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Abstract

Teaching small-scale language models to per-
form math reasoning is a valuable yet chal-
lenging task. Besides obtaining labeled data
from human experts, one of the most common
ways to collect high-quality data is by sam-
pling from a larger and more powerful language
model. Although previous works have demon-
strated the effectiveness of this method, such a
knowledge distillation paradigm can be costly
and unstable, especially considering that many
large language models, such as GPT-4 (Ope-
nAI, 2023), are closed-source, proprietary, and
their behaviors are unpredictable. In this work,
to avoid relying on outputs from large mod-
els, we demonstrate that the reasoning abili-
ties of small-scale language models can be en-
hanced through self-training, which involves
training models with their own outputs. We
also show that the conventional self-training
can be further augmented by an alignment al-
gorithm called Direct Preference Optimization
(DPO) (Rafailov et al., 2023). We empirically
found that models trained with the DPO objec-
tive are capable of making better generations
that largely benefit multi-turn self-training. The
experimental results show our models outper-
form the existing models with comparable sizes
on the GSM8K benchmark with minimal re-
source requirements.1

1 Introduction

Making language models (LMs) perform mathe-
matical reasoning is a valuable, yet challenging
research objective (Hendrycks et al., 2021; Cobbe
et al., 2021). Recent works focus on enhancing
large-scale LMs’ reasoning abilities, e.g., chain-
of-thought prompting (Wei et al., 2022b; Kojima
et al., 2022), continual pretraining (Azerbayev
et al., 2024), or adding external verifiers (Li et al.,
2023b). However, the research question of how to

1Our code and data are released at https://github.com/
tianduowang/dpo-st.
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Figure 1: GSM8K performance v.s. computational
cost. Our approach outperforms baseline models with
comparable sizes while minimizing the required com-
pute. Comparisons include two knowledge distillation
techniques, i.e., Codex distillation (Fu et al., 2023), and
PaLM distillation (Magister et al., 2023), and a data aug-
mentation method, Calcformer (Kadlčík et al., 2023).

improve LMs with smaller sizes (e.g., less than 1
billion parameters) is still under-explored.

Recent studies (Fu et al., 2023; Ho et al., 2023;
Magister et al., 2023) demonstrate that the rea-
soning capabilities of smaller LMs can be signif-
icantly enhanced through learning from the out-
puts of larger and more advanced LMs, such as
Codex (Chen et al., 2021) and PaLM (Chowdhery
et al., 2022). Despite the relative ease of imple-
mentation, the associated costs can be substantial.
The computational demand, measured in floating-
point operations (FLOPs), is considerably higher
for large LMs. Additionally, the use of propri-
etary and closed-source large LMs for data anno-
tation can incur significant economic costs. Ho
et al. (2023) demonstrated that annotating multiple
reasoning chains for a single question with large
LMs can markedly enhance the performance of
smaller models. Hence, a trade-off between cost
and performance exists.
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Another line of work focuses on making im-
provements via self-training (Zelikman et al., 2022;
Gulcehre et al., 2023; Singh et al., 2023). Instead of
using data generated by larger models, the essence
of self-training methods is to make small models
learn from their own generations. While these
methods demonstrate the effectiveness of utilizing
self-generated data, their success largely depends
upon the pre-existing abilities of the models. For
example, Zelikman et al. (2022) started by few-shot
prompting a large model, i.e., GPT-J (Wang and
Komatsuzaki, 2021), to self-generate rationales,
which is an emergent ability that only comes with
sufficiently large models (Wei et al., 2022a). How-
ever, it is still unclear whether small-scale LMs can
benefit from self-training.

Recently, we have witnessed that reinforce-
ment learning from human feedback (RLHF) has
emerged as a prominent method to precisely modify
LMs’ behavior towards human preference (Ouyang
et al., 2022; Casper et al., 2023). In this work, we
propose to augment the self-training algorithm with
an RLHF training process, i.e., Direct Preference
Optimization (Rafailov et al., 2023), for its better
performance and stability. Our experimental results
demonstrate that the proposed method can signifi-
cantly improve LMs’ reasoning capabilities while
minimizing the computational costs. We visual-
ize the relationship between the downstream task
performance and computational cost over a series
of specialized models in Figure 1. The computa-
tional costs for each model are estimated following
previous practice (Kaplan et al., 2020; Yuan et al.,
2023). It can be observed that our method not only
achieves the highest accuracy, but also minimizes
the computational demand by learning from its own
generations. Overall, the main contribution of this
work can be summarized as follows:

• We propose a novel extension to the classic
self-training framework with Direct Preference
Optimization, and we show its effectiveness
through standard math problem-solving tasks.

• We demonstrate that this novel extension im-
proves the reasoning abilities of the LMs with
minimal computational resource requirements.

• We propose an efficient method for integrating
LMs with external tools, significantly improv-
ing the performance without sacrificing much
inference speed.

Algorithm 1 Self-training for CoT reasoning tasks

Input: pre-trained language model fθ
Input: labeled dataset L = {(xi, yi, ai)}li=1

Input: unlabeled dataset U = {(xi, ai)}ui=1

Output: fine-tuned model fθ′

1: Fine-tune fθ on L to get fθ′
2: repeat
3: Build pseudo-labeled dataset S:

S = {(xi, ŷi, âi)}si=1

where xi ∼ U and ŷi, âi ∼ fθ′(·|xi)
4: Select Sα ⊂ S when âi = ai

5: Update L ← Sα ∪ L
6: Train fθ on L to get a new fθ′

7: until convergence or max iteration is reached

2 Background

Math word problem solving The math word
problem solving task can be formulated as a
sequence-to-sequence task where the input x is a
question asking for an unknown value and the out-
put y is a rationale leading to the answer a (Cobbe
et al., 2021). Normally, the answers can be ex-
tracted from the rationales via some rule-based
methods, e.g., regular expressions. A generated
rationale ŷ is regarded as correct if the extracted
answer â matches the gold answer a. Formally, the
labeled dataset for a math word problem solving
task with l instances can be represented as:

L = {(xi, yi, ai)}li=1. (1)

A common way for specializing a LM fθ towards
math reasoning with the labeled dataset L is super-
vised fine-tuning (SFT). It optimizes fθ by mini-
mizing the negative log likelihood loss LSFT(θ):

E
(x,y)∼L

−
[ T∑

t=1

log fθ(yt|x, y1:t−1)
]
, (2)

where T is the length of the rationale y and we use
yt to represent the t-th token in y.

Self-training Self-training is one of the earliest
approaches in semi-supervised learning (Scudder,
1965; Fralick, 1967) that has risen in popularity
recently (He et al., 2019; Amini et al., 2022). This
method first regards a base model trained with a
labeled dataset L as teacher, and uses it to build
a pseudo-labeled dataset S by annotating an unla-
beled dataset U . Then, a student model is trained
with the combination of L and S that are expected
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to outperform the teacher model. Such a framework
has been shown effective in a wide range of natural
language processing tasks, e.g., natural language
understanding (Vu et al., 2021) and generation (He
et al., 2019). A formal description of a self-training
algorithm for CoT reasoning tasks is provided in
Algorithm 1.

Previous studies have demonstrated that the qual-
ity of the pseudo-labels largely impacts the over-
all performance of the self-training algorithm (He
et al., 2019; Amini et al., 2022). For example, Gul-
cehre et al. (2023) proposed to select high-quality
pseudo-labels with a learned reward function. Ze-
likman et al. (2022) filtered the generated ratio-
nales to include only the ones that lead to correct
answers. Although many methods are proposed
to select pseudo-labels, few works discuss how
to improve the fine-tuned model fθ′ so that more
high-quality pseudo-labels can be generated. In
this paper, we present a method to enhance fθ′ in
each iteration so that higher-quality pseudo-labeled
data can be generated.

Direct Preference Optimization The Rein-
forcement Learning from Human Feedback
(RLHF) methods align LMs with human prefer-
ence (Ouyang et al., 2022; Bai et al., 2022). The
standard pipeline of RLHF requires to first train a
reward model from human preference data. Then,
the reward model is used to fine-tune language
models via reinforcement learning objective, e.g.,
Proximal Policy Optimization (Schulman et al.,
2017). A recent study propose Direct Preference
Optimization (DPO) (Rafailov et al., 2023) to avoid
explicitly training a reward model so that language
models can be directly tuned with human prefer-
ence data.

The DPO pipeline can be described as follows.
First, given some prompt x, sample several com-
pletions from the reference model πref (normally it
is the model after supervised fine-tuning):

y1, y2 ∼ πref(· | x). (3)

Next, construct the DPO datasetD from the com-
pletions based on the human preference:

D = {( xi, yiw, yil )}Ni=1, (4)

where yiw and yil represent the winning and los-
ing completions respectively. Then, we optimize
the language model πθ to minimize LDPO(πθ;πref)

Algorithm 2 DPO-augmented self-training

Input: pre-trained language model fθ
Input: labeled dataset L = {(xi, yi, ai)}li=1

Input: unlabeled dataset U = {(xi, ai)}ui=1

Output: fine-tuned model fθ′

# Warm-up stage
1: Fine-tune fθ on L to get fθ′
2: repeat

# DPO step
3: Generate DPO dataset D:

D = {( xi, yiw, yil )}Ni=1

where xi ∼ U and yiw, y
i
l ∼ fθ′(·|xi)

4: Tune fθ′ with LDPO on D to get fθd
# SFT step

5: Build pseudo-labeled dataset S:
S = {(xi, ŷi, âi)}si=1

where xi ∼ U and ŷi, âi ∼ fθd(·|xi)
6: Select Sα ⊂ S when âi = ai

7: Update L ← Sα ∪ L
8: Train fθ on L to get a new fθ′

9: until convergence or max iteration is reached

which can be defined as follows:

E
(x,yw,yl)∼D

[
− log σ

(
r(yw|x)− r(yl|x)

)]
, (5)

where r(·|x) = β log πθ(·|x)
πref(·|x) and β is a coefficient

that controls πθ’s deviation from πref.

3 Method

In this section, we first describe the proposed ap-
proach. Then, we demonstrate how we integrate
an external calculator into the model’s decoding
process which significantly improves LMs’ perfor-
mance on the downstream tasks.

3.1 DPO-Augmented Self-Training

Our approach starts with a warm-up stage, and
then followed by an iterative process, where each
iteration is composed of two sub-steps: DPO step
and SFT step. The iterative process ends when
the model performance converges or reaches the
maximum iteration. A formal description of the
proposed method is illustrated in Algorithm 2. An
illustration of our method is presented in Figure 2.

Warm-up stage Like classic self-training, we
start by fine-tuning the base model fθ to optimize
LSFT(θ) on the labeled data L to get a new model
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Figure 2: An illustration of the proposed DPO-augmented Self-Training framework. The conventional Self-Training
method uses the SFT model to generate the pseudo-labels for the next iteration. In contrast, our method first optimize
the SFT model with Direct Preference Optimization (DPO), and use the DPO model to produce the pseudo-labels.

fθ′ . After this stage, we assume that fθ′ is capa-
ble of solving certain math problems. Specifically,
given a math question x, fθ′ will generate a ratio-
nale ŷ with answer â.

Iterative step 1: DPO step In this step, we first
sample rationales ŷ from the fine-tuned model fθ′
given some questions x from U . For each ques-
tion x, we generate multiple rationales to build the
DPO training dataset D. As mentioned, for math
problem solving tasks, it is easy to know whether a
generated rationale ŷ can be considered as correct.
We label rationales with correct answers as win-
ning completions, while consider rationales with
incorrect answers as losing completions. Then, we
train fθ′ on D to optimize the objective function
LDPO and get a DPO model fθd in the end.

Iterative step 2: SFT step After obtaining fθd ,
we use it to generate a new pseudo-labeled dataset
S for the next-round supervised fine-tuning:

S = {(x, ŷ)|x ∼ U , ŷ ∼ fθd(·|x)} (6)

After generation, we clean S by eliminating ra-
tionales with incorrect answers and removing du-
plicates. Therefore, the pseudo-labeled dataset we
obtained in the end is a subset of the original one,
i.e., Sα ⊂ S . The final training dataset is the com-
bination of the original labeled dataset L and the
newly-generated pseudo-labeled dataset Sα.

Notice that during this process, once we collect a
new dataset, we train from the original base model
fθ instead of continually fine-tuning fθ′ to avoid
overfitting, following previous practice (Zelikman
et al., 2022; Singh et al., 2023).

Q: James writes a 3-page letter to 2
different friends twice a week. How many
pages does he write a year?
A: He writes each friend
3*2=<<3*2=6>>6 pages a week.
So he writes
6*2=<<6*2=12>>12 pages every week.
That means he writes
12*52=<<12*52=624>>624 pages a year.
#### 624

Figure 3: An example from the GSM8K dataset. The
calculation annotations are highlighted in blue. All
calculation steps are wrapped within special tokens
<<...>>. During decoding, the calculator will be trig-
gered when such patterns exist and the model’s output
tokens will be overridden by the calculator results. Fol-
lowing Cobbe et al. (2021), the calculation is performed
with the python eval() function.

3.2 Batch Decoding with Calculator

We empirically observed that, in contrast to large
LMs which excel at basic arithmetic calcula-
tions (Brown et al., 2020), smaller LMs like Flan-
T5-Large exhibit poor performance on similar arith-
metic tasks. This deficiency significantly impacts
their ability to handle math reasoning tasks. To
address this, various studies (Parisi et al., 2022;
Schick et al., 2023; Kadlčík et al., 2023) have pro-
posed augmenting these smaller models with an
external calculator to enhance their math reason-
ing capabilities. However, many of these existing
methods are limited to a batch size of one during
decoding. This constraint substantially reduces the
inference speed, which hinders their widespread
adoption.
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To alleviate this issue, we propose a simple
yet efficient method to enables the use of a large
batch size during inference with an external cal-
culator. We adopt the calculator annotation pro-
vided in the original GSM8K dataset (Cobbe et al.,
2021). Figure 3 demonstrates an example of this
annotation and describes how such annotations
can be used during decoding. Our models are
built with the Transformers library (Wolf et al.,
2020). During generation, we adopt a customized
LogitsProcessor2 to override the model’s gener-
ation. LogitsProcessor provides an interface to
modify the language model’s output tokens during
generation.

To demonstrate the efficiency of the proposed
solution, We compare the inference speed of our
methods (w/ and w/o calculator) based on Flan-T5-
Large against an open-source tool-using method,
Calcformer (Kadlčík et al., 2023) based on T5-
Large, in Figure 4. We find that when the batch size
equals 1, all three methods have a similar inference
speed of around 40 tokens per second. However, as
the inference batch size increases, the speedup of
our methods increases significantly.

4 Experiments

In this section, we first describe our experimen-
tal setup. Next, we present the performance of
our models across a series of math word problem
solving tasks, comparing them against a selection
of competitive baselines. Finally, we empirically
analyze what makes the proposed method effective.

2https://huggingface.co/docs/transformers/
internal/generation_utils#logitsprocessor

Dataset Split # Data

GSM8K (Cobbe et al., 2021) Train 6,705
Validation 0,768
Test 1,319

MultiArith (Roy and Roth, 2015) Test 0,600
ASDiv (Miao et al., 2020) Test 2,096
SVAMP (Patel et al., 2021) Test 1,000

Table 1: Statistics of the datasets used in our experi-
ments. The original GSM8K dataset only contains train
and test split. We randomly select 768 training examples
to construct the validation dataset in our experiments.

4.1 Setup

Base models We employ Flan-T5 models (Chung
et al., 2024) as the base models in our experiments.
Specifically, we consider two models of different
sizes from the Flan-T5 model family: Flan-T5-
Base (250M) and Flan-T5-Large (780M). We se-
lect Flan-T5 over the original T5 models (Raffel
et al., 2019) as our backbone models based on
the evidence from previous research (Chung et al.,
2024; Fu et al., 2023), which demonstrated that
instruction-tuned models, i.e., Flan-T5, outperform
their pre-trained counterparts in math reasoning
tasks. Besides Flan-T5 models, we also consider
the Llama models (Touvron et al., 2023a,b; Meta,
2024) as our base models.

Datasets The labeled dataset L used in our exper-
iments comes from the training split of the GSM8K
dataset. Our unlabeled dataset U is also built upon
GSM8K’s training data by removing its annotated
rationales y. For evaluation, we consider three
other commonly used math reasoning tasks besides
GSM8K: MultiArith (Roy and Roth, 2015), AS-
Div (Miao et al., 2020), and SVAMP (Patel et al.,
2021). Table 1 shows the statistics information of
each dataset. Following previous practice (Fu et al.,
2023), we only fine-tune the base models on the
GSM8K training data while utilizing the rest three
datasets to evaluate our models’ out-of-domain per-
formance as they do not have an official in-domain
training split.

Evaluation metrics We use accuracy of the
greedy decoding results as the main evaluation met-
ric. The questions in the datasets in our experi-
ments ask about the values of the unknown vari-
ables. The answers to these questions are real num-
bers that can be extracted from the model-generated
rationales.
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Method Base Model GSM8K MultiArith ASDiv SVAMP
Supervised Fine-Tuning Flan-T5-Base 18.1 54.2 26.2 19.5
Self-Training Flan-T5-Base 25.9 73.8 28.2 24.2
DPO-aug Self-Training (Ours) Flan-T5-Base 27.2 74.3 29.2 22.6

Supervised Fine-Tuning Flan-T5-Large 30.8 77.2 38.1 33.6
Self-Training Flan-T5-Large 35.6 86.2 42.5 34.8
DPO-aug Self-Training (Ours) Flan-T5-Large 37.4 89.0 42.8 36.8

Table 2: Overall accuracies (%) over four math word problem solving tasks. Inspired by the previous practice (Fu
et al., 2023), all the models in this table are only trained with the GSM8K training set (Cobbe et al., 2021). Hence,
we report the in-distribution performance for GSM8K, while reporting the out-of-distribution performance for the
other three datasets, i.e., MultiArith, ASDiv, and SVAMP.

Implementation details In every DPO step, we
sample rationales from the SFT model fθ′ to build
the DPO training data. We sample 5 rationales
from fθ′ per question with a temperature of 0.7.
We regard generated rationales ŷ as winning ones
yw if it contains the correct answer, while regard-
ing the rest as the losing ones yl. For the SFT
steps, we generate 3 rationales per question from
the DPO-tuned model fθd also with a temperature
of 0.7. Only the correct generated rationales ŷ will
be selected to build the pseudo-labeled dataset S.
For both generated DPO data and SFT data, we
make simple deduplication based on the Jaccard
similarity scores with a threshold of 0.7.

4.2 Main Results

Baselines We mainly consider two baseline meth-
ods to compare with our method: Supervised Fine-
Tuning (SFT) and Self-Training (ST). SFT base-
lines are trained on the original GSM8K annota-
tions with theLSFT(θ) objective. The Self-Training
baseline adheres to the procedure outlined in Al-
gorithm 1. Consequently, this makes it the most
directly comparable and relevant baseline for eval-
uating the effectiveness of our approach.

Comparison with baselines Table 2 shows the
performance of our method compared with the
baselines using two base models over four datasets.
It can be observed that both the Self-Training base-
line and our proposed method outperform the super-
vised fine-tuning baseline by a large margin, indi-
cating the effectiveness of the general self-training
framework. Although the Self-Training baselines
make significant improvements over the SFT base-
lines, the proposed DPO-augmented Self-Training
models consistently outperform them on both in-
domain and out-of-domain tasks.
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Figure 5: The performance (accuracy) of the proposed
method on GSM8K over three iterations. "ST" stands
for the Self-Training baseline. The "iter 0" represents
the results of the SFT baselines.

Effect of iterative training In Figure 5, we
demonstrate how our model improve over mulitple
iterations using two base models: Flan-T5-Base
and Flan-T5-Large. Both the ST baseline and our
method start with a SFT step using the original
GSM8K annotation at iteration 0. We can observe
that, as iterations progress, our method consistently
outperforms ST, which suggests that the proposed
method offers a substantial improvement over ST
after repeated training cycles. We also notice that
the degree of improvement gradually approaches
zero as the iterative process proceeds, suggesting
that the model has converged in the last iteration.
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Method Base Model # Annotations Annotator Tools Acc.
Supervised fine-tuning
CoT (Shridhar et al., 2023) GPT-2-Large 007K Human % 14.1
Self-consistency (Khalifa et al., 2023) Flan-T5-Large 007K Human ! 33.3
GRACE (Khalifa et al., 2023) Flan-T5-Large 007K Human ! 36.3
Calcformer (Kadlčík et al., 2023) T5-Large 030K Human ! 34.2

Knowledge Distillation
Socratic CoT (Shridhar et al., 2023) GPT-2-Large 007K GPT-3 175B % 21.1
CoT from CodeX (Fu et al., 2023) Flan-T5-Large 100K CodeX % 20.2
CoT from PaLM (Magister et al., 2023) T5-Large 006K PaLM 540B ! 22.2

Ours
DPO-aug Self-Training (K=3) Flan-T5-Large 007K Human ! 37.4
DPO-aug Self-Training (K=5) Flan-T5-Large 007K Human ! 39.1
DPO-aug Self-Training (K=10) Flan-T5-Large 007K Human ! 40.0

Table 3: Detailed comparison among existing methods with comparable model sizes on the GSM8K test set. The
“Annotator” column indicates how the rationales of the training data are generated. In this column, “Human” refers
to the labels from the original GSM8K dataset (Cobbe et al., 2021) that are written by human annotators. The
“Tools” column indicates whether external tools, e.g., calculator or code interpreter, are applied during inference.

4.3 Comparison with Existing Methods

In this section, we compare our methods with ex-
isting approaches. Additionally, we scale up the
proposed method by increasing the number of sam-
pled pseudo-labels per question, denoted by the
hyperparameter K as in Yuan et al. (2023).

Table 3 presents a detailed comparison be-
tween our method and exisiting methods using
a simialr base model size. The base models we
considered include GPT-2-Large (Radford et al.,
2019), T5-Large (Raffel et al., 2019), and Flan-
T5-Large (Chung et al., 2024). All these models
have approximately 770 million parameters. As
shown in Table 3 our approach not only outper-
forms other methods on the GSM8K benchmark,
but also demonstrates remarkable label efficiency
by utilizing only the annotations from the original
GSM8K dataset.

In Table 4, we further verify the effectiveness of
the proposed method with the Llama model fam-
ily (Touvron et al., 2023a,b; Meta, 2024). compar-
ing them with several state-of-the-art closed-source
models as well as open-source models with similar
sizes. We observe a substantial performance gap be-
tween proprietary and open-source models. Among
the open-source models, those utilizing knowledge
distillation consistently outperform their counter-
parts without such enhancement. Notably, our mod-
els using Llama-1-7b (Touvron et al., 2023a) and
Llama-2-7b (Touvron et al., 2023b) base models
surpass other open-source alternatives that do not
employ knowledge distillation, achieving accura-

cies of 44.7% and 54.7% respectively. Furthermore,
our model employing the latest Llama-3-8b (Meta,
2024) matches or exceeds the performance of ear-
lier models with knowledge distillation, demon-
strating a significant accuracy of 68.8%.

Method Base Model Acc.

Closed-source models
Claude-3-Opus (Anthropic, 2024) - 95.0
Claude-2 (Anthropic, 2023) - 88.0
GPT-4 (OpenAI, 2023) - 92.0
Flan-PaLM-2 (Anil et al., 2023) - 84.7
PaLM-2 (Anil et al., 2023) - 80.7

Models w/ knowledge distillation
RFT-U13B (Yuan et al., 2023) Llama-1-7b 49.3
RFT-U33B (Yuan et al., 2023) Llama-2-7b 51.2
MAmooTH-CoT (Yue et al., 2023) Llama-2-7b 50.5
LEMA (An et al., 2023) Llama-2-7b 54.1
WizardMath (Luo et al., 2023) Llama-2-7b 54.9
MetaMath (Yu et al., 2024) Llama-2-7b 66.5
MuggleMath (Li et al., 2023a) Llama-2-7b 68.4
ToRA (Gou et al., 2024) Llama-2-7b 68.8

Models w/o knowledge distillation
SFT (Yuan et al., 2023) Llama-1-7b 35.9
RFT (K=12) (Yuan et al., 2023) Llama-1-7b 41.6
RFT (K=100) (Yuan et al., 2023) Llama-1-7b 41.7
SFT (Yuan et al., 2023) Llama-2-7b 41.6
RFT (K=12) (Yuan et al., 2023) Llama-2-7b 45.3
RFT (K=100) (Yuan et al., 2023) Llama-2-7b 47.5

Ours
DPO-ST (K=10) Llama-1-7b 44.7
DPO-ST (K=10) Llama-2-7b 54.7
DPO-ST (K=10) Llama-3-8b 68.8

Table 4: Comparison with the state-of-the-art close-
source models and open-source models based on Llama
model family (Touvron et al., 2023a,b; Meta, 2024).
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Figure 6: Effects of the DPO step. Left: we report
the greedy decoding results for Pass@1. Middle: For
Pass@10, the solutions are sampled with temperature
0.7. Right: We count the number of generated pseudo-
labels after deduplication.

4.4 Effects of the DPO Step

As mentioned earlier, the main difference between
the proposed method and the classic self-training
is the DPO step in every iterative process. We now
analyze how the DPO steps improve self-training.
Figure 6 compares the performance of models be-
fore and after the DPO step in the first iteration on
the Pass@K metrics. Pass@K measures the proba-
bility that at least one of the K generated solutions
for a problem is correct, which serves as a gauge
for both the quality and the variety of the model-
generated solutions. The models we investigate
here are fine-tuned from the Flan-T5-Large.

As shown in Figure 6, the DPO step yields only
marginal improvements over the SFT model in the
Pass@1 performance on the development set. How-
ever, the performance significantly improves when
multiple rationales, i.e., 10 solutions per question,
are sampled with temperature 0.7 (measured with
the Pass@10 metric). This indicates that the DPO
training objective makes language models inclined
to generate rationales of both high quality and di-
versity. We also compare the number of generated
rationales on the training set L for models with
and without the DPO step. Figure 6 (right) clearly
shows that the model after the DPO step can pro-
duce more SFT data for the next iteration.

4.5 Effects of External Calculator

Driven by the observation that small-scale LMs
frequently make basic calculation errors, we de-
velop a simple yet efficient method that integrates
an external calculator into the models’ decoding
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Figure 7: GSM8K development set accuracy of Flan-
T5-Large with and without the use of an external calcu-
lator during inference.

process. To evaluate the impact of this integration,
we conduct an ablation study by omitting the cal-
culator and present the findings in Figure 7. Our
results indicate that decoding without the calcula-
tor markedly reduces accuracy across all iterations.
We believe that this is because models will generate
large amount of false positive pseudo-labels with-
out calculator, that is, the generated pseudo-labels
may have correct final answers but make errors in
the intermediate reasoning steps.

5 Related Work

Learning from pseudo-labels Supervised fine-
tuning (SFT) is prevalent technique employed to
enhance the performance of pre-trained language
models on specific downstream tasks (Ouyang
et al., 2022; Chung et al., 2024). However, this
method heavily depends on the availability of high-
quality labeled data, which can be both expensive
and labor-intensive to procure (Brown et al., 2020).
To address this limitation, various strategies have
been developed to generate high-quality pseudo-
labels using either unlabeled or synthetic data for
a wide range of applications, including text clas-
sification (Xie et al., 2020), sentence representa-
tion learning (Wang and Lu, 2022), instruction
tuning (Honovich et al., 2022), and math reason-
ing (Wang and Lu, 2023). Recent advancements
in this area primarily focus on two directions: self-
training and knowledge distillation. The key dif-
ference between these methods lies in the source
of the pseudo-labels: self-training uses the model’s
own predictions on unlabeled data, while knowl-
edge distillation utilizes the insights from larger,
more powerful models.
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Self-training in language model Recently, we
have witnessed a large number of works focus-
ing on self-training algorithms for language mod-
els (He et al., 2019; Zelikman et al., 2022; Yuan
et al., 2023). Most of such methods are built
upon the classic self-training framework (Scud-
der, 1965). He et al. (2019) empirically studied
the effectiveness of self-training in natural lan-
guage generation tasks, e.g., summarization and
translation. Zelikman et al. (2022) proposed self-
taught reasoner (STaR), which demonstrated that
language models can be iteratively improved from
its own generation, even there are no gold ratio-
nales provided. Yuan et al. (2023) proposed re-
jection sampling fine-tuning to improve language
models’ math reasoning abilities. This method can
be interpreted as only executing one iteration of
the self-training algorithm. Singh et al. (2023) pro-
posed ReSTEM , a self-improving algorithm based
on expectation-maximization framework. This
method demonstrates significant improvements in
problem-solving tasks, e.g., math reasoning and
code generation.

Knowledge distillation from LLMs Many of
the recent research efforts demonstrated large
language models (LLMs) are capable of doing
math reasoning (Wei et al., 2022b; Gao et al.,
2022; OpenAI, 2023; Anil et al., 2023; Anthropic,
2023, 2024). Therefore, a recent line of work
focuses on improving smaller language models’
reasoning abilities by distilling chain-of-thought
pseudo-labels from LLMs (Ho et al., 2023; Mag-
ister et al., 2023; Fu et al., 2023). For example,
Luo et al. (2023) proposed Reinforcement Learn-
ing from Evol-Instruct Feedback built upon Evol-
Instruct (Xu et al., 2023), which requires ChatGPT
to provide the training signals. An et al. (2023)
demonstrated that language models can effectively
learn from the mistakes that can be corrected by
larger models, e.g., GPT-4 (OpenAI, 2023), during
supervised fine-tuning. Yu et al. (2024) proposed a
novel question bootstrapping method with the help
of larger models to augment the existing training
dataset. Although these methods are shown to have
promising experimental results, they are costly to
implement as large models cost more FLOPs dur-
ing inference. Our work demonstrates that small-
scale language models can also learn from their
own generations like the larger ones (Zelikman
et al., 2022), which is more resource-efficient com-
pared with the knowledge distillation methods.

6 Conclusion

We present an effective and resource-efficient
method called DPO-augmented Self-Training
(DPO-ST), which augments the original Self-
Training algorithm with Direct Preference Opti-
mization (Rafailov et al., 2023). Unlike previous
studies that improve small-scale language models’
reasoning abilities by distilling a larger and more
powerful model, we argue that small models that
are trained merely on the limited human-labeled
data can improve themselves significantly. We also
empirically find that models trained with DPO loss
can generate pseudo-labeled data with higher qual-
ity and diversity. Our experiments demonstrate that
the proposed method not only outperforms exist-
ing methods with comparable model sizes on the
GSM8K benchmark, but also achieves remarkable
resource efficiency in terms of both computational
cost and the requirements of human-labeled data.

Limitations

Use of unlabeled data Our method is built upon
the classic self-training algorithm, which provides
an effective semi-supervised learning framework
that makes good use of unlabeled data. However,
this work doesn’t explore the use of unlabeled data
explicitly. Future research efforts can be made to
explore how to collect high-quality unlabeled data
for math word problem solving. In other words,
we need to find an efficient method for collecting
unlabeled data U = {(xi, ai)}ui=1 that for each
math question xi, there is a corresponding ground-
truth answer ai.

Generalization to other tasks One of the lim-
itations of this work is the narrow scope of our
experiments, which were exclusively conducted on
math reasoning tasks. The primary reason for this
limitation is the lack of appropriate training data
for other reasoning tasks. As our method requires
a set of training data with chain-of-thought labels,
many existing reasoning tasks lack such annota-
tions, making it challenging to extend our experi-
ments beyond the current scope. Future research
may focus on identifying and developing suitable
datasets for a wider range of reasoning tasks to
fully evaluate the applicability and effectiveness of
our method across different reasoning tasks.
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