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Abstract

Large language models (LLMs) have success-
fully served as a general-purpose interface
across multiple tasks and languages, while the
adaptation of voice LLMs is mostly designed
for specific purposes (either single-task or
monolingual), where the advantages of LLMs
especially for low-resource language process-
ing and zero-shot task generalization are less
exploited in the audio community. To bridge
the gap, we introduce Make-A-Voice as a multi-
modal voice LLM and conduct a comprehen-
sive study on its capability to deal with multi-
ple tasks/languages. When trained on ∼200K
hours of 6-language data for 4 voice generation
applications, Make-A-Voice emerges notable
advantages: 1) as scalable learners to improve
performance with end-to-end local and global
multiscale transformers; and 2) as multitask
learners by adjusting prompts to share common
knowledge across modalities (speech/singing)
and present in-context learning abilities by gen-
eralizing to unseen tasks not explicitly train
on; 3) as multilingual learners to alleviate data
scarcity of low-resource languages by includ-
ing rich-resource language training data. Exper-
imental results demonstrate that Make-A-Voice
exhibits superior audio quality and style similar-
ity compared with competitive baseline models
in monolingual/cross-lingual voice generation.
1

1 Introduction

Large language models (LLMs) (Devlin et al.,
2018; Raffel et al., 2020; Ouyang et al., 2022;
Zhang et al., 2022b) trained on massive corpora
of texts have shown their ability to perform new
tasks from textual instructions or a few examples.
The LLM-based interfaces excel at generating text
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github.io

for tasks that require the modeling of complex inter-
actions, and they are trained to predict sequences of
discrete tokens, have also been adapted to continu-
ous, audio signals (Borsos et al., 2022; Agostinelli
et al., 2023; Kreuk et al., 2022).

Current voice LLMs (Kharitonov et al., 2023;
Wang et al., 2023a; Zhang et al., 2023) cast voice
synthesis as a language modeling task in a discrete
representation space. VALL-E (Wang et al., 2023a)
proposes a language model approach for TTS with
audio codec codes as intermediate representations.
Kharitonov et al. (2023) introduce a hierarchical
approach that combines two types of audio tokens.
Zhang et al. (2023) train a multilingual conditional
codec language model to predict the acoustic token
sequences of speech in different languages. Despite
the success achieved, most existing voice LLMs
are designed for specific purposes (single-task or
monolingual), where the advantages of LLMs es-
pecially for low-resource language processing and
zero-shot task generalization are less exploited in
the audio community.

To bridge the gap, we leverage the intuition that
GPTs can process multiple tasks or languages as
a general-purpose interface and emerge strong in-
context learning capabilities. In this work, we con-
duct a comprehensive study on voice LLMs’ capa-
bility to deal with multiple tasks (i.e., speech and
singing voice modeling) and multiple languages
(i.e., rich and low resource data). We refer to this
resulting model as Make-A-Voice, for multimodal
LLMs to synthesize and manipulate voice signals.
Make-A-Voice is a decoder-only model trained
on a mixture of tasks, emerging capabilities of
cross-task knowledge sharing, generalization to
new tasks, and alleviating data scarcity of low-
resource languages.

Make-A-Voice employs self-supervised tokens
for the unified voice generation pipeline: 1) Se-
mantic tokens determine the semantic meaning
given text or speech; 2) Acoustic tokens provide
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acoustic information given various control con-
ditions, which can be learned in a large amount
of self-supervised audio-only data. Make-A-
Voice is trained on ∼200K hours of multilingual
data in 6 languages, and we introduce 4 applica-
tions: text-to-speech (TTS), voice conversion (VC),
singing voice synthesis (SVS), and singing voice
conversion (SVC). Experimental results demon-
strate that Make-A-Voice achieves SOTA results in
monolingual/cross-lingual zero-shot voice genera-
tion. Subjective and objective evaluation show that
Make-A-Voice exhibits superior audio quality and
style similarity compared with baselines. The key
takeaways are as follows:

• Make-A-Voice as scalable learners to improve
performance. Make-A-Voice inherently lever-
ages the transformer architecture and scales the
models’ size in depth and width. Make-A-Voice
predicts long sequences with end-to-end differ-
entiable multiscale (local and global) transform-
ers to reduce the extremely long sequences of
the acoustic token, where scaling the model size
(520M (medium), and 1.2B (large) parameter)
from 160M (base) results in 15% and 37% im-
provement for TTS.

• Make-A-Voice as multilingual learners to alle-
viate data scarcity of low-resource languages.
Combined with more rich-resource language
data, model training benefits from a variety of
acoustic conditions on top of semantic mean-
ings. Make-A-Voice excels at zero-shot trans-
ferring acoustic attributes (speaker identity, emo-
tion, prosody) even in low-resource languages,
which has witnessed a 20% SIM gain and 7.9%
WER drop in TTS synthesis.

• Make-A-Voice as multitask learners for cross-
task knowledge sharing, even generalizable
to unseen tasks. Make-A-Voice is trained with
a combination of semantic and acoustic model-
ing tasks across speech/singing voice modalities
by adjusting prompts (referring to Figure 1); 1)
It shares common knowledge across tasks (e.g.,
multi-quantization codec modeling across modal-
ities), as evidenced by 27% SIM improvement in
SVS with the help of speech tasks; and 2) Make-
A-Voice illustrates in-context learning abilities
by generalizing to tasks not explicitly trained
on, including cross-lingual timbre transferring,
generating coherent emotion, and noise continua-
tions.

2 Related Works

2.1 Generative Voice Models

Text-guided voice synthesis (text-to-speech and
singing voice synthesis) typically converts input
text into mel-spectrogram (e.g., Tacotron (Wang
et al., 2017), FastSpeech (Ren et al., 2019)), which
is then transformed to waveform using a separately
trained vocoder (Kong et al., 2020; Huang et al.,
2021). Recent generative models cast voice syn-
thesis as a language modeling task to perform in-
context learning: VALL-E (Wang et al., 2023a) use
discrete codes derived from an off-the-shelf neural
audio codec model, and regard TTS as a condi-
tional language model. Zhang et al. (2023) lever-
age back-translation and prompt-guided LLMs for
high-quality TTS with limited supervision. Jiang
et al. (2023) train a prosody language model with
arbitrary-length speech prompts to produce expres-
sive and controlled prosody.

Despite the success achieved, most voice LLMs
are designed for single-task or as monolingual. In
this work, Make-A-Voice presents emerging ca-
pabilities as scalable multilingual and multitask
learners, which provides critical takeaways for the.

2.2 Multitask Learning

Building a simple and multitask learning frame-
work has attracted increasing attention in the com-
munity: NANSY (Choi et al., 2021a, 2022) is
trained in a self-supervised manner that does not
require any annotations paired with audio, and effi-
ciently tackles multiple applications after training
the backbone network. Lee et al. (2021) design
a multitask learning framework with joint speech
and text training that enables the model to generate
dual mode output (speech and text) simultaneously
in the same inference pass. Wang et al. (2023b)
combine neural codec language modeling with mul-
titask learning using task-dependent prompting, ca-
pable of zero-shot TTS and various speech transfor-
mation tasks, dealing with clean and noisy signals.
Rubenstein et al. (2023) fuse text-based and speech-
based language models into a unified multitask ar-
chitecture to process and generate text and speech.
In this work, we demonstrate voice LLMs’ capa-
bilities as multitask learners across various voice
generation tasks. Make-A-Voice demonstrates the
improved capability with multitask learning by
transferring common knowledge across modali-
ties and illustrates in-context learning abilities by
performing tasks Make-A-Voice is not explicitly
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trained on.

2.3 Multilingual Learning

Multilinguality has been a very active research area
in speech and NLP. Duquenne et al. (2022) intro-
duce a large-scale multilingual speech-to-speech
corpus and demonstrate that model pre-training
and sparse scaling using a mixture of experts bring
significant gains to translation performance. Voice-
Box (Le et al., 2023) trains a non-autoregressive
flow-matching model on 50K hours of multilingual
audiobooks from six languages. Massively Multi-
lingual Speech (Pratap et al., 2023) increases sup-
ported languages with rich-resource datasets and
effective self-supervised learning. In this work, we
present voice LLMs’ capabilities as multilingual
learners, where the rich-resource language data is
included to learn various acoustic conditions, allevi-
ating the data scarcity of prompt-guided in-context
learning for low-resource language.

3 Voice Large Language Models
In this section, we overview the discrete voice rep-
resentation, namely semantic and acoustic tokens,
and then introduce the decoder-only unified voice
synthesis model Make-A-Voice. Next, we intro-
duce the designs of the multitask learning in Sec-
tion 3.3 and multilingual approaches in Section 3.4,
as well as the scalable multi-scale transformer ar-
chitecture in Section 3.5.

3.1 Voice Representation

Semantic tokens. It is crucial to extract rich lin-
guistic information from the speech signal. To
this end, we resort to XLSR-53: a wav2vec 2.0
model pre-trained on 56k hours of speech in 53
languages (Conneau et al., 2020). In the following,
a k-means algorithm is applied to the learned rep-
resentations of the unlabelled speech to generate
K1 cluster centroids at every 20-ms frame. In the
end, a speech utterance y is represented as semantic
tokens with [s1, s2, . . . , sT ] , si ∈ {0, 1, . . . ,K1 −
1},∀1 ≤ i ≤ T , where T is the number of frames.

Acoustic tokens. The audio encoder E of codec
models (Zeghidour et al., 2021; Défossez et al.,
2022) consists of several convolutional blocks with
a total downsampling rate of 320 and generates
continuous representations at every 20-ms frame
in 16kHz. The residual vector-quantizer Q pro-
duces discrete representations aq with a codebook
size of K2, using a vector quantization layer (Va-
suki and Vanathi, 2006). In the end, we flat-

ten all the codebooks and thus a speech utter-
ance y is represented as acoustic tokens with
[a1, a2, . . . , aT ] , ai ∈ {0, 1, . . . ,K2 − 1}, ∀1 ≤
i ≤ T , where T is the number of frames.

3.2 Make-A-Voice: Controllable Voice LLMs
As illustrated in Figure 1 and Table 1, Make-A-
Voice casts voice synthesis as language model-
ing tasks with self-supervised tokens, where voice
synthesis is broken down into more manageable
pieces (i.e., semantic modeling or acoustic model-
ing) and jointly learned in a decoder-only language
model, where various conditioning mechanisms are
investigated in 1) semantic modeling: semantic
tokens s determine the semantic meaning given
text or speech; 2) conditional acoustic modeling:
acoustic tokens a are guided by control conditions
(speaker, emotion, prosody, and style) and learned
on top of semantic meanings in a large amount of
self-supervised audio-only data. In the end, a unit-
based vocoder synthesizes high-fidelity waveforms
from compressed acoustic representations.

• Zero-shot TTS / VC. Given a target text y, TTS
models first determine semantic tokens s, and
then perform in-context learning given acoustic
prompt ap derived from a reference utterance.
During training, we randomly select two non-
overlapping speech windows from each example
and consider one window as a prompt and the
other as a target. For VC, we extract the semantic
tokens from the Hubert with the K-means model.

• Zero-shot SVS / SVC. Different from speech,
singing voice requires accurate rhythm and pitch
control guided by MIDI representation, where
the fundamental frequency F0 and phone-level
duration are given respectively in semantic and
acoustic modeling. In practice, F0 could be pre-
dicted by a separately-trained neural network pro-
vided MIDI score, and thus we directly take the
F0 value as condition signals for simplification
following (Liu et al., 2022).

3.3 Multitask Learner
As illustrated in Table 1, Make-A-Voice presents
strong controllability with flexible conditioning as
a unified voice synthesis framework, where Make-
A-Voice is trained with a combination of semantic
and acoustic modeling tasks across speech/singing
voice modalities by adjusting prompts. We signal
to the model which task it should perform on a
given input by prefixing the information with a
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Figure 1: Voice generation tasks are jointly learned in a decoder-only language model. Prompts can be adjusted for
different tasks with a variety of conditions (speaker, emotion, prosody, and style).

Task Modality Prompts

Semantic modeling
1 Speech Text
2 Singing Text, duration

Acoustic modeling
3 Speech Reference acoustic, semantic, pitch F0

4 Singing Reference acoustic, semantic

Table 1: Multitask learning by adjusting prompts.

tag specifying the task, referring to 3.4. Make-A-
Voice, as a multitask learner, exhibits the following
competitive advantages:

• Towards a general-purpose interface across vari-
ous voice generation tasks.

• Cross-task knowledge sharing: multi-task learn-
ing improves overall performance by transfer-
ring and sharing common knowledge (e.g., multi-
quantization codec modeling).

• Generalization to new tasks: it presents in-
context learning abilities by performing tasks
Make-A-Voice is not explicitly trained on, such
as cross-lingual timbre transferring, generating
coherent emotion, and noise continuations.

As expected, Make-A-Voice demonstrates the
outperformed audio quality and style similarity
in zero-shot speech and singing voice synthesis,
where a complex task is broken down into more
manageable pieces. We refer the reader to Sec-
tion 5.3 for a detailed analysis of our findings.

3.4 Multilingual Learner
With large-scale training data and powerful models,
speech models can now generate high-quality sam-
ples with unseen styles (e.g., timbre, emotion, and
prosody) derived from an acoustic reference (i.e.,
custom voice). However, replicating this success is
a significant challenge for low-resource languages
due to data scarcity.

To alleviate it, Make-A-Voice includes rich-
resource language and trains a model on a mix-
ture of arbitrarily multilingual voice, where 1) lim-
ited low-resource language data connects its text
to semantic meanings, and 2) a large amount of
rich-resource language data contains many speak-
ers with various accents, diverse demographics,
and heterogeneous recording conditions, which in-
troduces a variety of acoustic conditions on top
of semantic meanings with different conditioning
mechanisms. As such, voice LLMs demonstrate
capturing acoustic diversity (speaker identity, emo-
tion, prosody) in zero-shot scenarios, even for low-
resource languages. We refer the reader to Sec-
tion 5.3 for a summary of our findings.

We signal the model which language to perform
on a given input by prefixing the input with a tag
specifying the task and language. For example, to
query the model to perform text-to-semantic trans-
lation on an utterance in English, the tokenized in-
put would be preceded by the two tags [En] [T2S].
To enable the model to be cross-lingual, we em-
ploy multilingual HuBERT and codec models
to respectively extract the semantic and acoustic
discrete representations, which are pre-trained on
human voice in multiple languages.

3.5 Scalable Architecture

Recent research (Agostinelli et al., 2023; Kreuk
et al., 2022) leverages the transformer architec-
ture (Vaswani et al., 2017) for improving scala-
bility and proposes to represent audio signals as
multiple streams nq of discrete tokens and flatten
these codes to the length of T × nq, where T is
the number of frames. It comes at a high compu-
tational cost for extremely long sequences due to
the quadratic cost of self-attention and large feed-
forward networks per position.

To alleviate it, Make-A-Voice (denoted as θAR)
predicts long sequences with end-to-end differen-
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Tasks Language Dataset Testing set

Group by tasks (Make-A-Voice as multitask learners.)
Speech generation/conversion Ja, De, Fr, En, Es, Zh Librilight, Gigaspeech, WenetSpeech, CSS... LibriTTS/VCTK
Singing generation/conversion En, Zh OpenSinger, M4Singer, CSD... Opencpop

Group by languages (Make-A-Voice as multilingual learners.)
Low-resource Ja, De, Fr, Es CSS, CSD CSS
Rich-resource En, Zh OpenSinger, Librilight, Gigaspeech... Opencpop, LibriTTS

Table 2: Dataset usage in training and inference stages. We have attached detailed information on the data
configuration in Appendix A.

Concat Concat Concat

Global Transformer

Split Split Split

Local 
Transformer

Local 
Transformer

Local 
Transformer

eos eoseos

b1 b2 b3a1a2a3 c1c2c3

c1c2c3b1 b2 b3

Figure 2: Overview of the architecture of differentiable
multi-scale transformer.

tiable multiscale transformers similar to Yu et al.
(2023); Yang et al. (2023). This enables sub-
quadratic self-attention, unlocking better perfor-
mance at reduced cost for both training and genera-
tion. As illustrated in Figure 2: 1) the token embed-
ding matrix EG maps integer-valued tokens x0..T to
m dimensional embeddings, and concatenate with
continuous speech representation in time axis (if
any), following which 2) we chunk it into patches
of size P of length K = T

P , 3) a large global
transformer θglobal

AR module outputs patch represen-
tations G1:K

o = θ
global
AR (G0:K−1

i ), and 4) a small
local transformer module operates on a single patch
containing P elements, each of which is the sum of
an output from the global model and an embedding
of the previous tokens, and autoregressively predict
the next patch L1:K

o = θlocal
AR (L0:K−1

i +G1:K
o ).

Make-A-Voice presents the improvements pri-
marily from scaling the models’ size in depth and
width without the requirement of scattered model-
specific methodologies. As expected, scaling the
model size (160M (base), 520M (medium), and
1.2B (large) parameter) results in better scores. We
refer the reader to Section 5.3 for our findings.

3.6 Reconstructing High-Fidelity Waveforms

We train a unit-based neural vocoder from scratch
for the acoustic unit to waveform generation. In-
spired by BigVGAN (Lee et al., 2022), the synthe-
sizer includes the generator and multi-resolution
discriminator (MRD). The generator is built from a
set of look-up tables (LUT) that embed the discrete
representation and a series of blocks composed of
transposed convolution and a residual block with
dilated layers. The transposed convolutions upsam-
ple the encoded representation to match the input
sample rate. Details are included in Appendix C.2.

4 Training and Evaluation

4.1 Dataset

Table 2 lists the used datasets with six languages,
with English (En), Chinese (Zh) (totally ∼200k
hours) as rich-resource language settings and four
languages French (Fr), German (De), Spanish
(Es), Japanese (Ja) (totally ∼80 hours) as low-
resource settings. Overall, we have ∼200k hours
of 16 kHz audio as training data. For text sequence,
we tokenize it into the phoneme sequence with
an open-source grapheme-to-phoneme conversion
tool (Sun et al., 2019). During the evaluation, we
randomly choose sentences to construct the zero-
shot testing set for each application task, in which
the voice used for prompting is never seen by the
model at training, and it has to reproduce the char-
acteristics from a single prompt example. We have
attached detailed data configuration in Appendix A.

4.2 Evaluation Metrics

Intelligibility and accuracy. We employ word er-
ror rate (WER) to evaluate the intelligibility of
the generated speech by transcribing it using a
wav2vec ASR system. We transcribe the translated
speech for accuracy and then calculate the BLEU
score (Papineni et al., 2002) between the generated
and the reference text. For English-only setups,
we use the large model2 pretrained and fine-tuned

2https://github.com/facebookresearch/
fairseq/blob/main/examples/wav2vec/README.md#
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on Libri-Light and Librispeech on 16kHz sampled
speech audio. For multilingual settings, we use
ASR models publicly released on HuggingFace
following (Duquenne et al., 2022).

Style quality and similarity. Speaker similarity
score (SIM) assesses the coherence of the generated
speech in relation to the speaker’s characteristics,
which is calculated as the cosine similarity between
the speaker embeddings of the generated speech
and the desired speech signals. F0 Frame Error
(FFE) measures the timbre and prosody similarity
of synthesized and reference audio, respectively.

Subjective evaluation. We also conduct a
crowd-sourced human evaluation via Amazon Me-
chanical Turk, which is reported with 95% confi-
dence intervals (CI), and analyze two aspects: style
similarity (speaker, emotion, and prosody) and au-
dio quality (clarity, high-frequency), respectively
scoring SMOS and MOS. More information has
been attached in Appendix D.

4.3 Baseline

We compare the generated audio samples with
other systems, including 1) GT, the ground-truth
audio; 2) YourTTS (Casanova et al., 2022), Gen-
erSpeech (Huang et al., 2022b), VALL-E (Wang
et al., 2023a) for English zero-shot TTS; 3)
YourTTS (Casanova et al., 2022) for zero-shot
multilingual TTS; 4) NANSY (Choi et al., 2022)
and PPG-VC (Liu et al., 2021) for VC; 5) Diff-
singer (Liu et al., 2022) and FFT-Singer for SVS;

4.4 Model Configurations

For semantic representations, we apply XLSR-
53 pre-trained on 56k hours of speech in 53 lan-
guages (Conneau et al., 2020) and use k-means
to discretize 12th-layer embeddings into semantic
tokens with a codebook of size 1000 and a total
downsampling rate of 320. For acoustic represen-
tation, we train the SoundStream model with 12
quantization levels, each with a codebook of size
1024 and the same downsampling rate of 320. We
take three quantization levels as the acoustic tokens,
representing each frame as a flat sequence of tokens
from the first, second, and third quantization lay-
ers. We trained three sets of Make-A-Voice, with
160M (base), 520M (medium), and 1.2B (large)
parameters. As for the unit-based vocoder, we use
the modified V1 version of BigVGAN. A compre-
hensive table of hyperparameters is available in

pre-trained-models

Appendix B. Except explicitly stated, we use our
520M (medium) model for downstream evaluation.

During training, we train Make-A-Voice for
100K steps using 8 NVIDIA V100 GPUs with a
batch size of 6000 tokens for each GPU on the
publicly-available fairseq framework (Ott et al.,
2019). Adam optimizer is used with β1 =
0.9, β2 = 0.98, ϵ = 10−9. S3 model is optimized
with a segment size of 8192 and a learning rate of
1× 10−4 until 500K steps using 4 NVIDIA V100
GPUs. For sampling, we employ top-p (Holtzman
et al., 2019) sampling with p = 0.25.

5 Results And Analysis

5.1 Make-A-Voice as Multitask Learners

Zero-shot Text-to-Speech. 1) For the intelligi-
bility of the generated speech, Make-A-Voice has
achieved a WER of 6.7, comparable with other sys-
tems, indicating that Make-A-Voice could generate
accessible speech of good quality as previous non-
autoregressive TTS families. 2) For audio quality,
Make-A-Voice has achieved the highest MOS with
scores of 4.04 compared with the baseline models,
demonstrating the effectiveness of the vocoder in
generating high-fidelity waveforms. 3) Regarding
style similarity, Make-A-Voice scores the SIM of
0.85, showing that Make-A-Voice surpasses the
state-of-the-art models in transferring the style of
custom voices. Informally, Make-A-Voice is op-
timized in a large amount of self-supervised data,
which contains many speakers with various accents,
diverse demographics, and heterogeneous record-
ing conditions, to improve robustness and general-
ization in zero-shot scenarios.

Using the examples provided on its demo page,
we also compare Make-A-Voice with VALL-E in
a small-scale subjective test. We synthesize utter-
ances using the same transcripts and prompts and
conduct the objective and subjective test with the
same protocol described above. Table 3 shows that,
in these examples, Make-A-Voice obtains 1.5 lower
in WER and 0.04 higher in SIM than baseline mod-
els in zero-shot synthesis.

Singing Voice Synthesis. Table 5 demonstrates
that Make-A-Voice (SVS) outperforms the base-
line system by a large margin in terms of pitch
similarity, showing distinct 70%/30% superiority
over FFT-Singer/DiffSinger in terms of FFE ob-
jective evaluation. Make-A-Voice can resemble
the note prompt and demonstrates its precise pitch
reconstruction. Regarding singer similarity, Make-
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Model MOS (↑) SMOS (↑) WER (↓) SIM (↑)

GT 4.23±0.09 / 4.1 /

GenerSpeech 3.99±0.08 3.77±0.08 8.6 0.83
YourTTS 3.89±0.08 3.72±0.06 12.1 0.78
Make-A-Voice 4.04±0.07 3.81±0.08 6.7 0.85

Small-Scale Subjective Test
VALL-E 3.92±0.12 3.81±0.07 4.5 0.79
Make-A-Voice 4.01±0.06 3.87±0.04 3.0 0.83

Table 3: Quality and style similarity of generated samples in
zero-shot text-to-speech.

Model TTS-WER TTS-SIM VC-SIM

Base 9.8 0.84 0.75
Medium 8.3 0.86 0.76
Large 6.1 0.87 0.76

Table 4: LJSpeech results for different model
sizes, namely 160M (base), 520M (medium),
and 1.2B (large) parameter models. We inves-
tigate voice large language models as scalable
learners.

Model MOS (↑) SMOS (↑) SIM (↑) FFE (↓)

GT 4.08±0.08 / / /

FFT-Singer 3.86±0.05 3.91±0.08 0.66 0.12
Diffsinger 3.96±0.07 3.94±0.07 0.67 0.11

Make-A-Voice (Zero-shot) 3.99±0.06 3.96±0.05 0.78 0.08

Table 5: SVS. Note that FFT-Singer and Diffsinger conduct
in-domain generation with seen speaker while Make-A-Voice
presents zero-shot SVS.

Model MOS (↑) SMOS (↑) SIM (↑)

Voice Conversion
Prompt 4.26±0.06 / /
NANSY 3.89±0.08 3.73±0.10 0.68
PPG-VC 3.97±0.06 3.82±0.05 0.78
Make-A-Voice (Zero-shot) 4.02±0.08 3.78±0.06 0.80

Singing Voice Conversion
Prompt 4.21±0.05 / /
Make-A-Voice 3.96±0.06 3.72±0.05 0.76

Table 6: Zero-shot VC and SVC.

A-Voice scores the highest SIM of 0.78, surpassing
the state-of-the-art models in transferring the style
of custom singing voices in zero-shot scenarios
even though the voice used for prompting is never
seen at training.

Voice Conversion and Singing Voice Conver-
sion. Table 6 shows that Make-A-Voice scores
the comparable overall SIM of 0.93 with baseline.
It excels at converting speaker identity even in a
zero-shot scenario, attributing to the scalable train-
ing data covering diverse speakers with various
accents. For audio quality, it presents high percep-
tual quality with outperformed MOS evaluation. To
conclude, Make-A-Voice converts the timbre with
better naturalness and comparable speaker simi-
larity to baseline models, even though the model
is trained without any text transcript paired with
audio recordings. For singing voice conversion
(SVC), Make-A-Voice also excels at converting
singer identity and presents good perceptual qual-
ity and naturalness.

5.2 Make-A-Voice as Multilingual Learners
Table 7 presents cross-lingual zero-shot TTS re-
sults, where the audio context and the target text are
in different languages. For each target text, we sam-
ple one 3-second-long audio context from each lan-
guage, which creates language transfer directions
in total. Compared with YourTTS, Make-A-Voice
yields better results in most languages, obtaining
lower WER and higher SIM averaged across au-
dio contexts. Regarding low-resource language,
Make-A-Voice presents potential improvement for

the limited usage of training data at this time.

5.3 Analysis and Ablation Studies
To verify the emerging capabilities of Make-A-
Voice as scalable multilingual and multitask learn-
ers, we conduct ablation studies and discuss the
key findings as follows. In this section, we first
analyze the model scalability, then investigate the
benefits of multilingual and multitask training, and
finally explore its generalization to unseen tasks.

Scalability to improve performance. Table 4
reports LJSpeech results for different model sizes,
namely 160M (base), 520M (medium), and 1.2B
(large) parameter models. As expected, scaling
the model size results in better scores. However,
this comes at the expense of longer training and
inference time. Increasing the model size from
520M to 1.2B leads to additional gains of a further
40% reduction in WER for TTS tasks with a similar
style similarity.

Multilingual Learning to alleviate data
scarcity of low-resource languages. Data scarcity
is a significant challenge to replicating the success
of voice LLM for low-resource languages. To ver-
ify the effectiveness of multilingualism in allevi-
ating data scarcity, we train Make-A-Voice using
16hrs De data and another one with a combina-
tion of six-language data; Make-A-Voice leverages
a joint vocabulary, where rich-resource language
data contains many speakers with various accents,
diverse demographics, and heterogeneous record-
ing conditions, introducing a variety of acoustic
conditions on top of semantic meanings, especially
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Prompt
De En Es Fr Zh Ja

WER SIM WER SIM WER SIM SIM SIM SIM

YT

De 6.0 0.81 3.1 0.71 4.1 0.71 0.72 0.74 /
En 8.0 0.79 6.3 0.71 3.0 0.78 0.71 0.72 /
Es 10.3 0.71 2.6 0.73 12.3 0.80 0.70 0.70 /
Fr 12.7 0.76 5.1 0.71 18.6 0.67 0.79 0.67 /
Zh 21.3 0.72 11.0 0.65 2.0 0.75 0.76 0.75 /
Ja 6.1 0.80 10.1 0.73 2.1 0.69 0.82 0.79 /

AVG 10.7 0.76 6.3 0.70 7.0 0.73 0.75 0.72 /

Ours

De 10.1 0.78 4.2 0.75 14.1 0.75 0.78 0.72 0.70
En 15.1 0.78 9.1 0.77 9.1 0.80 0.74 0.79 0.67
Es 13.0 0.76 7.1 0.75 13.0 0.78 0.78 0.68 0.70
Fr 22.0 0.70 3.6 0.71 11.0 0.73 0.78 0.77 0.69
Zh 10.3 0.68 5.3 0.71 18.1 0.69 0.76 0.70 0.68
Ja 9.1 0.79 8.0 0.77 8.1 0.85 0.80 0.76 0.93

AVG 13.2 0.75 6.2 0.74 12.2 0.77 0.77 0.74 0.72

Table 7: Quality and style similarity of generated samples in multilingual zero-shot text-to-speech. YT refers to
YourTTS. We report SIM for simplification for the Fr, Zh, and Ja languages.

in low-resource languages. Table 8 shows the im-
proved performance with the combination of arbi-
trarily multilingual voice, leading to the 7.9 reduc-
tion in WER and 0.2 SIM gain for text-to-speech
synthesis.

Task MOS (↑) WER (↓) SIM (↑)

Multilingual Learning
TTS 3.82±0.06 18.0 0.65
TTS (M) 3.93±0.05 10.1 0.78
VC 3.83±0.06 / 0.52
VC (M) 3.91±0.05 / 0.72

Multitask Learning
SVS 3.90±0.08 / 0.61
SVS (M) 3.99±0.06 / 0.78

Table 8: We investigate voice LLMs as multitask and
multilingual learners. For multilingual settings, Make-
A-Voice (TTS/VC) is trained in De combined with rich-
resource language data. For multitask settings, Make-
A-Voice (SVS) is trained jointly with speech tasks. M:
multilingual or multitask learning.

Multitask learning for cross-task knowledge
sharing. As illustrated in Table 8, we observe
that joint training with speech tasks has witnessed
the gains of 0.09 improvement in MOS and a 0.17
point improvement in SIM for singing voice syn-
thesis. Since common knowledge can be shared
across tasks (such as multi-layer quantization codec
modeling), SVS distinctly benefits from large-scale
speech tasks.

Multitask learning for generalizing to tasks
not explicitly trained on. Besides quantitative re-
sults, we present in-context learning abilities by

performing tasks not explicitly trained on, includ-
ing cross-lingual timbre transferring, generating
coherent emotion, and noise continuations. We
have attached the information on testing data in
Appendix A. As shown in the demo page, we find
that 1) Make-A-Voice can preserve the emotion in
the prompt at a zero-shot setting, even if the model
is not fine-tuned on an emotional TTS dataset; 2)
Make-A-Voice effectively reproduces the charac-
teristics from a cross-lingual style prompt, which
has not been seen during training; and 3) In a noisy
environment, the model also presents the acous-
tic consistency and maintain the noise conditions
from the prompt.

6 Conclusion

To bridge the gap where multiple tasks and lan-
guages are less exploited in voice LLMs compared
to GPTs, we introduced Make-A-Voice, a multi-
modal LLM to synthesize and manipulate voice
signals. Make-A-Voice took self-supervised to-
kens first to determine the semantic meaning and
then learned acoustic information given condition
signals, and we conducted a comprehensive study
on its capabilities to deal with multiple tasks and
languages. When trained on ∼200K hours of 6-
language data for 4 voice generation applications,
Make-A-Voice emerged notable advantages as 1)
as scalable learners to improve performance
with end-to-end differentiable local and global mul-
tiscale transformers; and 2) as multitask learn-
ers to share common knowledge across modalities
(speech/singing) and presented in-context learning
abilities by performing tasks not explicitly trained
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on; 3) as multilingual learners to alleviate data
scarcity of low-resource languages by including
rich-resource language training data. Experimental
results demonstrated that Make-A-Voice achieved
state-of-the-art results in monolingual/cross-lingual
zero-shot voice generation. The subjective and ob-
jective evaluation showed that Make-A-Voice ex-
hibited superior audio quality and similarity com-
pared with baselines.

7 Limitation and Potential Risks

Although Make-A-Voice as a voice LLM is suc-
cessfully applied to multilingual zero-shot voice
signals at scale, it still suffers from some limita-
tions: 1) Make-A-Voice introduces a strong depen-
dency on the quality of the audio tokenizer. 2) The
model only shows in-context learning ability on
voice synthesis, rather than all voice recognition
and understanding tasks, and 3) a longer sequence
length typically requires more computational re-
sources, and degradation could be witnessed with
decreased training data.

The low-resource scenario refers to the lack of
labeled training data, and we construct a total of
around 80 hours of labeled data for low-resource
downstream tasks. We leave the study of truly
resource-limited language LLMs for future works.
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A Data

In this section, we describe details of the data usage
in training and evaluating Make-A-Voice.

• Common Voice (Ardila et al., 2019) consists of
text paired with recordings where people were
asked to read the text aloud.

• Librilight (Kahn et al., 2020) contains 60K hours
of unlabelled speech from audiobooks in English,
and LibriSpeech (Panayotov et al., 2015), Lib-
riTTS (Zen et al., 2019), Gigaspeech (Chen et al.,
2021), AISHELL (Fu et al., 2021), VCTK (Veaux
et al., 2017) datasets include transcriptions.

• CSD (Choi et al., 2021b) contains multilingual
singing voice. We also use the female-singer
OpenCPOP (Wang et al., 2022), multi-singer
dataset OpenSinger (Huang et al., 2021), and
M4Singer (Zhang et al., 2022a) as the singing
voice data.

B Model Configurations

We list the model hyper-parameters of Make-A-
Voice in Table 9.

C Applications

Conv1D Layer
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Source Module

F0 Prompt

Harmonic Source
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Conv1D

Conv1D Layer
×N
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Figure 3: Overview of the unit-based vocoder. The F0
auxiliary input denoted with dotted lines is included
only in singing voice synthesis.

C.1 MIDI-to-F0 Converter

Singing voice synthesis (SVS) is a task that gener-
ates singing voices from the given music score and
lyrics like human singers. Following (Liu et al.,
2022; Zhang et al., 2022a), the SVS system typi-
cally includes the MIDI-to-F0 converter to predict
F0 explicitly. Though the SVS system can be fur-
ther improved with the direct MIDI condition and
implicit F0 prediction, this is beyond our focus.

C.2 Unit-based Vocoder

The generator of the unit-based vocoder is built
from a set of look-up tables (LUT) that embed
the discrete representation, and a series of blocks
composed of transposed convolution and a residual
block with dilated layers. We train the enhanced
vocoder with the weighted sum of the least-square
adversarial loss, the feature matching loss, and the
spectral regression loss on mel-spectrogram, where
the training objective formulation and hyperparam-
eters follow Kong et al. (2020); Lee et al. (2022).

For speech generation, we train the vocoder
with only the discrete unit sequences as input.
For singing voice generation, we further include
F0-driven source excitation to stabilize long-
continuous waveforms generation following (Liu
et al., 2022; Huang et al., 2022a).

As illustrated in Table 10, replacing the unit-
based vocoder with a SoundStream decoder for
voice synthesis has witnessed a distinct degrada-
tion of perceptual quality, proving that the code-
book mismatch for the SoundStream decoder be-
tween training (12 quantization levels) and infer-
ence (3 levels) hurts reconstruction performance.
In contrast, a neural vocoder could refine the coarse-
grained acoustic tokens and generate waveforms
with increasing details.

D Evaluation

D.1 Subjective Evaluation

For audio quality evaluation, we conduct the MOS
(mean opinion score) tests and explicitly instruct
the raters to “(focus on examining the audio qual-
ity and naturalness, and ignore the differences of
style (timbre, emotion, and prosody).)". The testers
present and rate the samples, and each tester is
asked to evaluate the subjective naturalness on a
1-5 Likert scale.

For style similarity evaluation, we explicitly in-
struct the raters to “(focus on the similarity of the
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Hyperparameter Make-A-Voice

Make-A-Voice Global Base

Transformer Layer 16
Transformer Embed Dim 768

Transformer Attention Headers 12
Number of Parameters 114 M

Make-A-Voice Global Medium

Transformer Layer 20
Transformer Embed Dim 1152

Transformer Attention Headers 16
Number of Parameters 320 M

Make-A-Voice Global Large

Transformer Layer 24
Transformer Embed Dim 1536

Transformer Attention Headers 32
Number of Parameters 930 M

Make-A-Voice Local

Transformer Layer 6
Transformer Embed Dim Same as global

Transformer Attention Headers 8
Number of Parameters 46/101/303 M

BigVGAN Vocoder

Upsample Rates [5, 4, 2, 2, 2, 2]
Hop Size 320

Upsample Kernel Sizes [9, 8, 4, 4, 4, 4]
Number of Parameters 121.6M

Table 9: Hyperparameters of Make-A-Voice.

Table 10: Ablation studies.

Model STOI (↑) MCD (↓)

S3: SoundStream 0.92 1.90
S3: Unit Vocoder 0.93 1.56

style (timbre, emotion, and prosody) to the refer-
ence, and ignore the differences of content, gram-
mar, or audio quality.)". In the SMOS (similarity
mean opinion score) tests, we paired each synthe-
sized utterance with a ground truth utterance to
evaluate how well the synthesized speech matches
that of the target speaker. Each pair is rated by one
rater.

Our subjective evaluation tests are crowd-
sourced and conducted by 20 native speakers via
Amazon Mechanical Turk. The screenshots of in-
structions for testers have been shown in Figure 5.
We paid $8 to participants hourly and totally spent
about $600 on participant compensation. A small
subset of speech samples used in the test is avail-
able at https://M-Voice.github.io/.

D.2 Objective Evaluation

Cosine similarity is an objective metric that mea-
sures speaker similarity among multi-speaker audio.
We compute the average cosine similarity between
embeddings extracted from the synthesized and
ground truth embeddings to measure the speaker

similarity performance objectively.
Word Error Rate (WER) evaluates the faithful-

ness to the input transcript by transcribing the syn-
thesized utterances using a wav2vec ASR system.

F0 Frame Error (FFE) combines voicing deci-
sion error and F0 error metrics to capture F0 infor-
mation.

Mel-cepstral distortion (MCD) measures the
spectral distance between the synthesized and ref-
erence mel-spectrum features.

Short-time objective intelligibility (STOI) as-
sesses the denoising quality for speech enhance-
ment.
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Figure 4: We introduce 4 exemplar applications, including voice conversion (VC), text-to-speech (TTS), singing
voice synthesis (SVS), singing voice conversion (SVC), that can be tackled by sharing a voice synthesis framework
with semantic and acoustic tokens.

(a) Screenshot of MOS testing.

(b) Screenshot of SMOS testing.

Figure 5: Screenshots of subjective evaluations.
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