
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1161–1172
August 11-16, 2024 ©2024 Association for Computational Linguistics

Linguistically Conditioned Semantic Textual Similarity

Jingxuan Tu and Keer Xu and Liulu Yue
Bingyang Ye and Kyeongmin Rim and James Pustejovsky

Department of Computer Science
Brandeis University

Waltham, Massachusetts, USA
{jxtu,keerxu,liuluyue,byye,krim,jamesp}@brandeis.edu

Abstract

Semantic textual similarity (STS) is a funda-
mental NLP task that measures the semantic
similarity between a pair of sentences. In order
to reduce the inherent ambiguity posed from
the sentences, a recent work called Conditional
STS (C-STS) has been proposed to measure
the sentences’ similarity conditioned on a cer-
tain aspect. Despite the popularity of C-STS,
we find that the current C-STS dataset suffers
from various issues that could impede proper
evaluation on this task. In this paper, we rean-
notate the C-STS validation set and observe an
annotator discrepancy on 55% of the instances
resulting from the annotation errors in the origi-
nal label, ill-defined conditions, and the lack of
clarity in the task definition. After a thorough
dataset analysis, we improve the C-STS task by
leveraging the models’ capability to understand
the conditions under a QA task setting. With
the generated answers, we present an automatic
error identification pipeline that is able to iden-
tify annotation errors from the C-STS data with
over 80% F1 score. We also propose a new
method that largely improves the performance
over baselines on the C-STS data by training
the models with the answers. Finally we dis-
cuss the conditionality annotation based on the
typed-feature structure (TFS) of entity types.
We show in examples that the TFS is able to
provide a linguistic foundation for constructing
C-STS data with new conditions.

1 Introduction

Semantic textual similarity (STS) is an essential
NLP task that measures the semantic similarity be-
tween two sentences (Agirre et al., 2012). It is also
a popular benchmark for developing tasks such as
text embedding learning (Conneau and Kiela, 2018;
Reimers and Gurevych, 2019; Thakur et al., 2021)
and language understanding (Wang et al., 2018).
While the STS datasets have been developed and
improved over the past years (Agirre et al., 2013,
2014, 2015, 2016; Cer et al., 2017), the task itself

Figure 1: A problematic example from the C-STS
dataset. The binarity of the condition cannot be mapped
to a 5-point similarity scale. The label can be subjective
depending on how much inference is made from the
context. No guideline on the scenario when the infor-
mation regarding the condition is missing.

still suffers from sentence ambiguity and subjectiv-
ity to judgment (Deshpande et al., 2023).

A new task called Conditional STS (C-STS) has
been proposed to resolve those issues (Deshpande
et al., 2023). It is designed to disambiguate the
similarity between two sentences by measuring the
similarity on a given condition. An accompanying
dataset was also proposed to test models on the C-
STS task. Despite the popularity of C-STS, we ob-
serve certain limitations in the C-STS dataset that
could hinder the understanding and proper evalua-
tion of models on this task. As illustrated in Figure
1, these limitations primarily revolve around anno-
tation errors, ill-defined conditions, and a general
lack of clarity in task definition.

Taking into account the significance of these
issues, we intend to improve the C-STS dataset by
addressing the existing problems that we observed.
We start by reannotating the C-STS validation set.
By identifying an apparent annotation error rate
of 55%1 in their validation set, we analyze the
provenance of the errors and discrepancies between
the original and relabeled datasets.

To further explore the utility of the condition and
how it is understood by language models, we treat

1Calculated from the comparison between the original and
reannotated labels.

1161



it as a Question Answering (QA) task and leverage
large language models (LLMs) to generate the an-
swer to the question that is constructed from the
condition. We find that the LLM-generated an-
swers can better capture the similarity between two
sentences and fit closely to our reannotated labels
by having a higher Spearman’s Correlation. Based
on this finding, we propose an approach to identify
potential annotation errors from the C-STS dataset
utilizing the LLM-generated answers, achieving
over 80% F1 score on the validation set. We also
propose a new method to improve the C-STS task
by training the models with the answers. We show
that both supervised and generative models can
efficiently and effectively learn the condition in-
formation encoded in the answers, improving the
performance over baselines by a large margin.

Finally, we discuss a new annotation specifica-
tion of the conditionality that aims to improve the
formulation of the conditions with a more concrete
semantic base. We use the entity type identified
from the sentence pair as the surface condition text
that is described by its underlying typed-feature
structure (TFS) (Carpenter, 1992; Copestake, 2000;
Penn, 2000). We exemplify that TFS-based condi-
tions can be successfully adopted to sentence pairs
from the current C-STS dataset.

We summarize the main contributions of this pa-
per as threefold. We reannotate the C-STS valida-
tion set and propose an error identification pipeline
that can be applied to the whole dataset to identify
potential annotation errors and ambiguities; we pro-
pose a QA-facilitated method that largely improves
the model performance on the C-STS task; we dis-
cuss using TFS as a new annotation specification to
improve the conditionality in C-STS dataset with a
more concrete semantic base. We make the source
code and dataset publicly available.2

2 Related Work and Background

Semantic similarity tasks The semantic similar-
ity between texts has long been a key issue in under-
standing natural language. Agirre et al. (2012) pro-
posed the first STS task that measures the similarity
between a sentence pair. Following this, Agirre
et al. (2013) proposed the second STS task that
covered more text genres in the dataset. There are
also STS tasks (Agirre et al., 2014, 2015, 2016; Cer
et al., 2017) with focuses on measuring sentence
similarity under a multilingual and cross-lingual

2https://github.com/brandeis-llc/L-CSTS

setting. Abdalla et al. (2023) proposed a new text
similarity task that measures the semantic related-
ness between two sentences.

Conditional STS More related to our work, the
C-STS task (Deshpande et al., 2023) introduced
conditions on top of the traditional STS tasks,
and it measured the sentence similarity regarding
the given condition. The C-STS dataset includes
18,908 instances. Each instance contains a sentence
pair, a condition, and a scalar for the similarity
score on the 5-point Likert scale (Likert, 1932). In
this paper, we conduct the annotation and exper-
iments on the C-STS validation set that consists
of 2,834 instances. Deshpande et al. (2023) evalu-
ated the C-STS dataset on different baselines such
as SimCSE (Gao et al., 2021) and GPT models
(Brown et al., 2020; OpenAI, 2023) by training
or prompting with the sentence pairs and the con-
ditions directly. However, our QA-based method
uses the generated answers as the model input.

QA-facilitated tasks Question answering tasks
are useful for extracting and inferring information
from the texts that is relevant to the question. Re-
cent work utilized QA to improve other NLP tasks.
Eyal et al. (2019) and Deutsch et al. (2021) applied
QA as an automatic evaluation metric for the sum-
marization. Gunasekara et al. (2021) used QA to
improve the summarization directly. Other works
involved the application of QA for data augmenta-
tion (Mekala et al., 2022) and question generation
(Tu et al., 2022a,b). In this paper, we apply QA to
generate condition-based answers for error identifi-
cation and to improve models on the C-STS task.

Figure 2: Distribution of top 10 frequent features and
entities from the conditions in the C-STS dataset. For
the singleton with no explicit mention of the feature,
we default the condition features from this group to type.

1162

https://github.com/brandeis-llc/L-CSTS


3 Reannotating C-STS

We analyze the dataset and describe the annotation
process for relabeling the C-STS validation set.3

3.1 Condition analysis
We analyze the composition of the condition texts
in the dataset. We observe that the majority of
the conditions are short phrases in the format of
[feature] of [entity] (e.g., the color of animals) or
simply a singleton [entity] (e.g., the hobby). We
plot the distributions of frequent features and en-
tities from the condition texts in the full C-STS
dataset in Figure 2, we notice that the dataset is
skewed by having a long tail distribution of the
conditions. The top 10 frequent features and enti-
ties appear in 88% and 45% of the total conditions
respectively. Within the top 10 lists, Type and Num-
ber are the dominating features; People and Animal
are the dominating entities.

3.2 Annotation Analysis
To understand how conditions affect the human
judgment of sentence similarity, we conduct a pilot
annotation study on 150 instances sampled based
on the frequency of condition features (e.g., type,
number, etc.) in the C-STS training set. Annotators
are asked to reannotate those instances following
the public C-STS annotation guideline. We mea-
sure the agreement between the original labels and
reannotated labels and find a low agreement of 40%
accuracy (exact label match) and 50.4 Spearman’s
Correlation.

We characterize the common issues that cause
the annotation divergence in Table 1. The simi-
larity of the sentences under number conditions
cannot be mapped to a 5-point scale due to the bi-
narity of the value comparison (e.g., 1 = 1, 1 ̸= 5).
This issue also happens to other condition features
such as gender and age. The condition can also
be ambiguous, especially when it is a singleton.
In the second example, the similarity between the
two mentions of the table can be subjective, based
either on the type of table or multiple features asso-
ciated with the table such as shape, size, etc. The
original C-STS task does not specify how much
inference from the context is allowed to judge the
similarity. This increases the label inconsistency
between the annotators. In the third example, al-
though the room type is not explicitly mentioned

3The original labels of the C-STS test set is not publicly
available, so we use the validation split for further annotation
and experiments in this paper.

in the first sentence, we can still confidently infer
it is bathroom because of the mention of toilet and
sink in the context. In the last example, the condi-
tion can be invalid if the information regarding the
condition cannot be extracted or inferred from the
sentence.

3.3 Condition-aware Annotation on C-STS

We reannotate the C-STS validation set to fix com-
mon annotation errors and resolve the aforemen-
tioned issues that cause the low agreement score.
The annotation was done by 4 researchers and grad-
uate students from the linguistics and computer sci-
ence departments of a US-based university. Each
annotator is familiar with the C-STS annotation
guideline and is well-trained through the trial an-
notation on the pilot set with 150 instances. To
resolve the issues that are identified from the pi-
lot study, we ask annotators to follow additional
annotation rules that are detailed as follows.

Incommensurable mapping For binary condi-
tions, only labels 1, 5, or 3 are permitted, represent-
ing equal, unequal and possible equal (e.g., com-
paring 3 and several in the number conditions).

Ambiguous condition Given the intuition that
type is always the primary feature in comparing the
similarity between two entities, if conditions are
singletons or have no features, we default it to the
type of [entity].

Inference degree Annotators are only allowed to
make direct inference to the implicitly mentioned
information with high confidence. For example,
snow hill indicates the weather, tennis indicates the
instruments being used, etc.

Invalid condition We annotate invalid instances
with the label -1 and exclude those instances from
the reannotated dataset.

After removing 214 instances with invalid con-
ditions, we create a relabeled C-STS validation set
that consists of 2,620 samples. Figure 3 shows the
label distribution of the original and relabeled C-
STS validation set. Compared to the original set,
the new annotation contains more extreme labels
such as 1 and 5, while labels in between such as
2, 3, 4 are less frequent. This is due to the high
frequency of the instances with binary condition
features in the original dataset.

1163



Sentence Pair Condition Label Issue
Female tennis player, standing on one foot after returned the ball.
A tennis player is getting ready to hit the ball at a tennis match.

number of people 3 / 5 Incommensurable Mapping

An oak table and chairs in a dining room, with a doorway to the kitchen.
Three couches positioned around a coffee table in a living room.

the table 1 / 3 Ambiguous Condition

A toilet in a stall with a sink attached and a console attached to the lid.
A bathroom with tiled walls, a toilet, sink and a garbage can in it.

room type 2 / 4 Inference Degree

A cat hissing as it attempts to fit itself into a bowl that it is to big to fit in.
A black cat with a red tag sitting down with a bookshelf in the background.

color of animal 2 / -1 Invalid Condition

Table 1: Examples with common issues that cause the judgment divergence between the original and reannotated
labels. Text that is relevant to the conditions is highlighted.

Figure 3: The similarity score distribution of the original
and relabeled C-STS validation set.

4 QA for C-STS

With the consideration on scaling the relabeling
task to the full C-STS dataset, we explore effective
approaches to identifying potential mislabeled in-
stances automatically. We apply QA as a pre-task
for identifying information from the sentences that
is relevant to the condition, and leverage LLMs
to generate answers from condition-transformed
questions. We show that the generated answers
correlate better to the reannotated labels, and can
be used as a reliable intermediate resource for iden-
tifying potential annotation errors from the original
C-STS dataset.

4.1 Answer Generation

GPT prompting For each instance, we start by
transforming its condition into a question with the
format What is [condition]?.4 In order to gen-
erate high-quality answers, we conduct the QA
task with LLMs under a prompting fashion. Each
prompt consists of a brief instruction, the original
sentence and the condition-transformed question
(Appendix A.1). In the instruction, we ask the
model to summarize each answer into a word or
phrase to reduce potential noise and hallucinated
content (Bouyamourn, 2023). We experiment with
GPT-3.5 (Brown et al., 2020) and GPT-4 (Ope-
nAI, 2023) to generate answers. We use the Ope-
nAI API with versions gpt-3.5-turbo-1106 and

4We convert the condition text to lowercase and remove
the period at the end of the text.

gpt-4-0125-preview.

Answer quality analysis We evaluate the qual-
ity of the answers that are generated from the two
models on 200 instances sampled from the C-STS
validation set. We ask two annotators to measure
the quality of the answer on a 5-point Likert scale
from unrelated to very accurate. Answers from
GPT-3.5 have a Spearman’s Correlation of 4.54
and accuracy of 75% (labels with 5), While the
Spearman and accuracy of GPT-4 answers are 4.07
and 69.5% respectively. We observe from the data
that although GPT-4 is a more recent and proficient
model, it tends to avoid generating direct answers
with no clear instructions or contexts. Although
this mechanism can help the model reduce hallu-
cination, it misses what we consider as “relevant
answers” in our task.

(1) A baby is swaddled and someone is putting his hands
on it. [the age of child]
GPT-3.5: Infant, GPT-4: Not specified

In example 1, the answer from GPT-3.5 is infant,
which implies a rough range of the age, while GPT-
4 refuses to generate an answer because the actual
child age is not explicitly mentioned in the text.
Since our task involves measuring the text similar-
ity of answers, we choose to use GPT-3.5 because
it tends to generate more content-enriched answers
than GPT-4.

Answer correlation analysis Given the high
quality of the GPT-generated answers, we evaluate
the correlation between the answers and the rean-
notated labels. We first run GPT-3.5 to generate
the answers for all the instances from the C-STS
validation set. Then we encode each answer into an
embedding using the GPT embedding encoder with
version text-embedding-ada-002, and compute
the cosine similarity between the embeddings of
the answers from the same instance. We calculate
the Spearman’s Correlation between the answer

1164



Figure 4: Answer generation and error identification pipeline on the C-STS validation set.

similarities and reannotated labels (55.44), and be-
tween the original labels and reannotated labels
(49.22). The result shows that the cosine similarity
of GPT-generated answers correlates more closely
with the reannotated labels, and thus can better
reflect the similarity of the sentence pairs on the
given condition.

4.2 Error Identification
With the analysis that answers generated from GPT-
3.5 are of high quality and correlate better with
the reannotated labels, we propose a method to
automatically identify potential annotation errors
from the C-STS dataset. As illustrated in Figure
4, the generated answers are the input to our error
identification pipeline that consists of three steps:
(1) clustering answers into groups with different
topics; (2) encoding and ranking answer pairs in
each cluster and mapping the similarity ranks to the
label from 1 to 5; (3) identifying error candidates
based on the difference between original and new
rank labels.

Answer clustering Most of the generated an-
swers can be grouped into different topics (e.g,
answers related to numbers, colors, etc.), we apply
K-means (Arthur and Vassilvitskii, 2007) to cluster
the answer pairs. Each answer pair is concatenated
and then encoded into a single embedding for the
clustering. The purpose of this step is to rank the
similarity of the answers more accurately by clus-
tering similar answer pairs together.

Answer similarity mapping We encode each
answer from a pair into an embedding and compute
the cosine similarity between the two embeddings.
Within each answer cluster, We rank all the answer
pairs based on their embedding similarity and map
the ranking of each answer pair to a new label
(called rank label) on a scale from 1 to 5 based on
a predefined ranking distribution.

Error candidate selection We identify the po-
tential error candidates by comparing the original

Distribution
No Cluster Clustered

F1 Spear. F1 Spear. Best K

Even 74.3 52.9 74.5 60.8 3
Original 75.4 55.4 76.6 59.6 10
Reannotated 79.4 49.1 82.4 65.7 10

Table 2: Error identification results with or without k-
means clustering under different distribution approaches
on the test split of the relabeled C-STS validation set.
The results under clustered are from the cluster number
(Best K) selected in the range of 1-20 that yields the
highest F1 score.

labels to the rank labels. For each answer pair, if its
rank label is different from the original label, we
choose this instance as a candidate.

4.3 Evaluation

We evaluate our error identification pipeline on the
C-STS validation set. We use half of the dataset to
generate answer clusters and ranking distributions,
and the other half to evaluate three ranking distri-
butions with different number of clusters. For the
even distribution, we map the sorted answer pair
rankings evenly to rank labels from 1 to 5 (e.g, 20%
of lowest ranked instances has rank label 1). For
the original or Reannotated label distribution, we
map the rankings based on the distribution of orig-
inal/reannotated labels. We use precision, recall,
and F1 as the evaluation metrics.

4.3.1 Results
We show the evaluation results in Table 2. Our
pipeline is effective in identifying potential anno-
tation errors with the baseline F1 of 74.3, signifi-
cantly higher than the 55% error rate in the C-STS
validation set. The distribution from the reanno-
tated label performs the best among all three dis-
tributions, suggesting the label consistency in the
relabeled data. Comparing to no cluster, ranking
within the answer clusters improves the most on
the reannotated label distribution, boosting F1 from
79.4 to 82.4. As a positive byproduct, clustering

1165



Sentence Pair Condition Response Issue
A couple of small pieces of cake sitting on top of a white plate.
A paper plate with a sandwich and a slice of pizza, both partly eaten.

the amount of plates
Two small pieces of cake
One plate

GPT hallucination

A group of people on a hill looking a city and two people are flying a kite.
Man playing with kite far up in the sky, showing only the deep blue sky.

the kite
Recreational activity
High-flying entertainment

Vague condition

A plate full of cut salad with a fork and a glass full of cold drink with ice.
A dish which contains cauliflower and meat is on top of a wooden tray.

presence of meat
No meat
Meat included

Semantic mismatch

Table 3: Examples with common issues that cause the unidentified annotation errors.

can also improve the Spearman’s Correlation be-
tween the rank labels and reannotated labels, indi-
cating that answers clustered into optimal number
of groups can help produce more accurate and cor-
related rank mapping of the similarity. Overall, we
show the effectiveness of our error identification
pipeline. It can also be easily extended and applied
to identify errors from the rest of the C-STS dataset
with the help from the generated answers.

4.3.2 Analysis
We briefly characterize the cases where annotation
errors are not identified by the pipeline. The com-
plete examples are shown in Table 3.

Incorrect answer The incorrectness of the gen-
erated answers can be caused by: (1) hallucination
from the GPT model; (2) vague or invalid condi-
tion. For example, in the sentence A couple of cake
... a white plate., the GPT wrongly answers two
pieces of cake to the condition the amount of plates.
In another example, the condition the kite is not
specific enough for both annotators and the GPT
model, so the generated answer is highly depended
on subjectivity. These mistakes lead to an inaccu-
rate answer similarity and thus cause a misaligned
rank label.

Semantic mismatch Error identification relies
on the ranking of the answer pair similarity. How-
ever, answers even with the opposite meaning can
have a high similarity in the embedding space. In
an example, the answers are No meat and Meat in-
cluded, which are opposite to each other. However,
the embeddings of the two answers have a high
similarity due to the overlapped token meat.

5 Experiments

We propose a new method that can improve the
C-STS task by utilizing the LLM-generated an-
swers. Instead of using the sentence pairs and the
conditions directly as the model input, our method
decomposes C-STS into two subtasks: generating
answers that encode the essential semantic infor-
mation about the condition, and learning the sim-

Model Method Spearman Pearson

Bi-
encoder

SimCSEBASE 49.6 48.5
SimCSELARGE 71.7 70.8
QA-SimCSEBASE 73.9 73.4
QA-SimCSELARGE 75.9 75.4

Tri-
encoder

SimCSEBASE 0.8 1.7
SimCSELARGE 12.8 13.2
QA-SimCSEBASE 73.9 73.4
QA-SimCSELARGE 73.4 73.1

Cross-
encoder

SimCSEBASE 37.2 38.7
SimCSELARGE 43.0 43.3
QA-SimCSEBASE 71.4 71.1
QA-SimCSELARGE 72.9 72.3

GPT-3.5
Base Prompt 9.1 13.5
QA Prompt 66.1 64.8

GPT-4
Base Prompt 64.2 63.3
QA Prompt 64.4 60.2

Table 4: Evaluation results on the test split of the C-STS
relabeled set. We compare our methods (QA-based)
with baselines under different model settings.

ilarity score between the answer pair. We evalu-
ate our method and compare with baseline models
(Deshpande et al., 2023) under both fine-tuning
and prompting settings. We randomly select 70%
instances from the reannotated C-STS validation
set for training and the remaining 30% for testing.

5.1 Model Setup

Fine-tuning models We evaluate our method on
three encoding configurations, cross-encoder, bi-
encoder (Reimers and Gurevych, 2019) and tri-
encoder (Deshpande et al., 2023). Unlike the base-
lines that encode sentences directly, our method
chooses to encode the answers on all three en-
coding configurations. Cross-encoder encodes the
concatenation of the answer pair and condition all
together, while bi-encoder concatenates the condi-
tion to each answer and encodes them separately.
Tri-encoder has three encoders that encode sen-
tences and the condition all separately. We use
supervised SimCSE (Gao et al., 2021), one of the
best-performing embedding models as the base sen-
tence encoder for all three encoding configurations.

1166



We fine-tune each model on the training set and
evaluate on the testing set. We use Spearman’s
Correlation as the primary evaluation metric.

Prompting models We compare our method
with LLM baselines under a zero-shot prompt learn-
ing setting. We evaluate the results on GPT-3.5 and
GPT-4. Similar to the experiments on fine-tuned
models, instead of asking about the sentences di-
rectly, we formulate the prompt by instructing the
model to score the similarity between the answers
regarding the condition (Appendix A.1).

5.2 Results

We show the model results in Table 4. For all
models, our method (QA-based) improves the base-
lines by a large margin (73.1 improvement on tri-
encoder), indicating the usefulness of model learn-
ing with answers. Fine-tuned models generally per-
form better than LLMs models, suggesting that the
C-STS task is sensitive to the in-domain training.

Compared with the large version of the mod-
els, our method makes more improvement to the
base models. For example in the bi-encoder set-
ting, the improvement for large and base model
baselines is 4.2 and 24.3 respectively. This indi-
cates the effectiveness of the method, especially
on models with smaller sizes and fewer parame-
ters. This may be due to the answers being already
encoded with relevant semantic information, thus
reducing the reasoning complexity for the small
models. This similar pattern also applies to LLM
baselines, where GPT-4 performs much better than
GPT-3.5 on the base prompt. However on the QA
prompt, GPT-3.5 achieves slightly better result than
GPT-4. QA transforms C-STS into an easier sen-
tence similarity task that enables the use of more
cost or resource efficient models without harming
the performance much.

Figure 5: Model (SimCSE with bi-encoder and GPT)
evaluation results on original and relabeled C-STS vali-
dation set.

Method Fine-tuning No condition Inference

SimCSEBASE 49.6 -0.4 1.2
SimCSELARGE 71.7 4.4 1.0
QA-SimCSEBASE 73.9 73.3 49.4
QA-SimCSELARGE 75.9 73.5 54.7

Table 5: Evaluation results (Spearman) from bi-encoder
models under different training settings. Fine-tuning:
using models fine-tuned on the training data; No condi-
tion: encoding answers only for fine-tuning; Inference:
inferencing results on the untuned models.

5.3 Analysis

Curse from the mislabeled data We evaluate
the effect of different label sets on the model per-
formance. In Figure 5, we show the model results
on the C-STS validation set with original or re-
annotated labels. We notice that for all models,
performance on the reannotated labels is increased
by at least 40% over the original label (except GPT-
3.5). This suggests that the original C-STS dataset
may not be able to truly reflect the capability of the
existing models. The noise and vagueness from the
original labels pose “challenges” to models to learn
linguistic patterns. Among the LLM baselines, we
notice that C-STS is particularly difficult to GPT-
3.5 (9.1 Spearman). However, it can be improved
significantly with our QA prompt.

Semantic information encoded with QA We
evaluate how much semantic information can be en-
coded in the generated answers. As shown in Table
5, the condition is critical to the finetuned baselines
(-0.4 to 49.6 on the SimCSEBASE). However, train-
ing with no condition has minimal effect on the
performance with the QA methods (2.4 difference
on SimCSELARGE). Under the inference setting, the
baselines perform poorly due to the additional rea-
soning complexity from the conditions. However,
our method still shows strong performance even
without any fine-tuning. This echoes our previous
finding that the QA subtask in C-STS is able to
improve the efficiency of model training .

Non-GPT answer generation performance We
evaluate different answer generation models in-
cluding multiple versions of Flan-T5 (Chung
et al., 2022) and GPT-3.5. We fine-tune the QA-
SimCSEBASE on bi-encoder setting with answers
generated from different models, and compare
the results in Table 6. Except Flan-T5SMALL, all
the other models perform better than the baseline
which is fine-tuned on sentences only. The results

1167



Generation Model Size (Param.) Spearman

Flan-T5SMALL 77M ↓43.7

Baseline‡ N/A 49.6

Flan-T5BASE 248M ↑53.9
Flan-T5LARGE 783M ↑55.8
Flan-T5XL 2.75B ↑62.3
GPT-3.5 175B ↑66.1

Table 6: Evaluation results from QA-SimCSEBASE bi-
encoder with difference answer generation models. ‡:
Fine-tuning on sentences only.

suggest that our method is robust and does not nec-
essarily rely on proprietary models such as GPT-
3.5. Flan-T5XL is able to achieve comparable re-
sults to GPT-3.5 with only 1.5% of the parameter
size. Even the base version of Flan-T5 with 248M
parameters performs better than the baseline.

6 Discussion: Improving Conditionality

Although the idea of C-STS is highly appreciated,
we notice that the current C-STS dataset has certain
issues ranging from the errors in the annotation to
the lack of rigor in the condition definition. In this
section, we discuss a new annotation specification
of conditionality based on a word’s lexical attribute
value features, or Typed Feature Structure (TFS)
(Carpenter, 1992; Copestake, 2000), and exemplify
the annotation of the new conditionality on several
sentence pairs from the C-STS dataset.

6.1 TFS as the Condition
A TFS is a data structure that can be used to repre-
sent systematic linguistic information about both
words and phrases in language. For lexical items,
the feature structure is defined as a set of attributes
and their values for a word type. Each feature
can have a distinct value for an object of that type
(Pustejovsky and Batiukova, 2019). For example,
in the term small table, the value of the feature SIZE

for the object table is small. In order to adopt the
TFS to construct conditions in the C-STS, we use
the word/entity type as the condition, and use the
values of feature structure to annotate the similarity
score regarding the condition. Consider Figure 6
as an example. We set the entity type Animal as the
condition, and create a feature structure for each
of the sentences. The final similarity score is cal-
culated from the weighted sum of the individual
similarity label annotated for each non-empty fea-
ture. The feature type is the primary feature that

contributes the most to the final similarity score.
It is worth noting that TFS-based conditionality

is highly extendable and customizable depending
on the annotation needs. The condition can be se-
lected from any node in a linguistic type hierarchy
(e.g., animal to mammal to dog in WordNet (Miller,
1994)). Correspondingly, the feature set for each
condition can also be identified from existing lexi-
cal resources such as Schema.org5 and ConceptNet
(Speer et al., 2016). Lastly, one can also decide
how much weight from each feature needs to be
assigned for calculating the final similarity score.
We leave the details on the TFS design to future
research.

Figure 6: Illustration of the feature structures for the
condition Animal. Similarity score is calculated from
the weighted sum of the similarity label for each feature.

6.2 Qualitative Analysis

We apply the TFS to annotate example sentence
pairs. TFS conditionality enables a finer-grained
mapping from entity semantic similarity to the final
label, and mitigates the binarity from the evaluation
on a single condition feature.

(2) S1: On the plate there is croissant sandwich ...
S2: ... next to a hamburger on a green plate.
Condition: the food, Score: 2.9

Consider example 2. Although the type of food
is different (croissant sandwich v.s. hamburger),
other features have high similarity: both food items
are in the sandwich category (i.e., category is the
supertype of the type of the food) and held in a
plate; the amount of food are both one dish. While
most of the entity features have similar or identical
values, the primary feature balances it out and maps
the final score to a relatively low similarity.

TFS also improves the clarity and objectivity
of the conditions. Even when the entity type is
the same, other feature values inferred from the
sentence are able to differentiate the entities.

5https://schema.org/docs/about.html

1168

https://schema.org/docs/about.html


(3) S1: A little girl is posing with a baseball bat ...
S2: A kid is holding a baseball in a glove ...
Condition: the activity, Score: 3.8

In example 3, both sentences indicate the type of
the activity is baseball, but participant and instru-
ment are different: the first sentence mentions a
girl with a bat; while the second one omits the
gender of the kid and the instrument is glove.

7 Conclusion

In this paper, we made a comprehensive analysis
and improvement to the C-STS task. With the rean-
notation effort on the original C-STS data, we iden-
tified and resolved annotation errors and discrep-
ancies that could hinder the evaluation of the task.
We showed that C-STS can be naturally treated
as a two-step reasoning task. We applied QA to
accomplish the first reasoning step by producing
high-quality and correlated answers, and showed
that the generated answers can be used effectively
to automatically identify annotation errors and im-
prove the C-STS task under both supervised and
prompting model settings. Finally, we proposed
to use the typed-feature structure in C-STS to con-
struct more semantically informed conditions. We
believe that our work has led to a better execution
of the C-STS task. We hope that our analysis and
improvement on the C-STS can facilitate further
developments by future researchers.

Limitation

We reannotate the C-STS validation set and show
that our method can improve the model perfor-
mance on the test split of the validation set. We
primarily use our reannotated labels as the gold for
the analysis and modeling. Although we have four
annotators who are well trained for this work, there
might still exist unintentional errors or subjective
judgment.

Due to the limitations of the resources, we could
not scale the manual annotation to the full dataset
by the time the paper is written. Finally we decide
to use the validation set because the original labels
for the test set are not public. However, our dataset
analysis (§3) on the 150 instances from the train
set does show that the errors and issues do exist in
the whole C-STS dataset. We believe that our error
identification method can facilitate a more efficient
reannotation work, and our modeling results and
TFS-based conditionality can be generalized to the
rest of C-STS data.

Acknowledgements

This work was supported in part by NSF grant
2326985 to Dr. Pustejovsky at Brandeis University.
Thanks to Yifei Wang and Zhengyang Zhou for
providing mathematical background knowledge on
the error identification section of the paper. Thank
you to Jin Zhao for all the support. Thanks the
reviewers for their comments and suggestions. The
views expressed herein are ours alone.

References
Mohamed Abdalla, Krishnapriya Vishnubhotla, and Saif

Mohammad. 2023. What makes sentences semanti-
cally related? a textual relatedness dataset and em-
pirical study. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 782–796, Dubrovnik,
Croatia. Association for Computational Linguistics.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252–263, Denver, Colorado. Association for
Computational Linguistics.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,
Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. SemEval-2014 task 10: Multilingual semantic
textual similarity. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 81–91, Dublin, Ireland. Association for
Computational Linguistics.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evaluation
(SemEval-2016), pages 497–511, San Diego, Califor-
nia. Association for Computational Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
393, Montréal, Canada. Association for Computa-
tional Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared

1169

https://doi.org/10.18653/v1/2023.eacl-main.55
https://doi.org/10.18653/v1/2023.eacl-main.55
https://doi.org/10.18653/v1/2023.eacl-main.55
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://aclanthology.org/S12-1051
https://aclanthology.org/S12-1051
https://aclanthology.org/S13-1004


task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Confer-
ence and the Shared Task: Semantic Textual Similar-
ity, pages 32–43, Atlanta, Georgia, USA. Association
for Computational Linguistics.

David Arthur and Sergei Vassilvitskii. 2007. k-
means++: the advantages of careful seeding. In
ACM-SIAM Symposium on Discrete Algorithms.

Adam Bouyamourn. 2023. Why LLMs hallucinate, and
how to get (evidential) closure: Perceptual, inten-
sional, and extensional learning for faithful natural
language generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3181–3193, Singapore. As-
sociation for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Robert L Carpenter. 1992. The logic of typed feature
structures. (No Title).

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph,
Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Wei
Yu, Vincent Zhao, Yanping Huang, Andrew M.
Dai, Hongkun Yu, Slav Petrov, Ed Huai hsin Chi,
Jeff Dean, Jacob Devlin, Adam Roberts, Denny
Zhou, Quoc V. Le, and Jason Wei. 2022. Scal-
ing instruction-finetuned language models. ArXiv,
abs/2210.11416.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An
evaluation toolkit for universal sentence representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Ann Copestake. 2000. Definitions of typed feature struc-
tures. Natural Language Engineering, 6(1):109–112.

Ameet Deshpande, Carlos Jimenez, Howard Chen,
Vishvak Murahari, Victoria Graf, Tanmay Rajpuro-
hit, Ashwin Kalyan, Danqi Chen, and Karthik
Narasimhan. 2023. C-STS: Conditional semantic
textual similarity. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5669–5690, Singapore. Associa-
tion for Computational Linguistics.

Daniel Deutsch, Tania Bedrax-Weiss, and Dan Roth.
2021. Towards question-answering as an automatic
metric for evaluating the content quality of a sum-
mary. Transactions of the Association for Computa-
tional Linguistics, 9:774–789.

Matan Eyal, Tal Baumel, and Michael Elhadad. 2019.
Question answering as an automatic evaluation met-
ric for news article summarization. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3938–3948, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Chulaka Gunasekara, Guy Feigenblat, Benjamin Sz-
najder, Ranit Aharonov, and Sachindra Joshi. 2021.
Using question answering rewards to improve ab-
stractive summarization. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 518–526, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Rensis Likert. 1932. A technique for the measurement
of attitude scales.

Dheeraj Mekala, Tu Vu, Timo Schick, and Jingbo Shang.
2022. Leveraging QA datasets to improve generative
data augmentation. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9737–9750, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

George A. Miller. 1994. WordNet: A lexical database
for English. In Human Language Technology: Pro-
ceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Gerald Penn. 2000. The algebraic structure of attributed
type signatures. Ph.D. thesis, Citeseer.

James Pustejovsky and Olga Batiukova. 2019. The
lexicon. Cambridge University Press.

1170

https://aclanthology.org/S13-1004
https://api.semanticscholar.org/CorpusID:1782131
https://api.semanticscholar.org/CorpusID:1782131
https://doi.org/10.18653/v1/2023.emnlp-main.192
https://doi.org/10.18653/v1/2023.emnlp-main.192
https://doi.org/10.18653/v1/2023.emnlp-main.192
https://doi.org/10.18653/v1/2023.emnlp-main.192
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://api.semanticscholar.org/CorpusID:253018554
https://api.semanticscholar.org/CorpusID:253018554
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://doi.org/10.18653/v1/2023.emnlp-main.345
https://doi.org/10.18653/v1/2023.emnlp-main.345
https://doi.org/10.1162/tacl_a_00397
https://doi.org/10.1162/tacl_a_00397
https://doi.org/10.1162/tacl_a_00397
https://doi.org/10.18653/v1/N19-1395
https://doi.org/10.18653/v1/N19-1395
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.findings-emnlp.47
https://doi.org/10.18653/v1/2021.findings-emnlp.47
https://api.semanticscholar.org/CorpusID:147692824
https://api.semanticscholar.org/CorpusID:147692824
https://doi.org/10.18653/v1/2022.emnlp-main.660
https://doi.org/10.18653/v1/2022.emnlp-main.660
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111
https://api.semanticscholar.org/CorpusID:257532815


Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2016.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In AAAI Conference on Artificial
Intelligence.

Nandan Thakur, Nils Reimers, Johannes Daxenberger,
and Iryna Gurevych. 2021. Augmented SBERT: Data
augmentation method for improving bi-encoders for
pairwise sentence scoring tasks. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 296–310, Online.
Association for Computational Linguistics.

Jingxuan Tu, Eben Holderness, Marco Maru, Simone
Conia, Kyeongmin Rim, Kelley Lynch, Richard
Brutti, Roberto Navigli, and James Pustejovsky.
2022a. SemEval-2022 task 9: R2VQ – competence-
based multimodal question answering. In Proceed-
ings of the 16th International Workshop on Semantic
Evaluation (SemEval-2022), pages 1244–1255, Seat-
tle, United States. Association for Computational
Linguistics.

Jingxuan Tu, Kyeongmin Rim, and James Pustejovsky.
2022b. Competence-based question generation. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 1521–1533,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

A Appendix

A.1 Prompts

We include various prompts that we used for the
experiments in this section. Figure 7 shows the
prompt for the answer generation on GPT and Flan-
T5 models. Figure 8 and Figure 9 show the prompts
for LLM baselines and our method. We instruct
the LLMs to score based on answers instead of
questions.

A.2 Answer Clustering

We plot the change of the error identification re-
sults with different number of clusters in Figure 10.
The reannotated distribution consistently performs

Figure 7: GPT prompt for the answer generation.

Figure 8: GPT prompt for the LLM baselines that is
adopted from (Deshpande et al., 2023).

Figure 9: GPT prompt for our QA method on LLM.

better than the other two. The optimal cluster num-
ber is 10, 10, 3 for reannotation, original, and even
distributions respectively.

Figure 10: Error identification performance (F1 score)
with different number of clusters on three distribution
methods.

We show the answer topics identified from the
clusters in Table 7. We use the cluster setting that
produces the best result when the number of clus-
ters is 10 and summarize the topics from each clus-
ter. Most clusters capture the topics or patterns
uniformly from the answers, such as color and
food. A few clusters have a mix of topics.

1171

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://api.semanticscholar.org/CorpusID:15206880
https://api.semanticscholar.org/CorpusID:15206880
https://doi.org/10.18653/v1/2021.naacl-main.28
https://doi.org/10.18653/v1/2021.naacl-main.28
https://doi.org/10.18653/v1/2021.naacl-main.28
https://doi.org/10.18653/v1/2022.semeval-1.176
https://doi.org/10.18653/v1/2022.semeval-1.176
https://aclanthology.org/2022.coling-1.131
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


1 2 3 4 5
food various topics number color object

6 7 8 9 10
gender, animal location activity room related activity

Table 7: Topic from answer Clusters.

Model Input Output

gpt-3.5-turbo-0125 $0.0005 / 1K tokens $0.0015 / 1K tokens
gpt-4-0125-preview $0.01 / 1K tokens $0.03 / 1K tokens
text-embedding-ada-002 $0.00010 / 1K tokens N/A

Table 8: Pricing of GPT models used in the paper.

A.3 Model Details
We use OpenAI API to run GPT models. The pric-
ing for the models used in the paper is shown in Ta-
ble 8. We fine-tune SimCSEBASE and SimCSELARGE

with different encoding configurations on a single
Titan Xp GPU. We use the same hyperparameter
setting with the baseline models in (Deshpande
et al., 2023). The training time is less than 10
minutes. We use Flan-T5 with different sizes for
inference only. We run Flan-T5SMALL and Flan-
T5BASE on CPU machines, and run Flan-T5LARGE

and Flan-T5XL on a Titan Xp GPU.

1172


