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Abstract
With the launch of ChatGPT, large language
models (LLMs) have attracted global attention.
In the realm of article writing, LLMs have wit-
nessed extensive utilization, giving rise to con-
cerns related to intellectual property protection,
personal privacy, and academic integrity. In re-
sponse, AI-text detection has emerged to distin-
guish between human and machine-generated
content. However, recent research indicates
that these detection systems often lack robust-
ness and struggle to effectively differentiate
perturbed texts. Currently, there is a lack of
systematic evaluations regarding detection per-
formance in real-world applications, and a com-
prehensive examination of perturbation tech-
niques and detector robustness is also absent.
To bridge this gap, our work simulates real-
world scenarios in both informal and profes-
sional writing, exploring the out-of-the-box per-
formance of current detectors. Additionally, we
have constructed 12 black-box text perturba-
tion methods to assess the robustness of current
detection models across various perturbation
granularities. Furthermore, through adversarial
learning experiments, we investigate the impact
of perturbation data augmentation on the robust-
ness of AI-text detectors. We have released our
code and data at https://github.com/zhouy
ing20/ai-text-detector-evaluation.

1 Introduction

With the rise of LLMs (OpenAI, 2023; Anil et al.,
2023; Touvron et al., 2023), concerns about the
misuse of generated content have been grow-
ing (McKenna et al., 2023; Bian et al., 2023; Fer-
rara, 2023), making AI-Text detection a topic of
significant attention from the research commu-
nity. Several methods for detecting AI-generated
text have recently been proposed, including fine-
tuned classifiers (Uchendu et al., 2020; Liu et al.,
2023c), statistical approaches (Lavergne et al.,
2008; Mitchell et al., 2023), watermarking (Atal-
lah et al., 2001; Kirchenbauer et al., 2023a), and
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Figure 1: Performance of state-of-the-art AI-text detec-
tors significantly decreases after introducing perturba-
tion attacks. The green dashed threshold line represents
the adversarially trained RoBERTa classifier detector,
achieving a detection accuracy of 0.912 on the mixed
test data of the original and perturbed text.

retrieval techniques (Krishna et al., 2023). Addi-
tionally, online education service providers such
as Copyleak1 and GPTZero (Tian and Cui, 2023)
have introduced AI text detection services. How-
ever, criticisms regarding misclassification results
from various users have surfaced. Simultaneously,
in domains like essay writing, there is a demand
from users to bypass AI text detection using per-
turbation methods, whereas numerous open-source
tools like GPTzzz2 and AiTextDetectionBypass3

have emerged.
Recent efforts have begun to explore the vulnera-

bilities of current detection models (He et al., 2023;
Sadasivan et al., 2023; Liang et al., 2023; Tripto
et al., 2023; Chakraborty et al., 2023), utilizing
methods such as rewrite and substitution to modify
AI-generated content, rendering it indistinguish-
able from human-authored text. This underscores
the importance of investigating and identifying po-
tential weaknesses in current detectors before their

1https://copyleaks.com/ai-content-detector
2https://github.com/Declipsonator/GPTZzzs
3https://github.com/obaskly/AiTextDetectionBy

pass

10847

https://github.com/zhouying20/ai-text-detector-evaluation
https://github.com/zhouying20/ai-text-detector-evaluation
https://copyleaks.com/ai-content-detector
https://github.com/Declipsonator/GPTZzzs
https://github.com/obaskly/AiTextDetectionBypass
https://github.com/obaskly/AiTextDetectionBypass


deployment, ensuring their robustness and mitigat-
ing potential risks. Simultaneously, more compre-
hensive work has started to summarize the issues
with current detection methods and propose corre-
sponding robustness enhancement techniques, such
as RADAR (Hu et al., 2023) and retrieval (Krishna
et al., 2023). Despite enhancing the models’ de-
fense against specific types of text perturbations
to some extent, these works still face two major
limitations. Firstly, these efforts primarily focus
on AI text detection in specific writing scenarios.
Secondly, they typically involve only one type of
perturbation, i.e., paraphrasing. In practical appli-
cations, detectors are likely to encounter a more
complex and diverse set of scenarios, involving
various application contexts and potential text per-
turbations.

To this end, our work aims to investigate and
analyze the accuracy and robustness of various AI
text detection algorithms in simulating real writing
scenarios. Specifically, within three categories of
AI text detection methods, we evaluate six repre-
sentative off-the-shelf models on data generated
by ChatGPT. To simulate users’ writing demands,
we categorize AI-generated text into professional
and informal writing scenarios and test detection
accuracy accordingly. As expected, current text
detection models exhibit lower accuracy in profes-
sional writing scenarios. Furthermore, following
an exploration of current text perturbation methods,
we devise 12 types of text perturbations across four
granularities. We apply these perturbations to the
test data, generating 120,000 adversarial samples
to investigate the robustness of current detection
systems. The results reveal that, apart from the ex-
tensively studied paraphrase methods, word-level
perturbations also significantly reduce AI text de-
tection rates. Building on earlier work, we further
delve into exploring the minimum budget for ad-
versarial learning to train robust text detectors. Ad-
ditionally, we conduct preliminary investigations
into transfer learning in the context of adversarial
text detection.

Our work can be summarized into three parts: 1)
We validate the detection accuracy of three types of
current detection models in both professional and
informal writing scenarios. This analysis identi-
fies a lack of generalization performance in current
detection systems. 2) We systematically and hi-
erarchically design AI-Text perturbation methods.
The results demonstrate that perturbations at vari-
ous granularities significantly reduce detection per-

formance. Additionally, we observe inconsistent
performances of different detection models when
faced with perturbations. 3) Budget and transfer
experiments provide references and suggestions for
future efforts to enhance the robustness of AI-Text
detectors.

2 Related Works

2.1 AI-Text Detection

Current AI-text detectors can be categorized into
four classes:

Statistical approaches leverage statistical tools, us-
ing metrics such as information entropy, perplexity,
and n-gram frequencies to differentiate between
human and machine-generated text in a zero-shot
manner (Lavergne et al., 2008; Gehrmann et al.,
2019; Solaiman et al., 2019; Mitchell et al., 2023;
Su et al., 2023). Notable commercial applications
include GPTZero (Tian and Cui, 2023), and re-
cent open-source efforts are exemplified by De-
tectGPT (Mitchell et al., 2023), which defines a
curvature-based criterion using a log probability
function for the AI detection.

Watermark-based methods (Atallah et al., 2001,
2002; Kirchenbauer et al., 2023a; Liu et al., 2023a)
is also evolving with the emergence of LLMs,
where Kirchenbauer et al. (2023a) randomly par-
tition the vocabulary into a greenlist and a redlist
during generation, based on the hash values of pre-
viously generated tokens.

Classifier-based detectors (Uchendu et al., 2020;
Deng et al., 2023; Mireshghallah et al., 2023;
Guo et al., 2023; Liu et al., 2023b,c; Wang et al.,
2023) based on supervised data typically utilize
RoBERTa (Liu et al., 2019) to train binary classi-
fiers for text detection. Recent efforts include Ope-
nAI’s release of detection tools (Solaiman et al.,
2019), and RADAR (Hu et al., 2023), which specif-
ically address the importance of perturbation at-
tacks, and enhance detection robustness through
adversarial learning using paraphrases.

Retrieval-based method proposed by Krishna et al.
(2023) involves collecting historical responses from
language models and assessing the AI generation
likelihood of the text through semantic matching.

2.2 Adversarial Attacks

In addition, some studies (Ren et al., 2023; Tripto
et al., 2023; Lu et al., 2023; Liang et al., 2023;
Cai and Cui, 2023) have addressed the impact of
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text perturbations on AI text detection. For in-
stance, both Sadasivan et al. (2023); Krishna et al.
(2023) propose to use paraphraser as the attacker to
rewrite AI content, demonstrating effective attacks
on many detectors. Kirchenbauer et al. (2023b)
validate the detection capabilities of watermarking
detectors in scenarios involving a mix of human
and machine-generated text. Furthermore, Shi et al.
(2023) examine the significant impact of synonym
perturbations on text detection performance. Ku-
marage et al. (2023) designe prompts to generate
outputs more similar to human text, evading detec-
tion of existing detectors.

Notably, the recent work by Macko et al. (2024)
has been instrumental in illustrating the susceptibil-
ity of current multilingual AI text detectors through
the design of perturbations such as paraphrasing,
back translation, and substitution within a multi-
lingual context, thereby showcasing the potential
benefits of adversarial training. In contrast, our
study shifts the focus towards the detectability of
AI-generated text in practical scenarios. We uti-
lize AI-generated text outputs that more closely
mimic human-produced content, develop a broader
range of perturbation attacks, and critically, expand
our examination beyond the conventional classifier-
based methods. Our evaluation includes not only
classifiers but also involves retrieval systems and
other detection mechanisms, thereby providing a
more holistic assessment of detection efficacy in
diverse operational environments.

3 Experimental Setup

In this section, we first survey the current state-of-
the-art AI-text detection methods. Subsequently,
considering the presence of intentional or uninten-
tional perturbation attacks in real-world applica-
tions that can impact the performance of detection
models, we synthesize and implement 12 black-box
perturbation methods. Here, “black-box” refers to
attacking algorithms lacking access to internal in-
formation of detectors, such as gradients or hidden
states. Meanwhile, building upon the scoring-based
configuration of existing detectors, we investigate
the challenges associated with metric selection and
threshold determination in evaluation.

3.1 Off-the-Shelf Detectors

As described in Section 2, the current research
in AI detection primarily focuses on four direc-
tions. However, the application of watermarking

techniques to commercial or open-source LLMs re-
mains limited, with few practical implementations
to date. Consequently, our investigation focuses on
three types of readily deployable detection models:

1. Statistical models, i.e., DetectGPT (Mitchell
et al., 2023) and GPTZero (Tian and Cui, 2023);

2. Retrieval-based models (Krishna et al., 2023)
including BM25 (Robertson et al., 1995) and
P-SP (Wieting et al., 2022);

3. Classifier models like OpenAI’s text classi-
fier (Solaiman et al., 2019) and RADAR (Hu
et al., 2023).

Additionally, to accurately assess the impact of
training data on classifier detectors, we follow Ope-
nAI’s approach to train a RoBERTa-base as a com-
parative baseline on the two datasets we employed.
Furthermore, considering the dependence of re-
trieval models on corpus data, we also evaluate the
influence of documents from four different sources
on detection performance. The specific details will
be elaborated in Section 4.1. In summary, we as-
sessed a total of 6 off-the-shelf detection models
and expanded our evaluation to cover 13 experi-
mental settings.

3.2 Adversarial Attacks

To simulate real-world scenarios where users may
modify AI-generated text for cheating purposes and
also to account for noise in information transmis-
sion, we devised 12 perturbation attack methods
across four granularities, i.e., document, sentence,
word, and character. Several of our attack strategies
build on the foundations laid by previous research,
as evidenced by studies in (Wu et al., 2023; Cai and
Cui, 2023; Krishna et al., 2023; Shi et al., 2023;
He et al., 2023), while others are first introduced in
this work, representing a novel exploration of their
effect on the detectability of AI-generated text.

3.2.1 Document-level Perturbations

Paraphrase. We employ the highly effective DIP-
PER (Krishna et al., 2023) rewriter with the lex=40,
order=40, which is the most intensive settings in
their paper.

Back-Translation. Leveraging Neural Machine
Translation (NMT) models, we choose French as
the intermediary language, and utilized the transla-
tion models from Helsinki-NLP (Tiedemann and
Thottingal, 2020).
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3.2.2 Sentence-level Perturbations

Sentence Back-Translation. Akin to document-
level Back Translation, but randomly selecting sen-
tence windows for translation. Up to 3 pieces are
perturbed within a maximum window of 5 sen-
tences.

MLM Prediction. Randomly masking 2 to 5 sen-
tences in the original text and replacing them using
the BART-large (Lewis et al., 2020) model.

3.2.3 Word-level Perturbations

MLM Prediction for Words. Akin to the sentence
MLM prediction, using the BERT-base (Devlin
et al., 2019) model to replace random tokens with
synonyms. To control text quality, the maximum
word perturbation ratio per article does not exceed
20%. This setting is also applied to all our word-
level perturbations.

Adverb Insertion. Randomly inserting a relevant
adverb before verbs in the original text.

Spelling Errors. Simulating situations where users
misspell words due to ignorance, implemented
through a predefined spelling error dictionary.

Keyboard Typos. Simulating typos during key-
board input, including substitution of nearby char-
acters, swapping adjacent characters, inserting irrel-
evant characters, and deleting specific characters.

3.2.4 Character-level perturbations.

Word Merging. Simulating scenarios in informa-
tion transmission contexts where spaces between
words are missing. Introducing 3-10 randomly cho-
sen word merging errors per article.

Case of the First Character of a Word. Simulat-
ing scenarios where the first character of a word is
incorrectly capitalized.

Punctuation Removal. Simulating that punctu-
ation is lost, randomly removing up to 30% of
punctuation marks from the original text.

Space Insertion. Building upon prior work (Cai
and Cui, 2023), we control the insertion of spaces
to between 5-10 spaces per article.

3.3 Evaluation Metrics

Detection. The prevailing practice in current re-
search is to use the AUC-ROC to comprehensively
evaluate the discriminative capability of detec-
tors for AI-generated text (Mitchell et al., 2023;
Kirchenbauer et al., 2023a). However, in the real-
world deployment of AI-text detector, it is essential

CheckGPT HC3

Train data 720,000* 58,508
Test data 90,000* 25,049
Avg #words 136.68 145.89
Domain News, Essay, Research QA

Table 1: Data statistics, where * denotes the data are
randomly split with seed 42, and #words denotes the
number of words in one sample.

to select a fixed threshold based on training strate-
gies and test data to support subsequent detection,
e.g., GPTZero considers probabilities greater than
0.88 as “Entirely AI.”. The threshold-independent
AUC-ROC metric may no longer accurately re-
flect the detection performance in practical tests.
Therefore, we opt for F1 and Accuracy metrics
to assess how accurately input texts are detected
as AI-generated content. As F1 scores are heavily
influenced by the chosen detection threshold, we
calibrate the threshold by maximizing Youden’s J
statistic for each detection method on a reserved
set of 5000 samples. This threshold is then fixed to
validate model robustness under perturbations.
Robustness. In perturbation attack experiments,
we consider the Attack Success Rate (ASR) as
the metric, i.e., the accuracy change for AI text
detection after perturbation.

3.4 Benchmarks
As mentioned earlier, this paper aims to validate
the detectability of AI-generated text in real-world
scenarios, focusing specifically on the most suc-
cessful commercial LLMs, the GPT series (Rad-
ford et al., 2019; Brown et al., 2020; Ouyang et al.,
2022). In contrast to previous work, our attention is
solely on data generated by the ChatGPT4, which
is readily accessible to the end users. We employ
two datasets in the experiments. CheckGPT (Liu
et al., 2023c) centers around professional writing,
which consists of a dataset of 900 thousand sam-
ples encompassing news articles, essays, and sci-
entific research generated using various prompts.
HC3 (Guo et al., 2023) focuses on internet QA sce-
narios, employing the continuation-writing method
to generate ChatGPT responses in fields such as
encyclopedia, community, finance, medicine, and
open-ended questions. Through these two datasets,
we simulate the text detection needs of both pro-
fessional and ordinary users, with detailed infor-

4https://chat.openai.com
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Detectors Professional Writing Informal Writing

F1 AccG AccH Thres. F1 AccG AccH Thres.

DetectGPT 73.30 71.23 76.81 0.271 90.95 92.64 89.16 0.579
GPTZero 90.12 86.90 93.95 0.572 99.17 98.35 100.0 0.443

BM25Train 55.39 45.94 80.02 0.321 85.65 86.41 84.97 0.288
BM25Train+ 97.78 98.32 97.20 0.604 98.49 98.91 98.10 0.392
BM25ShareGPT 40.44 29.64 82.98 0.243 78.60 77.95 80.06 0.221
BM25ShareGPT+ 98.21 98.36 98.04 0.434 98.49 98.83 98.18 0.373

OpenAI 64.46 55.33 83.62 0.071 93.90 91.91 96.24 0.829
RADAR 72.23 69.28 77.41 0.306 69.36 93.20 26.11 0.354
RoBERTa 98.96 98.56 99.36 0.943 99.80 99.96 99.64 0.942

Table 2: Detection performance of off-the-shelf detectors on CheckGPT and HC3 datasets. AccG: detect accuracy of
GPT-generated text. AccH : detect accuracy of human-written text. Thres: the threshold determined by maximizing
Youden’s J statistic.

mation on the two datasets provided in Table 1.
As for adversarial attack experiments, we generate
large-scale perturbed datasets based on the attack
methods described above, resulting in 1.08 million
perturbed samples for CheckGPT, and 192 thou-
sand perturbations for HC3.

3.5 Research Questions
Based on off-the-shelf detectors, publicly available
data, and black-box perturbations, we propose three
research questions to investigate whether current
AI-text detectors’ development can meet the de-
mands of various real-world application scenarios:
• RQ1. What is the detection accuracy when apply-

ing current detectors directly to the SoTA LLM-
generated texts?

• RQ2. How does the performance of current de-
tection systems change when facing different per-
turbations? What are the most effective attack
methods?

• RQ3. When facing perturbation attacks, can the
training strategy or settings of the detection sys-
tem be adjusted to achieve robust detection?

In the following sections, we will address RQ1 and
RQ2 in Section 4 by evaluating the detectors in
real-world scenarios. In Section 5, we will explore
adversarial learning methods to enhance the robust-
ness of current classifier-based detectors.

4 Evaluating Detectors in the Wild

4.1 Detectability of the Cutting-Edge AI-Text
We initially validate the performance of three types
of AI text detection algorithms on cutting-edge AI

Datasets OpenAI RoBERTa

GPT-2-Small 97.29 57.85
GPT-2-Medium 96.96 63.07
GPT-2-Large 96.74 65.59
GPT-2-XL 95.35 65.62
HC3 93.90 99.80
CheckGPT 64.46 98.96

Table 3: F1 scores for OpenAI detector trained on GPT-
2 data and our RoBERTa detector trained on ChatGPT
data on both test sets. Lower F1 scores are in bold.

text datasets. In our experiments, we consider the
HC3 dataset, derived from internet-based QA data,
as representative of informal writing scenarios, and
the CheckGPT dataset, based on academic paper
writing, as representative of professional writing
scenarios.

AI-texts are more easily detected in informal
writing scenarios. As shown in Table 2, almost
all detectors exhibit higher false positives in pro-
fessional writing contexts compared to informal
writing contexts. Taking the commercial detec-
tion tool GPTZero as an example, it demonstrates
minimal false positives in informal writing sce-
narios, showcasing strong practical utility. How-
ever, in CheckGPT, the performance has signifi-
cantly declined, where the F1 score dropped from
99.2 to 90.1, markedly lower than the finetuned
RoBERTa’s 98.9. Surprisingly, the adversarially
trained RADAR model exhibits severe false posi-
tives in informal writing scenarios, possibly stem-
ming from partial overlap in training data between
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Perturbations Statistic Retrieval Classifier

DetectGPT GPTZero BM25Train+ OpenAI RADAR RoBERTa

Origin F1 73.30 90.12 97.78 64.46 72.23 98.96

Doc
Paraphrase 29.09 41.67 67.16 4.79 3.24 66.24
BackTrans 38.11 19.05 43.67 8.23 0.76 25.93

Sent
BackTrans 30.04 14.29 12.98 8.23 1.48 12.62
MLM 14.70 39.29 22.29 2.36 2.48 12.66

Word

MLM 68.88 83.73 4.39 19.30 2.12 75.59
AdvInsert 64.20 71.43 0.00 31.56 25.93 47.26
Spelling 70.48 62.70 0.00 52.62 29.92 87.10
Typos 70.95 36.51 0.00 54.25 38.31 64.68

Char

Merge 17.82 23.81 0.00 45.83 2.60 27.85
Case 44.39 80.16 0.00 52.22 14.38 39.63
Punctuation 23.13 25.00 0.00 29.76 0.28 10.11
SpaceInsert 35.36 11.51 0.00 52.86 1.60 21.45

Average ASR 42.26 42.43 12.54 30.17 10.26 40.93

Table 4: Attack Success Rates (ASR) of perturbations on the CheckGPT test set. A higher ASR indicates a
higher proportion of AI-generated text misclassified as human text after perturbation. All ASR exceeding 20% are
highlighted in bold.

RADAR and HC3 datasets. This overlap may lead
to overfitting to the paraphraser on which the model
relies, making it challenging to distinguish human-
generated text in that particular domain.

The retrieval method heavily relies on the test
samples within the document corpus. As for
the retrieval method proposed by Krishna et al.
(2023), we conduct ablation experiments on its
corpus data. As seen in Table 2, taking the Check-
GPT dataset as an example, when utilizing only the
training data of the RoBERTa detector or publicly
available ShareGPT data, namely BM25Train and
BM25ShareGPT , the retrieval method exhibits the
poorest performance, struggling to distinguish AI-
text. However, upon incorporating the test data
into the retrieval corpus, i.e., BM25Train+ and
BM25ShareGPT+ , the accuracy rapidly improves
to over 98%, as every machine-generated text now
shares identical retrieval results. This performance
poses a significant challenge in practical applica-
tions, as providers of retrieval detection services
must be capable of acquiring and storing all gen-
erated results of target LLMs. Efficiency, security,
privacy, and other related concerns may limit the
widespread adoption of such retrieval detection.

Classifiers-based detectors exhibit poor gener-
alization performance. OpenAI, RADAR, and

the fine-tuned RoBERTa model can be considered
as three models with the same architecture, with
training data quality continually improving. Specif-
ically, each model is trained on data generated by
GPT-2, Vicuna, and ChatGPT, respectively. Ex-
cluding RADAR’s human accuracy on HC3 data,
based on GPT detection performance, it is evident
that the quality of training data for classifier-based
detectors positively correlates with AI text detec-
tion performance on cutting-edge AI-generated
content. Furthermore, as shown in Table 3, the Ope-
nAI detector performs poorly on ChatGPT data,
and the RoBERTa trained on ChatGPT data ex-
hibits suboptimal detection performance on GPT-2
text. These results indicate that neural network-
based AI text detectors have limited generalization
performance. When the testing data differs in gen-
eration methods, model scale, and other aspects
from the training data, the model’s detection per-
formance sharply declines.

4.2 Effectiveness of Perturbations

We further delve into perturbation scenarios, ex-
amining the impact of intentional or unintentional
text perturbations generated by users using AI tools
on the performance of detectors. Specifically, we
investigate the extent of the decline in detection
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Sim ↑ Flesch GPT ↑ PPL ↓
Origin 100.0 26.55 8.85 6.18

Paraphrase 80.51 35.91 7.38 9.75
BackTrans 86.23 16.62 6.93 20.18

BackTrans 92.13 25.87 7.91 9.98
MLM 81.90 36.23 4.73 8.71

MLM 67.16 37.34 3.00 29.81
AdvInsert 97.98 20.38 4.29 12.71
Spelling 87.32 29.08 3.49 24.55
Typos 80.38 29.97 3.95 23.14

Merge 98.77 20.43 8.81 8.04
Case 99.81 26.61 7.10 10.06
Punctuation 99.49 19.31 8.24 7.49
SpaceInsert 97.03 30.55 8.18 8.99

Table 5: Comparative results of the quality between
original and perturbed text. An upper arrow indicates
that higher values are desirable, and vice versa. A higher
Flesch value signifies more easily understandable text.

accuracy for AI-generated text across four levels of
perturbation granularity.

All detectors exhibit vulnerability to perturba-
tions, even after defense training. From Table 4,
it is evident that all detectors show significant mis-
judgments in the presence of text perturbations,
with an average ASR exceeding 10%. Among
them, the retrieval and the RADAR methods, pro-
posed for robustness issues, demonstrate a certain
degree of defensive performance. However, when
facing specific perturbation attacks, they still ex-
hibit weaker detection capabilities. For instance,
the retrieval method, due to its ability to access the
original AI-generated text on the test set, shows
high defense capabilities against minor text per-
turbations such as typos and spaces. However, its
defense capability sharply declines in scenarios
involving substantial deviations from the original
text, such as rewriting and back translation. Fur-
thermore, as seen in Table 10, once the retrieval
method cannot access the test set, its detection per-
formance and robustness significantly decrease. As
for RADAR, based on paraphrasing for adversarial
training, it exhibits a strong defense against larger
granularity perturbations. Nevertheless, it inherits
the vulnerability of neural network models and per-
forms poorly on perturbations at the word level. A
similar performance could also be observed on the
HC3 dataset in Table 9.

Statistical and classifier-based methods exhibit
similar performance when facing perturbations.
From Table 4, we observe that, whether it is the
commercial GPTZero or other open-source detec-
tors, introducing word-level perturbations to AI-
generated articles yields more significant attack re-
sults compared to full-text rewriting. Moreover, the
effectiveness of word-level perturbation methods
appears consistent across both groups. For instance,
both MLM word substitution and spelling errors
lead to higher attack success rates in all statisti-
cal and classifier-based models. This may imply a
greater reliance on statistical metrics, such as per-
plexity, in the current classifier training. Future
work could focus on improving these aspects.

Perturbed texts show significant changes in text
quality, readability, or semantic similarity. To
assess the changes in semantic similarity and read-
ability introduced by perturbed text, we report four
text quality metrics. 1) The semantic similarity
between the original and perturbed text, calculated
using the P-SP model (Wieting et al., 2022). 2) The
Flesch Reading Ease score, quantifying text read-
ability, with 0 indicating a highly specialized text
and 100 representing a fifth-grade level. 3) Text
quality scores judged by GPT-3.5-Turbo, ranging
from 0 to 10, with 10 being the highest score. The
specific prompt used is provided in Appendix B. 4)
Perplexity, assessed using the 7B LLaMA-2-base
model (Touvron et al., 2023) to evaluate text flu-
ency. From Table 5, it is evident that the success
rate of text perturbation is inversely correlated with
text quality to a certain extent. Perturbation meth-
ods such as Typos can even decrease the GPT score
from 8.85 to 3.95.

4.3 Discussion on RQ1&2

In summary, for RQ1 and RQ2, we can learn from
the results that the detection methods based on
statistical metrics are generally applicable in in-
formal scenarios. Their zero-shot characteristics
endow them with a certain degree of generalization
ability. When targeting a certain LLM, training
a classifier-based detector, given sufficient train-
ing data, proves to be a viable option. However,
its generalization capability to other LLMs may
be limited. In scenarios with substantial perturba-
tions, retrieval methods exhibit the strongest de-
fense capabilities. Nevertheless, their reliance on
the original generated text may constrain their ap-
plicability. When data from the same distribution
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Figure 2: Gradual reduction in average ASR with an
increase in the number of perturbed data augmentations.
Meanwhile, the F1 score on unperturbed data remains
relatively stable, around 0.98. Refer to Appendix A for
details.

In-domain ASR OOD ∆ASR

Paraphrase 4.82 -29.92
MLM-Sent 8.52 -65.80
MLM-Word 7.98 -3.80
Space-Insert 7.90 -11.71

Table 6: Transfer learning results for perturbation at-
tacks. ∆ASR represents the reduction in ASR on that
target perturbation after training.

is unavailable, both their detection and defense per-
formance significantly decline. For details, please
refer to Table 10 in the Appendix. In future re-
search, proposing more robust detection models
or strategies that blend current detection system
outcomes would be worthwhile directions.

5 Robustness Enhancement

5.1 Defence Budgets
To further investigate the role of perturbed sample
augmentation in enhancing the robustness of AI
text detectors, we conducte experiments to evalu-
ate the performance variation of the adversarially
trained RoBERTa detector under different pertur-
bation budgets. We define the perturbation budget
in two aspects: firstly, the number of augmented
samples for each perturbation during adversarial
training; and secondly, the transferability of differ-
ent perturbation methods under the same granular-
ity. In this study, we choose the RoBERTa model
trained on the CheckGPT dataset as our test setting.
The results of these two aspects are illustrated in
Figure 2 and Table 6.

3,000 Perturbed Samples is All You Need. From

Figure 2, we observe the impact of the number of
perturbed samples used as augmentation data dur-
ing the fine-tuning of the RoBERTa model on the
average ASR. Our results demonstrate that incor-
porating a small number of perturbed samples ef-
fectively enhances the model’s defensive capability
against these perturbations. This increasing trend
plateaus when the number of perturbed samples
reaches around 3000, showing a gradual decline.
Ultimately, with the addition of 10,000 perturbed
samples (12 perturbation methods, totaling 120,000
augmented data), the average attack success rate
decreases from 40.93 to 8.01.

Defense capabilities obtained through transfer
learning are not stable. As for transferability,
we selected Paraphrase, MLM-Sentence, MLM-
Word, and Space Inserting as target perturbations
for each of the four granularities. For each exper-
iment, one perturbation is reserved as the target,
while the remaining 11 perturbations are used for
adversarial training. We evaluate the detector’s de-
fensive capability against the target perturbation
post-adversarial training, and the experimental re-
sults are presented in Table 6. After fine-tuning,
there was a significant decrease in in-domain ASR
across the 11 perturbation data, all falling below
9%. However, for out-of-distribution (OOD) tar-
get perturbations, notable differences can be ob-
served. The MLM-Sentence method, which is
more amenable to transfer learning, exhibits a sub-
stantial 65.8 decrease in ASR without specific train-
ing, with an ASR of only 9.79. In contrast, the more
challenging MLM-Word achieves only 3.8 in trans-
fer performance and maintains a high ASR of 43.47
post-training. These results suggest that relying on
transfer learning alone to address the robustness of
AI text detection is not realistic. Subsequent work
should consider a more comprehensive coverage of
perturbation attacks.

5.2 Discussions on RQ3

To summarize RQ3, concerning text perturbations,
augmenting the training data with perturbed sam-
ples can enhance the robustness of the detector
to some extent. However, there is an upper limit
to this enhancement, and the trend levels off af-
ter 3,000 perturbed samples. Meanwhile, vanilla
transfer learning for defense brings about unstable
improvements, depending on whether the target
perturbation patterns can be learned from the other
in-domain perturbation methods.
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6 Conclusions

In this paper, we study two real-world application
scenarios for AI text detection: professional writ-
ing and informal writing. We evaluate the current
SoTA detection performance in both scenarios us-
ing three categories of detection methods and six
representative models. Furthermore, we introduce
and design a set of 12 text perturbation methods,
demonstrating the vulnerability of current detection
models at different levels of granularity. Finally,
we apply adversarial learning in the context of per-
turbed data augmentation, validating the minimum
budget and transferability of enhancing classifier
models. In future work, we plan to extend our eval-
uations to include more LLM-generated data, such
as Vicuna (Chiang et al., 2023) and Mistral (Jiang
et al., 2023).

Limitations

This paper aspires to provide a comprehensive eval-
uation and analysis of the overall performance of
state-of-the-art AI detectors. However, given the
challenges posed by multilingual and multi-modal
applications, our study may not fully cover all as-
pects. Additionally, it is acknowledged that we
cannot encompass all existing text perturbation
methods, and the 4 levels of granularity and 12
perturbation tools we construct may not entirely
cover real-world scenarios. Thus, the definition
and evaluation of real-world application scenarios
in this paper may lack more comprehensive cov-
erage and consideration. Furthermore, this work
focuses on adversarial learning to improve the ro-
bustness of classifier-based detectors and does not
delve into designing more complex and effective
defense algorithms. Considering the rapid devel-
opment of bypass methods for AI-text detectors in
reality, more in-depth research on the robustness of
AI detection may be a direction for future work.
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A Detailed Results of Perturbations

Proportion of word-substitution. For word sub-
stitution perturbations, we analyzed different levels
of perturbation by varying the proportion of per-
turbed tokens within the entire text. As shown in
Table 7, we evaluated the ASR on the RoBERTa
classifier using the CheckGPT dataset. We can see
that, under 1% perturbation (where each article is
perturbed by only one to two words), the attack suc-
cess rate is approximately 1%. As the perturbation
reaches 7% (averaging around 10 perturbed words
per article), the ASR for all three word substitution
methods exceeds 10%.

Detection on unperturbed data. Additionally,
we provide supplementary data for Figure 2 in Ta-
ble 8. The adversarially trained model shows im-
proved defense against perturbed data without com-
promising detection performance on unperturbed
text under various data augmentation budgets.

Cost of Attacking We spend about 5000 GPU
hours on A100 GPUs for generating the perturbed
datasets and evaluating the off-the-shelf detectors.

B GPT Judgement Prompt

Following the GPT judgement method proposed
by Hu et al. (2023), we conducted scoring experi-
ments on 2,503 AI-generated texts from the Check-
GPT dataset using the GPT-3.5-Turbo API. The
prompts for both original and perturbed texts were
as follows: You are given an array of 13 sentences.
Please rate these sentences and reply with an array
of scores assigned to these sentences. Each score
is on a scale from 1 to 10, the higher the score, the
sentence is written more like a human. Your reply
example: [2,2,2,2,2,2,2,2,2,2,2,2,2].

C Perturbation Samples

In this section, we show the original AI-generated
sample and all perturbed texts for a random sample.

Origin. In this paper, we explore grand uni-
fied theories that utilize an SU(5)xSU(5) gauge
group. Our focus is on preventing fast proton decay
through a combination of small triplet couplings
and a large triplet mass, achieved through discrete
symmetries. We demonstrate that in many of our
models, the GUT scale (MGUT ) occurs naturally
due to a balance of higher dimension terms and
soft supersymmetry breaking masses. Our findings
include intriguing patterns in quark and lepton

masses, and we examine the differences between
grand unified theories and string unification.

Paraphrase. Here we look at Grand Unified The-
ories which make use of the SU(5)xSU(5) gauge
group, concentrating on avoiding fast proton de-
cay by the use of small triplet couplings and large
triplet masses, obtained through discrete symme-
tries. We show that in many of our models, the
GUT scale (MGUT ) arises naturally from a bal-
ance between higher dimension terms and the soft
breaking of supersymmetry. We find some unusual
patterns in the quark and leptoon masses, and we
also discuss the differences between the GUT ap-
proach and the string approach to unified theories.

Back Translation. In this paper, we examine the
main unified theories that use a SU(5)xSU(5) gauge
group. We focus on preventing the rapid decompo-
sition of protons by a combination of small triplet
couplings and large triplet mass obtained by dis-
crete symmetries. We show that in many of our
models, the GUT (MGUT ) scale occurs naturally
due to a balance of upper dimensional terms and
soft supersymmetry break masses.

Back Translation Sentence. In this paper, we
examine the main unified theories that use a
SU(5)xSU(5) gauge group. We focus on preventing
the rapid decomposition of protons by a combi-
nation of small triplet couplings and large triplet
mass obtained by discrete symmetries. We show
that in many of our models, the GUT scale (MGUT )
occurs naturally due to a balance of the upper di-
mension terms and the soft supersymmetry break
masses.

MLM Prediction for Sentence. Abstract We
demonstrate that in many of our models, the GUT
scale (MGUT ) occurs naturally due to a balance
of higher dimension terms and soft supersymmetry
breaking masses. In this paper, we discuss the role
of string unification in the Evolution of the Proton.
Abstract Our focus is on string unification and its
role in proton evolution. Our findings include the
following: String Unification in Proton Evolution
and its Role in the Universe

MLM Prediction for Word. In this paper, we read
most unified theories that utilize an SU(5)xSU(5)
conclusion conclusion. Our focus is on read fast
proton decay as a combination of small triplet cou-
plings and a most triplet mass, achieved as discrete
symmetries. their demonstrate that in many of our
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Proportion 1% 3% 5% 7% 10% 15% 20%*

MLM 1.20 3.08 6.07 10.31 20.82 47.22 75.59*
SpellingError 1.20 4.71 10.87 19.34 36.80 63.96 87.10*
Typos 1.04 3.60 7.47 11.67 21.65 39.23 64.68*

Table 7: Attack Success Rates (ASR) under different proportions of word-level perturbations, where * denotes the
number adopted in Table 4.

Budgets 100 300 500 700 1,000 2,000 3,000 5,000 7,000 10,000

F1 0.979 0.985 0.974 0.987 0.986 0.989 0.989 0.988 0.988 0.990
ACCH 0.970 0.986 0.952 0.988 0.985 0.986 0.990 0.993 0.994 0.991
ACCG 0.987 0.984 0.994 0.987 0.986 0.992 0.988 0.984 0.982 0.988
ASR 0.191 0.191 0.101 0.155 0.145 0.099 0.100 0.105 0.098 0.080

Table 8: F1 and accuracy scores were evaluated on unperturbed human/GPT samples for the detectors that adversarial
learned from different budgets, while ASR was evaluated on the corresponding perturbed GPT-generated samples.

models, the GUT scale (conclusion }) occurs natu-
rally due to a conclusion of higher dimension terms
and soft conclusion breaking conclusion. their con-
clusion include intriguing patterns in conclusion
and lepton conclusion, and we examine the conclu-
sion between grand unified theories and conclusion
unification.

Adverb Insertion. In this paper, we rarely ex-
plore grand emily unified theories that utilize an
SU(5)xSU(5) gauge group. Our focus overseas is
on preventing fast proton decay through a combi-
nation of small triplet couplings and a large triplet
mass, less achieved through discrete symmetries.
We gradually demonstrate that in many of our mod-
els, the GUT scale (MGUT ) occurs naturally due to
a balance of higher dimension terms and soft super-
symmetry breaking masses. Our findings probably
include intriguing patterns in quark and lepton
masses, and we examine the differences between
grand unified theories and string unification.

Spelling Errors. In this paperl, we explove grand
unified theories that utilize an SU(5)xSU(5) gauge
groop. Our foccus is on preventing fast proton de-
cay through a combination of sall triplet couplings
and a larg triplet mess, achieved through discrete
symmetries. Why demonstatrate thate in mary of
ours models, the GUT scale (MGUT ) occurs natu-
rally dur take a balance of hight dimension terms
and soft supersymmetry breking masses. Our find-
inds include intriguing patterns in quark and lep-
ton masses, and wie examine the differeces between
grand unified theories and string unification.

Keyboard Typos. In this papetr, we explore grand

unifeid theroies that utlilize an SU(5xSU(5) gage
group. Our focus is on prventing fast proton deacy
through a combination of small triplet couplings
and a laege triplet mass, achieved through discrete
sybmetries. We demonstrate thaft in many of our
models, the GUT scale (MGUT ) occurs naturally
due to a balance of higehr dimension tearms and
sot supersymmetry breakinvg masses. Our findings
include intriguing patterns in quark and lepton
masses, and we eamine the differences between
grand unified theories and string unification.

Word Merging. In this paper, we exploregrand
unified theories that utilize an SU(5)xSU(5) gauge
group.Our focus is on preventing fast proton decay
through a combination of small triplet couplings
and a large triplet mass, achieved throughdiscrete
symmetries. We demonstrate that in many of our
models, the GUT scale (MGUT ) occurs naturally
due to a balance of higher dimension terms and
soft supersymmetry breaking masses. Our findings
include intriguing patterns in quark and lepton
masses, and we examine the differences between
grand unified theories and string unification.

Case of the First Character of a Word. In this
paper, we explore grand Unified theories That Uti-
lize an SU(5)xSU(5) gauge group. Our focus is on
Preventing fast proton decay Through a combina-
tion of small Triplet couplings and a large triplet
mass, achieved through discrete symmetries. we
demonstrate That in Many of our Models, the gUT
scale (mGUT ) occurs naturally Due To a balance
of higher dimension Terms and Soft supersymmetry
breaking masses. Our Findings include intriguing
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Perturbations Statistic Retrieval Classifier

DetectGPT GPTZero BM25Train+ OpenAI RADAR RoBERTa

Origin F1 90.95 99.17 98.49 93.90 69.36 99.80

Doc
Paraphrase 56.39 54.32 4.09 18.73 8.17 15.70
BackTrans 55.95 2.88 2.55 13.35 1.33 0.69

Sent
BackTrans 41.38 5.35 0.16 11.37 1.05 0.65
MLM 24.35 21.81 1.46 3.48 4.09 4.61

Word

MLM 91.71 93.42 0.89 71.28 4.57 24.51
AdvInsert 91.67 88.07 0.04 85.52 55.06 6.72
Spelling 92.39 63.37 0.32 91.83 57.77 79.49
Typos 92.39 42.39 0.28 91.91 65.49 55.78

Char

Merge 43.45 8.23 0.24 66.95 1.13 20.43
Case 78.76 88.07 0.00 91.91 21.16 13.31
Punctuation 41.99 15.23 0.00 48.54 0.24 3.16
SpaceInsert 73.22 4.53 0.12 87.74 1.82 44.70

Average ASR 65.30 40.64 0.85 56.88 18.49 22.48

Table 9: Attack Success Rates (ASR) of perturbations on the HC3 test set.

patterns in quark and lepton masses, and we exam-
ine the differences between grand unified theories
and String Unification.

Punctuation Removal. In this paper, we explore
grand unified theories that utilize an SU(5)xSU(5
gauge group. Our focus is on preventing fast proton
decay through a combination of small triplet cou-
plings and a large triplet mass, achieved through
discrete symmetries. We demonstrate that in many
of our models, the GUT scale (MGUT occurs natu-
rally due to a balance of higher dimension terms
and soft supersymmetry breaking masses. Our find-
ings include intriguing patterns in quark and lepton
masses, and we examine the differences between
grand unified theories and string unification

Space Insertion. In this paper, we explore grand
unified theories that utilize an SU(5)xSU(5) gauge
group. Our focus is on preventing fast proton decay
through a combination of small triplet couplings
and a large triplet mass, achieved through discrete
symmetries. We demonstrate that in many of our
models, the GUT scale (MGUT ) occurs naturally
due to a balance of higher dimension terms and
soft supersymmetry breaking masses. Our findings
in clude intriguing patterns in q uark and lepton
masses, and we examine the differences between
grand unified theories and string un ification.
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CheckGPT HC3

Train * Train+ SG SG+ Train Train+ SG SG+

Origin F1 55.39 97.78 40.44 98.21 85.65 98.49 78.60 98.49

Paraphrase 25.01 67.16 14.34 11.15 19.42 4.09 21.80 2.51
BackTrans 30.84 43.67 23.65 12.31 17.96 2.55 24.64 1.90

BackTrans 19.90 12.98 15.18 1.44 9.22 0.16 13.55 0.12
MLM 19.22 22.29 10.47 3.40 9.18 1.46 13.63 1.90

MLM 40.63 4.39 21.01 0.40 31.63 0.89 27.99 0.69
AdvInsert 6.31 0.00 4.83 0.04 2.71 0.04 4.05 0.08
Spelling 30.24 0.00 20.97 0.04 15.74 0.32 20.91 0.24
Typos 27.29 0.00 17.70 0.04 13.83 0.28 18.33 0.20

Merge 10.71 0.00 9.35 0.04 4.73 0.24 8.50 0.20
Case 0.24 0.00 0.04 0.00 0.28 0.00 0.36 0.04
Punctuation 0.88 0.00 0.28 0.04 0.24 0.00 0.44 0.04
SpaceInsert 8.87 0.00 6.23 0.04 3.40 0.12 4.73 0.12

Average 18.34 12.54 12.01 2.41 10.70 0.85 13.25 0.67

Table 10: Attack Success Rate (ASR) using different data sources as the corpus for the BM25 retrieval method,
where * denotes the setting adopted in Table 4. Train indicates using only the training data of the respective dataset
as the corpus, while Train+ includes both the training and test data in the corpus. SG represents using ShareGPT
data as the retrieval corpus, and SG+ includes the test data of the respective dataset in addition to ShareGPT data.
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