
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11917–11928
August 11-16, 2024 ©2024 Association for Computational Linguistics

Self-Training with Direct Preference Optimization
Improves Chain-of-Thought Reasoning

Tianduo Wang† , Shichen Li‡ , Wei Lu†
†StatNLP Research Group, Singapore University of Technology and Design

‡Soochow University
{tianduo_wang,luwei}@sutd.edu.sg , scli_21@outlook.com

Abstract

Teaching small-scale language models to per-
form math reasoning is a valuable yet chal-
lenging task. Besides obtaining labeled data
from human experts, one of the most common
ways to collect high-quality data is by sam-
pling from a larger and more powerful language
model. Although previous works have demon-
strated the effectiveness of this method, such a
knowledge distillation paradigm can be costly
and unstable, especially considering that many
large language models, such as GPT-4 (Ope-
nAI, 2023), are closed-source, proprietary, and
their behaviors are unpredictable. In this work,
to avoid relying on outputs from large mod-
els, we demonstrate that the reasoning abili-
ties of small-scale language models can be en-
hanced through self-training, which involves
training models with their own outputs. We
also show that the conventional self-training
can be further augmented by an alignment al-
gorithm called Direct Preference Optimization
(DPO) (Rafailov et al., 2023). We empirically
found that models trained with the DPO objec-
tive are capable of making better generations
that largely benefit multi-turn self-training. The
experimental results show our models outper-
form the existing models with comparable sizes
on the GSM8K benchmark with minimal re-
source requirements.1

1 Introduction

Making language models (LMs) perform mathe-
matical reasoning is a valuable, yet challenging
research objective (Hendrycks et al., 2021; Cobbe
et al., 2021). Recent works focus on enhancing
large-scale LMs’ reasoning abilities, e.g., chain-
of-thought prompting (Wei et al., 2022b; Kojima
et al., 2022), continual pretraining (Azerbayev
et al., 2024), or adding external verifiers (Li et al.,
2023b). However, the research question of how to

1Our code and data are released at https://github.com/
tianduowang/dpo-st.

1e+18 3e+18 1e+19 3e+19
Compute Cost (FLOPs)

15

20

25

30

35

40

Ac
cu

ra
cy

 (%
)

Ours
(Flan-T5-L)

Distill from Codex
(Flan-T5-L)

Distill from Codex
(Flan-T5-3B)

Distill from Codex
(Flan-T5-11B)

Distill from
PaLM (T5-L)

Distill from PaLM
(T5-3B)

Distill from PaLM
(T5-11B)

Calcformer
(T5-L)

Calcformer
(T5-3B)

GSM8K Performance v.s. Compute cost

Figure 1: GSM8K performance v.s. computational
cost. Our approach outperforms baseline models with
comparable sizes while minimizing the required com-
pute. Comparisons include two knowledge distillation
techniques, i.e., Codex distillation (Fu et al., 2023), and
PaLM distillation (Magister et al., 2023), and a data aug-
mentation method, Calcformer (Kadlčík et al., 2023).

improve LMs with smaller sizes (e.g., less than 1
billion parameters) is still under-explored.

Recent studies (Fu et al., 2023; Ho et al., 2023;
Magister et al., 2023) demonstrate that the rea-
soning capabilities of smaller LMs can be signif-
icantly enhanced through learning from the out-
puts of larger and more advanced LMs, such as
Codex (Chen et al., 2021) and PaLM (Chowdhery
et al., 2022). Despite the relative ease of imple-
mentation, the associated costs can be substantial.
The computational demand, measured in floating-
point operations (FLOPs), is considerably higher
for large LMs. Additionally, the use of propri-
etary and closed-source large LMs for data anno-
tation can incur significant economic costs. Ho
et al. (2023) demonstrated that annotating multiple
reasoning chains for a single question with large
LMs can markedly enhance the performance of
smaller models. Hence, a trade-off between cost
and performance exists.

11917

https://github.com/tianduowang/dpo-st
https://github.com/tianduowang/dpo-st

Another line of work focuses on making im-
provements via self-training (Zelikman et al., 2022;
Gulcehre et al., 2023; Singh et al., 2023). Instead of
using data generated by larger models, the essence
of self-training methods is to make small models
learn from their own generations. While these
methods demonstrate the effectiveness of utilizing
self-generated data, their success largely depends
upon the pre-existing abilities of the models. For
example, Zelikman et al. (2022) started by few-shot
prompting a large model, i.e., GPT-J (Wang and
Komatsuzaki, 2021), to self-generate rationales,
which is an emergent ability that only comes with
sufficiently large models (Wei et al., 2022a). How-
ever, it is still unclear whether small-scale LMs can
benefit from self-training.

Recently, we have witnessed that reinforce-
ment learning from human feedback (RLHF) has
emerged as a prominent method to precisely modify
LMs’ behavior towards human preference (Ouyang
et al., 2022; Casper et al., 2023). In this work, we
propose to augment the self-training algorithm with
an RLHF training process, i.e., Direct Preference
Optimization (Rafailov et al., 2023), for its better
performance and stability. Our experimental results
demonstrate that the proposed method can signifi-
cantly improve LMs’ reasoning capabilities while
minimizing the computational costs. We visual-
ize the relationship between the downstream task
performance and computational cost over a series
of specialized models in Figure 1. The computa-
tional costs for each model are estimated following
previous practice (Kaplan et al., 2020; Yuan et al.,
2023). It can be observed that our method not only
achieves the highest accuracy, but also minimizes
the computational demand by learning from its own
generations. Overall, the main contribution of this
work can be summarized as follows:

• We propose a novel extension to the classic
self-training framework with Direct Preference
Optimization, and we show its effectiveness
through standard math problem-solving tasks.

• We demonstrate that this novel extension im-
proves the reasoning abilities of the LMs with
minimal computational resource requirements.

• We propose an efficient method for integrating
LMs with external tools, significantly improv-
ing the performance without sacrificing much
inference speed.

Algorithm 1 Self-training for CoT reasoning tasks

Input: pre-trained language model fθ
Input: labeled dataset L = {(xi, yi, ai)}li=1

Input: unlabeled dataset U = {(xi, ai)}ui=1

Output: fine-tuned model fθ′

1: Fine-tune fθ on L to get fθ′
2: repeat
3: Build pseudo-labeled dataset S:

S = {(xi, ŷi, âi)}si=1

where xi ∼ U and ŷi, âi ∼ fθ′(·|xi)
4: Select Sα ⊂ S when âi = ai

5: Update L ← Sα ∪ L
6: Train fθ on L to get a new fθ′

7: until convergence or max iteration is reached

2 Background

Math word problem solving The math word
problem solving task can be formulated as a
sequence-to-sequence task where the input x is a
question asking for an unknown value and the out-
put y is a rationale leading to the answer a (Cobbe
et al., 2021). Normally, the answers can be ex-
tracted from the rationales via some rule-based
methods, e.g., regular expressions. A generated
rationale ŷ is regarded as correct if the extracted
answer â matches the gold answer a. Formally, the
labeled dataset for a math word problem solving
task with l instances can be represented as:

L = {(xi, yi, ai)}li=1. (1)

A common way for specializing a LM fθ towards
math reasoning with the labeled dataset L is super-
vised fine-tuning (SFT). It optimizes fθ by mini-
mizing the negative log likelihood loss LSFT(θ):

E
(x,y)∼L

−
[T∑

t=1

log fθ(yt|x, y1:t−1)
]
, (2)

where T is the length of the rationale y and we use
yt to represent the t-th token in y.

Self-training Self-training is one of the earliest
approaches in semi-supervised learning (Scudder,
1965; Fralick, 1967) that has risen in popularity
recently (He et al., 2019; Amini et al., 2022). This
method first regards a base model trained with a
labeled dataset L as teacher, and uses it to build
a pseudo-labeled dataset S by annotating an unla-
beled dataset U . Then, a student model is trained
with the combination of L and S that are expected

11918

to outperform the teacher model. Such a framework
has been shown effective in a wide range of natural
language processing tasks, e.g., natural language
understanding (Vu et al., 2021) and generation (He
et al., 2019). A formal description of a self-training
algorithm for CoT reasoning tasks is provided in
Algorithm 1.

Previous studies have demonstrated that the qual-
ity of the pseudo-labels largely impacts the over-
all performance of the self-training algorithm (He
et al., 2019; Amini et al., 2022). For example, Gul-
cehre et al. (2023) proposed to select high-quality
pseudo-labels with a learned reward function. Ze-
likman et al. (2022) filtered the generated ratio-
nales to include only the ones that lead to correct
answers. Although many methods are proposed
to select pseudo-labels, few works discuss how
to improve the fine-tuned model fθ′ so that more
high-quality pseudo-labels can be generated. In
this paper, we present a method to enhance fθ′ in
each iteration so that higher-quality pseudo-labeled
data can be generated.

Direct Preference Optimization The Rein-
forcement Learning from Human Feedback
(RLHF) methods align LMs with human prefer-
ence (Ouyang et al., 2022; Bai et al., 2022). The
standard pipeline of RLHF requires to first train a
reward model from human preference data. Then,
the reward model is used to fine-tune language
models via reinforcement learning objective, e.g.,
Proximal Policy Optimization (Schulman et al.,
2017). A recent study propose Direct Preference
Optimization (DPO) (Rafailov et al., 2023) to avoid
explicitly training a reward model so that language
models can be directly tuned with human prefer-
ence data.

The DPO pipeline can be described as follows.
First, given some prompt x, sample several com-
pletions from the reference model πref (normally it
is the model after supervised fine-tuning):

y1, y2 ∼ πref(· | x). (3)

Next, construct the DPO datasetD from the com-
pletions based on the human preference:

D = {(xi, yiw, yil)}Ni=1, (4)

where yiw and yil represent the winning and los-
ing completions respectively. Then, we optimize
the language model πθ to minimize LDPO(πθ;πref)

Algorithm 2 DPO-augmented self-training

Input: pre-trained language model fθ
Input: labeled dataset L = {(xi, yi, ai)}li=1

Input: unlabeled dataset U = {(xi, ai)}ui=1

Output: fine-tuned model fθ′

Warm-up stage
1: Fine-tune fθ on L to get fθ′
2: repeat

DPO step
3: Generate DPO dataset D:

D = {(xi, yiw, yil)}Ni=1

where xi ∼ U and yiw, y
i
l ∼ fθ′(·|xi)

4: Tune fθ′ with LDPO on D to get fθd
SFT step

5: Build pseudo-labeled dataset S:
S = {(xi, ŷi, âi)}si=1

where xi ∼ U and ŷi, âi ∼ fθd(·|xi)
6: Select Sα ⊂ S when âi = ai

7: Update L ← Sα ∪ L
8: Train fθ on L to get a new fθ′

9: until convergence or max iteration is reached

which can be defined as follows:

E
(x,yw,yl)∼D

[
− log σ

(
r(yw|x)− r(yl|x)

)]
, (5)

where r(·|x) = β log πθ(·|x)
πref(·|x) and β is a coefficient

that controls πθ’s deviation from πref.

3 Method

In this section, we first describe the proposed ap-
proach. Then, we demonstrate how we integrate
an external calculator into the model’s decoding
process which significantly improves LMs’ perfor-
mance on the downstream tasks.

3.1 DPO-Augmented Self-Training

Our approach starts with a warm-up stage, and
then followed by an iterative process, where each
iteration is composed of two sub-steps: DPO step
and SFT step. The iterative process ends when
the model performance converges or reaches the
maximum iteration. A formal description of the
proposed method is illustrated in Algorithm 2. An
illustration of our method is presented in Figure 2.

Warm-up stage Like classic self-training, we
start by fine-tuning the base model fθ to optimize
LSFT(θ) on the labeled data L to get a new model

11919

Pre-trained
model SFT model DPO model

Supervised
fine-tuning

DPO
training

Sampling
&

filtering

Pseudo-labeled dataSFT data

Deduplication

Sampling

Preference data

Human-labeled
SFT data

Iteration n

Figure 2: An illustration of the proposed DPO-augmented Self-Training framework. The conventional Self-Training
method uses the SFT model to generate the pseudo-labels for the next iteration. In contrast, our method first optimize
the SFT model with Direct Preference Optimization (DPO), and use the DPO model to produce the pseudo-labels.

fθ′ . After this stage, we assume that fθ′ is capa-
ble of solving certain math problems. Specifically,
given a math question x, fθ′ will generate a ratio-
nale ŷ with answer â.

Iterative step 1: DPO step In this step, we first
sample rationales ŷ from the fine-tuned model fθ′
given some questions x from U . For each ques-
tion x, we generate multiple rationales to build the
DPO training dataset D. As mentioned, for math
problem solving tasks, it is easy to know whether a
generated rationale ŷ can be considered as correct.
We label rationales with correct answers as win-
ning completions, while consider rationales with
incorrect answers as losing completions. Then, we
train fθ′ on D to optimize the objective function
LDPO and get a DPO model fθd in the end.

Iterative step 2: SFT step After obtaining fθd ,
we use it to generate a new pseudo-labeled dataset
S for the next-round supervised fine-tuning:

S = {(x, ŷ)|x ∼ U , ŷ ∼ fθd(·|x)} (6)

After generation, we clean S by eliminating ra-
tionales with incorrect answers and removing du-
plicates. Therefore, the pseudo-labeled dataset we
obtained in the end is a subset of the original one,
i.e., Sα ⊂ S . The final training dataset is the com-
bination of the original labeled dataset L and the
newly-generated pseudo-labeled dataset Sα.

Notice that during this process, once we collect a
new dataset, we train from the original base model
fθ instead of continually fine-tuning fθ′ to avoid
overfitting, following previous practice (Zelikman
et al., 2022; Singh et al., 2023).

Q: James writes a 3-page letter to 2
different friends twice a week. How many
pages does he write a year?
A: He writes each friend
3*2=<<3*2=6>>6 pages a week.
So he writes
6*2=<<6*2=12>>12 pages every week.
That means he writes
12*52=<<12*52=624>>624 pages a year.
624

Figure 3: An example from the GSM8K dataset. The
calculation annotations are highlighted in blue. All
calculation steps are wrapped within special tokens
<<...>>. During decoding, the calculator will be trig-
gered when such patterns exist and the model’s output
tokens will be overridden by the calculator results. Fol-
lowing Cobbe et al. (2021), the calculation is performed
with the python eval() function.

3.2 Batch Decoding with Calculator

We empirically observed that, in contrast to large
LMs which excel at basic arithmetic calcula-
tions (Brown et al., 2020), smaller LMs like Flan-
T5-Large exhibit poor performance on similar arith-
metic tasks. This deficiency significantly impacts
their ability to handle math reasoning tasks. To
address this, various studies (Parisi et al., 2022;
Schick et al., 2023; Kadlčík et al., 2023) have pro-
posed augmenting these smaller models with an
external calculator to enhance their math reason-
ing capabilities. However, many of these existing
methods are limited to a batch size of one during
decoding. This constraint substantially reduces the
inference speed, which hinders their widespread
adoption.

11920

1 8 16 32
Batch Size

0

5

10

15

20
Sp

ee
du

p

1.0x

5.8x

9.5x

13.9x

6.9x

12.3x

19.9xCalcformer
Ours w/ calculator
Ours w/o calculator

Figure 4: Inference speed comparison between
our methods (w/ and w/o calculator) and Cal-
cformer (Kadlčík et al., 2023) with varying batch sizes.
The results are measured on a single NVIDIA A40 GPU.

To alleviate this issue, we propose a simple
yet efficient method to enables the use of a large
batch size during inference with an external cal-
culator. We adopt the calculator annotation pro-
vided in the original GSM8K dataset (Cobbe et al.,
2021). Figure 3 demonstrates an example of this
annotation and describes how such annotations
can be used during decoding. Our models are
built with the Transformers library (Wolf et al.,
2020). During generation, we adopt a customized
LogitsProcessor2 to override the model’s gener-
ation. LogitsProcessor provides an interface to
modify the language model’s output tokens during
generation.

To demonstrate the efficiency of the proposed
solution, We compare the inference speed of our
methods (w/ and w/o calculator) based on Flan-T5-
Large against an open-source tool-using method,
Calcformer (Kadlčík et al., 2023) based on T5-
Large, in Figure 4. We find that when the batch size
equals 1, all three methods have a similar inference
speed of around 40 tokens per second. However, as
the inference batch size increases, the speedup of
our methods increases significantly.

4 Experiments

In this section, we first describe our experimen-
tal setup. Next, we present the performance of
our models across a series of math word problem
solving tasks, comparing them against a selection
of competitive baselines. Finally, we empirically
analyze what makes the proposed method effective.

2https://huggingface.co/docs/transformers/
internal/generation_utils#logitsprocessor

Dataset Split # Data

GSM8K (Cobbe et al., 2021) Train 6,705
Validation 0,768
Test 1,319

MultiArith (Roy and Roth, 2015) Test 0,600
ASDiv (Miao et al., 2020) Test 2,096
SVAMP (Patel et al., 2021) Test 1,000

Table 1: Statistics of the datasets used in our experi-
ments. The original GSM8K dataset only contains train
and test split. We randomly select 768 training examples
to construct the validation dataset in our experiments.

4.1 Setup

Base models We employ Flan-T5 models (Chung
et al., 2024) as the base models in our experiments.
Specifically, we consider two models of different
sizes from the Flan-T5 model family: Flan-T5-
Base (250M) and Flan-T5-Large (780M). We se-
lect Flan-T5 over the original T5 models (Raffel
et al., 2019) as our backbone models based on
the evidence from previous research (Chung et al.,
2024; Fu et al., 2023), which demonstrated that
instruction-tuned models, i.e., Flan-T5, outperform
their pre-trained counterparts in math reasoning
tasks. Besides Flan-T5 models, we also consider
the Llama models (Touvron et al., 2023a,b; Meta,
2024) as our base models.

Datasets The labeled dataset L used in our exper-
iments comes from the training split of the GSM8K
dataset. Our unlabeled dataset U is also built upon
GSM8K’s training data by removing its annotated
rationales y. For evaluation, we consider three
other commonly used math reasoning tasks besides
GSM8K: MultiArith (Roy and Roth, 2015), AS-
Div (Miao et al., 2020), and SVAMP (Patel et al.,
2021). Table 1 shows the statistics information of
each dataset. Following previous practice (Fu et al.,
2023), we only fine-tune the base models on the
GSM8K training data while utilizing the rest three
datasets to evaluate our models’ out-of-domain per-
formance as they do not have an official in-domain
training split.

Evaluation metrics We use accuracy of the
greedy decoding results as the main evaluation met-
ric. The questions in the datasets in our experi-
ments ask about the values of the unknown vari-
ables. The answers to these questions are real num-
bers that can be extracted from the model-generated
rationales.

11921

https://huggingface.co/docs/transformers/internal/generation_utils#logitsprocessor
https://huggingface.co/docs/transformers/internal/generation_utils#logitsprocessor

Method Base Model GSM8K MultiArith ASDiv SVAMP
Supervised Fine-Tuning Flan-T5-Base 18.1 54.2 26.2 19.5
Self-Training Flan-T5-Base 25.9 73.8 28.2 24.2
DPO-aug Self-Training (Ours) Flan-T5-Base 27.2 74.3 29.2 22.6

Supervised Fine-Tuning Flan-T5-Large 30.8 77.2 38.1 33.6
Self-Training Flan-T5-Large 35.6 86.2 42.5 34.8
DPO-aug Self-Training (Ours) Flan-T5-Large 37.4 89.0 42.8 36.8

Table 2: Overall accuracies (%) over four math word problem solving tasks. Inspired by the previous practice (Fu
et al., 2023), all the models in this table are only trained with the GSM8K training set (Cobbe et al., 2021). Hence,
we report the in-distribution performance for GSM8K, while reporting the out-of-distribution performance for the
other three datasets, i.e., MultiArith, ASDiv, and SVAMP.

Implementation details In every DPO step, we
sample rationales from the SFT model fθ′ to build
the DPO training data. We sample 5 rationales
from fθ′ per question with a temperature of 0.7.
We regard generated rationales ŷ as winning ones
yw if it contains the correct answer, while regard-
ing the rest as the losing ones yl. For the SFT
steps, we generate 3 rationales per question from
the DPO-tuned model fθd also with a temperature
of 0.7. Only the correct generated rationales ŷ will
be selected to build the pseudo-labeled dataset S.
For both generated DPO data and SFT data, we
make simple deduplication based on the Jaccard
similarity scores with a threshold of 0.7.

4.2 Main Results

Baselines We mainly consider two baseline meth-
ods to compare with our method: Supervised Fine-
Tuning (SFT) and Self-Training (ST). SFT base-
lines are trained on the original GSM8K annota-
tions with theLSFT(θ) objective. The Self-Training
baseline adheres to the procedure outlined in Al-
gorithm 1. Consequently, this makes it the most
directly comparable and relevant baseline for eval-
uating the effectiveness of our approach.

Comparison with baselines Table 2 shows the
performance of our method compared with the
baselines using two base models over four datasets.
It can be observed that both the Self-Training base-
line and our proposed method outperform the super-
vised fine-tuning baseline by a large margin, indi-
cating the effectiveness of the general self-training
framework. Although the Self-Training baselines
make significant improvements over the SFT base-
lines, the proposed DPO-augmented Self-Training
models consistently outperform them on both in-
domain and out-of-domain tasks.

iter 0 iter 1 iter 2 iter 3

15

20

25

30

Ac
cu

ra
cy

 (%
)

18.1

24.2
26.0 25.9

18.1

24.6
26.6 27.2

Flan-T5-Base
ST
Ours

iter 0 iter 1 iter 2 iter 3

30

32

34

36

38

Ac
cu

ra
cy

 (%
)

30.8

32.9

35.1 35.6

30.8

34.1

35.6

37.4

Flan-T5-Large
ST
Ours

Figure 5: The performance (accuracy) of the proposed
method on GSM8K over three iterations. "ST" stands
for the Self-Training baseline. The "iter 0" represents
the results of the SFT baselines.

Effect of iterative training In Figure 5, we
demonstrate how our model improve over mulitple
iterations using two base models: Flan-T5-Base
and Flan-T5-Large. Both the ST baseline and our
method start with a SFT step using the original
GSM8K annotation at iteration 0. We can observe
that, as iterations progress, our method consistently
outperforms ST, which suggests that the proposed
method offers a substantial improvement over ST
after repeated training cycles. We also notice that
the degree of improvement gradually approaches
zero as the iterative process proceeds, suggesting
that the model has converged in the last iteration.

11922

Method Base Model # Annotations Annotator Tools Acc.
Supervised fine-tuning
CoT (Shridhar et al., 2023) GPT-2-Large 007K Human % 14.1
Self-consistency (Khalifa et al., 2023) Flan-T5-Large 007K Human ! 33.3
GRACE (Khalifa et al., 2023) Flan-T5-Large 007K Human ! 36.3
Calcformer (Kadlčík et al., 2023) T5-Large 030K Human ! 34.2

Knowledge Distillation
Socratic CoT (Shridhar et al., 2023) GPT-2-Large 007K GPT-3 175B % 21.1
CoT from CodeX (Fu et al., 2023) Flan-T5-Large 100K CodeX % 20.2
CoT from PaLM (Magister et al., 2023) T5-Large 006K PaLM 540B ! 22.2

Ours
DPO-aug Self-Training (K=3) Flan-T5-Large 007K Human ! 37.4
DPO-aug Self-Training (K=5) Flan-T5-Large 007K Human ! 39.1
DPO-aug Self-Training (K=10) Flan-T5-Large 007K Human ! 40.0

Table 3: Detailed comparison among existing methods with comparable model sizes on the GSM8K test set. The
“Annotator” column indicates how the rationales of the training data are generated. In this column, “Human” refers
to the labels from the original GSM8K dataset (Cobbe et al., 2021) that are written by human annotators. The
“Tools” column indicates whether external tools, e.g., calculator or code interpreter, are applied during inference.

4.3 Comparison with Existing Methods

In this section, we compare our methods with ex-
isting approaches. Additionally, we scale up the
proposed method by increasing the number of sam-
pled pseudo-labels per question, denoted by the
hyperparameter K as in Yuan et al. (2023).

Table 3 presents a detailed comparison be-
tween our method and exisiting methods using
a simialr base model size. The base models we
considered include GPT-2-Large (Radford et al.,
2019), T5-Large (Raffel et al., 2019), and Flan-
T5-Large (Chung et al., 2024). All these models
have approximately 770 million parameters. As
shown in Table 3 our approach not only outper-
forms other methods on the GSM8K benchmark,
but also demonstrates remarkable label efficiency
by utilizing only the annotations from the original
GSM8K dataset.

In Table 4, we further verify the effectiveness of
the proposed method with the Llama model fam-
ily (Touvron et al., 2023a,b; Meta, 2024). compar-
ing them with several state-of-the-art closed-source
models as well as open-source models with similar
sizes. We observe a substantial performance gap be-
tween proprietary and open-source models. Among
the open-source models, those utilizing knowledge
distillation consistently outperform their counter-
parts without such enhancement. Notably, our mod-
els using Llama-1-7b (Touvron et al., 2023a) and
Llama-2-7b (Touvron et al., 2023b) base models
surpass other open-source alternatives that do not
employ knowledge distillation, achieving accura-

cies of 44.7% and 54.7% respectively. Furthermore,
our model employing the latest Llama-3-8b (Meta,
2024) matches or exceeds the performance of ear-
lier models with knowledge distillation, demon-
strating a significant accuracy of 68.8%.

Method Base Model Acc.

Closed-source models
Claude-3-Opus (Anthropic, 2024) - 95.0
Claude-2 (Anthropic, 2023) - 88.0
GPT-4 (OpenAI, 2023) - 92.0
Flan-PaLM-2 (Anil et al., 2023) - 84.7
PaLM-2 (Anil et al., 2023) - 80.7

Models w/ knowledge distillation
RFT-U13B (Yuan et al., 2023) Llama-1-7b 49.3
RFT-U33B (Yuan et al., 2023) Llama-2-7b 51.2
MAmooTH-CoT (Yue et al., 2023) Llama-2-7b 50.5
LEMA (An et al., 2023) Llama-2-7b 54.1
WizardMath (Luo et al., 2023) Llama-2-7b 54.9
MetaMath (Yu et al., 2024) Llama-2-7b 66.5
MuggleMath (Li et al., 2023a) Llama-2-7b 68.4
ToRA (Gou et al., 2024) Llama-2-7b 68.8

Models w/o knowledge distillation
SFT (Yuan et al., 2023) Llama-1-7b 35.9
RFT (K=12) (Yuan et al., 2023) Llama-1-7b 41.6
RFT (K=100) (Yuan et al., 2023) Llama-1-7b 41.7
SFT (Yuan et al., 2023) Llama-2-7b 41.6
RFT (K=12) (Yuan et al., 2023) Llama-2-7b 45.3
RFT (K=100) (Yuan et al., 2023) Llama-2-7b 47.5

Ours
DPO-ST (K=10) Llama-1-7b 44.7
DPO-ST (K=10) Llama-2-7b 54.7
DPO-ST (K=10) Llama-3-8b 68.8

Table 4: Comparison with the state-of-the-art close-
source models and open-source models based on Llama
model family (Touvron et al., 2023a,b; Meta, 2024).

11923

30

33

36

39

De
v

ac
cu

ra
cy

 (%
) 36.1 36.5

Pass@1

60

62

64

66

De
v

ac
cu

ra
cy

 (%
)

62.9

64.8

Pass@10

2400

2700

3000

2495

2940

generated
 CoT pseudo-labels

Before DPO step After DPO step

Figure 6: Effects of the DPO step. Left: we report
the greedy decoding results for Pass@1. Middle: For
Pass@10, the solutions are sampled with temperature
0.7. Right: We count the number of generated pseudo-
labels after deduplication.

4.4 Effects of the DPO Step

As mentioned earlier, the main difference between
the proposed method and the classic self-training
is the DPO step in every iterative process. We now
analyze how the DPO steps improve self-training.
Figure 6 compares the performance of models be-
fore and after the DPO step in the first iteration on
the Pass@K metrics. Pass@K measures the proba-
bility that at least one of the K generated solutions
for a problem is correct, which serves as a gauge
for both the quality and the variety of the model-
generated solutions. The models we investigate
here are fine-tuned from the Flan-T5-Large.

As shown in Figure 6, the DPO step yields only
marginal improvements over the SFT model in the
Pass@1 performance on the development set. How-
ever, the performance significantly improves when
multiple rationales, i.e., 10 solutions per question,
are sampled with temperature 0.7 (measured with
the Pass@10 metric). This indicates that the DPO
training objective makes language models inclined
to generate rationales of both high quality and di-
versity. We also compare the number of generated
rationales on the training set L for models with
and without the DPO step. Figure 6 (right) clearly
shows that the model after the DPO step can pro-
duce more SFT data for the next iteration.

4.5 Effects of External Calculator

Driven by the observation that small-scale LMs
frequently make basic calculation errors, we de-
velop a simple yet efficient method that integrates
an external calculator into the models’ decoding

iter 0 iter 1 iter 2 iter 3
10

20

30

40

50

De
v

ac
cu

ra
cy

 (%
)

36.7
40.5

43.9 44.8

16.3 17.1 17.8 18.0

w/ calculator
w/o calculator

Figure 7: GSM8K development set accuracy of Flan-
T5-Large with and without the use of an external calcu-
lator during inference.

process. To evaluate the impact of this integration,
we conduct an ablation study by omitting the cal-
culator and present the findings in Figure 7. Our
results indicate that decoding without the calcula-
tor markedly reduces accuracy across all iterations.
We believe that this is because models will generate
large amount of false positive pseudo-labels with-
out calculator, that is, the generated pseudo-labels
may have correct final answers but make errors in
the intermediate reasoning steps.

5 Related Work

Learning from pseudo-labels Supervised fine-
tuning (SFT) is prevalent technique employed to
enhance the performance of pre-trained language
models on specific downstream tasks (Ouyang
et al., 2022; Chung et al., 2024). However, this
method heavily depends on the availability of high-
quality labeled data, which can be both expensive
and labor-intensive to procure (Brown et al., 2020).
To address this limitation, various strategies have
been developed to generate high-quality pseudo-
labels using either unlabeled or synthetic data for
a wide range of applications, including text clas-
sification (Xie et al., 2020), sentence representa-
tion learning (Wang and Lu, 2022), instruction
tuning (Honovich et al., 2022), and math reason-
ing (Wang and Lu, 2023). Recent advancements
in this area primarily focus on two directions: self-
training and knowledge distillation. The key dif-
ference between these methods lies in the source
of the pseudo-labels: self-training uses the model’s
own predictions on unlabeled data, while knowl-
edge distillation utilizes the insights from larger,
more powerful models.

11924

Self-training in language model Recently, we
have witnessed a large number of works focus-
ing on self-training algorithms for language mod-
els (He et al., 2019; Zelikman et al., 2022; Yuan
et al., 2023). Most of such methods are built
upon the classic self-training framework (Scud-
der, 1965). He et al. (2019) empirically studied
the effectiveness of self-training in natural lan-
guage generation tasks, e.g., summarization and
translation. Zelikman et al. (2022) proposed self-
taught reasoner (STaR), which demonstrated that
language models can be iteratively improved from
its own generation, even there are no gold ratio-
nales provided. Yuan et al. (2023) proposed re-
jection sampling fine-tuning to improve language
models’ math reasoning abilities. This method can
be interpreted as only executing one iteration of
the self-training algorithm. Singh et al. (2023) pro-
posed ReSTEM , a self-improving algorithm based
on expectation-maximization framework. This
method demonstrates significant improvements in
problem-solving tasks, e.g., math reasoning and
code generation.

Knowledge distillation from LLMs Many of
the recent research efforts demonstrated large
language models (LLMs) are capable of doing
math reasoning (Wei et al., 2022b; Gao et al.,
2022; OpenAI, 2023; Anil et al., 2023; Anthropic,
2023, 2024). Therefore, a recent line of work
focuses on improving smaller language models’
reasoning abilities by distilling chain-of-thought
pseudo-labels from LLMs (Ho et al., 2023; Mag-
ister et al., 2023; Fu et al., 2023). For example,
Luo et al. (2023) proposed Reinforcement Learn-
ing from Evol-Instruct Feedback built upon Evol-
Instruct (Xu et al., 2023), which requires ChatGPT
to provide the training signals. An et al. (2023)
demonstrated that language models can effectively
learn from the mistakes that can be corrected by
larger models, e.g., GPT-4 (OpenAI, 2023), during
supervised fine-tuning. Yu et al. (2024) proposed a
novel question bootstrapping method with the help
of larger models to augment the existing training
dataset. Although these methods are shown to have
promising experimental results, they are costly to
implement as large models cost more FLOPs dur-
ing inference. Our work demonstrates that small-
scale language models can also learn from their
own generations like the larger ones (Zelikman
et al., 2022), which is more resource-efficient com-
pared with the knowledge distillation methods.

6 Conclusion

We present an effective and resource-efficient
method called DPO-augmented Self-Training
(DPO-ST), which augments the original Self-
Training algorithm with Direct Preference Opti-
mization (Rafailov et al., 2023). Unlike previous
studies that improve small-scale language models’
reasoning abilities by distilling a larger and more
powerful model, we argue that small models that
are trained merely on the limited human-labeled
data can improve themselves significantly. We also
empirically find that models trained with DPO loss
can generate pseudo-labeled data with higher qual-
ity and diversity. Our experiments demonstrate that
the proposed method not only outperforms exist-
ing methods with comparable model sizes on the
GSM8K benchmark, but also achieves remarkable
resource efficiency in terms of both computational
cost and the requirements of human-labeled data.

Limitations

Use of unlabeled data Our method is built upon
the classic self-training algorithm, which provides
an effective semi-supervised learning framework
that makes good use of unlabeled data. However,
this work doesn’t explore the use of unlabeled data
explicitly. Future research efforts can be made to
explore how to collect high-quality unlabeled data
for math word problem solving. In other words,
we need to find an efficient method for collecting
unlabeled data U = {(xi, ai)}ui=1 that for each
math question xi, there is a corresponding ground-
truth answer ai.

Generalization to other tasks One of the lim-
itations of this work is the narrow scope of our
experiments, which were exclusively conducted on
math reasoning tasks. The primary reason for this
limitation is the lack of appropriate training data
for other reasoning tasks. As our method requires
a set of training data with chain-of-thought labels,
many existing reasoning tasks lack such annota-
tions, making it challenging to extend our experi-
ments beyond the current scope. Future research
may focus on identifying and developing suitable
datasets for a wider range of reasoning tasks to
fully evaluate the applicability and effectiveness of
our method across different reasoning tasks.

11925

Acknowledgements

This work was done when Shichen Li was a vis-
iting student at the StatNLP Research Group of
SUTD. We would like to thank the anonymous re-
viewers, our meta-reviewer, and senior area chairs
for their constructive comments and support on
this work. This research/project is supported by
Ministry of Education, Singapore, under its Aca-
demic Research Fund (AcRF) Tier 2 Programme
(MOE AcRF Tier 2 Award No: MOET2EP20122-
0011), the National Research Foundation Singa-
pore and DSO National Laboratories under the
AI Singapore Program (AISG Award No: AISG2-
RP-2020-016), and Ministry of Education, Singa-
pore, under its Tier 3 Programme (The Award No.:
MOET320200004). Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the authors and do not reflect
the views of the funding agencies.

References
Massih-Reza Amini, Vasilii Feofanov, Loïc

Pauletto, Emilie Devijver, and Yury Maximov.
2022. Self-training: A survey. arXiv preprint
arXiv:2202.12040.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,
Jian-Guang Lou, and Weizhu Chen. 2023. Learn-
ing from mistakes makes llm better reasoner. arXiv
preprint arXiv:2310.20689.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Anthropic. 2023. Claude 2. https://www.anthropic.
com/news/claude-2. Accessed: 2024-05-06.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Accessed: 2024-05-06.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2024.
Llemma: An open language model for mathematics.
In Proceedings of ICLR.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, et al. 2020. Language models
are few-shot learners. In Proceedings of NeurIPS.

Stephen Casper, Xander Davies, Claudia Shi,
Thomas Krendl Gilbert, J’er’emy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David
Lindner, et al. 2023. Open problems and funda-
mental limitations of reinforcement learning from
human feedback. Transactions on Machine Learning
Research.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2022. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Stanley C. Fralick. 1967. Learning to recognize patterns
without a teacher. IEEE Trans. Inf. Theory.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023. Specializing smaller language
models towards multi-step reasoning. In Proceedings
of ICML.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al. 2024.
Tora: A tool-integrated reasoning agent for mathe-
matical problem solving. In Proceedings of ACL.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, et al. 2023. Reinforced self-
training (rest) for language modeling. arXiv preprint
arXiv:2308.08998.

11926

https://arxiv.org/abs/2202.12040
https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2305.10403
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2307.15217
https://arxiv.org/abs/2307.15217
https://arxiv.org/abs/2307.15217
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://api.semanticscholar.org/CorpusID:11609879
https://api.semanticscholar.org/CorpusID:11609879
https://proceedings.mlr.press/v202/fu23d.html
https://proceedings.mlr.press/v202/fu23d.html
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2308.08998
https://arxiv.org/abs/2308.08998

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2019. Revisiting self-training for
neural sequence generation. arXiv preprint
arXiv:1909.13788.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Proceed-
ings of NeurIPS.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers. In
Proceedings of ACL.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2022. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. arXiv
preprint arXiv:2212.09689.

Marek Kadlčík, Michal Štefánik, Ondřej Sotolář, and
Vlastimil Martinek. 2023. Calc-x and calcformers:
Empowering arithmetical chain-of-thought through
interaction with symbolic systems. In Proceedings
of EMNLP.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. ArXiv.

Muhammad Khalifa, Lajanugen Logeswaran, Moon-
tae Lee, Honglak Lee, and Lu Wang. 2023. Grace:
Discriminator-guided chain-of-thought reasoning. In
Findings of EMNLP.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Proceed-
ings of NeurIPS.

Chengpeng Li, Zheng Yuan, Guanting Dong, Keming
Lu, Jiancan Wu, Chuanqi Tan, Xiang Wang, and
Chang Zhou. 2023a. Query and response augmenta-
tion cannot help out-of-domain math reasoning gen-
eralization. arXiv preprint arXiv:2310.05506.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023b. Making
language models better reasoners with step-aware
verifier. In Proceedings of ACL.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2023.
Teaching small language models to reason. In Pro-
ceedings of ACL.

Meta. 2024. Llama 3. https://llama.meta.com/
llama3/. Accessed: 2024-06-01.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings
of ACL.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke E.
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul Francis Christiano, Jan Leike, and Ryan J.
Lowe. 2022. Training language models to follow
instructions with human feedback. In Proceedings of
NeurIPS.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of NAACL.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Proceedings of
NeurIPS.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of EMNLP.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
In Proceedings of NeurIPS.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

H. J. Scudder. 1965. Probability of error of some adap-
tive pattern-recognition machines. IEEE Trans. Inf.
Theory.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2023. Distilling reasoning capabilities into
smaller language models. In Findings of ACL.

11927

https://arxiv.org/abs/1909.13788
https://arxiv.org/abs/1909.13788
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://aclanthology.org/2023.acl-long.830
https://arxiv.org/abs/2212.09689
https://arxiv.org/abs/2212.09689
https://arxiv.org/abs/2305.15017
https://arxiv.org/abs/2305.15017
https://arxiv.org/abs/2305.15017
https://arxiv.org/abs/2001.08361
https://aclanthology.org/2023.findings-emnlp.1022/
https://aclanthology.org/2023.findings-emnlp.1022/
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2310.05506
https://arxiv.org/abs/2310.05506
https://arxiv.org/abs/2310.05506
https://aclanthology.org/2023.acl-long.291
https://aclanthology.org/2023.acl-long.291
https://aclanthology.org/2023.acl-long.291
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://aclanthology.org/2023.acl-short.151
https://llama.meta.com/llama3/
https://llama.meta.com/llama3/
https://aclanthology.org/2020.acl-main.92/
https://aclanthology.org/2020.acl-main.92/
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2205.12255
https://arxiv.org/abs/2205.12255
https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2021.naacl-main.168
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://openreview.net/pdf?id=HPuSIXJaa9
https://openreview.net/pdf?id=HPuSIXJaa9
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://aclanthology.org/D15-1202
https://aclanthology.org/D15-1202
https://openreview.net/pdf?id=Yacmpz84TH
https://openreview.net/pdf?id=Yacmpz84TH
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://api.semanticscholar.org/CorpusID:30807376
https://api.semanticscholar.org/CorpusID:30807376
https://aclanthology.org/2023.findings-acl.441
https://aclanthology.org/2023.findings-acl.441

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Peter J Liu, James Harri-
son, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al.
2023. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv
preprint arXiv:2312.06585.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Tu Vu, Minh-Thang Luong, Quoc Le, Grady Simon,
and Mohit Iyyer. 2021. STraTA: Self-training with
task augmentation for better few-shot learning. In
Proceedings of EMNLP.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Tianduo Wang and Wei Lu. 2022. Differentiable data
augmentation for contrastive sentence representation
learning. In Proceedings of EMNLP.

Tianduo Wang and Wei Lu. 2023. Learning multi-step
reasoning by solving arithmetic tasks. In Proceed-
ings of ACL.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
Transactions on Machine Learning Research.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022b.
Chain of thought prompting elicits reasoning in large
language models. In Proceedings of NeurIPS.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, et al. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of EMNLP.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and
Quoc Le. 2020. Unsupervised data augmentation for
consistency training. In Proceedings of NeurIPS.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2024. Meta-
math: Bootstrap your own mathematical questions
for large language models. In Proceedings of ICLR.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scal-
ing relationship on learning mathematical reason-
ing with large language models. arXiv preprint
arXiv:2308.01825.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. In Proceedings of NeurIPS.

11928

https://arxiv.org/pdf/2312.06585.pdf
https://arxiv.org/pdf/2312.06585.pdf
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://aclanthology.org/2021.emnlp-main.462
https://aclanthology.org/2021.emnlp-main.462
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2210.16536
https://arxiv.org/abs/2210.16536
https://arxiv.org/abs/2210.16536
https://arxiv.org/abs/2306.01707
https://arxiv.org/abs/2306.01707
https://arxiv.org/pdf/2206.07682.pdf
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/pdf/2308.01825v2.pdf
https://arxiv.org/pdf/2308.01825v2.pdf
https://arxiv.org/pdf/2308.01825v2.pdf
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2309.05653
https://openreview.net/pdf?id=_3ELRdg2sgI
https://openreview.net/pdf?id=_3ELRdg2sgI

