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Abstract

Retrieval-augmented generation (RAG) has be-
come a main technique for alleviating halluci-
nations in large language models (LLMs). De-
spite the integration of RAG, LLMs may still
present unsupported or contradictory claims
to the retrieved contents. In order to develop
effective hallucination prevention strategies un-
der RAG, it is important to create benchmark
datasets that can measure the extent of halluci-
nation. This paper presents RAGTruth, a cor-
pus tailored for analyzing word-level hallucina-
tions in various domains and tasks within the
standard RAG frameworks for LLM applica-
tions. RAGTruth comprises nearly 18,000 nat-
urally generated responses from diverse LLMs
using RAG. These responses have undergone
meticulous manual annotations at both the indi-
vidual case and word levels, incorporating eval-
uations of hallucination intensity. We not only
benchmark hallucination frequencies across dif-
ferent LLMs, but also critically assess the ef-
fectiveness of several existing hallucination de-
tection methodologies. We show that using a
high-quality dataset such as RAGTruth, it is
possible to finetune a relatively small LLM and
achieve a competitive hallucination detection
performance when compared to the existing
prompt-based approaches using state-of-the-art
LLMs such as GPT-4. Furthermore, the fine-
tuned model can effectively mitigate hallucina-
tion in LLM responses. '

1 Introduction

Large language models (LLMs) have achieved re-
markable success in a variety of tasks, including
text generation (Li et al., 2024), machine transla-
tion (Kocmi and Federmann, 2023), and question
answering (Zhao et al., 2023). However, one of the
key challenges in deploying LLLMs in real-world
applications is their tendency to hallucinate (Kad-
dour et al., 2023). Hallucination in the context

'The RAGTruth dataset is available at https:// github.
com/ParticleMedia/RAGTruth

QUESTION: how to prepare to get an ultrasound?

REFERENCE: Passage 1: 1 If you are just interested in
checking the gender, you can go as early as 17 weeks. 2
Any earlier, and the results may not be accurate, leading
to an extra coat of paint for your bedroom. 3 To get good
pictures, 3D ultrasounds are best performed between 20
and 32 weeks, and the best pictures are between 24 and
30 weeks.

RESPONSE: Based on the given passages, here’s how to
prepare for an ultrasound:

* For a gender reveal ultrasound, wait until at least 17
weeks of pregnancy to ensure accurate results.

* For 3D ultrasounds, schedule the appointment between
20 and 32 weeks of pregnancy for the best pictures ...

ANNOTATION

Span: between 20 and 32 weeks of pregnancy for the best
pictures

Type: Evident Conflict

Reason: Original: "the best pictures are between 24 and
30 weeks", Generative: "between 20 and 32 weeks of
pregnancy for the best pictures"

Table 1: An example of RAGTruth data from the ques-
tion answering task. It contains context, response gener-
ated by LLM with and span-level annotation.

of LLMs usually refers to a situation where the
model generates content that is not based on fac-
tual or accurate information (Rawte et al., 2023).
The occasional generation of outputs that appear
plausible but are factually incorrect significantly
undermine the reliability of LLMs in real-world
scenarios, such as medical diagnoses (Pal et al.,
2023) and news summarization (Shen et al., 2023).

To reduce hallucination, various methods have
been developed that can be applied at differ-
ent stages of LLM lifecycle, including pre-
training (Brown et al., 2020), supervised fine-
tuning (Zhou et al., 2023; Zhang et al., 2024),
RLHF (Ouyang et al., 2022; Lin et al., 2022),
and inference (Dhuliawala et al., 2023; Gao et al.,
2023). In terms of detection, methods are devel-
oped by examining the model’s intrinsic state (Guo
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et al., 2017), comparing it with external data
and tools (Chern et al., 2023), or leveraging the
LLM’s inherent powerful capabilities for self-
checking (Agrawal et al., 2024; Manakul et al.,
2023). Retrieval-augmented generation (RAG) is
extensively used to supply LLMs with updated,
relevant knowledge, significantly mitigating hal-
lucination (Varshney et al., 2023; Mishra et al.,
2024). Nevertheless, even with RAG and other
enhancements, LLMs still produce statements that
are either unfounded or contradict the information
provided in the retrieved references (Shuster et al.,
2021).

Despite the growing awareness of the hallucina-
tion phenomenon, the understanding of hallucina-
tion in LLMs is still in its early stages. One key
challenge is the lack of high-quality, large-scale
datasets specifically designed for hallucination de-
tection. This issue is particularly acute in RAG
settings. Due to the relatively low hallucination
ratio, a substantial increase in annotation resources
is needed. Existing datasets for LLM hallucina-
tion detection are predominantly synthesized (Li
et al., 2023). For instance, in Liu and Liu (2023);
Longpre et al. (2021), prompts conflicting with
conventional knowledge are purposely generated
to trigger hallucinations. While these approaches
are efficient at generating hallucinations, the re-
sulting artificial hallucinations can substantially
differ from those that naturally occur. In Chen et al.
(2023); Hu et al. (2023), hallucination datasets are
developed by manual annotations of naturally pro-
duced LLM responses. However, these datasets are
of limited size and are not specifically focused on
the RAG scenario.

In this paper, we introduce a large-scale high-
quality dataset specifically designed for word-level
hallucination detection for RAG applications. Us-
ing this dataset, we have conducted an extensive
benchmarking of mainstream LLMs to assess their
tendency to generate hallucinations, as well as
evaluate current methods for hallucination detec-
tion. Additionally, we have demonstrated supe-
rior performance in identifying hallucinations by
fine-tuning LLM with RAGTruth dataset. Our key
contributions are:

(i) We propose RAGTruth, a large-scale word-
level hallucination evaluation dataset specifi-
cally for the RAG scenario across several com-
mon tasks. It consists of nearly 18,000 fully
annotated natural responses generated from

major open-source and closed-source LL.Ms.

(i) We perform a comprehensive comparison of
different hallucination detection methods at
both the passage and word levels.

(iii)) We present a baseline method of fine-tuning
LLM for hallucination detection. It is shown
that by fine-tuning the Llama-2-13B model on
the RAGTruth training data, we can achieve
results competitive to the existing prompt-
based approaches using GPT-4. This shows
the potential of developing better hallucina-
tion detection methods using RAGTruth.

(iv) We show that by using our finetuned hallucina-
tion detector, it is possible to significantly re-
duce the occurrence of hallucinations in the re-
sponses from LLMs. The improvement holds
even for models with inherently low halluci-
nation rates, such as GPT-4.

2 Related Work
2.1 Hallucination of Large Language Models

Though hallucination in traditional natural lan-
guage generation (NLG) contexts has been widely
studied (Ji et al., 2023), comprehending and tack-
ling this problem in the context of LLMs presents
distinct challenges (Zhang et al., 2023). Existing
research has demonstrated that incorporating up-
to-date, relevant knowledge in the prompt can ef-
fectively reduce fact-conflicting hallucination (Vu
et al., 2023; Lewis et al., 2020). This approach,
referred to as Retrieval-Augmented Generation
(RAG), is widely used in real-world LLM applica-
tions. For instance, Google Bard ? and Microsoft
BingChat 3 have implemented this technique.

2.2 Hallucination Evaluation Datasets

Extensive research has focused on hallucination
benchmarks within conventional Natural Language
Generation settings (Dziri et al., 2022; Zhong et al.,
2021; Durmus et al., 2020; Lin et al., 2022). With
the rise of LLLMs, the detection of hallucinations
has become increasingly challenging, necessitating
the development of high-quality datasets for LLM
evaluation (Chen and Shu, 2024). Contributions
in this domain include HaluEval (Li et al., 2023),
which introduced datasets encompassing both syn-
thetically and naturally generated LLM responses,

2https: //bard.google.com
3https://www.bing.com
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and FELM (Chen et al., 2023), which concentrated
on naturally generated LLM responses across mul-
tiple domain tasks. RefChecker (Hu et al., 2023), a
distinctive approach, breaks down claims in LLM
responses into triples and utilizes human annota-
tion to assess the truthfulness of facts. Notably,
these works primarily focus on annotating factual
hallucinations in LLM responses. Distinguishing
from previous research, our work centers on the
evaluation of LLMs within RAG settings.

2.3 Hallucination Detection Methods

Researchers have been exploring various methods
to enhance the reliability of LLMs by detecting hal-
lucinations. In Azaria and Mitchell (2023); Xiao
and Wang (2021); Malinin and Gales (2021), intrin-
sic model uncertainty metrics such as token-level
probability and entropy are used to detect halluci-
nations. When direct access to output uncertainty
is not feasible, as in the case with limited APIs like
GPT-4, an alternative approach involves employing
a fully accessible LLM as a proxy (Manakul et al.,
2023). In Falke et al. (2019); Barrantes et al. (2020),
natural language inference modules are adapted to
check the information consistency between the ar-
ticles and their summaries, and it has been shown
that external knowledge is helpful for detecting fac-
tual hallucinations. (Guo et al., 2022; Mallen et al.,
2023). Additionally, methods that leverage the in-
herent capabilities of LLMs have been proposed
for self-checking, such as verbalization-based and
consistency-based methods (Xiong et al., 2024;
Manakul et al., 2023). These techniques aim to
detect hallucinations without relying on internal
states or external data and tools.

3 Construction Process of RAGTruth

We established a data generation and annotation
pipeline as shown in Figure 1.

3.1 Hallucination Taxonomy

Different from open-end generation, under RAG
setting, the prompt contains rich context informa-
tion, and the model is generally required to gen-
erate text based on the provided context. The de-
tection and mitigation of inconsistencies between
retrieved information and responses emerge as sig-
nificant sources of hallucination.

As outlined below, we categorize the halluci-
nation in the RAG setting into four types. For
concrete examples of each type, please refer to

Appendix A.

Evident Conflict: for when generative content
presents direct contraction or opposition to the pro-
vided information. These conflicts are easily ver-
ifiable without extensive context, often involving
clear factual errors, misspelled names, incorrect
numbers, etc.

Subtle Conflict: for when generative content
presents a departure or divergence from the pro-
vided information, altering the intended contextual
meaning. These conflicts often involve substitu-
tion of terms that carry different implications or
severity, requiring a deeper understanding of their
contextual applications.

Evident Introduction of Baseless Information:
for when generated content includes information
not substantiated in the provided information. It
involves the creation of hypothetical, fabricated, or
hallucinatory details lacking evidence or support.

Subtle Introduction of Baseless Information:
is when generated content extends beyond the pro-
vided information by incorporating inferred details,
insights, or sentiments. This additional informa-
tion lacks verifiability and might include subjective
assumptions or commonly observed norms rather
than explicit facts.

3.2 Response Generation

Tasks and Data Sources We selected three
widely recognized generation tasks with RAG set-
tings for response generation: Question Answering,
Data-to-text Writing, and News Summarization.
For the task of question answering, we con-
ducted a random sampling from the training set
of MS MARCO (Nguyen et al., 2016). To reduce
the difficulty of annotation, we selected only those
questions related to daily life, and preserved only
three retrieved passages for each question. Then
we prompted LLMs to generate answers for each
question solely based on the retrieved passages.
For the data-to-text writing task, we prompted
LLMs to generate an objective overview for
a randomly sampled business in the restaurant
and nightlife categories from the Yelp Open
Dataset (Yelp, 2021). In this dataset, information
pertaining to a business is represented using struc-
tured data. To streamline the annotation process,
we focused only on the following business informa-
tion fields: BusinessParking, RestaurantsReserva-
tions, OutdoorSeating, WiFi, RestaurantsTakeOut,
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{

"name": "Deja Vu Cafe V",

ro...",
"city": "Goleta",
"state": "CA",
"categories": "Restaurants,

"address": "966 Embarcade-

R PAY
® ki by

Writing Prompt

Deja Vu Cafe IV is a restaurant lo-
cated in Goleta, California, serving
burgers, fast food, and other cui-

sines. According to their structured

Deja Vu Cafe IV is a restaurant
located in Goleta, California, serv-
ing burgers, fast food, and other

cuisines. According to their struc-

Burgers, Fast Food",

boasts ...

)..A

Structured Data

data, the cafe has been in opera-
1 tion since December 2021 and

LLM Responses

tured data, the cafe has been in

[JEIEGLES Y December 2021

and boasts ...

Annotated Data

Figure 1: Data gathering pipeline. Taking a data-to-text writing task as an example, our data gathering pipeline
includes 2 steps: 1) response generation. We generated responses with multiple LLMs and natural prompts. 2)
human annotation. Human labeler annotated hallucinated spans in LLM responses.

RestaurantsGoodForGroups, Music, and Ambience.
In addition to the structured data, we have also in-
cluded up to three business-related user reviews
to enrich the context information. In the prompt,
these information is represented in JSON format.
For the news summarization task, we randomly
selected documents from the training set of the
well-known CNN/Daily Mail dataset (See et al.,
2017) as well as recent news articles from a pres-
tigious news platform. LLMs were prompted to
generate a summary for each of the source news.

Models The following six models with strong
instruction-following ability are used for response
generation: GPT-3.5-turbo-0613 and GPT-4-0613
from OpenAl (OpenAl et al., 2024); Mistral-7b-
Instruct from Mistral Al (Jiang et al., 2023); Llama-
2-7B-chat, Llama-2-13B-chat and Llama-2-70B-
chat (4bit quantized)4 from Meta (Touvron et al.,
2023). To ensure a fair comparison, the prompts
used for response generation are kept straightfor-
ward with subtle differences among various models
to optimize their performance. We provide detailed
prompts in the Appendix B.

For each sample, we collected one response from
each model. As a result, we got a total of 6 re-
sponses for each input sample.

3.3 Human Annotation

Identifying Al-generated hallucinations is a chal-
lenging task. It requires a strong capacity for criti-
cal thinking to understand the logical flow of vari-
ous texts, along with meticulous attention to detail
for spotting subtle inaccuracies and inconsisten-
cies. Moreover, a certain level of media literacy
and knowledge of current affairs is crucial to grasp

*https://huggingface.co/TheBloke/
Llama-2-70B-Chat-AWQ

the subjects discussed in news-related sample data.
Therefore, we chose annotators who are proficient
in English and possess a bachelor’s degree in En-
glish, Communications, or relevant fields to ensure
the accuracy and reliability of the annotation re-
sults. We recruited annotators from a professional
vendor and paid them at a rate of $25 per hour per
individual.

The annotators are invited to perform annotation
tasks using Label Studio (Tkachenko et al., 2020-
2022). Each labeling task is presented within one
page, comprising the following components: 1) the
context provided to the Al models; 2) a set of 6
responses, generated by different AI models. Our
annotation interface is available in Appendix C.

Their task was to annotate the specific spans of
the generated text that contains hallucinated infor-
mation and categorize them into the four types. To
ensure the quality of the annotations, each response
is independently labeled by two annotators. The
consistency rate of two annotators was 91.8% at the
response level and 78.8% at the span level. In cases
where there is a considerable difference between
the two annotations, a third review is undertaken.

3.4 Annotations for Adaptive Evaluation

In different contexts, the definition and criteria for
hallucination vary, and the annotation of hallucina-
tion is not always straightforward. In contentious
cases, additional annotations are provided to accu-
rately reflect these situations. This approach en-
ables users to adopt various evaluation strategies
tailored to their specific application circumstances.
Please refer to Appendix C for more statistical in-
formation about these annotations.

Implicit Truth The extensive world knowledge
and ability of LLMs is a significant advantage in
open-ended generation scenarios. But in the con-
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Figure 2: Frequency of different types of hallucination
by task.

text of this paper, which focuses on the relatively
strict RAG scenarios, we have labeled information
that is not mentioned in the reference but may be
truthful as hallucinations. For instance, mentioning
a local officer’s name not present in the reference
or claiming that a restaurant accepts credit card
payments without any basis.

The decision is based on the observation that
LLMs have a relatively high chance of making er-
rors when generating detailed facts, partly because
their embedded knowledge can be outdated. There-
fore, RAG applications usually instruct LLMs not
to generate factual content without the support of
references. Besides, we provided an additional
span-level annotation named implicit_true for these
spans to accommodate different application needs.

Differences in Handling Null Value In the data-
to-text writing task, certain fields sometimes are
with null values. We observed that in the generated
results, null is often interpreted as false by some
models. Since the more common expressions for
negation in our dataset are the boolean value False
or the text No, we labeled these instances as hal-
lucinations (evident introduction of baseless info)
and provided a special span-level annotation named
due_to_null for these spans. In the subsequent hal-
lucination detection experiments, our prompts will
be aligned with this standard.

4 Hallucination Benchmark Analysis

4.1 Basic Statistics

We presented detailed statistics of RAGTruth in
Table 2. Compared to existing datasets for hallu-
cination detection (Cao et al., 2023; Kamoi et al.,
2023), the RAGTruth dataset is considerably large
in scale. The corpus contains a total of 2,965 in-
stances of data, which include 989 instances for
question answering, 1,033 instances for date-to-text

writing, and 943 instances for news summarization.
Each instance comprises responses from 6 differ-
ent models. As shown in Table 2, the RAGTruth
dataset also features longer prompt and response
lengths than existing datasets for hallucination de-
tection (Wang et al., 2020).

4.2 Hallucination Statistics

Hallucination Types As shown in Figure 2, the
generation of information baseless in the context
was significantly more prevalent than the gener-
ation of information conflicting with the context,
especially for the question answering tasks. Within
the two major categories of baseless info and con-
flict, the more severe hallucinations, namely Evi-
dent baseless info and Evident conflict, respectively,
account for a significant portion. This observation
highlights the importance and challenges of LLMs
hallucination mitigation, even in RAG settings.

Hallucination vs Tasks As shown in Table 2,
across the three tasks, the date-to-text writing task
exhibited the highest frequency of hallucinations in
its responses. Inconsistent handling of JSON for-
mat data, especially time and attributes, contributed
to a significant number of hallucinations in this task.
Interestingly, the models did not show a higher rate
of hallucinations for recent news compared to out-
dated news. This could be attributed to the shorter
context length in the recent news subtask compared
to the CNN/DM subtask.

Hallucination vs Models Table 3 illustrates that
among the data we collected, OpenAl’s two mod-
els demonstrated notably lower hallucination rates
compared to others. Specifically, GPT-4-0613 ex-
hibited the lowest hallucination frequency.

To more clearly compare the hallucination rate
of different models, we calculated the hallucination
density for each model across three tasks. Hallu-
cination density is defined as the average number
of hallucination spans per hundred words in the
responses. In the Llama2 series, a clear negative
correlation was observed between the model scale
and hallucination density, aside from the data-to-
text writing tasks. Despite its strong performance
in various benchmarks and leaderboards (Zheng
et al., 2023), the Mistral-7B-Instruct model gener-
ated the highest number of responses containing
hallucinations.

Hallucination vs Length After removing the top
and bottom 5% of outliers, we partitioned the data
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Task ‘ # Instance

CONTEXT LENGTH

RESP. LENGTH HALLUCINATION

# Resp.
‘ Mean Max Mean Max # Resp. % Resp.  # Span
Question Answering 989 5934 243 509 119 381 1724 29.1% 2927
Data-to-text Writing 1033 6198 354 1253 159 369 4254 68.6% 9290
Summarization(CNN/DM) 628 3768 648 1749 124 632 1165 30.9% 1474
Summarization(Recent News) 315 1890 369 481 89 240 521 27.6% 598
Overall | 2965 17790 381 1749 131 632 7664 43.1% 14289

Table 2: The basic statistics of RAGTruth. Here "Resp." stands for "Response".

Model |  QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION OVERALL

‘ #Resp. #Span  Density #Resp. #Span  Density #Resp. #Span  Density #Resp. # Span
GPT-3.5-turbo-0613 75 89 0.12 272 0.18 54 60 0.05 401 533
GPT-4-0613 48 51 0.06 290 0.27 74 80 0.08 406 485
Llama-2-7B-chat 510 1010 0.59 888 1.27 434 517 0.58 1832 3302
Llama-2-13B-chat 399 654 0.48 983 2803 1.53 295 342 0.41 1677 3799
Llama-2-70B-chat" 320 529 0.40 863 1834 1.15 212 245 0.26 1395 2608
Mistral-7B-Instruct 378 594 0.59 958 2140 1.51 617 828 0.86 1953 3562

Table 3: Hallucination counts and density of models. : We used 4-bit quantized version of Llama-2-70B-chat.

CLB \ SUMMARIZATION D2T WRITING QA

1.51(178,273)  0.50(131,187)

1 0.29(176,368)

2 0.36 (368,587 1.48(273,378]  0.51(187,288]

3 0.44(587,1422) 1.49(378,7311  0.49(288,400]
RLB \ SUMMARIZATION D2T WRITING QA

1 0.34 (44 87] 1.20(03131] 0.21 (10 03]

2 0.32(87,119] 1.59(131,175] 0.37(93,138]

3 0.44(119,245) 1.69(175,258)  0.87(138,257]

Table 4: Average number of hallucinations per response
in different context length buckets (CLB) and response
length buckets (RLB) for the three types of tasks. The
subscript denotes the minimum and maximum length of
this bucket.

for each task type into three equal-sized groups
according to the length of the context/response. We
then computed the average number of hallucinated
spans per response within each group. As shown
in Table 4, there is a clear overall trend of an in-
crease in the average number of hallucinations as
the response length grows. Only the average num-
ber of hallucinations in news summarization tasks
significantly increases with the length of the con-
text. This may be because the contexts in the other
two tasks are more structured, and an increase in
length does not significantly raise the difficulty of
understanding the content.

Location of Hallucinations In Figure 3, we
present the heatmap of the hallucination occurrence
positions. Hallucinations are significantly more
likely to occur towards the end of responses in
question-answering and news summarization tasks.
Compared to other tasks, the data-to-text writing
task has a relatively higher occurrence of halluci-

o [
Data-to-text
Writing

Sum. I

i |
0% 25% 50% 75% 100%

Normalized position

Figure 3: Heatmaps of normalized hallucination oc-
currence positions. The probability of hallucinations
occurring is higher in brighter areas.

nations in the first half. In that bright area, hallu-
cinations concerning business attributes frequently
occur.

5 Experimental Setup

5.1 Hallucination Detection Algorithms

Using RAGTruth, we conducted experiments with
the following four distinct algorithms for halluci-
nation detection:

Hallucination Detection Prompt: Hallucination
detection prompts are manually crafted to instruct
LLMs (GPT-4-turbo and GPT-3.5-turbo) in assess-
ing whether a given reference-response pair con-
tains hallucinated content and to identify the corre-
sponding hallucinated spans in the response. For
detailed information about these prompts, please
refer to Appendix D.

SelfCheckGPT (Manakul et al., 2023): Self-
CheckGPT employs a zero-resource, sampling-
based method to fact-check the responses of black-
box models. When processing each response in
RAGTruth, 3 extra responses from the same model
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Methods ‘ QUESTION ANSWERING

DATA-TO-TEXT WRITING

SUMMARIZATION OVERALL

‘ Precision Recall F1 Precision Recall F1 Precision Recall F1 ‘ Precision Recall F1
Promptgpi-3.5-trbo 18.8 84.4 30.8 65.1 95.5 77.4 234 89.2 37.1 37.1 92.3 52.9
Promptgpi-4-turbo 332 90.6 45.6 64.3 100.0 78.3 31.5 97.6 47.6 46.9 97.9 63.4
SelfCheckGPTgp-3.5-turbo 35.0 58.0 43.7 68.2 82.8 74.8 31.1 56.5 40.1 49.7 71.9 58.8
LMVLMgp(-4-turbo 18.7 76.9 30.1 68.0 76.7 72.1 233 81.9 36.2 36.2 77.8 494
Finetuned Llama-2-13B 61.6 76.3 68.2 85.4 91.0 88.1 64.0 54.9 59.1 76.9 80.7 78.7

Table 5: The response-level hallucination detection performance for each baseline method across different tasks and

different models.

Methods | QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION OVERALL

‘ Precision Recall F1 Precision Recall F1 Precision Recall F1 ‘ Precision Recall F1
Prompt Baselinegp-3.5-turbo 7.9 25.1 12.1 8.7 45.1 14.6 6.1 33.7 10.3 7.8 353 12.8
Prompt Baselinegpi-4-turbo 23.7 52.0 32.6 17.9 66.4 28.2 14.7 65.4 24.1 18.4 60.9 28.3
Finetuned Llama-2-13B 55.8 60.8 58.2 56.5 50.7 53.5 524 30.8 38.8 55.6 50.2 52.7

Table 6: The span-level detection performance for each baseline method across different tasks and different models.

were sampled and served as references, and GPT-
3.5-turbo was used to verify consistency. We de-
tected hallucinations sentence-by-sentence within
a response, and then aggregated these results to
provide a response-level detection outcome.
LMvLM (Cohen et al., 2023): LMvLM is an ap-
proach that employs a multi-turn interaction be-
tween two Language Models that aim to discover
inconsistencies through cross-examination.

LLM Finetuning: Llama-2-13B has been fine-
tuned using the training set from RAGTruth. The
model takes the context-response pair with proper
instructions as the input and treats the hallucinate
span as the targeted generation output. We em-
ployed full training with an initial learning rate
of 2e-5, and limiting the training to 1 epochs, all
conducted on 4 A100 GPUs.

5.2 Data Split

All detection algorithms are tested on the same
RAGTruth test set, which consists of 450 instances
in total, derived by randomly selecting 150 in-
stances from each task type. The rest of the data
is used to fine-tune the LLama-2-13B model, as
previously mentioned.

5.3 Evaluation Metrics

It is a more challenging and significant task to iden-
tify the locations of hallucinations within the re-
sponse than only determining whether a response
contains hallucinations. We assess hallucination
detection at both the response and span levels.

Response-level Detection We report precision,
recall, and F1 score for each detection algorithm
and its variants across different tasks.

Span-level Detection We calculate the overlap
between the detected span and human-labeled span
and report the precision, recall, and f1 score at the
char-level.

6 Experimental Results

6.1 Response-level Detection

The results in Table 5 reveal that hallucination
detection remains a significant challenge in the
context of RAG for all existing detection methods.
Even when reference information is available, the
responses generated may still include hallucina-
tions, which current LLMs cannot reliably identify.
The most advanced LLM, GPT-4-turbo, achieves
only an average F1 score of 63.4%. For another
notable baseline, SelfCheckGPT also shows unsat-
isfactory performance in this regard, achieving an
average F1 score of 58.8% with GPT-3.5-turbo.

By utilizing our high-quality training set, a fine-
tuned Llama-2-13B can achieve the best perfor-
mance with an average 78.7% f1 score. This
shows the effectiveness of our data in improving
the model’s hallucination detection ability.

6.2 Span-level Detection

RAGTruth, as a hallucination corpus with fine-
grained span labels, enables us to present exper-
imental results for span-level detection, serving as
a baseline for future research. As shown in Ta-
ble 6, the overall performance of the current detec-
tion method is sub-optimal, highlighting the chal-
lenges in span-level detection. Even the advanced
GPT-4-turbo tends to incorrectly classify many
non-hallucinated contents with a low precision of
18.4%. While our fine-tuned model shows im-
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GROUP ‘ SELECTION STRATEGY

‘ VALID RESPONSE NUM HALLUCINATION RATE

Random 450 52.4(-)
Nhﬁ:ﬁjﬁ?ﬁ;ﬁzzfzfa Select the response with fewer detected hallucination spans 450 41.1(121.6%)
’ Select the response with no detected hallucination spans 328 19.3(163.2%)

Random 450 9.8(-)
GPT—ég%"_F;_r(l)) g 1_ (3)6(1933()10‘9) Select the response with fewer detected hallucination spans 450 5.6(142.9%)
- Select the response with no detected hallucination spans 448F 4.8(151.0%)

Table 7: Utilizing the finetuned hallucination detector to sample from two responses can significantly reduce the
rate of hallucinations. The numbers within the brackets in the group column represent the model’s hallucination rate.
T: Some instances did not have responses that met the required criteria.

704 Subtle Conflict
mE Evident Conflict 63.4
60 Subtle Baseless Info 55.8

529

Evident Baseless Info

66.3
60.4
49.8

1 35.3 38.3
301 25.4
20

115
10
2.5
0

Prompt(GPT-3.5-turbo) Prompt(GPT-4-turbo) Finetuned Llama-2-13B

36.2

Figure 4: The span-level recalls of different models on
four types of hallucinations.

proved capability in identifying hallucinated spans
by achieving an averaged f1 score of 52.7%, it still
falls short of perfect detection, emphasizing the
inherent difficulties of this task.

We also report the detection performance across
four different types of hallucination spans. In the
current stage, as we have not differentiated the
types of detected hallucinations, we only report the
char-level recall for different types of hallucina-
tions. As indicated in Figure 5, the detection of
evident hallucinations proves more effective com-
pared to that of subtle hallucinations.

6.3 Hallucination Suppression

We tested the effectiveness of hallucination sup-
pression using our finetuned hallucination detec-
tion model. For the 450 instances in the test set,
we employed two strategies to select a final output
from two responses generated by two different mod-
els with similar hallucination densities. The first
strategy involved selecting the response with fewer
predicted hallucination spans. The second strategy,
more stringent, mandated that the selected response
have no detected hallucination spans. When the
number of hallucination spans detected in both can-
didate responses is the same, one will be chosen at
random. Due to limited response candidates, not

all instances have a response that conforms to the
second strategy. In practical scenarios, this issue
can be addressed by increasing the number of can-
didate responses. We employed random selection
as a simple baseline for comparison.

The results shown in Table 7 indicate that with
the help of the hallucination detector, both strate-
gies can significantly reduce the hallucination
rate. For the relatively small Llama-2-7B-chat
and Mistral-7B-Instruct models, compared to ran-
dom selection, the first strategy reduced the hallu-
cination rate by 21.6%, while the second strategy
achieved a reduction of 63.2%. Even for models
with a low hallucination rate, specifically GPT-3.5-
Turbo and GPT-4, employing the finetuned hallu-
cination detector for sampling can still further re-
duce the rate of hallucinations. The two strategies
yielded a reduction in hallucination rates of 42.9%
and 51.0%, respectively. These results demonstrate
the potential of an efficient hallucination detection
model in developing trustworthy RAG LLMs.

7 Conclusion

In this paper, we introduce RAGTruth, a large-scale
corpus of naturally generated hallucinations, fea-
turing detailed word-level annotations tailored for
RAG scenarios. Our work includes an in-depth
analysis of the interplay between hallucinations
and various factors, such as task types, models be-
ing used, and contextual settings.

Additionally, we conduct empirical benchmarks
of several hallucination detection approaches using
our corpus. We show that fine-tuning Llama with
RAGTruth leads to competitive performance. This
implies that by using a high-quality dataset such
as RAGTruth, it is possible to develop specialized
hallucination detection models that are highly ef-
fective when compared to prompt-based methods
using general models such as GPT-4.

Simultaneously, our findings reveal that identi-
fying hallucinations in RAG contexts, particularly
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at the span level, remains a formidable challenge,
with current methods still falling short of reliable
detection. We hope that RAGTruth, can assist the
development of hallucination detection techniques
for retrieval augmented generation.

8 Limitations

The study of hallucination in large language mod-
els is a rapidly advancing field, characterized by
the continuous evolution of application scenarios,
sources of hallucination, and detection and preven-
tion techniques. Our work represents the first at-
tempt to benchmark hallucination within the RAG
setting, revealing several areas that require further
investigation. It is important to carefully bench-
mark the generality capability of the detection
model trained on our data, assessing how well it
performs across different datasets and contexts. Ad-
ditionally, we aim to evaluate the effectiveness of
using manual annotations versus synthetic data, as
well as explore the potential benefits of combining
both approaches to optimize the return on invest-
ment.

9 [Ethical considerations

This work is in full compliance with the Ethics Pol-
icy of the ACL. We acknowledge that responses
generated by LL.Ms in this study may contain in-
accuracies. Aside from this, to the best of our
knowledge, there are no additional ethical issues
associated with this paper.
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A Hallucination Examples

EVIDENT CONFLICT

Example 1

Original content: They’ve sent about 500 of the most seriously injured people for treatment in Kathmandu already — the majority
by road.

Generative content: The team airlifted 500 injured people. .. to Kathmandu for medical treatment.

Example 2
Original content: "RestaurantsReservations": false
Generative content: The restaurant offers outdoor seating and takes reservations

SUBTLE CONFLICT

Example 1

Original content: This is the section that lets the government deny trademark protection to a mark that is "immoral," "scandalous"
or "disparaging."

Generative content: ... violates Section 2(a) of the trademark act, which prohibits marks that are "immoral, scandalous, or
disqualified."

Example 2

Original content: It was quite a hassle to find a table since this place is crowded all the time, but well, nothing can stand between
me and that absolutely delightful lobster roll

Generative content: The restaurant is located in a crowded area, but the delicious lobster rolls make it worth the hassle to find a
table.

EVIDENT INTRODUCTION OF BASELESS INFORMATION

Example 1

Original content: The couple divorced in 1968... She had no contact with the surviving members of the band until meeting up at
the 2006 Las Vegas premiere of "The Beatles Love."

Generative content: The couple divorced in 1968, but later reconciled and attended the 2006 Las Vegas premiere of "The Beatles
Love."

Example 2
Original content: “RestaurantsTakeOut”: true
Generative content: Customers can also enjoy takeout and delivery options.

SUBTLE INTRODUCTION OF BASELESS INFORMATION

Example 1
Original content: Amazing happy hour and great people.
Generative content: One of the standout features of Killer Shrimp is their happy hour, which is available daily from 4 pm to 7 pm.

Example 2
Original content: Place mashed potatoes in a medium bowl. Stir in onions, cheese, salt, pepper, and bacon.
Generative content: Place your mashed potatoes in a medium bowl. Stir in cooked onions, cheese, salt, pepper, and bacon.

Table 8: Examples of the four types of hallucinations.
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B Response Generation Prompts

QUESTION ANSWERING

Answer the following question:

{question}

Bear in mind that your response should be strictly based on the following 3 passages:

{passages}

In case the passages do not contain the necessary information to answer the question, please reply with: "Unable to answer based
on given passages."

DATA-TO-TEXT WRITING

Instruction:

Write an objective overview about the following local business based only on the provided structured data in the JSON format.
You should include details and cover the information mentioned in the customers’ review. The overview should be 100 - 200
words. Don’t make up information.

Structured data:

{json_data}

Overview:

SUMMARIZATION

Summarize the following news within {word_num} words:
{news}
output:

Table 9: Prompts for generating responses for the three types of tasks.  word_num is min(200,
word_num_of news//4). The word count requirement is only to control the length of the generated summa-
rization, it will not serve as the basis for hallucination annotation.
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C Annotation Details
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Business Info

“name’: "Jersey Mike's Subs’,

“address': 7034 Market Place Dr',

“eity's“Goleta,

“State’s CK,

“categories': Fast Food, Restaurants, Sandwiches, Dels’,
hours® {

“Monday': 0:0.0:0

“Tuesday” 100180

“Wednesday': "10.0210",

“Thursday: 100180°,

“Friday’: 10.018.0°
“Saturday': 100210’
“Sunday’; 100:210°
attibutes”:
“BusinessParking' {
“garage’ false,
“street” null,
“validated false,

ot true,

“valet' false

“RestaurantsReservations™ alse,
“Outdoorseating:rue,

W 10",

“RestauranisTakeOut true,
“RestaurantsGoodForGroups : rue,
“Music®null,

“business.stars: 30
)

Reviews
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“review_stars” 5.0,
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Figure 5: Annotation interface. For privacy reasons, we have masked the full names of the annotators in the

screenshot.
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implicit_true due_to_null

Task Model # Hallucination Span #Span % Span #Span % Span

GPT-3.5-turbo-0613 89 33 0.371
GPT-4-0613 51 15 0.294
Question Answering Llama-2-7B-chat 1010 251 0.249
. Llama-2-13B-chat 654 215 0.329
Llama-2-70B-chat 529 168 0.318
Mistral-7B-Instruct 594 164 0.276

GPT-3.5-turbo-0613 384 52 0.135 69 0.180

GPT-4-0613 354 24 0.068 209 0.590

Data-to-text Writing Llama-2-7B-chat 1775 195 0.110 230 0.130

Llama-2-13B-chat 2803 260 0.09 439 0.157

Llama-2-70B-chat 1834 274 0.149 272 0.148

Mistral-7B-Instruct 2140 102 0.048 423 0.198
GPT-3.5-turbo-0613 60 14 0.233
GPT-4-0613 80 10 0.125
Summarization Llama-2-7B-chat 517 44 0.085
Llama-2-13B-chat 342 28 0.082
Llama-2-70B-chat 245 27 0.110
Mistral-7B-Instruct 828 52 0.063

Overall \ 14289 1928 0.135 1642 0.115

Table 10: Detailed statistical information for the labels implicit_true and due_to_null. The majority of implicit
truths appear in two types of tasks: question answering and data-to-text writing. About 17.7% hallucination spans
in the data-to-text writing tasks are related to null values in the JSON data.
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D Hallucination Detection Prompts

SUMMARIZATION

Below is the original news:

{article}

Below is a summary of the news:

{summary }

Your task is to determine whether the summary contains either or both of the following two types of hallucinations:

1. conflict: instances where the summary presents direct contraction or opposition to the original news;

2. baseless info: instances where the generated summary includes information which is not substantiated by or inferred from the
original news.

Then, compile the labeled hallucinated spans into a JSON dict, with a key "hallucination list" and its value is a list of
hallucinated spans. If there exist potential hallucinations, the output should be in the following JSON format: {"hallucination
list": [hallucination spanl, hallucination span2, ...]}. Otherwise, leave the value as a empty list as following: {"hallucination
list": [1}.

Output:

QUESTION ANSWERING

Below is a question:

{question}

Below are related passages:

{passages}

Below is an answer:

{answer}

Your task is to determine whether the answer contains either or both of the following two types of hallucinations:

1. conflict: instances where the answer presents direct contraction or opposition to the passages;

2. baseless info: instances where the answer includes information which is not substantiated by or inferred from the passages.
Then, compile the labeled hallucinated spans into a JSON dict, with a key "hallucination list" and its value is a list of
hallucinated spans. If there exist potential hallucinations, the output should be in the following JSON format: {"hallucination
list": [hallucination spanl, hallucination span2, ...]}. Otherwise, leave the value as a empty list as following: {"hallucination
list": []}.

Output:

DATA-TO-TEXT WRITING

Below is a structured data in the JSON format:

{business info}

Below is an overview article written in accordance with the structured data:

{overview }

Your task is to determine whether the overview contains either or both of the following two types of hallucinations:

1. conflict: instances where the overview presents direct contraction or opposition to the structured data;

2. baseless info: instances where the generated overview includes information which is not substantiated by or inferred from the
structured data.

In JSON, "null" or "None" represents an unknown value rather than a negation.

Then, compile the labeled hallucinated spans into a JSON dict, with a key "hallucination list" and its value is a list of
hallucinated spans. If there exist potential hallucinations, the output should be in the following JSON format: {"hallucination
list": [hallucination spanl, hallucination span2, ...]}. Otherwise, leave the value as a empty list as following: {"hallucination
list": []}.

Output:

Table 11: Prompts for detecting hallucination for the three types of tasks. In the prompt for data-to-text writing, we
clarified that null or None in JSON should be treated as unknown rather than a negation.
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