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Abstract

Large Language Models (LLMs) demonstrate
significant value in domain-specific applica-
tions, benefiting from their fundamental capa-
bilities. Nevertheless, it is still unclear which
fundamental capabilities contribute to success
in specific domains. Moreover, the existing
benchmark-based evaluation cannot effectively
reflect the performance of real-world applica-
tions. In this survey, we review recent advances
of LLMs in domain applications, aiming to
summarize the fundamental capabilities and
their collaboration. Furthermore, we establish
connections between fundamental capabilities
and specific domains, evaluating the varying
importance of different capabilities. Based on
our findings, we propose a reliable strategy
for domains to choose more robust backbone
LLMs for real-world applications.

1 Introduction

In the current research and application of artifi-
cial intelligence, the abundant acquisition of big
data, breakthroughs in high-performance comput-
ing technology, and innovations in algorithm de-
sign have jointly promoted the development and
deployment of LLMs (Li, 2022). LLMs are also
considered to have strong potential value in specific
domains, with an increasing number of industries
embracing LLMs and already demonstrating out-
standing performance (Gururangan et al., 2020;
Ling et al., 2023b; Kaddour et al., 2023).

However, applying LLMs in specific domains
has encountered a series of challenges. These chal-
lenges mainly stem from the inherent characteris-
tics of domain tasks and data, such as the diver-
sity of data sources, the complexity of domain-
specific knowledge, and the specificity of appli-
cation goals and constraints. To enable LLMs to
be better applied in specific domains and address
the challenges they face in these areas, this paper
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summarizes two key issues that need to be resolved
when applying LLMs in specific domains:

Issue 1: Fundamental capabilities of LLMs
and their interactions. LLMs exhibit outstand-
ing performance in comprehending and addressing
complex tasks, thus demonstrating great potential
in specific domain applications. Numerous studies
broadly summarize the core capabilities of LLMs
as robust comprehension and generation (Huang
and Chang, 2023; Ling et al., 2023a), yet fall short
of assisting us in aligning the LLMs’ fine-grained
capabilities with the intricate requirements of real-
world scenarios. Consequently, elucidating the
inherent fundamental capabilities manifested by
LLMs in domain-specific scenarios and the dynam-
ics among these capabilities becomes essential.

Issue 2: The Capabilities Assessment of LLMs
in Specific Domain. Due to the disparity be-
tween the capabilities evaluated in benchmarks and
those required in real-world domains (Ling et al.,
2023a; Kaddour et al., 2023), the excellent perfor-
mance of LLMs in benchmarks may not necessarily
translate to actual applications in specific domains.
Therefore, conducting capabilities assessments of
LLMs to establish a bridge between benchmarks
and real-world domains is crucial.

Based on the above two issues, this survey aims
to systematically summarize the fundamental ca-
pabilities of LLMs and clarify the capabilities as-
sessment of LLMs. The key contributions of this
survey paper are summarized below.

1. This paper summarizes the fundamental ca-
pabilities of LLMs in domain applications,
including memorization, reasoning, general-
ization, and diversification. It provides de-
tailed descriptions of each capability and how
they collaborate to accomplish specific appli-
cations.
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2. This paper summarizes the applications of
LLMs in nine specific domains from the per-
spective of real scenarios. In addition, this
paper summarizes the importance of funda-
mental abilities corresponding to each domain,
addressing the issue of strong performance on
benchmarks not necessarily translating to do-
main scenarios, and providing users with clear
model selection strategies.

2 Fundamental Capabilities and
Interactive Capabilities

The human brain’s information processing has been
extensively studied, revealing five core modules:
natural language interaction, knowledge, memo-
rization, reasoning, and generalization (Xi et al.,
2023). Some research suggests that LLMs ex-
hibit a similar information processing mechanism
to the human brain (Toneva and Wehbe, 2019;
Caucheteux and King, 2022). Consequently, we
categorize LLM information processing into four
fundamental capabilities including memorization,
reasoning, generalization, and diversification. As
illustrated in Figure 1, LLMs utilize short-term
memory to understand task instructions and long-
term memory to retrieve historical data (Cowan,
2008; Norris, 2017; Zhu et al., 2020; Zhang et al.,
2023g; Cheng et al., 2016; Davis and Marcus, 2015;
Dawid and LeCun, 2023). This data is processed
through the reasoning module, which performs log-
ical, commonsense, and symbolic reasoning to gen-
erate outputs (Lu et al., 2023b; Bursztyn et al.,
2022; Yan et al., 2023; Banerjee et al., 2021; Hamil-
ton et al., 2022). Throughout this process, the gen-
eralization enables LLMs to manage information
across varying lengths, structures, and tasks (Davis
and Marcus, 2015; Lake and Baroni, 2023; Zhao
et al., 2021a), while diversification allows for tai-
lored results (Sun et al., 2024).

The four fundamental capabilities of the LLM
work together to complete complex domain appli-
cations. In the following section, we will introduce
each of the fundamental capabilities in detail.

2.1 Memorization Capabilities
The memorization capabilities of LLMs play a piv-
otal role in their effectiveness and performance
across various domains. Memory, in the context
of LLMs, refers to the capacity to retain and ac-
cess information over time. It can be broadly cat-
egorized into two types: long-term memory and
short-term memory. Long-term memory refers to

the LLM’s ability to store and recall knowledge,
facts, and concepts acquired during training and
previous experiences. It encompasses the model’s
understanding of world knowledge, implicit en-
coding of substantial information, and its capacity
to leverage both internal and external knowledge
sources. On the other hand, short-term memory
focuses on the LLM’s in-context learning capabili-
ties and its ability to retain and utilize information
within a limited temporal context. Enhancements
in short-term memory aim to overcome the con-
textual limitations of LLMs and enable them to
generate coherent content over longer stretches.

2.1.1 Long-term Memory
The long-term memory of LLMs is intimately
connected to their scale, with LLMs showcas-
ing broader knowledge capacity and diversity.
Benchmarks like KoLA critically evaluate LLMs’
world knowledge across numerous tasks (Yu et al.,
2023c), while studies by Tirumala et al. (2022)
reveal that model size is crucial for efficient mem-
orization. LLMs acting as knowledge bases, as
reviewed by AlKhamissi et al. (2022), encode
substantial information implicitly, and innovations
like REALM employ latent retrievers to augment
this knowledge (Guu et al., 2020). Petroni et al.
(2019) suggest LLMs can serve as effective knowl-
edge bases even without fine-tuning. Together,
these studies underscore the remarkable potential
of LLMs to use both internal and external knowl-
edge sources to enhance their long-term memory,
applicable across various fields.

Addressing the challenge of preserving the long-
term memory of LLMs during continual learning is
crucial for their application in specialized fields.
Luo et al. (2023c) propose a novel framework,
SCCL, which mitigates catastrophic forgetting—a
common obstacle to maintaining long-term knowl-
edge—by employing adaptive classification strate-
gies alongside memory replay and distillation tech-
niques. Complementing this, Luo et al. (2023d)
suggests that initial training on general linguistic
tasks and the adoption of a hybrid continual learn-
ing strategy can substantially reduce the loss of
long-term syntactic and semantic knowledge.

2.1.2 Short-term Memory
Short-term memory in LLMs has been a focus area
to enhance their in-context learning (ICL) capa-
bilities. ICL is a capability that allows LLMs to
understand and execute tasks based on the immedi-
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Figure 1: The relationship between the four fundamental abilities when solving complex domain applications. Take
medical treatment as an example.

ate context provided within the input text (Brown
et al., 2020; Dong et al., 2022). This skill set
eliminates the need for extensive retraining or fine-
tuning across different tasks. By analyzing a few
examples included in their input, LLMs can in-
fer the task requirements and apply learned pat-
terns to generate accurate responses (Zhao et al.,
2021b). This in-context learning ability showcases
LLMs’ adaptability, making them highly efficient
for a broad spectrum of applications with minimal
setup (Mosbach et al., 2023). Despite its effective-
ness, this approach has limitations in terms of the
depth and complexity of understanding it can pro-
vide, which is directly influenced by the model’s
design and the richness of the context provided (Lu
et al., 2022; Zhang et al., 2022b). Meanwhile, the
working mechanism of ICL is also a widely open
question and has been investigated a lot by the com-
muity (Min et al., 2022; Liu et al., 2021; Olsson
et al., 2022; Bhattamishra et al., 2023).

2.2 Reasoning Capabilities

The reasoning capabilities of LLMs refer to logi-
cally process information, draw conclusions, and
make decisions based on available data and knowl-
edge (Qiao et al., 2023). The reasoning capabilities
of LLMs have greatly enhanced their application
across various industries. For example, they ap-
ply commonsense reasoning to user interactions in

customer service and healthcare, providing contex-
tually relevant responses. Additionally, advances
in symbolic reasoning allow LLMs to support soft-
ware development and mathematical fields with in-
creased accuracy and clarity. These developments
mark significant progress toward more sophisti-
cated AI systems capable of augmenting human
tasks. In this section, we summarize the recent
advances in the reasoning capabilities of LLMs.

2.2.1 Compositional Reasoning Capabilities

Recent advancements demonstrate that augment-
ing LLMs with specialized modules or training
approaches enhances their compositional reason-
ing capabilities, surpassing traditional methods in
diverse and complex tasks. Lu et al. (2023c) aug-
ments LLMs with modules for complex reason-
ing, achieving significant accuracy improvements
on multi-modal tasks. Chen et al. (2023c) pro-
pose a novel prompting strategy, skills-in-context
(SKiC), enabling LLMs to exhibit compositional
reasoning by solving unseen, complex problems
through the innovative composition of pre-existing
skills, achieving groundbreaking success on com-
positional tasks. Ma et al. (2023) introduces new
benchmarks for evaluating GVLMs’ compositional
reasoning, with a novel metric to reduce morpho-
logical bias. Compositional Task Representations
(CTR), a new prompt-free approach, is proposed
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to learn compositional codes, surpassing prompt-
based methods in zero-shot learning (SHAO et al.,
2023). An LLM trained on the PLANE benchmark
shows strong capacities in compositional entail-
ment, leveraging subword representations(Bertolini
et al., 2022).

2.2.2 Complex Task Decomposition
A variety of new prompting techniques such as
ADaPT, chain of thought, zero-shot CoT, itera-
tive context-aware, least-to-most, decomposed, and
successive prompting have been proposed to en-
able LLMs to decompose and tackle complex tasks
more effectively (Zhou et al., 2022; Drozdov et al.,
2023; Khot et al., 2022; Dua et al., 2022). Prasad
et al. (2023) introduces ADaPT, which enhances
LLMs’ decision-making by planning and decom-
posing tasks as needed, significantly improving
performance on complex tasks. Wei et al. (2022)
demonstrates that "chain of thought" prompting
boosts LLMs’ complex reasoning, achieving state-
of-the-art results on the GSM8K benchmark. Ko-
jima et al. (2022) presents Zero-shot-CoT, using
simple prompts to unlock LLMs’ underlying rea-
soning capabilities, achieving substantial gains
across diverse reasoning tasks. Wang et al. (2022a)
proposes an iterative prompting framework that pro-
gressively extracts PLMs knowledge for multi-step
reasoning, overcoming the limitations of traditional
prompting methods.

2.2.3 Commonsense Reasoning
Recent work in commonsense reasoning explores
innovative approaches like integrating LLMs with
search algorithms, conducting comprehensive sur-
veys, and applying code generation models to out-
perform traditional methods, while also exposing
the limitations of LMs in truly understanding com-
monsense knowledge without specific supervision.
Bhargava and Ng (2022) surveys recent tasks in
commonsense reasoning and generation, evaluating
the capabilities and limitations of state-of-the-art
pre-trained models. Zhao et al. (2023d) demon-
strates that combining LLMs with MCTS for task
planning leverages commonsense knowledge to en-
hance reasoning and efficiency in complex tasks.
Madaan et al. (2022) proposes using code genera-
tion LMs for structured commonsense reasoning
tasks, outperforming traditional LMs in natural
language processing. Li et al. (2022) conducts
a zero-shot and few-shot evaluation of LMs’ com-
monsense knowledge, revealing limitations and the

insufficiency of larger models to reach human-level
performance.

2.2.4 Symbolic Reasoning
Recent work on symbolic reasoning highlights the
effectiveness of novel prompting techniques and hy-
brid frameworks combining LLMs with symbolic
solvers or distillation methods. Gaur and Saun-
shi (2023) explores symbolic reasoning in math
word problems using LLMs, introducing a self-
prompting method that aligns symbolic reasoning
with numeric answers, enhancing interpretability
and accuracy. Wei et al. (2022) demonstrates that
chain of thought prompting significantly improves
LLMs’ performance on complex reasoning tasks
including symbolic reasoning. Pan et al. (2023a)
introduces Logic-LM, a framework that combines
LLMs with symbolic solvers, resulting in substan-
tial improvements in logical reasoning tasks. Gaur
and Saunshi (2022) shows that GPT-3’s perfor-
mance on symbolic math word problems can be
enhanced with specific prompting techniques that
encourage the model to describe its reasoning pro-
cess. Li et al. (2023g) reveals that even smaller
models can benefit from chain-of-thought prompt-
ing through Symbolic Chain-of-Thought Distilla-
tion from larger models, leading to improved rea-
soning performance.

2.3 Generalization Capabilities

Generalization refers to a model’s ability to apply
learned knowledge from past experiences to new,
unseen situations (Elangovan et al., 2021; Shen
et al., 2021). This capability is essential for real-
world applications where models encounter various
data. In this section, we will explore the general-
ization capabilities of LLMs, focusing on three key
aspects: length, structural, and across-task general-
ization.

2.3.1 Length Generalization
Length generalization in LLMs, which refers to
the model’s capacity to extend acquired skills to
longer problem instances outside the training range,
is crucial for addressing complex problems with
extensive descriptions (Anil et al., 2022). Improv-
ing length generalization is key to enhancing the
practical use of LLMs in diverse real-world situa-
tions.

Theoretical insights, such as Anil et al. (2022)
and Xiao and Liu (2023), have examined the length
generalization capabilities of transformer-based
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models and identified conditions for length gen-
eralization in reasoning tasks. For arithmetic tasks,
Jelassi et al. (2023) introduced train set priming to
improve generalization while the innovative LM-
Infinite (Han et al., 2023), RASP-Generalization
Conjecture (Zhou et al., 2023a) and Attention Bias
Calibration (ABC) (Duan and Shi, 2023) employ
different variant of attention mechanism for longer
text generation. On the other hand, Awasthi and
Gupta (2023) focused on multitask training with
task hinting to address length generalization.

These studies collectively present a range of
strategies, from practical methodologies like task
hinting to theoretical frameworks, enhancing
LLMs’ ability to manage longer input sequences.
They mark significant progress in overcoming the
challenges of length generalization, paving the way
for more capable and adaptable LLMs.

2.3.2 Structure Generalization
Structure generalization of LLMs refers to the ca-
pability to process and interpret complex data struc-
tures, such as graphs and tables even though the
models are trained on text-only datasets. This abil-
ity is crucial for applications extending beyond
traditional text-based tasks, spanning various do-
mains including bioinformatics and social network
analysis.

Numerous studies have aimed at enhancing
the capabilities of LLMs to process and gener-
ate diverse data forms beyond traditional text, in-
cluding graphs (Tang et al., 2023b; Guo et al.,
2023a; Pan et al., 2023b; Zhang et al., 2023h; Liu
et al., 2023b; Zhang et al., 2023f; Wang et al.,
2023b,b), tables (Zhao et al., 2023a), and visualiza-
tion charts (Wang et al., 2023c). This expansion
into handling various data types is particularly no-
table in fields such as healthcare (Thirunavukarasu
et al., 2023), recommendation (Wang et al., 2023c),
question answering (Pan et al., 2023b; Jiang et al.,
2023a), and biomedical science (Wang et al.,
2023b; Qian et al., 2023), significantly broaden-
ing the practical applications of LLMs.

These studies collectively underscore the ex-
panding versatility of LLMs in handling structured
data, revealing a trend toward more sophisticated
AI models capable of complex reasoning and di-
verse applications.

2.3.3 Generalization Across Tasks
Task generalization in Large Language Models
(LLMs) refers to their ability to manage a wide

range of tasks, especially those not seen during
training. This capacity allows the models to tackle
a variety of novel and unexpected challenges, show-
casing their flexibility, efficiency, and versatility.

To enhance task generalization in LLMs, two
prevalent strategies are employed. Firstly, fine tun-
ing approaches, such as multi-task (Sanh et al.,
2022), instruction tuning (Wei et al., 2021), and
meta tuning (Zhong et al., 2021), fine-tune lan-
guage models across various NLP tasks to aug-
ment their comprehension of instructions, thereby
achieving significant zero-shot learning capabili-
ties. These methods highlight LLMs’ potential in
managing an array of tasks through enhanced in-
struction understanding. However, fine-tuning pa-
rameters of large language models can be resource-
intensive. In response, Ye et al. (2023) and Brown
et al. (2020) investigate few-shot or in-context
learning mechanisms. By providing a few task
examples, LLMs can infer the task’s requirements
and format, allowing them to address new tasks
effectively. This approach circumvents the need for
extensive fine-tuning, instead leveraging examples
to foster the models’ abilities.

In summary, these studies highlight the gener-
alization of LLMs through diverse methodologies,
ranging from fine-tuning to prompting strategies.
The overarching objective is to enhance models that
not only perform proficiently on familiar tasks but
also demonstrate remarkable adaptability to novel
challenges, thereby creating more adaptable and
intelligent systems.

2.4 Diversification Capabilities
The concept of diversification in LLMs pertains to
their capability to produce unique content tailored
to various contexts. This diversification arises dur-
ing the inference process, where a model generates
a new token, yt, based on the previously generated
tokens, yt−1, and a specific condition, x, according
to the formula yt ∼ p(yt|y:t−1, x). Notably, the ar-
chitecture of most LLMs is decoder-only, meaning
that conditions such as prompts or in-context ex-
amples are incorporated as initial tokens. Thus, we
regard these initial inputs as x and the sequence of
generated tokens as y:t−1. By manipulating these
inputs and conditions, LLMs can produce a wide
array of content.

We delve into the diversification of the expand-
ing capabilities of LLMs in terms of role-playing
and creativity. These two areas highlight the versa-
tility of LLMs, showcasing their ability to adapt to
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diverse scenarios and tasks. Role-playing enhances
the dynamism and context-awareness of LLMs, en-
abling more nuanced interactions across different
scenarios by utilizing role profiles as the condition
x.Furthermore, creativity plays a crucial role in
unlocking the potential of LLMs for generating in-
novative and valuable content. This is achieved by
modifying the generation process, specifically the
sequence of previously generated tokens, yt−1.

2.4.1 Role-playing
Role-playing in LLMs represents a significant ad-
vancement in the field of natural language process-
ing and artificial intelligence. It involves LLMs
assuming specific characters or personas, enabling
them to engage in more dynamic, context-rich, and
human-like interactions. By embodying different
roles, i.e. x we defined before, LLMs can offer tai-
lored responses based on character-specific knowl-
edge and behavior patterns, enhancing the rele-
vance and engagement of user interactions.

Wei et al. (2023a) investigate multi-party con-
versations, revealing that LLMs can significantly
improve group dynamics when trained on datasets
like MultiLIGHT. Wang et al. (2023f)’s RoleLLM
framework enhances role-playing in LLMs, leading
to advancements in English and Chinese models.
Shanahan et al. (2023) discusses the importance of
role play in understanding dialogue agents’ behav-
iors, focusing on aspects like deception and self-
awareness. Li et al. (2023a) develop ChatHaruhi,
demonstrating enhanced role-playing in mimicking
anime characters. Personalization in LLMs is the
focus of Salemi et al. (2023)’s LaMP benchmark,
which improves model outputs by incorporating
user profiles. Finally, Li et al. (2023c) explore
autonomous cooperation among LLMs through
role-playing, showcasing the potential of inception
prompting in multi-agent systems.

These studies collectively represent a significant
stride in enhancing the role-playing capabilities of
LLMs. They demonstrate how role-playing can
transform LLMs into more adaptable, engaging,
and effective conversational partners, capable of
nuanced interactions across various domains by
adjusting the condition x.

2.4.2 Creativity
The creativity in LLMs is gaining traction, empha-
sizing their potential to generate novel and valuable
content. Emphasizing creativity in LLMs is key to
developing AI systems that not only replicate hu-

man language but also exhibit a degree of ingenuity
akin to human creativity.

Recent studies in this area offer diverse insights.
Chakrabarty et al. (2023) develop a framework
for evaluating the creativity of LLMs, revealing
their current limitations compared to human writers.
Franceschelli and Musolesi (2023) explore LLMs’
creative writing potential, examining their develop-
ment through various creativity theories and con-
sidering their societal impact. Summers-Stay et al.
(2023) demonstrate that LLMs can enhance their
creativity by mimicking human brainstorming tech-
niques. Swanson et al. (2021) introduce tools to
assist creative writers in leveraging LLMs’ capa-
bilities, while Sinha et al. (2023) propose a model
to balance creativity with factual accuracy in LLM
outputs. Bhavya et al. (2023) focus on creative
analogy mining using PLMs, underscoring the role
of LLMs in augmenting human creativity.

2.5 Interactive Capabilities

In addition to the four fundamental capabilities,
LLMs also possess strong interactive capabilities
during domain applications. Interactive capabilities
refer to the capacity of LLMs to enhance perfor-
mance by acquiring external information, planning
and making decisions regarding the environment,
and utilizing external tools (Xi et al., 2023). For ex-
ample, integrating specialized tools can overcome
limitations of LLM in domain tasks (Qin et al.,
2023b; Patil et al., 2023), while interaction with
environments such as web pages, communities, and
databases expands application domains (Yao et al.,
2022; Team, 2023a). Appendix A provides a de-
tailed overview of the interactive capabilities of
large models.

3 The Capabilities Assessment of LLMs
in Specific Domains

LLMs have different applications in different do-
main scenarios. For instance, in the medical and
ledge domains, they may function as domain ex-
perts engaged in dialogues or summarizing docu-
ments (Shi et al., 2023; Tang et al., 2023a; Choi
et al., 2023; Pettinato Oltz, 2023). Systematically
summarizing the application methods of LLMs in
various domains facilitates to combine these mod-
els with specific scenarios more efficiently. How-
ever, some research is often classified and sum-
marized from the perspective of NLP tasks (Ling
et al., 2023a; Kaddour et al., 2023). Kaddour et al.

11121



Domains Memorization Reasoning Generalization Diversification Interaction Total
Medicine 16 15 12 10 5 25
Law 11 10 1 2 9 19
Computational Biology 17 20 17 13 2 20
Finance 21 21 3 4 5 24
Social and Psychology 6 20 2 3 4 22
Programming 12 21 1 3 1 23
Robots and Agents 22 22 3 13 6 22
AI for Disciplines 9 13 7 3 2 15
Creative Work 4 16 2 15 2 16

Table 1: We analyzed the fundamental capabilities across various domains in this table. For example, we analyzed
19 papers in the law domain. Among these 19 papers, 11 focused on memorization capabilities, 10 on reasoning
capabilities, 1 on generalization capabilities, 2 on diversification capabilities, and 9 on interaction capabilities.
Based on this table, we construct the radar chart in Figure 2.

(2023) classify applications in medical scenarios
into medical question answering and comprehen-
sion, and medical information retrieval. However,
LLMs may participate in medical diagnosis, diag-
nostic assistance, and other scenarios. The differ-
ences make it difficult for research results to be
directly applied to real scenarios. We enumerates
articles from nine domains we have summarized in
Figure 3, including medicine, law, computational
biology, finance, social sciences and psychology,
computer programming and software engineering,
robots and agents, AI for disciplines, and creative
work. We will provide a detailed summary of the
real-world applications and roles played by LLMs
in these domains in the future.

3.1 Fundamental Capabilities Assessment and
Application

The performance of LLMs in specific domains is
closely related to their fundamental capabilities.
However, we often evaluate LLMs based on their
performance on benchmarks, but their strong per-
formance on benchmarks may not necessarily trans-
late to domain scenarios (Guo et al., 2023c; Zhou
et al., 2023b). For example, while InstructBLIP
exhibits outstanding performance in image caption
tests, its performance significantly diminishes in
online interactive evaluations closer to real-world
scenarios (Dai et al., 2023).

Guo et al. (2023c) highlights that the range of
model capabilities assessed by different bench-
marks varies, leading to discrepancies between
benchmarks and the model’s performance in do-
main scenarios. Therefore, the quantitative assess-
ment of fundamental capabilities within specific
domains is crucial for users in choosing the most
appropriate benchmarks. We employ a case study
approach to conduct a case-by-case statistical anal-

ysis of the articles in Appendix B, deriving quantita-
tive values for the important capabilities in each do-
main through expert evaluation. Taking the medical
field as an example, among the 25 papers catego-
rized for this study, methods involving memoriza-
tion capabilities are present in 16 papers, reasoning
capabilities in 15, generalization capabilities in 12,
diversification capabilities in 10, and interactive
capabilities in 5. Therefore, memorization capa-
bilities emerge as the most critical in the medical
domain, accounting for 64% of the focus. In ta-
ble 1, we list the number of papers covered in each
domain and analyze the fundamental capabilities
demonstrated by these papers across various do-
mains. Based on this data, we create radar charts
for each domain.

As shown in Figure 2, we constructed radar
charts to illustrate the relative importance of dif-
ferent fundamental capabilities in various domains.
Based on these radar charts, researchers can quan-
tify the differences between benchmarks and real
scenarios. In the following chapters, we will in-
troduce our selection strategy in medical and com-
puter programming domains as examples.

3.1.1 Medical

According to the radar chart, memorization capa-
bilities (64%) and reasoning capabilities (60%) are
important fundamental capabilities in the medical
domain. In scenarios like Medical Diagnosis and
Knowledge Acquisition, LLMs need to engage in
dialogues with patients using their medical knowl-
edge. In this context, long-term memory related
to the domain knowledge and reasoning capabil-
ities to assist in answering questions are crucial
for model performance. In scenarios of Diagnostic
Assistance and Medical Report Generation, LLMs
typically assist doctors in reading patient case in-
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Figure 2: The radar charts of LLMs’ fundamental capabilities in various domains.

MedQA
Model Acc(%)
LLAMA2-70B (Chen et al., 2023h) 61.5
FLAN-PaLM (Singhal et al., 2022) 67.6
Meditron-70B (Chen et al., 2023h) 70.2
Med-PaLM 2 (Singhal et al., 2023) 85.4
GPT4 (Nori et al., 2023b) 90.2

MedMCQA
PubmedBERT (Pal et al., 2022) 41.0
BioMedGPT-10B (Luo et al., 2023b) 51.4
Codex (Liévin et al., 2022) 62.7
VOD (Liévin et al., 2023) 62.9
Med-PaLM 2 (Singhal et al., 2023) 72.3

PubMedQA
BioGPT (Luo et al., 2022) 78.2
Flan-PaLM (Singhal et al., 2022) 79.0
Med-PaLM 2 (Singhal et al., 2023) 79.2
BioGPT-Large (Luo et al., 2022) 81.0
Meditron-70B (Chen et al., 2023h) 81.6

Table 2: The performance of different LLMs on MedQA,
MedMCQA, and PubMedQA.

formation and generating treatment plans. In this
context, short-term memory capabilities and rea-
soning capabilities play a crucial role.

Therefore, we recommend applying LLMs that
excel in memorization capabilities and reasoning
abilities benchmarks to the medical domain. Here,
we provide three recommended medical bench-
marks, with Table 2 summarizing the performance
of different LLMs on these three benchmarks.

MedQA (Jin et al., 2021) is a medical text ques-
tion and answer dataset in a multiple-choice format.
It aims to test the professional knowledge and clin-
ical decision-making abilities of LLMs. The exam-

ination of professional knowledge mainly targets
the memorization capabilities of LLMs, while
the assessment of clinical decision-making abilities
primarily focuses on the reasoning and general-
ization capabilities of LLMs.

MedMCQA (Pal et al., 2022) is a large-scale
multiple-choice question and answer dataset, with
data sourced from All India Institute of Medical
Sciences (AIIMS) and National Eligibility cum En-
trance Test (NEET PG). Different from the MedQA
dataset, besides directly examining the memoriza-
tion capabilities of LLMs, the MedMCQA dataset
includes detailed explanations for each answer, re-
quiring LLMs to possess deep language reasoning
capabilities.

PubMedQA (Jin et al., 2019) is a biomedical
question answering dataset collected from PubMed
abstracts. The task involves generating an answer
in a multiple-choice format of yes/no given a ques-
tion. This dataset demands reasoning over biomed-
ical research texts, especially the capabilities to
understand and analyze quantitative content, in or-
der to answer questions.

In order to demonstrate the effectiveness of our
proposed method for selecting robust backbone
LLM, we chose the medical domain as a case study
to further illustrate the practicality and effective-
ness of our approach.

As outlined in above, we identiy memorization
capabilities and reasoning capabilities as the most
crucial fundamental capabilities in the medical do-
main. Based on this, we recommend models that
perform well on benchmarks (MedQA, MedM-
CQA, and PubMedQA) focused on these capabili-
ties. Through this process, we discover that Med-
PaLM 2 excels in these benchmarks. This finding
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Model pass@1
XwinCoder-34B (Team, 2023b) 75.6
Magicoder-6.7B (Wei et al., 2023b) 76.8
Coderllama-34B (Rozière et al., 2023) 77.4
WizardCoder-33B (Luo et al., 2023e) 79.9
DeepSeek-Coder-33B (Guo et al., 2024) 81.1
GPT-4-Turbo (OpenAI, 2023) 88.4

MBPP
XwinCoder-34B (Team, 2023b) 67.7
Coderllama-70B (Rozière et al., 2023) 75.4
WizardCoder-33B (Luo et al., 2023e) 78.9
DeepSeek-Coder-33B (Guo et al., 2024) 78.7
GPT-4-Turbo (OpenAI, 2023) 83.5

Table 3: The performance of different LLMs on Hu-
manEval and MBPP.

is consistent with the industry recognition that the
model has received in the medical domain. Specifi-
cally, renowned organizations such as HCA Health-
care, BenchSci, Accenture, and Deloitte have de-
ployed the Med-PaLM 2 model across various med-
ical scenarios, validating its value in real-world ap-
plications. In contrast, although RobotGPT-30B
and jianpeiGPT performed well on CMB bench-
mark, their performance in real-world applications
does not match that of the former, further proving
the effectiveness of our selection methods.

3.1.2 Computer Programming
According to the radar chart, reasoning capabil-
ities (91%) are considered the most crucial skill
in computer programming and software devel-
opment, followed by memorization capabilities
(52%). Since code is a symbolic, hierarchical, and
logic-driven language commonly used for handling
complex tasks, the reasoning capabilities of LLMs
are applied in various code scenarios. Short-term
memory helps LLMs understand requirements and
gather contextual information in code generation
and automatic program repair.

Evaluation criteria for programming-related
tasks evolve from single-type code language and
static metrics to multi-type code languages and
metrics (Zhang et al., 2023i; Zan et al., 2023).
Among these, evaluation standards involving multi-
language, multi-type metrics require models to pos-
sess stronger reasoning capabilities. In this paper,
we recommend HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) benchmarks as the ba-
sis for selecting LLMs for programming-related
scenarios. Table 3 presents the performance of
some LLMs on these benchmarks.

4 Conclusion

In this paper, we summarize the fundamental ca-
pabilities of LLMs in domain applications and il-
lustrate how they collaborate. Simultaneously, we
summarize the applications of LLMs in various do-
mains from real-world perspectives. Furthermore,
we outline the key capabilities emphasized in dif-
ferent domains, aiding users in more accurately
applying LLMs in domain applications.

5 Limitations

LLMs have found extensive applications across
various fields. Although we aim to summarize the
applications of LLMs in all domains, our work
does not claim to exhaustively cover all possible
application scenarios. Furthermore, although ev-
ery attempt was made to provide readers with a
comprehensive overview of each domain, the liter-
ature cited and discussed in this document does not
constitute a fully exhaustive collection.

Additionally, in assessing the fundamental capa-
bilities focused on by LLMs in various domains,
we conduct in-depth analyses of each piece of liter-
ature to manually identify these capabilities. How-
ever, it is possible that some other relevant works
were overlooked, potentially leading to inaccura-
cies in our analysis.
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A Interactions of the LLMs

The significant advantages of LLMs are not only
manifested in their typical capabilities, but also in
their strong interactive capabilities. The interac-
tive capabilities are essentially a perfect integration
of the model’s inherent capabilities with external
information. It is primarily reflected in enhanc-
ing the model’s performance by acquiring informa-
tion from the outside environments, planning and
decision-making for external environments, and
using external tools (Xi et al., 2023). In this sec-
tion, we will focus on discussing the capabilities
of LLMs in terms of use tools and environment
interaction, as well as personalized and customized
interaction.

A.1 Use tools and environment interaction

Integrating specialized tools with LLMs can fully
leverage their unique advantages, addressing the
limitations of LLMs in specific domain tasks (Qin
et al., 2023b). There are primarily two modes of
interaction between large models and tools: First,
external tools can continuously modify and refine
the instructions for LLMs, enabling LLMs to per-
form more complex tasks. ToolFormer (Schick
et al., 2023) utilizes prompts to guide the model
to generate candidate texts that meet the instruc-
tions’ requirements, followed by an automated pro-
cess to filter high-quality results. Additionally,
ART (Paranjape et al., 2023) employs a specific
program syntax to build a task repository. When
a new task emerges, it retrieves similar tasks from
this repository to add to the prompt. Moreover,
LLMs can also play a coordinating role in the sys-
tem, issuing outlines for solving tasks and automati-
cally matching sub-tasks outlined in the framework
with APIs, systems and models that have specific
functionalities to complete tasks (Patil et al., 2023;
Liang et al., 2023b; Qin et al., 2023c).

LLMs significantly expand their application
scope by interacting with external environments
through unified natural language interfaces and tool
use. For instance, WebGPT (Nakano et al., 2021)
interacts with a text-based web browsing environ-
ment, enabling end-to-end optimization search and
aggregation through imitation and reinforcement
learning. WebShop (Yao et al., 2022) trains LLMs
using real-world product information and crowd-
sourced textual instructions, enabling navigation
and various operations on e-commerce websites.
HuggingGPT interacts with the Huggingface com-

munity, utilizing ChatGPT to process user requests,
selecting models based on function descriptions
within the community, and executing AI tasks with
the chosen models. The interaction of LLMs with
database environments adds capabilities such as
knowledge base management, unified data vec-
torization storage and indexing, and automated
prompt generation and optimization. This ensures
complete control over sensitive data and environ-
ments, preventing any data privacy breaches or se-
curity risks (Team, 2023a). Vector databases pro-
vide large models with expanded memory storage
space and enhanced capabilities for advanced query
processing (Wang et al., 2021b).

A.2 Personalized and customized interaction
The enhancement of LLMs’ capabilities has trans-
formed the interaction between humans and per-
sonalized systems. Unlike traditional recommen-
dation systems and search engines that passively
filter information, LLMs provide a foundation for
proactive user participation (Chen et al., 2023d).
Firstly, LLMs extend the capability of fact retrieval
into explicit knowledge bases, offering a more
comprehensive knowledge source for recommen-
dation systems (Jiang et al., 2020; Heinzerling and
Inui, 2021; Wang et al., 2021a). This allows for a
broader and more accurate understanding of user
queries and preferences. Secondly, the instructions
tailored for recommendation scenarios can make
LLMs significantly outperform traditional recom-
menders (Kang et al., 2023; Zhang et al., 2023b).
The characteristics of users and their interaction
history can be efficiently transformed into natu-
ral language instructions for input to LLMs (Chen,
2023). Furthermore, the robust interpretability of
LLMs enables the creation of precise, natural, and
user-preference-aligned custom explanations, al-
leviating the limitations of traditional, formulaic
explanations (Li et al., 2020, 2021, 2023f). Lastly,
LLMs with strong reasoning and decision-making
capabilities, such as GPT-NAS (Yu et al., 2023a),
GENIUS (Zheng et al., 2023), and LLMatic (Nasir
et al., 2023), provide enhanced support for person-
alized customization services. These models lever-
age their advanced cognitive capabilities to deliver
more accurate and user-centric recommendations,
enhancing the overall personalization experience.

B Summary of Capabilities in Various
Domains
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Applications

Medicine

Memorization: Singhal et al. (2022) / Nori et al. (2023a) / Zhang et al. (2023a) / Li et al. (2023k) / Chen et al. (2023g) / Shi et al. (2023) /
Li et al. (2023b) / Flores et al. (2023) / Joseph et al. (2023) / Lu et al. (2023a) / Luo et al. (2023a) / Tian et al. (2023) /
Tang et al. (2023a) / Goldsack et al. (2023) / Veen et al. (2023) / Shaib et al. (2023) /

Reasoning: Nori et al. (2023a) / Zhang et al. (2023a) / Li et al. (2023k) / Chen et al. (2023g) / Shi et al. (2023) / Li et al. (2023b) /
Luo et al. (2023a) / Tian et al. (2023) / Tang et al. (2023a) / Goldsack et al. (2023) / Veen et al. (2023) / Shaib et al. (2023) /
Wang et al. (2023d) / Kung et al. (2023) / Haruna-Cooper and Rashid (2023) /

Generalization: Li et al. (2023b) / Flores et al. (2023) / Joseph et al. (2023) / Lu et al. (2023a) / Luo et al. (2023a) / Tian et al. (2023) /
Zhao et al. (2023b) / Wang et al. (2023d) / Wu et al. (2023a) / Wang et al. (2023e) / Li (2023) / Miftahul Amri and Khairatun Hisan (2023) /

Diversification: Li et al. (2023b) / Luo et al. (2023a) / Tian et al. (2023) / Zhao et al. (2023b) / Wang et al. (2023d) / Wu et al. (2023a) /
Wang et al. (2023e) / Li (2023) / Abd-alrazaq et al. (2023) / Miftahul Amri and Khairatun Hisan (2023)

Interaction: Chen et al. (2023g) / Shi et al. (2023) / Luo et al. (2023a) / Tian et al. (2023) / Abd-alrazaq et al. (2023) /

Law

Memorization: Yue et al. (2023) / Cui et al. (2023) / Savelka et al. (2023) / Deroy et al. (2023) / Katz et al. (2023) / Chalkidis et al. (2020) /
Nay (2022) / Pettinato Oltz (2023) / Iu and Wong (2023) / Bommarito II and Katz (2022) / Yu et al. (2022) /

Reasoning: (Yue et al., 2023) / Cui et al. (2023) / Huang et al. (2023) / (Blair-Stanek et al., 2023) / Katz et al. (2023) / Nay (2022) /
Iu and Wong (2023) / Hamilton (2023) / Yu et al. (2022) / Trautmann et al. (2022) /

Generalization: Nay (2022) /

Diversification: Yue et al. (2023) / Nay (2022) /

Interaction: Savelka et al. (2023) / Deroy et al. (2023) / Huang et al. (2023) / (Katz et al., 2023) / (Chalkidis et al., 2020) / Nay (2022) /
Pettinato Oltz (2023) / Bommarito II and Katz (2022) / Yu et al. (2022) /

Computational
Biology

Memorization: Consortium (2009) / Mistry et al. (2021) / Lin et al. (2022) / Elnaggar et al. (2020) / Chen et al. (2023a) / Outeiral and Deane (2022) /
Tang et al. (2023a) / Gligorijević et al. (2021) / Zhang et al. (2022c) / Gainza et al. (2019) / Sverrisson et al. (2020) / Zhang et al. (2022a) /
Xu et al. (2023a) / Gao et al. (2019) / Senior et al. (2020) / Wu et al. (2022) / Fang et al. (2022) /

Reasoning: Consortium (2009) / Mistry et al. (2021) / Lin et al. (2022) / Elnaggar et al. (2020) / Chen et al. (2023a) / Outeiral and Deane (2022) / Tang et al. (2023a) /
Gligorijević et al. (2021) / Zhang et al. (2022c) / Gainza et al. (2019) / Sverrisson et al. (2020) / Zhang et al. (2022a) / Xu et al. (2023a) /
Gao et al. (2019) / Senior et al. (2020) / Wu et al. (2022) / Fang et al. (2022) / Chowdhury et al. (2021) / Wang et al. (2022b) / Chen et al. (2023b) /

Generalization: Consortium (2009) / Mistry et al. (2021) / Lin et al. (2022) / Elnaggar et al. (2020) / Chen et al. (2023a) / Outeiral and Deane (2022) /
Tang et al. (2023a) / Gligorijević et al. (2021) / Zhang et al. (2022c) / Gainza et al. (2019) / Sverrisson et al. (2020) / Zhang et al. (2022a) /
Xu et al. (2023a) / Gao et al. (2019) / Senior et al. (2020) / Wu et al. (2022) / Fang et al. (2022) /

Diversification: Consortium (2009) / Mistry et al. (2021) / Tang et al. (2023a) / Gligorijević et al. (2021) / Zhang et al. (2022c) / Gainza et al. (2019) /
Sverrisson et al. (2020) / Zhang et al. (2022a) / Xu et al. (2023a) / Gao et al. (2019) / Senior et al. (2020) / Wu et al. (2022) / Fang et al. (2022) /

Interaction: Consortium (2009) / Mistry et al. (2021) /

Finance

Memorization: Liu et al. (2020) / Mavi et al. (2023) / Guo et al. (2023b) / Xie et al. (2023b) / Liu et al. (2023d) /
Xie et al. (2023a) / Wu et al. (2023b) / Zhang and Yang (2023) /

Reasoning: Mavi et al. (2023) / Chen et al. (2022) / Guo et al. (2023b) / Liu et al. (2023d) / Yang et al. (2023b) /
Xie et al. (2023a) / Wu et al. (2023b) / Zhang and Yang (2023) /

Generalization: Wu et al. (2023b) / Zhang and Yang (2023) /

Diversification: Mavi et al. (2023) / Chen et al. (2022) / Wu et al. (2023b) / Zhang and Yang (2023) /

Interaction: Mavi et al. (2023) / Wu et al. (2023b) / Zhang and Yang (2023) /

Social Sciences
and Psychology

Memorization: Akata et al. (2023) / Griffin et al. (2023) / Park et al. (2022) / Li et al. (2023h) / Park et al. (2023) / Li et al. (2023j) /

Reasoning: Zhang and Soh (2023) / Akata et al. (2023) / Hagendorff et al. (2022) / Aher et al. (2023) / Kosinski (2023) / Griffin et al. (2023) / Maddela et al. (2023) /
Xu et al. (2023b) / Fu et al. (2023) / Qin et al. (2023a) / Lai et al. (2023) / Liu et al. (2023c) / Park et al. (2022) / Li et al. (2023h) /
Park et al. (2023) / Li et al. (2023j) / Törnberg et al. (2023) / Ziems et al. (2023) / Mu et al. (2023) / Egami et al. (2023) /

Generalization: Park et al. (2023) / Li et al. (2023j) /

Diversification: Park et al. (2022) / Li et al. (2023h) / Törnberg et al. (2023) /

Interaction: Fu et al. (2023) / Qin et al. (2023a) / Lai et al. (2023) / Liu et al. (2023c) /

Computer Programming
and Software
Engineering

Memorization: Zhang et al. (2023c) / Li et al. (2023e) / Hong et al. (2023) / Xia and Zhang (2023a) / Xia and Zhang (2023b) / Joshi et al. (2023) /
Zhang et al. (2023e) / Geng et al. (2024) / Zhao et al. (2023c) / Englhardt et al. (2023) / Li et al. (2023d) / Deng et al. (2023) /

Reasoning: Jiang et al. (2023b) / Ni et al. (2023) / Li et al. (2023i) / Ji et al. (2023) / Dong et al. (2023) / Liu et al. (2023a) / Li et al. (2023e) /
Hong et al. (2023) / Xia and Zhang (2023a) / Xia and Zhang (2023b) / Joshi et al. (2023) / Zhang et al. (2023e) / Geng et al. (2024) / Zhao et al. (2023c) /
Englhardt et al. (2023) / Xing et al. (2023) / (Plein et al., 2023) / Xie et al. (2023c) / Li et al. (2023d) / Nass et al. (2023) / Deng et al. (2023) /

Generalization: Englhardt et al. (2023) /

Diversification: Jiang et al. (2023b) / Dong et al. (2023) / Hong et al. (2023) /

Interaction: Wei et al. (2023c) /

Robots and Agents

Memorization: Ahn et al. (2022) / Huang et al. (2022) / Driess et al. (2023) / Rana et al. (2023) / Karpas et al. (2022) / Vemprala et al. (2023) / Song et al. (2023) /
Skrynnik et al. (2022) / Fan et al. (2022) / Yuan et al. (2023) / Nottingham et al. (2023) / Wang et al. (2023h) / Wang et al. (2023a) / Li et al. (2023c) /
Hamilton (2023) / Chen et al. (2023f) / Du et al. (2023) / Liang et al. (2023a) / Chan et al. (2023) / Park et al. (2023) / Lin et al. (2023) / Gao et al. (2023) /

Reasoning: Ahn et al. (2022) / Huang et al. (2022) / Driess et al. (2023) / Rana et al. (2023) / Karpas et al. (2022) / Vemprala et al. (2023) / Song et al. (2023) /
Skrynnik et al. (2022) / Fan et al. (2022) / Yuan et al. (2023) / Nottingham et al. (2023) / Wang et al. (2023h) / Wang et al. (2023a) / Li et al. (2023c) /
Hamilton (2023) / Chen et al. (2023f) / Du et al. (2023) / Liang et al. (2023a) / Chan et al. (2023) / Park et al. (2023) / Lin et al. (2023) / Gao et al. (2023) /

Generalization: Ahn et al. (2022) / Huang et al. (2022) / Driess et al. (2023) /

Diversification: Huang et al. (2022) / Driess et al. (2023) / Rana et al. (2023) / Fan et al. (2022) / Li et al. (2023c) / Hamilton (2023) /
Chen et al. (2023f) / Du et al. (2023) / Liang et al. (2023a) / Chan et al. (2023) / Park et al. (2023) / Lin et al. (2023) / Gao et al. (2023)

Interaction: Rana et al. (2023) / Karpas et al. (2022) / Vemprala et al. (2023) / Song et al. (2023) / Fan et al. (2022) / Wang et al. (2023a) /

AI for Disciplines

Memorization: Jablonka et al. (2023) / Spiliopoulou et al. (2022) / Bi et al. (2023) / Nguyen et al. (2023) / Chen et al. (2023e) /
He-Yueya et al. (2023) / Norberg et al. (2023) / Gu (2023) / Bainbridge et al. (2023) /

Reasoning: Ouyang et al. (2023) / Jablonka et al. (2023) / Bran et al. (2023) / Liang et al. (2023c) / Ding et al. (2023) / Spiliopoulou et al. (2022) / Bi et al. (2023) /
Nguyen et al. (2023) / Zhang et al. (2023d) / He-Yueya et al. (2023) / Norberg et al. (2023) / Gu (2023) / Bainbridge et al. (2023) /

Generalization: Jablonka et al. (2023) / Spiliopoulou et al. (2022) / Nguyen et al. (2023) / He-Yueya et al. (2023) /
Norberg et al. (2023) / Gu (2023) / Bainbridge et al. (2023) /

Diversification: Nguyen et al. (2023) / Gu (2023) / Bainbridge et al. (2023) /

Interaction: Gu (2023) / Bainbridge et al. (2023) /

Creative Work

Memorization: See et al. (2019) / Yang et al. (2022) / Yang et al. (2023a) / Liu et al. (2023e) /

Reasoning: See et al. (2019) / Tan et al. (2021) / Guan et al. (2021) / Yang et al. (2022) / Yang et al. (2023a) / Branch et al. (2021) / Yuan et al. (2022) / Chakrabarty et al. (2022) /
Yu et al. (2023b) / Lian et al. (2023) / Feng et al. (2023) / Liu et al. (2023e) / Wang et al. (2023g) / Jonason et al. (2023) / Bai et al. (2023) / Calderwood et al. (2022) /

Generalization: Chakrabarty et al. (2022) / Yu et al. (2023b) /

Diversification: See et al. (2019) / Tan et al. (2021) / Guan et al. (2021) / Yang et al. (2022) / Yang et al. (2023a) / Branch et al. (2021) / Yuan et al. (2022) /
Chakrabarty et al. (2022) / Yu et al. (2023b) / Feng et al. (2023) / Liu et al. (2023e) / Wang et al. (2023g) / Jonason et al. (2023) / Bai et al. (2023) / Calderwood et al. (2022) /

Interaction: Yuan et al. (2022) / Yu et al. (2023b) /

Figure 3: Correspondence between domains and fundamental capabilities in this paper.
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