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Abstract

In this position paper, we argue that human
evaluation of generative large language models
(LLMs) should be a multidisciplinary undertak-
ing that draws upon insights from disciplines
such as user experience research and human
behavioral psychology to ensure that the ex-
perimental design and results are reliable. The
conclusions from these evaluations, thus, must
consider factors such as usability, aesthetics,
and cognitive biases. We highlight how cog-
nitive biases can conflate fluent information
and truthfulness, and how cognitive uncertainty
affects the reliability of rating scores such as
Likert. Furthermore, the evaluation should dif-
ferentiate the capabilities and weaknesses of
increasingly powerful large language models
– which requires effective test sets. The scala-
bility of human evaluation is also crucial to
wider adoption. Hence, to design an effec-
tive human evaluation system in the age of
generative NLP, we propose the ConSiDERS-
The-Human evaluation framework consisting
of 6 pillars – Consistency, Scoring Critera,
Differentiating, User Experience, Responsible,
and Scalability.

1 Introduction

Generative tasks in natural language processing
(NLP) have to rely on human evaluation, as the
current set of automated metrics does not correlate
well with human judgment (Gao and Wan, 2022;
Deutsch et al., 2022). Human evaluation tends to be
expensive and difficult to repeat or reproduce (Belz
et al., 2023, 2020). Even more importantly, an
all-too-common scenario tends to be that the eval-
uation method is fundamentally misaligned with
the problem statement (Hämäläinen and Alnajjar,
2021). In the age of generative large language mod-
els (LLMs) with increasing capabilities that can
generate fluent content to even fool humans (Clark
et al., 2021), ensuring that the human evaluation is

set up appropriately to measure the right aspects
and reach the right conclusions is crucial.

In this position paper, first, we argue that to
design and interpret the results of human evalu-
ation accurately, the evaluation pipeline needs to
be human-centric in the age of generative AI, ac-
counting for human evaluators and their cognitive
biases. The field of user experience (UX) takes into
account the emotional states of a user, a.k.a. how a
user feels (Marques et al., 2021; Hartson and Pyla,
2012). It is a well-known fact in UX that users
tend to be heavily influenced by aesthetic aspects,
while actual function or usability aspects take a sec-
ond place when users perceive a system as useful,
leading to the notion “what is beautiful is useful”
(Sonderegger and Sauer, 2010; Tuch et al., 2012;
Hamborg et al., 2014). Aesthetics also extends to
language. Factors such as fluency can affect the
evaluation, outweighing the actual content or sub-
stance (Reber, 2011). Studies in human-computer
interface (HCI), cognitive, and social psychology
have demonstrated that processing fluency – the
ease with which information is perceived and pro-
cessed in the human mind – has a positive effect on
evaluation (Preßler et al., 2023; Tsai and Thomas,
2011; Greifeneder and Bless, 2017). Current state-
of-the-art (SOTA) LLMs tend to be quite fluent and
produce content that is easy to read and understand,
and as a result, users can conflate fluency and use-
fulness. Therefore, we need to closely examine
our human evaluation before reaching conclusions
such as – The LLM can perform function <x> simi-
lar to or better than a trained professional. NLP
evaluation procedures, therefore, at the very least
must delineate style vs. substance.

Secondly, the effectiveness of the test set in
measuring the capabilities of a model is critical,
as ineffective test sets cannot adequately evaluate
these models, a common theme that has surfaced in
many leader-boards and public data sets (Tedeschi
et al., 2023; Elangovan et al., 2021).
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Hence, in this position paper, we make the fol-
lowing contributions:

1) We propose a framework, a structure for orga-
nizing and contextualizing human evaluation, that
can be customized and adapted to specific contexts.
Our proposed framework – the ConSiDERS-The-
Human evaluation framework – has 6 pillars:

The 6 pillars of ConSiDERS-The-Human
Evaluation Framework: (See Checklist in
Appendix A.1 to follow.)
• Consistency of human evaluation: The find-

ings of human evaluation must be reliable
and generalizable.

• Scoring Criteria: The scoring criteria must
include both general purpose criteria such
as readability, as well as be tailored to fit
the goal of the target tasks or domains.

• Differentiating: The evaluation test sets
must be able to differentiate the various
capabilities as well as the weaknesses of
generative LLMs.

• User Experience: The evaluation must take
into account user experience, including
their emotions & cognitive biases, when
designing experiments and interpreting
results.

• Responsible: The evaluation needs to ac-
count for responsible AI including as-
pects such as bias, safety, robustness, and
privacy capabilities of the model.

• Scalability: Human evaluation must be scal-
able for pragmatic widespread adoption.

2) We make the case for why UX and the psy-
chology of cognitive biases should be at the fore-
front of human evaluation. In the last 20 years,
less than 7% of the papers (only 16 papers) with
“human” and “eval” in their title available in ACL
Anthology mention user experience-related key-
words in either the title or the abstract (see query
in Appendix A.2.6).

3) We highlight how neglecting the role of cog-
nitive biases in human evaluation can lead to in-
correct inclusions from the study. We, therefore,
provide specific recommendations to mitigate the
effects of common cognitive biases. We also pro-
vide tips to troubleshoot and improve consistency
issues in human evaluation.

In the rest of this paper, we introduce the neces-
sary background concepts in Section 2 and explore
each of the 6 pillars in detail in Section 3.

2 Background concepts

2.1 Usability

Usability, according to ISO 9241–11:2018, is de-
fined as – “The extent to which a system, product
or service can be used by specified users to achieve
specified goals with effectiveness, efficiency, and
satisfaction in a specified context of use” (Barnum,
2020). Usability testing includes the following five
elements or the 5 Es of usability (Niranjanamurthy
et al., 2014; Barnum, 2020). 1) Easy to learn: This
aims to address questions such as a) How easy is
it for users to complete basic tasks the first time
they use the system? b) When users return to the
design after a period of not using it, how well is
the user able to recollect how to use the system?
2) Efficiency: How quickly can experienced users
accomplish tasks? 3) Effective: How completely
and accurately the work or experience is completed
or goals reached? 4) Error tolerant: How many
errors do users make, how critical are these errors,
and how easily can they recover from the errors?
5) Engaging / Satisfaction: How much does the
user like using the system? These 5Es are crucial
when designing human evaluation solutions to ob-
tain reliable evaluation results.

2.2 UX and HCI

User experience (UX), according to ISO 9241-
110:2010 is defined as – “a person’s perceptions
and responses that result from the use and/or antic-
ipated use of a product, system or service” (Mirnig
et al., 2015). UX, thus, expands beyond the con-
cepts of the 5Es of usability to take into account the
broader emotions experienced by the users when
using the system (Marques et al., 2021; Hartson
and Pyla, 2012). In other words, UX takes into
account usability as well as the users’ feelings as
to how products “dazzle their senses, touch their
hearts and stimulate their minds” (Marques et al.,
2021). HCI is the UX when humans interact with
computer systems, including user interfaces and
how information is presented on the digital screen.
Commercial LLMs facing end users, such as Chat-
GPT, have dazzled the minds of their users. Users’
emotion, including perceived usability or useful-
ness, tends to be heavily influenced by aesthetics
(Hartson and Pyla, 2012). Aesthetics influences the
user heavily initially or in one-off tests, but over
time aesthetics plays a much lesser role and us-
ability becomes crucial (Andreas Sonderegger and
Sauer, 2012). The field of UX, therefore, attempts
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to disambiguate the perceptions that users form as a
result of aesthetics, and the need to measure actual
function as defined by the 5Es of usability, whilst
embracing user emotions.

2.2.1 Measuring UX: Perception vs.
Performance

UX feedback can be qualitative such as user in-
terviews or quantitative metrics. Quantitative UX
metrics include performance-based metrics such
as time to complete a task, the errors the users en-
counter, and perception-based self-reported met-
rics through rating scale and preferences (Tullis
and Albert, 2013). Likert scale is a type of attitude
scale, a special case of a rating scale, that measures
the degree to which a person agrees/disagrees with
a given statement (Taherdoost, 2019). In NLG,
performance-based metrics designed to measure
the impact of the end system are considered extrin-
sic evaluations, while intrinsic evaluations attempt
to evaluate properties of the NLG text (van der Lee
et al., 2019). Measuring aspects such as fluency are
intrinsic evaluations, usually measured through a
rating scale or preference tests, where the evaluator
is asked which model’s output they prefer. Rating
scales and preference tests are based on user per-
ception, and therefore subject to cognitive biases.

2.3 Cognitive biases

Cognitive biases are systematic errors in human
judgment or aspects that drive irrational behavior
(Tversky and Kahneman, 1974; Ellis, 2018). This
is usually a result of relying on heuristics to make
a decision. There are many types of cognitive bi-
ases, the sources can be broadly categorized into
a) too much information b) lack of information or
lack of understanding or meaning associated with
the information c) need to act or make judgments
fast d) information that is remembered or recalled
(Azzopardi, 2021). For example, when a user is
presented with a long list (too much information)
during information retrieval, to quickly filter out
information, the user would simply click on the
first link due to position bias (Azzopardi, 2021).

There are several studies on the effects of cog-
nitive biases on information search and retrieval
(Lau and Coiera, 2007; White, 2013) and crowd-
sourcing (Eickhoff, 2018; Santhanam et al., 2020).
For instance, White (2013) finds that evaluation of
search and retrieval systems is impacted by con-
firmation bias – people’s unconscious tendency to
prefer information that confirms their beliefs and

disregard evidence that refutes it. There are over
180 different types of cognitive biases identified
(Azzopardi, 2021; Tversky and Kahneman, 1974),
resulting from a range of factors from how ques-
tions are framed (Choi and Pak, 2005) to prior
beliefs (White, 2013) that attempt to explain the
heuristics humans use to make decisions. These
heuristics also impact how humans evaluate LLMs.

3 ConSiDERS-The-Human framework

3.1 User Experience

Cognitive biases play a key role in how humans
judge or rate the system. Despite this, there is little
reporting of the influence of these biases in NLG
tasks with human evaluation (Schoch et al., 2020).
In this section, we make the case as to why UX
and the psychology of cognitive biases are crucial
components of human evaluation in NLP. Since UX
and the psychology of cognitive biases are entire
fields on their own, it is impossible to cover all the
details in this paper. We highlight the significant
impact of cognitive biases on human evaluation of
NLG tasks that can lead to incorrect conclusions.

Processing fluency – the ease with which infor-
mation is processed by the human mind (Tsai and
Thomas, 2011) – affects factors such as perceived
truthfulness and usefulness of statements. These
lessons from psychology also apply to NLG human
evaluation, where the human evaluation strategy
needs to isolate the effects of linguistic fluency vs.
aspects such as factual correctness. As presented in
the introduction section, the notion “what is beauti-
ful is useful” (Sonderegger and Sauer, 2010; Ham-
borg et al., 2014) also extends to language, where
information that is presented in an easy-to-process
manner can be perceived as true (Schwarz, 2006).
To be clear, we are not calling for linguistic fluency
and coherence to be trivialized. On the contrary,
we highlight how powerful its influence is on hu-
man judgment and evaluation. In the following
section 3.1.1, we provide a few tips on how to iso-
late such effects in NLG evaluation.

3.1.1 Recommendations to mitigate common
cognitive biases in NLG evaluation

1. Cognitive uncertainty in user feedback includ-
ing rating schemes: Explicit user feedback such
as 1-5 rating scales, and preference-based tests are
inherently subject to cognitive uncertainty, there-
fore the same user can change their rating on the
same item when asked again at a later point in
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time, even within a few minutes after the initial rat-
ing (Jasberg and Sizov, 2020; Kotkov et al., 2022;
Amatriain et al., 2009a). Uncertainty in user feed-
back is a well-known problem in recommendation
systems, where a user’s rating is considered to be
noisy (Hill et al., 1995). Jasberg and Sizov (2020)
demonstrate the scale of the problem where 65%
of the users change their rating even within short
intervals between re-rated items. Intra-user rating
consistency tends to be higher when the ratings are
extreme, e.g., very good or very bad, whereas the
in-between ratings tend to have lower consistency
(Amatriain et al., 2009a,b). Hence, cognitive un-
certainty is more likely to affect model evaluations
where the outputs are neither very good nor very
bad, where the ratings fall in the mid-point, e.g., 3
on a rating scale of 1 to 5. Similar problems can
also surface in preference tests, where users choose
“A is marginally better than B” when they don’t
have strong opinions.

Mitigation: Rating denoising algorithms in rec-
ommendation systems obtain multiple ratings from
the same user and attempt to keep only some of
the ratings (Joorabloo et al., 2022; Amatriain et al.,
2009b). For instance, Amatriain et al. (2009b) pro-
pose to keep only those intra-user ratings whose
difference is less than a predefined threshold and
choose the mildest rating (most neutral rating) as
the final rating for that user. The intuition here is
that the mildest rating is not likely to affect the
items recommended to the user. NLP human eval-
uation can potentially leverage such denoising al-
gorithms. Some studies have reported that binary
preference-based evaluation has better consistency
compared to rating (Belz and Kow, 2010).

2. Conflate fluency with attributes such as
truthfulness: In psychology, the subjective ease
with which the mind processes information is more
likely to be judged as true (Koch and Forgas, 2012;
Reber and Schwarz, 1999). This subjective ease
with which the mind processes information can
be due to factors including how information is
presented, how frequently it is repeated and cues
of familiarity, such as native speakers can seem
truer than those with a foreign accent (Brashier
and Marsh, 2020). Thus, humans rely on shortcuts
and draw inferences on aspects such as truthfulness
from feelings. Conflating fluency with truthfulness
is a result of a cognitive bias called the halo ef-
fect. The halo effect is the influence of a global
evaluation on evaluations of individual attributes
(Nisbett and Wilson, 1977). This particularly af-

fects NLP scoring criteria such as factual complete-
ness, salience, and truthfulness, where these indi-
vidual attributes can be impacted by the overall
global attribute – linguistically fluent easy to pro-
cess information. Therefore, the reliability of rating
schemes particularly affects tasks that require rig-
orous detailed inspection, such as truthfulness or
factual completeness. This cognitive bias has been
largely ignored when using rating scales including
Likert to evaluate the factual correctness of LLMs.
As a result, experimenters can inadvertently con-
clude that LLMs are as factually comprehensive
in performing a given function as a trained profes-
sional like a doctor. We find that 9 out of the 19
papers we sampled from top-tier medical journals
use the perception-based Likert scale to evaluate
factual correctness and completeness (details in
Appendix A.4), indicating how widespread these
practices are.

Mitigation: Tasks such as fact-checking and fac-
tual completeness that require inspecting individual
traits must be ideally split into atomic facts as de-
tailed in Section 3.2 to isolate the impact of fluency
and ease of information processing vs. facts.

3. Over-reliance on initial information: An-
choring bias or over-reliance on an initial piece of
information (Tversky and Kahneman, 1974; Furn-
ham and Boo, 2011) affects how models are scored
using preference or rating tests. For instance, when
performing preference tests, if the model presented
first on the screen is always the same, then the ini-
tial perception of evaluators can have a significant
impact on the rest of the evaluation.

Mitigation: It is important to shuffle the display
order so that the order, such as the sequence of hu-
man evaluation tasks, doesn’t give away the model.
In preference tests, within each task where the out-
puts of say 2 models (e.g., model A vs. B) are
compared, the underlying model representing A
and B must also be randomly shuffled so that A
does not always refer to the same model.

4. Perception vs. Performance Most self-
reported feedback such as user ratings tends to
be based on human perception (Tullis and Albert,
2013). While perception-based metrics represent
how a user feels are necessary to measure subjec-
tive aspects such as readability, they do not capture
functional performance-based metrics such as effi-
ciency. Studies have shown that users can dislike
a system that performs well or like a system that
does not perform well (Bailey, 1993). For instance,
in an experiment where participants are asked to
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choose between one-level and two-level menus for
sorting categories, participants preferred the two
level menu, even though during actual use the one
level menu was much faster and less error-prone
(Bailey, 1993; Hayhoe, 1990). This demonstrates
the discrepancy between preferences reported vs.
measurements of efficiency.

In the context of LLM evaluation, consider a hy-
pothetical application scenario where an LLM gen-
erated output is used to automatically draft email re-
sponses. In this scenario, how much a user prefers
the output of a model versus the reality of how use-
ful that model output is in boosting productivity
(time spent drafting emails) need not be correlated.
The main challenge with conducting usability stud-
ies is that the software system needs to be built to
study how it impacts an end user’s productivity. In
addition, confounding factors such as poorly de-
signed UI can result in reducing productivity and
these aspects need to be taken into account when
designing and analyzing usability studies to un-
derstand the impact of an LLM generated output.
Liebling et al. (2022) highlight a similar problem in
evaluating large-scale machine translation, where
the end user’s experience can be quite different
from simply evaluating the model output.

Mitigation: NLP tasks that are meant to assist
end users, must eventually conduct usability studies
to capture performance metrics such as efficiency.

3.2 Consistency of human evaluation
Reproducibility of experiments in science is a
widespread challenge and has even led to the term
“replication crisis” being coined (Baker, 2016). Hu-
man evaluation is no exception to this challenge,
where less than 5% of human evaluations are repeat-
able (Belz et al., 2023). Despite the challenges, con-
sistency cannot be ignored, as poor reproducibility
can point to core design problems.

Broadly speaking, non-random or systematic
inconsistencies primarily arise due to 5 main de-
sign flaws 1) ill-defined evaluation guidelines pro-
vided to the annotators 2) high complexity task 3)
evaluators who are not well qualified or suited to
the task 4) small number of evaluators and/or evalu-
ation set size 5) rating scales such as the Likert. We
specifically need to be able to differentiate between
random and non-random inconsistencies, as human
evaluators are subject to decision errors/outcomes
depending on their cognitive state. Random errors
can neither be predicted nor controlled (Sukumar
and Metoyer, 2018). Thus, understanding the role

of non-random variations due to system design is
key to improving the consistency of evaluation.

1) Ill-defined or complex evaluation guide-
lines: Ill-defined guidelines are often ambiguous,
incomplete, do not address boundary cases, and
do not provide adequate examples (Gadiraju et al.,
2017). To illustrate this point, Pradhan et al. (2022)
use the example of a seemingly simple task “Is
there a dog in this image?” where the authors point
out how even this simple task can elicit several clar-
ification questions such as “Does the dog need to be
a real animal?”, “What if the dog is only partially
visible in the image?” and “What about a wolf?”.
The authors further suggest a 3-stage workflow to
improve annotation guidelines: Stage 1 involves
workers identifying ambiguous samples; Stage 2
involves labeling a few ambiguous examples to
add as clarifying examples in the instructions; and
Stage 3 involves workers performing the actual
annotation using the revised guidelines with the
clarifying examples. Overly long annotation guide-
lines might even require training the annotators,
and hence annotators with task-relevant experience
tend to be referred (Rottger et al., 2022). Wu and
Quinn (2017) find that using simple vocabulary
and logical ordering of instructions can improve
the guideline quality. Improving guidelines alone
may not be sufficient, as enhancing the user inter-
face design can help reduce cognitive load of the
annotator, which in-turn can improve the accuracy
of annotation tasks (Alagarai Sampath et al., 2014).

A simple way to identify deficiencies in guide-
lines is to have “experts” independently evaluate a
set of task items using the guideline and compute
the IRA score using an appropriate metric such as
a Kappa score. Low IRA can indicate potential
problems with the annotation guidelines, in which
case revising the guidelines iteratively can lead to
reasonable agreement (Iskender et al., 2021).

The 5Es of usability testing criteria listed in Sec-
tion 2.1 is an important strategy to follow when
designing human evaluation solutions, including
aspects such as how quickly human evaluators can
complete their tasks while minimizing errors, how
easily the annotation guidelines can be followed
and memorized. For example, an overly detailed
hard-to-remember evaluation guideline can simply
result in poor usability affecting ease of learning,
efficiency, and error tolerance resulting in poor
inter-rater agreement and/or very slow evaluation
turnaround times.

2) High task complexity: Tasks that involve
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high cognitive load for the evaluator, can lead to
lower agreement (Kim and Park, 2023; Pommer-
anz et al., 2012; Liu et al., 2023). High cognitive
load can even simply involve asking the evalua-
tor to assign a rating of 1-5 (Freitag et al., 2021).
One way of mitigating this is to simplify the task.
Simplification is key to obtaining consistent results.

An example of task simplification to evaluate
the factual completeness or saliency of a model-
generated summary is to break a long text into hier-
archical units of facts (Liu et al., 2023) using pro-
tocols such as Pyramid (Nenkova and Passonneau,
2004). Breaking a reference summary into atomic
facts allows the evaluators to verify if the fact is
present, and the total number of facts captured in
the summary can be summed up automatically to
compute the overall score. Thus, the fact-level re-
call score is likely to yield much more consistent
and reliable results compared to a grading scheme,
such as the Likert scale, which would involve ask-
ing the evaluator to rate the completeness, framing
the problem as “How complete do you think the
summary is on a scale of 1-5”. A flip side to break-
ing long text into atomic units is that it can lead to
loss of information when measuring certain types
of criteria, e.g., qualitative aspects such as coher-
ence cannot be evaluated using atomic facts.

3) Ill-suited evaluators: Ill-trained annotators
can also be a source of inconsistency, usually a
scenario encountered when using crowdsourced
workers to evaluate specialized tasks. Annotators
who demonstrate poor attention can be identified
using a set of attention check questions (Agley
et al., 2022). Similarly, ill-trained or ill-qualified
workers can be identified using an “exam set”, a
test set for which answers are known. Lower IRA
can also be a result of variation in the skills or
qualifications of the evaluators (Artstein, 2017).

4) Small number of evaluators and/or test set:
Low number of participants, or the sample size of
the evaluators, is one of the key contributors to
poor reproducibility (Maxwell et al., 2015; Button
et al., 2013). Using a larger pool of evaluators can
mitigate experimenter bias introduced when using
very small groups (Sukumar and Metoyer, 2018).
A small sample size of the test set is another source
that introduces replication problems, A caveat here
is that a large group of evaluators and a large test
set is necessary but not sufficient to ensure that the
study is experiment bias-free, as selection bias can
result in a large size that is not representative of the
target population (Kaplan et al., 2014).

5) Rating scales such as the Likert: As dis-
cussed in Section 3.1.1, self-reported user feedback
using rating schemes is inherently noisy and, there-
fore, unreliable. Despite 50% of human evalua-
tions relying on Likert scale (van der Lee et al.,
2021), there has been little investigation into the
controversies surrounding it in NLP. These include
Likert’s consistency issues (Leung, 2011), aggrega-
tion & interpretation of scores (Bishop and Herron,
2015; Willits et al., 2016) and the methods to com-
pute IRA (O’Neill, 2017) that the NLP community
needs to research further.

3.2.1 IRA: Importance and caveats
IRA or inter-rater agreement in human evaluation
measures how well two or more evaluators agree on
the scores or preferences they assign independently.
While it is important to measure IRA to detect
problems in the design, especially given that only
18% of the papers using human evaluation report
IRA (Amidei et al., 2019), there are several caveats
called out on the use of IRA metrics in the medical
community which we will be discussing below.

Gisev et al. (2013) guide when to use which
IRA measure, e.g., Krippendorff’s-α vs. Cohen’s-κ,
depending on experiment design factors such as the
number of annotators and the type of variable (e.g.,
ordinal, nominal, etc). Despite such high-level
guidance, which IRA measures to use and how to
interpret it is contentious (ten Hove et al., 2018;
McHugh, 2012). Using an inappropriate metric,
such as Fleiss-κ for interval data, is common in
NLG (Amidei et al., 2019). Furthermore, even
when an appropriate class of IRA metric is used,
depending on the IRA chosen, the scores can range
from poor to almost perfect (ten Hove et al., 2018).

An intuitive measure of inter-rater agreement is
using percent agreement. However, the main criti-
cism was that this does not take chance agreement
into account (McHugh, 2012). The question to ask
when using IRA metrics, such as a kappa statistic
is why and when does chance agreement matter?
Some tasks genuinely have a class imbalance, e.g.,
span annotation tasks for named entity recognition,
and unmarked spans for the majority class, which
would lead to inflated percentage agreement (Art-
stein, 2017). Another reason is the assumption that
some annotators might be making random guesses
when they don’t know the answer, and that the
majority of the raters may NOT be making deliber-
ate choices (McHugh, 2012). Hence, various IRA
measures of Kappa (e.g., Cohen’s-κ) or Alpha (e.g.,
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Krippendorff’s-α), estimate the observed chance
agreement or disagreement empirically when com-
puting IRA. However, if we consider a group of
conscientious raters, does chance agreement mat-
ter for rating model outputs? For instance, if a
model is a high performer and the most common
rating is a 4, should disagreeing on a minority rat-
ing such as a 1 vs. 2 drastically reduce the IRA?
We further demonstrate, using a toy example in
Appendix A.3, how disagreement on minority la-
bels can substantially reduce IRA measured using
a Krippendorff’s-α while percentage agreement
barely changes.

What is considered as “low” IRA can vary from
task to task, as complex tasks or difficult samples
tend to have low IRA (Kim and Park, 2023). This is
crucially important for interpreting IRA and is par-
ticularly relevant for NLG evaluation. NLG tasks
have typically reported relatively low IRA, e.g.,
average Krippendorff’s-α of 0.62 (Amidei et al.,
2019), the standard interpretation is that experi-
ments with scores less than 0.67 must be deemed
unreliable (Marzi et al., 2024). For instance, rating
“How good is the generated story?” is more likely
to have a lower IRA compared to “Is 99 the largest
2-digit number”.

Hence, while it is mandatory to measure IRA, it
is important to ensure that the scores are interpreted
in the context of the task. Performing detailed anal-
ysis including computing IRA using multiple met-
rics such as baseline percentage agreement and vi-
sualizing the item-wise agreement scores can help
analyze the results. Researchers have also called
for further investigation to understand the useful-
ness of a measure for a given problem, demonstrat-
ing the challenges in selecting an appropriate IRA
measure (ten Hove et al., 2018).

3.3 Scoring criteria
Scoring criteria refers to “What aspects to score".
The 4 common scoring criteria covered in NLP liter-
ature are (a) Linguistic Fluency - the quality of sin-
gle sentence (b) Coherence - overall flow or read-
ability (c) Relevance - importance of content (d)
Factuality - factual correctness (Fabbri et al., 2021;
Gao and Wan, 2022). Also note that the nomencla-
ture used to indicate a given criterion need not be
consistent, e.g., as fluency vs. naturalness, across
various studies (van der Lee et al., 2019). Eval-
uation criteria also need to be customized across
NLP tasks, and this is necessary as (a) the crite-
ria will vary between domains and tasks (b) the

generated text almost always needs to be evaluated
against multiple criteria (Burchardt, 2013; Freitag
et al., 2022). For instance, Freitag et al. (2022) pro-
pose the use of Multidimensional quality metrics
(MQM) for evaluating machine translation. MQM
is a generic framework for evaluating translation
quality and provides a catalog of over 100 issues or
error types organized in a hierarchy that evaluators
can check for (Burchardt, 2013). This hierarchical
categorization of errors enables granular as well as
coarse-grained analysis of the quality of translation,
and can be adapted for NLG evaluations.

In addition to the exhaustive evaluation catego-
rization provided in the MQM framework, respon-
sible AI (RAI) must be factored into human evalua-
tion. Sun et al. (2024) propose 6 categories for RAI
evaluation – truthfulness, safety, fairness, robust-
ness, privacy, and machine ethics. Domain-specific
customization and extensions also form an inte-
gral part of evaluation. For instance, evaluating
the effectiveness of an LLM for a domain such as
legal should include additional criteria such as case
analysis and charge damages calculation (Fei et al.,
2023). See conceptual view in Table 1.

High level category Sub criteria

Core NLP Fluency
Core NLP Factuality
Core NLP Relevance
Core NLP Coherence

Domain Specific ...

Responsible AI Bias & Fairness
Responsible AI Privacy
Responsible AI Safety
Responsible AI Robustness

Table 1: Logical view of high-level scoring criteria

3.4 Differentiating

“To differentiate is to identify the differences be-
tween things” (vocabulary.com). The test sets used
in evaluation must be able to differentiate between
the various capabilities as well as the weaknesses
of generative LLMs. For instance, when the test
sets are relatively easy, most models can achieve
high scores and seem very capable. Conversely,
when the test sets are very difficult, models might
achieve low scores, making the models seem in-
effective. Therefore, tests that are ineffective in
differentiating capabilities can lead to (a) incorrect
conclusions about the capabilities of a model, (b)
poor calibration or ranking of various models, or
(c) inability to identify any improvements or degra-
dation between model versions, despite spending
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significant resources retraining new models. Hence,
constructing effective tests that can differentiate
model capabilities is crucial, otherwise evaluation
simply results in wasted effort.

Traditionally, models have been evaluated
using public datasets and benchmark such
as GLUE (Wang et al., 2019b) and Super-
GLUE (Wang et al., 2019a). These evaluations
are not without their share of problems as models
can exploit weaknesses in the official test sets re-
lying on shortcuts or spurious correlation – such
as length of the input – to predict the target label
achieving high performance yet non-generalizable
beyond the official test set (McCoy et al., 2019;
Elangovan et al., 2023; Gururangan et al., 2018).
In addition to these problems, evaluating the cur-
rent generation of SOTA LLMs poses further chal-
lenges. 1) LLMs are trained on billions of tokens
available on the internet, and the training data used
is rarely well documented. Hence, these LLMs may
have consumed public benchmark test sets as part
of their training data (Magar and Schwartz, 2022;
Sainz et al., 2023). 2) The models are generative,
producing natural language output unlike a model
trained on a classification task, making it difficult
to automate evaluation and thus are far more reliant
on human evaluation. 3) The LLMs are capable of
following natural language instructions to solve a
vast variety of tasks, hence they need to be evalu-
ated on a range of instructions provided as prompts
that emulate end-user use cases.

Emulating end-user use cases is crucial, as there
are fundamental differences in the tasks in NLP
benchmarks vs. the kind of questions or problems
users can ask an LLM. Firstly, end users tend to
be very creative and prompt the LLM for all kinds
of queries. This diversity is particularly important
in safety critical applications such as Medicine, as
evaluation blindspots can potentially lead to harm-
ful consequences. Secondly, the same message or
question can be framed (prompted) in many ways.
Hence, test scenarios need to consider the vari-
ous natural ways in which users write their inten-
tions when interacting with a LLM. If these aspects
are not taken account when constructing a test set,
solely relying on traditional NLP tasks such as sen-
timent analysis can result in traditional SOTA mod-
els outperforming ChatGPT (Kocoń et al., 2023),
when clearly this is not reflective of the end-user
experience. Hence, we argue that the test cases
used for evaluating LLMs need to represent end
user scenarios, in addition to standard NLP tasks.

Benchmarks such as Big-Bench (bench authors,
2023) take a step towards this direction by enabling
GitHub contributors to add new tasks to the bench-
mark. Furthermore, the same prompts may not be
effective against all LLMs. Hence, prompts might
often have to be customized for individual models,
making benchmarking non-trivial.

In light of these new challenges, curating ef-
fective test sets is a critical problem that the
NLP community must tackle. Benchmarks such
as HELM (Liang et al., 2023) to evaluate LLMs
use multiple public datasets across various tasks
such as Question Answering (QA) and sentiment
analysis and measure aspects beyond accuracy to
include toxicity and bias. While these are steps
in the right direction, the effectiveness of public
test sets such as IMDB dataset (Maas et al., 2011)
for sentiment analysis or XSum for summarization
(Narayan et al., 2018) in measuring the capabili-
ties of SOTA LLMs can be limited for the reasons
discussed earlier. These datasets simply do not suf-
ficiently represent end-user use cases. XSum also
has hallucinated content in over 75% of its gold
summaries (Maynez et al., 2020), demonstrating
further weaknesses in the test sets themselves.

Robustness testing is also a key aspect of eval-
uation, as models can be vulnerable to basic per-
turbations such as capitalization, white spaces and
prompt formatting (Sclar et al., 2024) and need
not understand basic linguistic concepts such as
negation (Rogers, 2021). While efforts such as
DynaBench to curate progressively harder test sets
(Kiela et al., 2021) and behavior testing of models
(Ribeiro et al., 2020) are promising approaches to
curate effective test sets, curation still needs more
research to make significant progress to target end-
user use cases to evaluate LLMs.

3.5 Responsible
In human evaluation, the Responsible pillar has
to consider two aspects, a) Is the model behavior
responsible? b) Do the human evaluators introduce
bias to the evaluation results? While there is no for-
mal definition of Responsible AI, at the very least
it entails fairness, safety, truthfulness, and privacy
(Sun et al., 2024). Searching papers with “respon-
sible” in their title results in 20 papers, expanding
the search to include terms such as “bias” and “pri-
vacy” results in ≈1000 or 1% of the papers in ACL
Anthology, while none of the human evaluation
papers mention responsible AI related keywords in
their title or abstract (query in Appendix A.2.8), a

1144



telltale sign that more work is needed.
1. Is the model behavior responsible? An-

swering this question requires evaluating the model
for bias, its ability to withstand privacy attacks,
truthfulness, and whether the responses are safe.
Bias is “prejudice in favor of or against one thing,
person, or group”. Bias affects groups by gender,
race, culture, religion, geography, and disability
(Esiobu et al., 2023). Thus, the tests sent for human
evaluation need to specifically cater to these cases
and report the performance of various subgroups
to ensure that the LLM behaves responsibly. This
requires that the tests have metadata curated such
as race to be able to report across these segments.

Generative LLMs are susceptible to leaking pri-
vate details such as person identifiable information
(PII) from the training data, including when sub-
ject to privacy attacks (Vakili and Dalianis, 2023;
Li et al., 2023). One method to mitigate such pri-
vacy leaks is to obfuscate PII information such as
names and locations from training data using tech-
niques such as Pseudonymization – recognizing
privacy-sensitive information and replacing them
with realistic substitute (Vakili and Dalianis, 2023)
and differential-privacy-based approaches that add
noise to the input (Chen et al., 2023). Safety en-
sures that the models do not generate content that
harms a person’s physical safety or mental health
(Mei et al., 2023; Rusert et al., 2022). Red teams,
a group of people authorized to imitate an adver-
sary’s attack or exploitation capabilities, are used
to evaluate the robustness, safety, and privacy of
LLMs (Perez et al., 2022; Radharapu et al., 2023).

2. Do the human evaluators introduce bias to
the evaluation results? As discussed previously,
when a substantial portion of evaluation relies on
human perception, the diversity of the human eval-
uators plays a key role in how representative the
results are of the wider population. Despite this,
less than 3% of papers report demographic informa-
tion about their evaluators (van der Lee et al., 2021).
Having a small group of evaluators or even when
the size is large, aspects such as selection bias can
result in biased results. Hence, we call for human
evaluation to consider the evaluator demographic
to mitigate bias effects in the evaluation.

3.6 Scalability
Human evaluation is expensive, yet large volumes
of test cases are necessary to differentiate model
capabilities and ensure consistency. Hence, opti-
mizations to reduce cost and time is crucial for

wider adoption. Automating parts of human eval-
uation can reduce cost. For instance, automation
might be potentially helpful to shortlist a set of
candidates for human evaluation. While the short-
comings of n-gram-based automated evaluations
using metrics like Rouge (Lin, 2004) are well stud-
ied (Deutsch et al., 2022), approaches such as us-
ing LLMs to evaluate LLMs (Lin and Chen, 2023;
Chiang and Lee, 2023) need further exploration.
Firstly, the effectiveness of LLM-based evaluation
is measured using its correlation with human evalu-
ation, hence the human evaluation procedures need
to be strengthened first to draw comprehensive
and robust conclusions, creating a chicken-and-
egg problem. Secondly, LLMs to evaluate LLMs
should take into account the differences between
perception-based metrics and evaluations that rely
on facts, as discussed in Section 3.1.1.

Studies that attempt to reduce the turn-around
times of human evaluation itself are limited, less
than 50 papers mention “cost” or “scale” with hu-
man eval in the title (see Appendix A.2.7 for search
query) in the last 20 years. Levinboim et al. (2021)
report using coarse-grained caption (as opposed to
fine-grained) annotations from crowdsourced users
to be able to scale, a method that can be adopted for
human evaluation. Huang et al. (2023) propose to
identify effective test samples to reduce the cost of
human evaluation in conversation systems. Design-
ing a UI that enables the human annotators to work
efficiently (one of the Es Efficiency in usability in
section 3.1) can reduce time. Given the limited
amount of work in this area of scalability of human
evaluation, we call for further research.

4 Conclusion & Moving forward
We presented the ConSiDERS-The-Human evalua-
tion framework to keep up with the increasing capa-
bilities of LLMs. We highlight the effects of human
emotions and cognitive biases on evaluation, given
how commonly the perception-based metrics are
used to evaluate aspects such as truthfulness. We,
hence, encourage researchers in NLP to collaborate
with their counterparts in UX, HCI & psychology
to ensure that the evaluation measures the right
things the right way and the results are interpreted
accurately. We also call for further research in crit-
ical areas – including curating effective test sets,
scalability of human evaluation, and responsible AI
components such as privacy, bias, robustness, and
safety considerations, when evaluating increasingly
powerful & ubiquitous generative LLMs.
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5 Limitations

Human evaluation is a challenge, especially given
the increasing capabilities of SOTA LLMs. Firstly,
LLMs have many potential applications and effec-
tively evaluating each application or domain might
need customization. Our main aim in this paper
is to provide a generic framework extensible for
specific domains or applications. Effectively cus-
tomizing for individual cases might require trial
and error. Secondly, perception, whilst important,
cannot solely dictate how the quality of LLMs is
measured. Humans use heuristics to make deci-
sions, and evaluation has to cater to these heuris-
tics. While there are over 180 cognitive biases, in
our paper we only highlight a few that can impact
evaluation, we specify this limitation in Section 2.3
as well.
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A Appendix

A.1 ConSiDERS-The-Human Evaluation Checklist

Consistency
Ill-defined or complex evaluation guidelines

1. Were expert annotators independently able to follow the annotation guidelines and achieve higher inter-annotator agree-
ment?

2. Is there a mechanism for evaluators to report issues such as ambiguity in the guideline?
High task complexity

3. Can you simplify the task by breaking down the task into easier tasks?
4. Are you asking multiple questions in a single task? If yes, split each question into separate tasks so that a) the answer to

one question doesn’t bias another one, b) the annotators feel positively motivated that they can complete a given task fast.
Ill-suited evaluators

5. Is there a qualification exam for evaluators?
6. Do you insert exam and attention check quality control metrics during evaluation to identify the quality of individual

annotators as part of each batch of evaluation?
7. Does your task need fresh annotators? For instance, if your task is to measure how good the LLM’s instructions are, you

need to make sure that the annotators are new and not used to how to complete the task.
Small number of evaluators and/or test set

8. Is it possible to include more evaluators?
9. Is it possible to increase the size of the test set?

Rating scales such as the Likert
10. Are you trying to measure perception or non-perception-based aspects such as truthfulness? If you are measuring non-

perception-based metrics, avoid the Likert scoring, and modify the task to collect many more objective metrics such as
extracting facts and verifying each fact.

Inter-rater agreement
11. Which primary IRA measure did you use?
12. Does the primary measure take into account how the evaluation is designed, such as the aspects defined by Gisev et al.

(2013)?
13. Do you expect your task to be inherently unbalanced? If not, do you report baseline percentage agreement to verify if the

observed chance estimation lowers the overall IRA?
14. Is the item-wise IRA higher for some items and not the others? The ones with lower IRA might be pointing to higher

complexity tasks. Report on the distribution of items IRA to troubleshoot the problem.
15. Are the qualifications of the human evaluators similar? If not, the disparity in the evaluators’ skills can lead to lower IRA.
16. Do you continuously measure IRA for each evaluation? If yes, did you observe a sudden change in IRA? It might be due

to changes in annotators (e.g., adding new annotators) or changes in guidelines or tasks. New guidelines and tasks take a
few iterations to settle.

Scoring Criteria
1. Is the model evaluated on typical dimensions: Fluency, Coherence, Relevance, Factuality?
2. What multi-dimensional domain-specific criteria were the model evaluated on?
3. What are the responsible AI criteria the model was evaluated on?

Differentiating
1. How many test cases (test examples) did you use to evaluate each of the criteria?
2. What were the end user use cases, e.g., legal document summarization, were tested? If so, report the end user test cases,

their corresponding number of tests, and the scores per user case per criteria.
3. Do you suspect that some of the test cases may have already been used during LLM training? If not sure, answer not sure.

If yes, where possible, report the percentage of test cases that may have been impacted.
4. Did you run robustness tests to evaluate model weaknesses? What were the scenarios covered, e.g., semantic preserving

perturbations - such as sensitivity to white spaces, synonyms, etc?

User Experience
1. Were rating denoising algorithms applied on the rating-based metrics, such as the Likert, to account for the cognitive

uncertainty of the human evaluators?
2. Did you split the content into atomic facts for criteria, such as factual completeness and truthfulness, that require inspecting

individual traits of the model-generated text? If so, detail the criteria.
3. Is the Likert scale used appropriately to measure perception-based aspects such as readability?
4. During human evaluation, were examples shuffled properly so that the evaluator cannot tell which model generated which

example?
5. Did you test the actual usability of the model’s output, in the context of the end-user application (aka extrinsic evaluation)?

If so, briefly describe the details.

Responsible
1. Was safety testing performed? If yes, how many test cases were used and what were the test scenarios?
2. Was privacy testing performed? If yes, how many test cases were used and what were the test scenarios?
3. Was the model tested for bias? If yes, what subgroups such as gender or disability was the model evaluated for?
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4. How many evaluators were used? What was the diversity of evaluators or several evaluators grouped by aspects such as
education qualifications, race, religion, gender, age groups, and nationalities?

Scalability
1. Were parts of the human evaluation automated? If yes, which aspects did you attempt to automate, and what types of

automated metrics were used?
2. If you used LLM-based automation, please provide the details of the LLM and prompts.
3. Did you optimize the usability aspects for the annotators to reduce annotation time? If so, provide a summary of how this

was achieved.

A.2 Meta-analysis of papers available in ACL Anthology
A.2.1 Papers with “human” and “eval” in either abstract or title
We search for abstracts or titles containing keywords “human” and “eval”, with ≈3900 papers, where 900
of those published in 2023 as detailed in Figure 1.

(title|abstract=human and title|abstract=eval)

Figure 1: Yearly publications of papers with keywords “human” and “eval” in title/abstract

A.2.2 Papers with “human” and “eval” in the title only
We search for titles containing keywords “human” and “eval”, this results in around 238 papers as shown
in Figure 2, reducing the number from 3900 when we include abstracts as seen above.

( (title=human and title=eval) )

A.2.3 Papers with phrase “human eval” in either abstract or title
We search for abstracts or titles containing phrases human evaluation, and human - evaluation. Around
1300 papers were published.

( (title|abstract =[h|H]uman\s?-?\s?[e|E]val) )

A.2.4 Papers with keywords “human” and “eval” in title/abstract and usability keywords in either
abstract or title

We search for titles or abstracts that mention human evaluation and contain usability keywords (usability,
hci, user experience, and human computer). This results in 172 papers. The problem with this query is
that it is too noisy as a result of looking for “human” and “eval” in either the title or abstract. For instance,
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Figure 2: Yearly publications of papers with keywords “human” and “eval” in title

while results contain some human evaluation, the paper’s primary focus is not on the design of human
evaluation itself.

Code Listing 1: Jabref search query for human eval and usablity
(

(title|abstract=human and title|abstract=eval)
and
( (title|abstract=usability)

or (title|abstract =[uU]ser\s[eE]xperience)
or (title|abstract=user and title|abstract=studies)
or (title|abstract=hci)
or (title|abstract=human and title|abstract=computer)

)
)

A.2.5 Papers with phrase “human eval” in either abstract/title and usability keywords

Code Listing 2: Jabref search query for phrase human eval in title and usablity in title or abstract
(

( (title|abstract =[h|H]uman\s?-?\s?[e|E]val)

)
and
( (title|abstract=usability)

or (title|abstract =[uU]ser\s[eE]xperience)
or (title|abstract=user and title|abstract=studies)
or (title|abstract=hci)
or (title|abstract=human and title|abstract=computer)

)
)
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Figure 3: Yearly publications of papers with keywords “human” and “eval” in title and usability keywords in the
abstract/title

A.2.6 Papers with keywords “human” and “eval” in title and usability keywords
Out of 238 paper keywords human and eval in the title “(title=human and title=eval )", only 16 mention
usability-related keywords in the title or abstract ACL.

Code Listing 3: Jabref search query for phrase human in title and usablity in title or abstract
(

( (title=human and title=eval ) )
and
( (title|abstract=usability)

or (title|abstract=user and title|abstract=research )
or (title|abstract=user and title|abstract=experience )
or (title|abstract=user and title|abstract=studies)
or (title|abstract=hci)
or (title|abstract=human and title|abstract=computer)

)
)

A.2.7 Paper that attempt to scale or optimise human evaluation

Code Listing 4: Jabref search query for phrase human in title and cost / scale in title or abstract
(

( (title=human and title=eval ) )
and
( (title|abstract=scal)

or (title|abstract=cost )
or (title|abstract=time )

)
)
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Code Listing 5: Jabref search query for auto eval human in title
(

(title=auto and title=eval )
)

A.2.8 Paper that attempt to mention responsible AI related terms in their title

Code Listing 6: Jabref search RAI terms in title
(

(
(title=responsib)
or (title=fair)
or (title=truth)
or (title=trust)
or (title=privacy)
or (title=bias)
or (title=safe)

)
and
( not (title=inductive and title=bias))

)

Code Listing 7: Jabref search Human eval in title and RAI in asbtract
(title=human and title=eval )
and
(

(
(abstract|title=responsib)
or (abstract|title=fair)
or (abstract|title=truth)
or (title=trust)
or (abstract|title=privacy)
or (abstract|title=bias)
or (abstract|title=safe)

)
and
( not (abstract|title=inductive and abstract|title=bias))

)

A.3 Krippendorff’s Toy example

In this example, we demonstrate with 6 items, 6 raters where each item is rated exactly by 3 raters how
simply changing 1 label (row 4, col 2) the Krippendorff’s-α drops from 0.7 to 0.24, while percentage
agreement only drops from 94.4 to 88.9. In scenario 3, we again just change 1 label, where the %
agreement remains the same at 88%, but Krippendorff’s-α drops from 0.24 to -0.06.

import numpy as np
import krippendorff
from collections import Counter

def compute_agreement(str_reliability_data):
reliability_data = []

for coder in str_reliability_data:
reliability_data.append([np.nan if l == "*" else int(l)

for l in coder.split ()])

compute_krippendorff(reliability_data)
compute_percentage_agreement(reliability_data)

def compute_krippendorff(reliability_data):
agreement = krippendorff.alpha(reliability_data=reliability_data ,

level_of_measurement="nominal")
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print(np.matrix(reliability_data))
print("Krippendorff 's alpha for nominal metric: ", round(agreement , 2))

def compute_percentage_agreement(reliability_data):
"""

Percentage agreement , only for binary values.
"""
item_wise_data = np.array(reliability_data).T
item_wise_agreement = []
print("** Percentage agreement **")
for item in item_wise_data:

row_labels = [l for l in item if not np.isnan(l)]
highest_frequency = Counter(row_labels).most_common(1)[0][1]
item_percentage = round(100 * highest_frequency / len(row_labels), 2)
item_wise_agreement.append(item_percentage)

print(row_labels , item_percentage)

print("Percentage agreement :", np.mean(item_wise_agreement))

print("*** Scenario 1: Baseline ****")
compute_agreement(str_reliability_data=(

"1 0 * * * *", # coder A
"1 * 1 1 1 *", # coder B
"1 0 1 1 1 *", # coder C
"* 0 1 1 * 1", # coder D
"* * * * 1 1", # coder E
"* * * * * 0", # coder F

))

print ()
print("*** Scenario 2: Change just 1 label , results in much lower alpha ****")
compute_agreement(str_reliability_data=(

"1 0 * * * *", # coder A
"1 * 1 1 1 *", # coder B
"1 0 1 1 1 *", # coder C
"* 1 1 1 * 1", # coder D
"* * * * 1 1", # coder E
"* * * * * 0", # coder F

))

print ()
print("*** Scenario 3: Same % agreement as Scenario 2, but much lower alpha ****")
compute_agreement(str_reliability_data=(

"1 1 * * * *", # coder A
"1 * 1 1 1 *", # coder B
"1 0 1 1 1 *", # coder C
"* 1 1 1 * 1", # coder D
"* * * * 1 1", # coder E
"* * * * * 0", # coder F

))

This produces the following output

*** Scenario 1: Baseline ****
[[ 1. 0. nan nan nan nan]
[ 1. nan 1. 1. 1. nan]
[ 1. 0. 1. 1. 1. nan]
[nan 0. 1. 1. nan 1.]
[nan nan nan nan 1. 1.]
[nan nan nan nan nan 0.]]

Krippendorff 's alpha for nominal metric: 0.7
** Percentage agreement **
[1.0, 1.0, 1.0] 100.0
[0.0, 0.0, 0.0] 100.0
[1.0, 1.0, 1.0] 100.0
[1.0, 1.0, 1.0] 100.0
[1.0, 1.0, 1.0] 100.0
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[1.0, 1.0, 0.0] 66.67
Percentage agreement : 94.445

*** Scenario 2: Change just 1 label , results in much lower alpha ****
[[ 1. 0. nan nan nan nan]
[ 1. nan 1. 1. 1. nan]
[ 1. 0. 1. 1. 1. nan]
[nan 1. 1. 1. nan 1.]
[nan nan nan nan 1. 1.]
[nan nan nan nan nan 0.]]

Krippendorff 's alpha for nominal metric: 0.24
** Percentage agreement **
[1.0, 1.0, 1.0] 100.0
[0.0, 0.0, 1.0] 66.67
[1.0, 1.0, 1.0] 100.0
[1.0, 1.0, 1.0] 100.0
[1.0, 1.0, 1.0] 100.0
[1.0, 1.0, 0.0] 66.67
Percentage agreement : 88.89

*** Scenario 3: Same % agreement as Scenario 2, but much lower alpha ****
[[ 1. 1. nan nan nan nan]
[ 1. nan 1. 1. 1. nan]
[ 1. 0. 1. 1. 1. nan]
[nan 1. 1. 1. nan 1.]
[nan nan nan nan 1. 1.]
[nan nan nan nan nan 0.]]

Krippendorff 's alpha for nominal metric: -0.06
** Percentage agreement **
[1.0, 1.0, 1.0] 100.0
[1.0, 0.0, 1.0] 66.67
[1.0, 1.0, 1.0] 100.0
[1.0, 1.0, 1.0] 100.0
[1.0, 1.0, 1.0] 100.0
[1.0, 1.0, 0.0] 66.67
Percentage agreement : 88.89

A.4 Papers in medical journals that use the Likert scale for evaluating ChatGPT
We searched medical journals as follows and manually selected 19 (not cherry-picking) papers that used
human evaluation the Likert scale to assess ChatGPT. We find that the Likert scale was used to evaluate
factual completeness, saliency correctness in 9/19 papers, 4/19 of papers use the Likert scale appropriately
to measure user perception and for the rest of 6/19 we were not sure of what the criteria meant, for details
see Table 3.

• Nature & sub-journals: Performed search within the nature website using keywords ⟨gpt medical .
likert⟩

• Lancet: Performed search within the Lancet website using keywords ⟨gpt likert⟩.

• JMIR: Searched for ⟨gpt likert, jmir⟩ on Google Scholar and used the first 2 pages of results to filter
relavant context.
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Title Relevant quote from paper Dimensions Likert used
for factual
correctness /
completness

Nature & Subjournals

Harnessing ChatGPT and GPT-
4 for evaluating the rheuma-
tology questions of the Span-
ish access exam to specialized
medical training

The medical experts evaluated the clinical reasoning of the chatbots
followed in each of the responses. Their evaluation was based on a
1–5 scale, where a score of 5 indicates that the reasoning was entirely
correct and flawless, while a score of 1 signifies that the reasoning was
inconsistent or contained significant errors.

1) overall correctness. Yes

A pilot study on the efficacy
of GPT-4 in providing ortho-
pedic treatment recommenda-
tions from MRI reports

[in Table 2] Likert scales used for (a) Treatment recommendations are
clinically useful and relevantTreatment recommendations are clinically
useful and relevant (b) Treatment recommendations are based on sci-
entific and clinical evidence (c) The overall quality of the treatment
recommendations

1) overall quality; 2)
based on evidence; 3) use-
ful and relevant; 4) up-to-
date; 5) consistent.

Yes

Testing the limits of natural lan-
guage models for predicting hu-
man language judgements

No details mentioned in the paper 1) overall quality Not sure

Availability of ChatGPT to pro-
vide medical information for
patients with kidney cancer

The SERVQUAL model is a research tool that assesses how five di-
mensions—tangibility, reliability, responsiveness, assurance, and empa-
thy—influence customer perception. The answers to the questions are
presented in a five-point Likert scale. SERVQUAL has mainly been used
to evaluate the quality of medical services in hospitals and healthcare
institutions.

1) tangibility; 2) reliabil-
ity; 3) responsiveness; 4)
assurance; 5) empathy.

Yes

Explaining machine learning
models with interactive natural
language conversations using
TalkToModel

We evaluated the following statements along the 1–7 Likert scale at the
end of the survey: Easiness: I found the conversational interface easier to
use than the dashboard interface; Confidence: I was more confident in my
answers using the conversational interface than the dashboard interface;
Speed: I felt that I was able to more rapidly arrive at an answer using the
conversational interface than the dashboard interface; Likeliness to use:
based on my experience so far with both interfaces, I would be more
likely to use the conversational interface than the dashboard interface in
the future.

1) Easiness; 2) Confi-
dence; 3) Speed; 4) Like-
liness to use.

No

Evaluating large language mod-
els on medical evidence sum-
marization

We systematically evaluate the quality of generated summaries via hu-
man evaluation. We propose to evaluate summary quality along several
dimensions: (1) Factual consistency; (2) Medical harmfulness; (3) Com-
prehensiveness; and (4) Coherence. These dimensions have been previ-
ously identified and serve as essential factors in evaluating the overall
quality of generated summaries. ... The order in which the summaries are
presented is randomized to minimize potential order effects during the
evaluation process. We utilize a 5-point Likert scale for the evaluation
of each dimension.

1) Factual consistency;
2) Medical harmfulness;
3) Comprehensiveness; 4)
Coherence.

Yes

A large-scale comparison
of human-written versus
ChatGPT-generated essays

The questionnaire covers the seven categories relevant for essay assess-
ment shown below: Topic and completeness; Logic and composition;
Expressiveness and comprehensiveness; Language mastery; Complexity;
Vocabulary and text linking; Language constructs. ... These categories
are used as guidelines for essay assessment 44 established by the Min-
istry for Education of Lower Saxony, Germany. For each criterion, a
seven-point Likert scale with scores from zero to six is defined, where
zero is the worst score (e.g. no relation to the topic) and six is the best
score (e.g. addressed the topic to a special degree). The questionnaire
included a written description as guidance for the scoring.

1) Topic and complete-
ness; 2) Logic and compo-
sition; 3) Expressiveness
and comprehensiveness;
4) Language mastery; 5)
Complexity; 6) Vocabu-
lary and text linking; 7)
Language constructs.

Yes

People devalue generative AI’s
competence but not its advice
in addressing societal and per-
sonal challenges

Participants were asked to rate the author competence on three items:
The author is knowledgeable of the subject; The text is credible; I intend
to follow the provided recommendations.

1) knowledgeable 2) cred-
ible 3) willing to follow.

Not sure

Quality of information and ap-
propriateness of ChatGPT out-
puts for urology patients

The responses generated by ChatGPT were then compared to those
provided by a board-certified urologist who was blinded to ChatGPT’s
responses and graded on a 5-point Likert scale based on accuracy, com-
prehensiveness, and clarity as criterias for appropriateness.

1) accuracy; 2) compre-
hensiveness; 3) clarity.

Yes

Table 2: Papers containing “GPT”, “medical” and “Likert” from Nature and Subjournals.
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Title Relevant quote from paper Dimensions Likert used
for factual
correctness /
completness

Lancet

Assessing the potential of GPT-
4 to perpetuate racial and gen-
der biases in health care: a
model evaluation study

Factual correctness and humanness of letters were assessed by two
independent clinicians using a Likert scale ranging from 0 to 10, with
0 representing completely incorrect or inhuman and 10 representing
completely correct and human.

two dimensions: correct-
ness and humanness.

Yes

Journal of Medical Internet Re-
search (JMIR)

Putting ChatGPT’s Medical
Advice to the (Turing) Test:
Survey Study

Participants were also asked about their trust in chatbots’ functions in
patient-provider communication, using a Likert scale from 1-5. ... On
average, responses toward patients’ trust in chatbots’ functions were
weakly positive (mean Likert score 3.4 out of 5), with lower trust as the
health-related complexity of the task in the questions increased.

1) trustworthy Not sure

A Generative Pretrained Trans-
former (GPT)–Powered Chat-
bot as a Simulated Patient
to Practice History Taking:
Prospective, Mixed Methods
Study

To assess how our participants perceived the simulated patient, we used
the Chatbot Usability Questionnaire (CUQ). This 16-item questionnaire
measures the personality, user experience, error management, and on-
boarding of a chatbot and has recently been validated. ... For the CUQ,
we provided relative numbers of Likert categories.

1) Personality; 2) User Ex-
perience; 3) Error Han-
dling; 4) Onboarding; 5)
Other

Yes

Health Care Trainees’ and Pro-
fessionals’ Perceptions of Chat-
GPT in Improving Medical
Knowledge Training: Rapid
Survey Study

The questionnaire was designed according to the Kirkpatrick model, with
four dimensions to understand the thoughts of the students: (1) perceived
knowledge acquisition (KA), (2) perceived training motivation (TM),
(3) perceived training effectiveness (TE), and (4) perceived training
satisfaction (TS). Three experts reviewed and edited the questionnaire,
which has 12 questions, including 1 open-ended question. A 5-point
Likert scale was adopted for all questionnaire items (from 1=strongly
disagree to 5=strongly agree).

1) perceived knowledge
acquisition (KA); 2) per-
ceived training motivation
(TM); 3) perceived train-
ing effectiveness (TE); 4)
perceived training satis-
faction (TS).

No

Assessing Health Students’ At-
titudes and Usage of ChatGPT
in Jordan: Validation Study

The survey tool was created based on the TAM framework. It comprised
13 items for participants who heard of ChatGPT but did not use it and 23
items for participants who used ChatGPT. ... Each item was evaluated
on a 5-point Likert scale with the following responses: strongly agree
scored as 5, agree scored as 4, neutral/no opinion scored as 3, disagree
scored as 2, and strongly disagree scored as 1. The scoring was reversed
for the items implying a negative attitude toward ChatGPT.

13 items No

Increasing Realism and Variety
of Virtual Patient Dialogues for
Prenatal Counseling Education
Through a Novel Application
of ChatGPT: Exploratory Ob-
servational Study

Sentences were then appraised by a neonatologist for realism, relevance,
and usability for virtual prenatal counseling simulations. Each metric
used a 5-point Likert scale, ranging from 1 (the lowest) to 5 (the highest).

1) realism; 2) relevance;
3) usability.

Not sure

ChatGPT Versus Consultants:
Blinded Evaluation on An-
swering Otorhinolaryngology
Case–Based Questions

The questions were answered by both ORL consultants and ChatGPT
3. ORL consultants rated all responses, except their own, on medical
adequacy, conciseness, coherence, and comprehensibility using a 6-point
Likert scale.

1) medical adequacy; 2)
conciseness; 3) coher-
ence; 4) comprehensibil-
ity

Not sure

Evaluation of GPT-4’s Chest X-
Ray Impression Generation: A
Reader Study on Performance
and Perception

In a blind randomized reading, 4 radiologists rated the impressions
based on “coherence”, “factual consistency”, “comprehensiveness”, and
“medical harmfulness”, which were used to generate a radiological score
based on a 5-point Likert scale of each dimension.

1) coherence; 2)factual
consistency; 3) compre-
hensiveness; 4) medical
harmfulness.

Yes

Investigating the Impact of
User Trust on the Adoption and
Use of ChatGPT: Survey Anal-
ysis

We developed 2 latent constructs based on the question (predictors):
Trust and Intent to Use. Participant responses to all the questions were
captured using a 4-point Likert scale ranging from 1=strongly disagree
to 4=strongly agree. The Actual Use factor, the outcome variable, was
captured using a single-item question capturing the frequency of use
ranging from 1=once a month to 4=almost every day.

1) trust; 2) intent to use. Not sure

Exploring the Possible Use of
AI Chatbots in Public Health
Education: Feasibility Study

Medical students’ feedback was collected anonymously at the end of
the training experience through a 3-item questionnaire with a Likert
scale (1 to 10) regarding their general satisfaction, willingness to repeat
the experience, and ease of use of the tool. In particular, the scale of
the 3 items can be translated as follows:; Item 1: 1=“dissatisfied with
the experience”, 10=“very satisfied”; Item 2: 1=“I would not repeat
the experience”, 10=“I would definitely repeat the experience”; Item 3:
1=“the tool is too difficult to be used”, 10=“the tool was very easy to be
used”.

1) satisfy; 2) intent to use;
3) easy to use.

No

Table 3: Papers containing “GPT” and “Likert” from Lancet and JMIR.
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