sufficient supervised data:

• Chinese chat (Zh Chat): we use the data re-
leased by Lai et al. (2023) to learn the Chinese
chat LoRA, which is expected to possess the
ability to understand and generate Chinese
text. There are 52K training examples in total.

• Russian chat (Ru Chat): the training data of
Russian chat LoRA is also from Lai et al.
(2023), which consists of 52K training exam-
ples in Russian.

• Spanish chat (Es Chat): the training data is
also from Lai et al. (2023), containing 52K
training examples in Spanish.

• English math (En Math): the training data
for English math LoRA is constructed by Yu
et al. (2023), which is comprised of 395K
mathematical problems in English.

• English code (En Code): we train the English
code LoRA with the Magicoder dataset (Wei
et al., 2023), which consists of 186K code
generation problems in English.

We integrate LoRA modules into the query, key,
value, and output projections within attention net-
works and the three linear projections in feedfor-
ward networks. By default, the LoRA rank r is set
to 64 and the value of α is set to 16. For the En
code LoRA, we set r=256, as we have observed
that the code LoRA with r=64 is inadequate for
learning the task effectively. Each LoRA module
is trained using 8 A100 80G GPUs, where each
mini-batch contains 128 training examples. We use
the cosine warmup schedule and the peak learning
rate is 1e-4. For each task, the LoRA is trained by
3 epochs and the warmup ratio is set to 0.04.

LoRA Fusion We evaluate LoRA fusion meth-
ods in a few-shot manner. Specifically, we conduct
the evaluation on six tasks, including Zh math, Ru
math, Es math, Zh code, Ru code, and Es code. For
each task, we combine the chat LoRA in the target
language and the task LoRA in English. Briefly, we
use language LoRA to represent the target-language
chat LoRA and task LoRA to denote the math or
code LoRA trained in English.

For each task, we construct 200 training exam-
ples for the few-shot training, which is firstly trans-
lated by GPT-3.5 based on the English math or
code data and then verified by humans. For fu-
sion experiments on math, we also construct 100
problems as the validation set. For code experi-
ments, we employ humans to create 20 problems
as the validation set, since the code generation test
examples are more time-consuming to annotate.2

Both LoRA-Hub and the proposed LoRA-Flow are
trained with the few-shot data. We use the valida-
tion to search the training hyperparameters. The
search space of the peak learning rate is {1e-3, 1e-
4}, and the search space of the batch size is {2, 4,

2See Appendix B for the translation prompt and Ap-
pendix C for the details of human annotation.

12874

8}.3 Each fusion module is trained with 5 epochs,
using the few-shot training data.

Evaluation For fusion experiments on math, we
use MGSM (Shi et al., 2023) as the test set, which
is a widely used multilingual evaluation benchmark
for the math abilities of LLMs. For fusion exper-
iments on code generation, we construct a multi-
lingual version of HumanEval (Chen et al., 2021).
The original English problem descriptions in Hu-
manEval are translated by GPT-3.5 into other lan-
guages and then verified by humans. We report
the accuracy and the pass@1 score on MGSM and
HumanEval, respectively.

4.2 Main Results

Table 1 shows the results of the involved methods
on different generative tasks. For comparison, we
also show the performances of the base model and
single LoRA. The task LoRA modules trained in
English already demonstrate a notable degree of
cross-lingual transfer capabilities, outperforming
the language LoRA modules on non-English tasks.
For example, in the Zh math task, the task LoRA
achieves an accuracy of 26.8, whereas the language
LoRA achieves only 5.2. On the code generation
tasks, the task LoRA also significantly outperforms
the language LoRA modules.

When combining the language and task LoRA
modules, we compare our method with two base-
lines that use task-level fusion weights. The "Aver-
age" baseline refers to simply averaging the outputs
of the two involved LoRA modules. As introduced
in Section 2, LoRA-Hub learns task-level fusion
weights using few-shot training data, similar to the
proposed LoRA-Flow. However, LoRA-Flow uti-
lizes dynamic fusion weights, which vary across
different time steps and model layers. We use the
open-source code released by Huang et al. (2024)
to reimplement LoRA-Hub in our experiments.

From the experiments, we find that “Average”
and LoRA-Hub perform even worse than the single
task LoRA, demonstrating that combining differ-
ent LoRA modules with static weights is not ef-
fective enough for complex generative tasks like
solving mathematical problems or generating code
segments. Specifically, LoRA-Hub only outper-
forms the single-task LoRA on the Zh code task.

Trained with the same few-shot training data as
LoRA-Hub, LoRA-Flow outperforms the baselines

3Refer to Table 5 in Appendix for the best hyperparameters
of each generation task.

across all six examined tasks. For instance, LoRA-
Flow achieves a performance improvement of 2.3
compared to LoRA-Hub (22.6 vs. 20.3) on code
generation tasks. This confirms the necessity of
employing dynamic weights for generative tasks.

4.3 Results on Larger Model
To confirm the effectiveness of LoRA-Flow with
larger LLMs, we also conduct experiments on
Llama-2-13b. Given that larger models require
higher training costs, we only train three LoRA
modules for the 13b model, namely Zh Chat, En
Math, and En Code. The results of different fu-
sion approaches on the 13b model are shown in
Table 2. On the larger model, all the methods in-
volved achieve better results than those on the 7b
model. Compared to LoRA-Hub, LoRA-Flow ex-
hibits superior performances on both the math and
the code tasks. These results also demonstrate that
LoRA-Flow is compatible with models of various
sizes.

1 9 17 25 32
-0.20

0.10

0.40

0.70

1.00

1.30

0.0

0.2

0.4

0.6

0.8

1.0

En Math
Zh Chat

Figure 3: Average fusion weights for the Zh Chat and
En Math LoRA modules across different layers.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.10

0.30

0.50

0.70

0.90

0.0

0.2

0.4

0.6

0.8

1.0

En Math
Zh Chat

Figure 4: Average fusion weights for the Zh Chat and
En Math LoRA modules at different time steps.

5 Analysis

To gain deeper insights into the behavior of LoRA-
Flow, we conduct a comprehensive series of anal-
yses from various perspectives. We first estimate
the average fusions at different model layers in
Section 5.1, and then investigate how the fusion

12875

Method MGSM (Math) HumanEval (Code)

Zh Ru Es Avg. Zh Ru Es Avg.

BASE MODEL 4.4 3.2 2.4 3.3 0.0 0.0 2.4 0.8

SINGLE LORA
LANG 5.2 3.6 3.6 4.1 12.2 14.0 10.4 12.2
TASK 26.8 32.8 41.2 33.6 18.3 23.2 21.9 21.1

LORA FUSION

AVERAGE 12.8 10.4 18.4 13.9 17.1 17.7 18.3 17.7
LORA-HUB 20.8 28.4 36.8 28.7 19.5 21.3 20.1 20.3
LORA-FLOW 33.2 37.6 42.0 37.6 20.7 23.8 23.2 22.6

Table 1: Evaluation results on MGSM and HumanEval. “LANG” denotes the chat LoRA in the target language and
“TASK” represents the math or code LoRA trained in English. LoRA fusion methods combine the language LoRA
and the task LoRA to accomplish the new task. The best score is highlighted in bold.

Method MGSM HumanEval

BASE MODEL 6.8 0.0

LANG LORA 7.6 18.9
TASK LORA 36.8 34.7

AVERAGE 16.4 30.4
LORA-HUB 40.0 34.2
LORA-FLOW 41.2 35.4

Table 2: Performance of different fusion methods on
Llama-2-13b. The results are reported on the Zh math
and Zh code test sets.

weights change across time steps in Section 5.2.
Finally, we provide a specific case in Section 5.3.

5.1 Fusion Weights across Different Layers

Figure 3 shows the average fusion weights at dif-
ferent layers for the two involved LoRA modules
(i.e., Zh Chat and En Math) on the Chinese math
task. For both the Zh Chat and En Math LoRA,
the weights at various layers exhibit notable vari-
ations, suggesting distinct fusion schemes across
different model layers. A trend is observed where
lower layers assign greater weights to the En Math
LoRA, while higher layers allocate more weight
to the Zh Chat LoRA. This phenomenon can be
explained by the following reason: the bottom lay-
ers primarily utilize the math LoRA for reasoning,
while the top layers rely more on the language
LoRA for text generation in the target language.
In contrast, approaches such as LoRA-Hub, which
combines LoRA modules with fixed weights, re-
gard the capabilities of each transformer layer as
equivalent, overlooking the discrepancies in their
abilities. This constrains the potential of LoRA

fusion approaches in generative tasks.

5.2 Fusion Weights at Different Time Steps

We also analyze the average fusion weights at dif-
ferent time steps during the decoding process. We
split all the tokens generated by the model into 10
bins according to their relative positions. Figure 4
presents the results, where “10%” denotes the ini-
tial 10% tokens on the left, and “20%” represents
the subsequent 10%-20% tokens. This figure illus-
trates the average trend of the fusion dynamics. We
observe that the weight of the En Math LoRA is
increasing, while the weight of the Zh Chat LoRA
is decreasing. The results underscore the necessity
for dynamic fusion weights in generative tasks, as
they show that different time steps require varying
fusion weights, reconfirming our intuition. Since
the average trend is estimated based on the entire
test set, we will present a specific case in the fol-
lowing section.

5.3 Detailed Analysis on Fusion Weights

To better investigate the fusion procedure of LoRA-
Flow, we provide an example in Figure 5, which
consists of the specific tokens generated by the
model and the corresponding fusion weights for
the two involved LoRA modules (i.e., Zh Chat
and En Math). As discussed in Section 5.2, the
fusion weights exhibit significant variation across
different tokens. Notably, due to the incorporation
of a bias vector in the fusion gate, as depicted in
Eq (5), it is possible for certain tokens to have
negative fusion weights. We draw inspiration from
the work of Zhang et al. (2023), who observed that
negative fusion weights can yield specific effects.

On average, the fusion gate assigns higher
weights to the En math LoRA. Additionally, we

12876

! Fusion weights

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

En Math
Zh Chat

贾马尔的手机能容纳的照片数量是布列塔尼手机的 6 倍。布列塔尼的手机能容纳的最大照片数量是贾马尔在动物园拍摄的鸭子照片
中鸭子数量的 50 倍。如果贾马尔的手机能容纳 1,800 张照片，贾马尔在动物园拍摄的照片中能看到多少只鸭子？

Input"

贾马尔的手机能容纳的照片数量是布列塔尼手机的 6 倍，那么布列塔尼手机能容纳的照片数量是 1,800 / 6 = 300 张。\n布列塔尼
的手机能容纳的最大照片数量是贾马尔在动物园拍摄的鸭子照片中鸭子数量的 50 倍，那么贾马尔在动物园拍摄的照片中能看到的
鸭子数量是 300 / 50 = 6 只。\n#### 6\n答案是： 6

Output#

Figure 5: Detailed analysis for the fusion procedure of LoRA-Flow. The upper subgraph illustrates the fusion
weights for each token, while the bottom subgraph details the content. From the fusion weights, we observe three
segments where the fusion weights for the Zh Chat LoRA noticeably decrease while those for the En Math LoRA
increase. We highlight the tokens corresponding to these segments using green, yellow, and red colors, respectively.
Surprisingly, these three segments mainly contain numbers, which are closely related to mathematical reasoning
ability. We also offer English translations of the input and output Chinese text in Figure 7 in the Appendix.

observe certain troughs in the fusion weights for
the Zh Chat LoRA. To better understand this phe-
nomenon, we identify the tokens corresponding to
these troughs. As shown in Figure 5, we use the
same color to mark the weight throughs and the
corresponding text segments. Surprisingly, we ob-
served that when the fusion weight for the Zh chat
LoRA decreases, the text segments mainly con-
tain numbers and mathematical calculations (e.g.,
“1800 / 6 = 300”), which align more closely with
the math capability learned by the En math LoRA.

By examining the case, we observe a strong cor-
relation between the fusion weights with the gen-
erated content. When the content involves math-
ematical reasoning, LoRA-Flow will improve the
fusion weight of the En math LoRA. The signifi-
cant fluctuation in weights suggests that relying on
fixed weights throughout the decoding process is
impractical, underscoring the necessity of dynamic
fusion weights.

6 Discussion

6.1 Ablation Study
To further investigate the granularity of the gates in
LoRA-Flow, we conduct an ablation study to com-
pare the performance of different types of gates:
step-level, layer-level, and module-level gates. As
explained in Section 3.1, the step-level gate esti-

Method MGSM

Zh Ru Es Avg.

TASK LORA 26.8 32.8 41.2 33.6
LORA-HUB 20.8 28.4 36.8 28.7

STEP-LEVEL 30.0 32.4 44.0 35.5
LAYER-LEVEL 33.2 37.6 42.0 37.6
MODULE-LEVEL 30.4 34.0 42.4 35.6

Table 3: Ablation study on various levels of fusion gates.

mates the fusion weight for each step, which is
shared by the entire model. Layer-level gates repre-
sent the default setting in LoRA-Flow, computing
the fusion weight at each layer. Module-level gates
provide a specific fusion weight for each module
(e.g., the query projection module in the last layer),
offering greater flexibility than layer-level gates but
introducing more trainable parameters.

Table 3 presents the results of varying gate lev-
els. On average, layer-level fusion gates achieve
the highest scores, surpassing both step-level and
module-level gates. On the Zh math task, the con-
fidence intervals for the step-, layer-, and module-
level fusion models are (29.21, 30.78), (32.85,
33.55), and (29.61, 31.18), respectively. Never-
theless, the other two fusion gate types also outper-

12877

form LoRA-Hub. Specifically, the step-level fusion
gate achieves an average score of 35.5, while that
of LoRA-Hub is 28.7. These results suggest that
while utilizing shared fusion weights across dif-
ferent model layers, employing dynamic fusion
methods at various time steps yields superior re-
sults compared to using task-level static weights.
Since different model layers may have different ca-
pabilities, using layer-level fusion gates can further
improve the performance.

Method MGSM HumanEval

FT NEW LORA 18.8 12.2

FT LANG LORA 16.4 15.9
FT TASK LORA 27.6 18.9

LORA-FLOW 33.2 20.7

Table 4: Comparison between few-shot fine-tuning and
LoRA fusion. The results are reported on the Zh math
and Zh code tasks.

6.2 LoRA Fusion vs. Few-shot Fine-Tuning

In scenarios with limited data, combining exist-
ing LoRA modules can effectively leverage the
knowledge acquired in other tasks. In this sec-
tion, we compare LoRA-Flow with other few-shot
fine-tuning baselines: (1) FT new LoRA: using the
same few-shot training examples to learn a new
LoRA for the target task; (2) FT lang LoRA: fine-
tuning the language LoRA on the target task; and
(3) FT task LoRA: fine-tuning the task LoRA on
the target task. The results are shown in Table 4.
Our method, which dynamically integrates the lan-
guage and task LoRA modules, surpasses all three
few-shot fine-tuning baselines, indicating the ef-
fectiveness of utilizing existing LoRA modules in
few-shot scenarios.

6.3 Generalization across Different Tasks

Similar to LoRA-Hub (Huang et al., 2024), we
learn the fusion module for each task with few-
shot training data. In this study, we also explore
the generalizability of fusion gates across various
tasks. For example, can the gate learned for the Zh
code task, which is trained to combine the Zh chat
LoRA and the En code LoRA, effectively combine
the Ru chat LoRA and the En math LoRA?

Figure 6 shows the results, depicting the perfor-
mance difference between merging two LoRA mod-
ules and employing solely the task LoRA, which is

Zh M
ath

Ru
 Math

Es
Math

Zh C
od

e

Ru
 Cod

e

Es
Cod

e

Zh Math

Ru Math

Es Math

Zh Code

Ru Code

Es Code

6.4 -1.2 -1.2 -1.8 -1.3 -6.0

-2.4 4.8 -2.0 -0.6 0.0 1.9

0.0 1.2 0.8 0.6 -0.6 1.9

-4.0 1.6 -1.2 1.8 0.6 0.0

0.0 0.0 0.4 0.0 0.6 0.0

0.4 -0.2 -2.8 1.2 -2.5 1.3

6

4

2

0

2

4

6

Figure 6: Generalizability of the fusion gates. Each row
represents a training task, and each column represents an
evaluation task. The value represents the performance
gap between combining the language and task LoRA
modules and using the task LoRA only. Please refer to
Section 6.3 for detailed explanations.

a strong baseline. Specifically, the initial row indi-
cates employing the gate trained with Zh math data
for all six generative tasks. Remarkably, numerous
values appear to be positive, suggesting that while
zero-shot generalization is not a specific consider-
ation during method design, it still demonstrates
some degree of generalization capability. Take the
third row as an example, training a gate on the Es
math task results in a performance enhancement of
0.8 on the training task. Impressively, this Es math
gate also leads to improved performance on three
other tasks (i.e., Ru math, Zh code, and Es code).
Furthermore, the enhancement observed in the Es
code task surpasses that achieved in the Es math
task. We leave it to future work to further improve
the zero-shot generalization capabilities of LoRA
fusion methods.

6.4 Few-Shot Sample Size Selection
We also investigate the impact of the number of few-
shot learning examples (i.e., N). On the Zh math
task, when trained with 50, 100, and 200 examples,
LoRA-Flow achieves scores of 26.8, 31.6, and 33.2,
respectively. This trend indicates that using more
data can yield better fusion results.

7 Related Work

Module Composition Exploring the reuse of ex-
isting modules for new tasks is an appealing re-
search direction. Pfeiffer et al. (2021) combines

12878

adapters (Houlsby et al., 2019) that have been fine-
tuned on various downstream tasks through an ad-
ditional attention layer. Zhang et al. (2023) defines
some specific operations, such as addition and sub-
traction, to combine existing LoRA modules. The
combination weights are tuned on a validation set.
Huang et al. (2024) further improves the LoRA
combination by automatically optimizing the fu-
sion weights in a few-shot manner. Chronopoulou
et al. (2023) combines LoRA modules trained on
the summarization task and multilingual unlabeled
data to perform multilingual summarization, where
the fusion weight is also a hyperparameter that
should be tuned. Most previous LoRA fusion meth-
ods employ task-level static weights, while our
proposed LoRA-Flow can dynamically combine
different types of LoRA according to the current
context.

Mixture-of-LoRA Some recent studies pro-
pose to improve the performance of LoRA
with the mixture-of-LoRA (MoLoRA) architec-
ture (Zadouri et al., 2023; Dou et al., 2023; Wang
et al., 2022), which is similar to mixture-of-expert
models. The primary objective of these efforts is
to overcome the limitations of LoRA in certain
downstream tasks, as the expressive capacity of a
single LoRA may be restricted by its intermediate
rank. The major difference between MoLoRA and
our work is that MoLoRA mainly aims to train a
better plugin for the backbone model, whereas we
aim to leverage pre-trained LoRA modules for new
tasks without training a new LoRA. These two ap-
proaches are complementary. Our method can also
be extended to incorporate existing MoLoRAs or
other advanced types of LoRA modules for unseen
tasks.

8 Conclusion

In this work, we propose LoRA-Flow, a dynamic
combination method for LoRA. By assigning dy-
namic weights to different LoRA modules based
on the current context, LoRA-Flow can outperform
representative baselines with static task-level fu-
sion weights on six complex generative tasks.

9 Limitation

In this study, LoRA-Flow outperforms the fixed-
weight linear combination method across tasks in
various languages. However, our computing re-
sources are limited, constraining us to models no
larger than 13 billion parameters. We only conduct

experiments combining two adapters, though our
method is readily adaptable to incorporate addi-
tional adapters by simply integrating more into the
model and adjusting the gate’s shape accordingly.
Nonetheless, the versatility of our method persists,
and we leave the exploration of larger models and
combining more adapters to future work.

Acknowledgements

This project was supported by the National Natu-
ral Science Foundation of China (No. 62106138,
No. 62236004, No. 62236011), and a grant from
the Guoqiang Institute, Tsinghua University. We
thank all the reviewers for their constructive and
insightful suggestions.

References
Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Gar-
cia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua
Howland, Andrea Hu, Jeffrey Hui, Jeremy Hur-
witz, Michael Isard, Abe Ittycheriah, Matthew Jagiel-
ski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Ben-
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, Aroma Mahendru,
Joshua Maynez, Vedant Misra, Maysam Moussalem,
Zachary Nado, John Nham, Eric Ni, Andrew Nys-
trom, Alicia Parrish, Marie Pellat, Martin Polacek,
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif,
Bryan Richter, Parker Riley, Alex Castro Ros, Au-
rko Roy, Brennan Saeta, Rajkumar Samuel, Renee
Shelby, Ambrose Slone, Daniel Smilkov, David R.
So, Daniel Sohn, Simon Tokumine, Dasha Valter,
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wiet-
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav
Petrov, and Yonghui Wu. 2023. Palm 2 technical
report.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming

12879

http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403

Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Alexandra Chronopoulou, Jonas Pfeiffer, Joshua
Maynez, Xinyi Wang, Sebastian Ruder, and Priyanka
Agrawal. 2023. Language and task arithmetic with
parameter-efficient layers for zero-shot summariza-
tion.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun
Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao
Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui
Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
2023. Loramoe: Revolutionizing mixture of experts
for maintaining world knowledge in language model
alignment.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference on
Machine Learning.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2024. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position.

Viet Lai, Chien Nguyen, Nghia Ngo, Thuat Nguyen,
Franck Dernoncourt, Ryan Rossi, and Thien Nguyen.
2023. Okapi: Instruction-tuned large language mod-
els in multiple languages with reinforcement learning
from human feedback. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers).

OpenAI. 2023. Gpt-4 technical report.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Main Volume.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das,
and Jason Wei. 2023. Language models are multi-
lingual chain-of-thought reasoners. In The Eleventh
International Conference on Learning Representa-
tions.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao. 2022. AdaMix: Mixture-
of-adaptations for parameter-efficient model tuning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5744–5760, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

12880

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2311.09344
http://arxiv.org/abs/2311.09344
http://arxiv.org/abs/2311.09344
http://arxiv.org/abs/2312.09979
http://arxiv.org/abs/2312.09979
http://arxiv.org/abs/2312.09979
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
https://aclanthology.org/2023.emnlp-demo.28
https://aclanthology.org/2023.emnlp-demo.28
https://aclanthology.org/2023.emnlp-demo.28
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
http://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=fR3wGCk-IXp
https://openreview.net/forum?id=fR3wGCk-IXp
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://aclanthology.org/D19-1448
https://aclanthology.org/D19-1448
https://aclanthology.org/D19-1448
https://aclanthology.org/D19-1448
https://doi.org/10.18653/v1/2022.emnlp-main.388
https://doi.org/10.18653/v1/2022.emnlp-main.388

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2023. Meta-
math: Bootstrap your own mathematical questions
for large language models.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Er-
miş, Acyr Locatelli, and Sara Hooker. 2023. Pushing
mixture of experts to the limit: Extremely parameter
efficient moe for instruction tuning.

Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian
He. 2023. Composing parameter-efficient modules
with arithmetic operations. In Advances in Neural
Information Processing Systems.

A Best Hyperparameters

The best hyperparameters for LoRA fusion are
listed in the Table 5.

B Translation Prompt

Figure 8 and Figure 9 show the prompts we used
to translate the Metameth data from English to
Chinese using GPT-3.5. The {system prompt} and
{user prompt} are set by default. The first prompt
is intended to translate the problem identified by
the {instruction} of a sample. The second prompt
is intended to translate the solution identified by
the {answer} to a sample.

C Human Annotation Details

In the process of reviewing and polishing multilin-
gual data, we employed two annotators for each
language. For the construction of the English ver-
sion of the code validation set, we hired two anno-
tators with over two years of experience in NLP.
We contacted them through social media and com-
pensated them at market-standard rates. It has been
communicated to all participating human annota-
tors that the gathered data shall only be used for
academic research purposes, with an assurance that
their personal information will be kept confidential
and not disclosed.

C.1 Details of Translated Data Verification
We employed college students majoring in the rele-
vant languages to check and optimize the translated
data. The primary areas of review and optimization
include:

• Correctness of the mathematical problem-
solving process.

• Correctness of the mathematical problem for-
mat: whether the expression of formulas and
the organization of structures adhere to the
original metamath template, such as answers
following "####" and ending with "the answer
is:" in various languages, etc.

• Whether the code part of the code generation
problems remains consistent with that in the
original data.

• Correctness of the code data format: whether
the overall structure remains unchanged, and
whether essential parts such as problem de-
scription, problem analysis, and code com-
ments are translated into the corresponding
language.

• Overall fluency of the translated sentence.

Each piece of data is sequentially reviewed by two
independent annotators.

D Translated Case

To better understand the case study presented in
Figure 5, we translate the Chinese question and
answer into English, the results are shown in Fig-
ure 7.

12881

http://arxiv.org/abs/2312.02120
http://arxiv.org/abs/2312.02120
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.05444
http://arxiv.org/abs/2309.05444
http://arxiv.org/abs/2309.05444

Tasks Zh Math Ru Math Es Math Zh Code Ru Code Es Code

batch_size 4 4 8 4 4 4

learning_rate 1e-3 1e-3 1e-4 1e-3 1e-3 1e-3

Table 5: The best hyperparameters for LoRA fusion.

📊 Fusion weights

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

En Math
Zh Chat

贾马尔的手机能容纳的照片数量是布列塔尼手机的 6 倍。布列塔尼的手机能容纳的最大照片数量是贾马尔在动物园拍摄的鸭子照片
中鸭子数量的 50 倍。如果贾马尔的手机能容纳 1,800 张照片，贾马尔在动物园拍摄的照片中能看到多少只鸭子？

Input📃

贾马尔的手机能容纳的照片数量是布列塔尼手机的 6 倍，那么布列塔尼手机能容纳的照片数量是 1,800 / 6 = 300 张。\n布列塔尼
的手机能容纳的最大照片数量是贾马尔在动物园拍摄的鸭子照片中鸭子数量的 50 倍，那么贾马尔在动物园拍摄的照片中能看到的
鸭子数量是 300 / 50 = 6 只。\n#### 6\n答案是： 6

Output🤖

English Translation: Jamal's phone holds six times as many photos as Brittany's phone. The maximum number of photos Brittany's phone can hold is 50 times the number of ducks in Jamal's photo of
ducks at the zoo. If Jamal's phone could hold 1,800 photos, how many ducks could Jamal see in the photo he took at the zoo?

English Translation: Jamal's phone can hold 6 times as many photos as Brittany's phone, so Brittany's phone can hold 1,800 / 6 = 300 photos. \nThe maximum number of photos that Brittany's phone
can hold is 50 times the number of ducks in Jamal's photo of ducks at the zoo, so the number of ducks that Jamal can see in the photo of Jamal at the zoo is 300 / 50 = 6. \n#### 6\nThe answer is: 6

Figure 7: Case study of LoRA-Flow with English translations.

{system prompt}:

将以下数学题中题干翻译为汉语，你必须要遵循以下几点要求：

1.保持文本中的数字、符号与LaTex转义字符不变。LaTex转义字符是指以反斜

杠开头的字符串，如 \frac{1}{2}，\cdot等，这些字符串通常被 '$' 符号包围，如

'$x = \frac{1}{2}$'。在翻译过程中将这些符号复制即可。

2.剩余文本内容全部翻译成汉语，特别是人名，人名翻译成汉语中最常见的对

应形式。如将“Joe”翻译成“乔”。

3.在翻译过程中需要保证用词准确与严谨，需要将原文中的数学相关词语准确

专业地翻译成汉语中相应的数学术语，并且尽可能地使得语言自然而流畅。

4.在翻译过程中需要保证内容完整，含义与原文一致，不允许添加或删除任何

信息。

示例：

原文：

<text>Gracie and Joe are choosing numbers on the complex plane. Joe chooses the

point $1+2i$. Gracie chooses $-1+i$. How far apart are Gracie and Joe's

points?<\text>

翻译：

格蕾丝和乔在复平面上选择数字。乔选择了点$1+2i$。格蕾丝选择了$-1+i$。

格蕾丝和乔选择的点有多远?

{user prompt}:

原文：

{instruction}

翻译:\n

Figure 8: Prompt for instruction translation.

{system prompt}:

将以下数学题中回答翻译为汉语，你必须要遵循以下几点要求：

1.保持文本中的数字、符号与LaTex转义字符不变。LaTex转义字符是指以反斜

杠开头的字符串，如 \frac{1}{2}，\cdot等，这些字符串通常被 '$' 符号包围，如

'$x = \frac{1}{2}$'。在翻译过程中将这些符号复制即可。

2.剩余文本内容全部翻译成汉语，特别是人名，人名翻译成汉语中最常见的对

应形式。如将“Joe”翻译成“乔”。

3.在翻译过程中需要保证用词准确与严谨，需要将原文中的数学相关词语准确

专业地翻译成汉语中相应的数学术语，并且尽可能地使得语言自然而流畅。

4.在翻译过程中需要保证内容完整，含义与原文一致，不允许添加或删除任何

信息。

示例：

原文：

<text>Dave bought a total of 8 + 6 + 3 = 17 books.

Each book cost $6, so Dave spent a total of 17 x $6 = $102 on the books.

102

The answer is: 102<\text>

翻译：

戴夫买了总共8 + 6 + 3 = 17本书。

每本书的价格是6美元，所以戴夫在这些书上总共花费了17 x 6 = 102美元。

102

答案是：102

{user prompt}:

原文：

{answer}

翻译:\n

Figure 9: Prompt for answer translation.

12882

