PAGED: A Benchmark for Procedural Graphs Extraction from Documents

Weihong Du'? Wenrui Liao'?

Hongru Liang!?*

Wengiang Lei'?

!College of Computer Science, Sichuan University, China
Engineering Research Center of Machine Learning and Industry Intelligence,
Ministry of Education, China
{duweihong, liaowenrui}@stu.scu.edu.cn
{lianghongru, wenqgianglei}@scu.edu.cn

Abstract

Automatic extraction of procedural graphs
from documents creates a low-cost way for
users to easily understand a complex proce-
dure by skimming visual graphs. Despite the
progress in recent studies, it remains unan-
swered: whether the existing studies have well
solved this task (Q1) and whether the emerging
large language models (LLMs) can bring new
opportunities to this task (Q2). To this end,
we propose a new benchmark PAGED, equipped
with a large high-quality dataset and standard
evaluations. It investigates five state-of-the-art
baselines, revealing that they fail to extract op-
timal procedural graphs well because of their
heavy reliance on hand-written rules and lim-
ited available data. We further involve three ad-
vanced LLMs in PAGED and enhance them with
a novel self-refine strategy. The results point
out the advantages of LLMs in identifying tex-
tual elements and their gaps in building logical
structures. We hope PAGED can serve as a ma-
jor landmark for automatic procedural graph
extraction and the investigations in PAGED can
provide valuable insights into the research on
logical reasoning among non-sequential ele-
ments. The code and dataset are available in
https://github.com/SCUNLP/PAGED.

1 Introduction

Procedural graphs, though can intuitively represent
the execution of actions for goal achievement (Mo-
mouchi, 1980; Ren et al., 2023), suffer from the
high cost of expert-construction (Herbst and Kara-
giannis, 1999; Magbool et al., 2019). The auto-
matic extraction of procedural graphs from pro-
cedural documents thus has huge potential, as
it would enable users to easily understand how
to logically perform a goal (e.g, how a restau-
rant serves the customers) by skimming visual
graphs (e.g., Figure 1(a) instead of reading lengthy
documents (e.g., Figure 1(b)).

5

Corresponding author

However, obtaining optimal procedural graphs
is not easy — as shown in Figure 1(a), it requires
representing not only sequential actions in the pro-
cedure (e.g., [-4 — I-5), but also non-sequentially
executed actions (e.g., [-7.1 & I-7.2]) and vital con-
straints for the actions (e.g., C-2). Off-the-shelf
attempts only meet part of the requirements. For
example, Bellan et al. (2023); Ren et al. (2023)
fail to represent “customers can order only the
dishes or drinks, or both” (I-2.1 & 1-2.2) due to its
inherent limitation for representing complex non-
sequential actions. Besides, current solutions only
focus on hand-written rules (Sholiq et al., 2022)
or customized networks (Bellan et al., 2023) on a
small group of cherry-picked instances. This brings
up the question of whether the existing studies have
well solved the automated extraction of procedural
graphs from procedural documents (Q1). If the
answer is “no”, we are also interested in whether
the emerging large language models (LLMs) can
bring new opportunities to this task (Q2).

To answer QI, we propose to construct a
standard benchmark for the ProcedurAl Graphs
Extraction from Documents (PAGED). As far as
we know, there lack of large-scale datasets of
document-graph pairs for training and evaluating
optimal procedural graph extraction models (cf.,
Table 1). We want to equip PAGED with the largest
publicly available dataset. Although there exist
plenty of procedural documents on the Internet, it
is too costly to filter the low-quality ones and anno-
tate optimal procedural graphs matching all require-
ments. As a remedy, we build the dataset based on a
model collection of business process (Dumas et al.,
2018), which has summarized business processes
into high-quality procedural graphs with complete
sequential actions, non-sequential actions, and con-
straints. Thus, constructing procedural document-
graph pairs turns into assigning a suitable proce-
dural document to a given procedural graph. We
approach it via a three-stage pipeline — we pro-

10829

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10829-10846

August 11-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/SCUNLP/PAGED

need dishes Choose the | Specify
5 desired dishes the taste
£ Find an 121 122 G2
E empty seat 13.1 132
i -1 Order the Specify
drinks the size

need drinks

the credit card is available Pay by
14 15 1-6 credit card
~ A Choose G-3 7.
Submit Enjo;
method

the order

T
1
1
1

= ! I1-2 [Prepare the

= —

-] Receive G5 meal

E d

Serve the

1
115 116 ;
Ask the customer

Confirm the
to pay for the order payment

-4

meal

: G-6
£ the order > Prepare the <
& -1 13| tableware

<>

Inclusive
Gateway

OO Jc 1 i

Start End Action Data Constraint Action Constraint

i
|
|
|
|
|
|
|
|
.
|
|
|
:
| -
! l._._._._._._._._._(:-l Order list < mvmvmvmem
:
|
|
|
|
|
|
|
|
|
|
|
|
|
.
.

<> <> > e >

Exclusive Parallel i
Gateway Gateway

Sequence Flow Condition Flow Constraint Flow

(a) Procedural Graph

Firstly, the customer needs to find an empty seat. If the customer needs dishes, then choose the desired dishes and specify the
taste. If the customer needs drinks, then order the drinks and specify the size. The customer then submits the order, which is
added to the order list. After enjoying the meal, the customer should choose payment method. If the credit card is available,
the customer pays by credit card; else if the credit card is unavailable, the customer should pay in cash. For the restaurant,
once receiving the order from the order list, it prepares the meal according to the order and prepares the tableware for the
customer at the same time. The meal is then served for the customer to enjoy. After that, the restaurant asks the customer to
pay for the order and then confirms the payment. Note that the restaurant should provide the receipt if the customer needs.

(b) Procedural Document

Figure 1: The procedure of how a restaurant serves the customers in procedural graph (a) and document (b).

gressively transfer the structured information on
the procedural graph into natural language text, ad-
just its narration, and improve the coherence and
naturalness, finally generating a suitable document.
In this way, we develop a dataset with 3,394 high-
quality procedural document-graph pairs that are
about ten times larger than the previous largest
datasets (Ackermann et al., 2021; Qian et al., 2020).
According to the underlying structure of optimal
procedural graphs, we introduce three metrics to
evaluate five state-of-the-art methods (Sonbol et al.,
2023; Neuberger et al., 2023; Sholiq et al., 2022).

To further answer Q2, we investigate the perfor-
mance of three advanced LLMs (Flan-T5 (Chung
et al., 2022), ChatGPT (Ouyang et al., 2022) and
Llama2 (Touvron et al., 2023)) and utilize a self-
refine strategy to improve the ability of LLMs. In
total, we evaluate ten methods in our PAGED bench-
mark. Extensive experiments on our benchmark
reveal that existing studies struggle to accurately
extract sequential actions, constraints, and organize
non-sequential actions of procedural documents.
While LL.Ms have shown significant improvement
in sequential action and constraint extraction, they
still face challenges with non-sequential action or-
ganization. Our detailed analysis of the results
leads us to propose improvement strategies to
help large language models better understand non-
sequential actions and use correct gateways to rep-
resent them. We hope PAGED can be a key mile-

stone for automatic procedural graphs extraction,
offering insights into research on logical reasoning
among non-sequential elements. In summary, we
highlight PAGED as follows:

* We build a novel benchmark named PAGED, which
standardly evaluates the progress of current pro-
cedural graphs extraction from documents and
explores the potential of emerging LLMs.

* We equip PAGED with the largest procedural
document-graph dataset, whose high quality is
achieved by a three-stage pipeline and verified
via both automatic and human evaluation.

* We systematically evaluate state-of-the-art solu-
tions in PAGED and reveal that they have trouble
extracting optimal procedural graphs due to their
heavy reliance on hand-written rules and limited
available data.

* We investigate advanced LLLMs in PAGED and em-
power them with a self-refine strategy, showing
their adavantages in identifying sequential ac-
tions and constraints, and pointing out their gaps
in building complex logic of graphs.

2 Related Work

Procedural Graph Extraction Existing studies
only meet part of the requirements for optimal pro-
cedural graph extraction. Earlier studies mainly

10830

Table 1: Comparisons between our dataset with the existing datasets.

. Non-sequential Actions Constraints .
Dataset Samples Sequfﬁntlal Exclusive | Inclusive | Parallel Data Action Pub.hcly
Num Actions . . Available
Gateway | Gateway | Gateway | Constraint | Constraint
Friedrich et al. (2011) 47 v v X 4 v X v
Epure et al. (2015) 34 v v X v X X X
Ferreira et al. (2017) 56 v v X v X X X
Mendling et al. (2019) 103 v X X X X X v
Quishpi et al. (2020) 121 X X X X X X Partial
Qian et al. (2020) 360 X X X X X X v
Ackermann et al. (2021) 358 X X X X X X v
Lépez et al. (2021) 37 v X X X X X Partial
Bellan et al. (2023) 45 v v X v X X v
Liang et al. (2023) 200 v X X X X X v
Ren et al. (2023) 283 v X X X X X v
ours 3,394 v v v v v v v

focus on extracting sequential actions (Pal et al.,
2021; Lopez et al., 2021; Ren et al., 2023). While
Epure et al. (2015); Honkisz et al. (2018); Bellan
et al. (2023) explore non-sequential actions, they do
not cover scenarios like I-2.1 & 1-2.2 in Figure 1(a).
Friedrich et al. (2011) aids in data constraint extrac-
tion but overlooks action constraints. Besides, cur-
rent studies heavily rely on hand-written rules and
templates (Epure et al., 2015; Honkisz et al., 2018),
resulting in poor generalization. Bellan et al. (2023)
trains a neural network model but only learns 45
samples, whose effectiveness remains questionable.
Hence, we propose to construct a standard bench-
mark to reveal the performance of existing studies
and highlight the challenges for the extraction of
optimal procedural graphs.

Datasets As shown in Table 1, current datasets
consist of a small group of cherry-picked instances.
Some datasets are not publicly available (Epure
et al., 2015; Ferreira et al., 2017). Some datasets
only focus on sentence-level actions extraction,
lacking both sequential and non-sequential ac-
tions (Quishpi et al., 2020; Qian et al., 2020; Ack-
ermann et al., 2021). While other studies contain
sequential actions Friedrich et al. (2011); Mendling
et al. (2019); Lopez et al. (2021); Bellan et al.
(2023); Liang et al. (2023); Ren et al. (2023), they
do not cover all types of non-sequential actions.
Moreover, almost all existing datasets ignore vi-
tal constraints related to the actions in procedural
graphs. To this end, we construct a new procedu-
ral document-graph dataset that is nearly ten times
larger than the previous largest datasets (Acker-
mann et al., 2021; Qian et al., 2020). Each sample
consists of a high-quality procedural document and
its procedural graph with complete sequential ac-
tions, non-sequential actions, and constraints.

Data2Text Data2Text task aims at transferring
structured data such as graphs into natural language
text (Duong et al., 2023; Lin et al., 2023). Cur-
rent studies (Su et al., 2021; Kasner and Dusek,
2022) only focus on the transformation of factual
knowledge — knowledge about features of things,
making it difficult to deal with procedural knowl-
edge — execution of sequential and non-sequential
actions in the procedural graphs. Moreover, current
studies can only manage discrete components (Ye
et al., 2019; Fu et al., 2020), while extracting pro-
cedural graphs requires handling complex logic of
sequential action, non-sequential actions and their
constraints. In this paper, we propose a three-stage
pipeline to bridge the gap between complex graphs
and lengthy documents, ensure logical descriptions
of generated documents, and solve the issues of
fluency and coherence in generated documents.

Large Language Models The emerging LLMs
have presented competitive results in a wide range
of tasks (Zhao et al., 2023), but are barely used for
procedural graph extraction. The only exception is
Bellan et al. (2022), which makes a shallow attempt
to extract sequential actions and deal with partial
non-sequential actions with LLMs, and performs
poorly for gateway extraction. It remains unan-
swered whether LLMs’ ability to understand the
inherent structure of long contexts can improve the
procedural graphs extraction from documents. To
this end, we involve Flan-T5 (Chung et al., 2022),
ChatGPT (Ouyang et al., 2022) and Llama?2 (Tou-
vron et al., 2023) in our PAGED and design a self-
refine strategy to demonstrate the opportunities and
gaps of LLMs in this task. We hope this can help
to explore more possibilities that LLMs bring to
this field.

10831

3 Dataset

It is too costly to conduct an expert annotation
of optimal procedural graphs for a large number
of documents. To this end, we build our dataset
upon a model collection of business process (Du-
mas et al., 2018), which has defined optimal proce-
dural graphs covering the whole business process
management lifecycle. The dataset construction
turns into a data2text task — generates suitable
documents for given procedural graphs.

3.1 Preliminary

Figure 1(a) presents an example of the optimal
procedural graph. It describes the procedure of
how a restaurant serves customers and involves
two actors (customer and restaurant). Each actor
starts from the “Start” node, carries out actions
following the logic in the graph, and ends at the
“End” node. If the actions are performed sequen-
tially, they are connected by the “Sequence Flow”.
Otherwise, there is an “Inclusive Gateway”, “Ex-
clusive Gateway” or “Parallel Gateway” indicat-
ing the following actions are non-sequential ones.
Both the “Inclusive Gateway” (G-1) and “Exclu-
sive Gateway” (G-3) mean that the following action
is performed under the condition on the connected
“Condition Flow”. The difference is that there is
one and only one condition after the “Exclusive
Gateway” can be met, while this does not apply
to the “Inclusive Gateway”. The “Parallel Gate-
way” (G-5) represents that the following actions
are performed in parallel. Note that, all gateways
appear in pairs and the latter ones (G-4, G-2, G-
6) indicate the end of the non-sequential activities.
Additionally, the “Data Constraint” and “Action
Constraint” represent the necessary data (C-1) and
essential notices (C-2) for actions connected by the
“Constraint Flow”, respectively.

3.2 Dataset Construction

With these high-quality procedural graphs, we then
perform the dataset construction as a data2text
task (Lin et al., 2023). Specifically, we design a
three-stage pipeline: 1) Decomposition & Transfor-
mation that decomposes the graph into fragmented
spans/sentences in natural language; 2) Grouping
& Ordering that logically organizes the procedu-
ral fragments; 3) Aggregating & Smoothing that
unifies the fragments into high-quality documents.

Choose the Specify oo
desired dishes the taste

Order the Specify] oo

drinks the size

need drinks

O Decomposition

""""""""" :"""""i{efé&’&i;ﬂe’s"WWE};{,;,;;;;,;""""""""W
desired dishes
O Transformation
e [If need dishes, then choose the desired dishes. ’ oo

Figure 2: Illustration of decomposing the graph into
units and transforming a unit into a procedural fragment.

WikiHow |

Select Credit Card Type Select the right type of credit card first. If you need to customize
your credit card style, please provide the corresponding style file

How to apply for a credit card |

Fill Out Application Form Prepare your income verification document. Then you need to
provide identification proof. If the bank allows for online applications
X

! suh—prolccdurc 0 sub-pr(l)ccdurc H

: [1 r !
(Ls] | select [the |- <SEP>[[1t [you | need |v+[<SEP>][prepare | your J-.. !
RoBERTa-large

& 3 3 3 3 3 3 I I =
2 ¥
,,,,,,,,,,,,,,,,,,,,,,,,,,,, 001

[fT\‘ In the begiming, find an empty se:?t. : = N 0—
[(2) If need dishes, then choose the desired dishes.

= - - (<SEP>)= = 0
[3 If need drinks, then order the drinks. o

- — - (<SEP>Jm| & || "= 0

[(4) choose the desired dishes, then specify the taste. ??1 ~Group 1
[(B order the drinks, then specify the size. R ;

(6) submit the order. R
[= . SER= 3 [(= 0
[@ "submit the order" produce "order list". (xJ

= - - (<SEP>)=| = 1o
[(8 submit the order, then enjoy the meal. —— > 0

= (<SEP>)
[(9 enjoy the meal, then choose payment method. | ~...000 [Group 2

Figure 3: The grouping of procedural fragments using a
pre-trained boundary identification model.

Decomposition & Transformation To narrow
the huge gap between the complex graph and the
length document, we first decompose the graph
into minimal meaningful units. We define a vo-
cabulary with nineteen units, each of which con-
sists of actions, gateways or constraints connected
by flow (cf., Appx. A). We also design nineteen
hand-written templates for the vocabulary. Based
on the unit vocabulary, we perform the breadth-
first search strategy (Korf, 1985) over the graph,
as shown in Figure 2. Particularly, some actions
may be repeatedly walked to preserve the sequen-
tial execution relation between adjacent actions in
the graph. For example, “Order drinks” is walked
twice, forming “If need drinks, then order drinks.”
and “Order drinks, then specify the size.”. We
then transform the decomposed units into natural
language spans/sentences based on the paired tem-
plates. We call these spans/sentences “procedural
fragments”.

10832

Grouping & Ordering When writing a procedu-
ral document, it is vital to provide information in
a logical way, namely, describing the whole pro-
cedure sub-procedure by sub-procedure (Futrelle,
1999, 2004). Hence, we need to group the frag-
ments into sub-procedures. Specifically, we employ
a simple boundary identification model, which em-
ploys the RoBERTa-large model (Liu et al., 2019)
with a classifier layer, to predict whether a fragment
is the end of a group. We train it on the WikiHow
corpus Bolotova et al. (2023), which consists of
procedural documents collected from the WikiHow
website and format marks indicate different sub-
procedures. The pre-trained model is then used
to assign group marks for fragments, cf., Figure 3.
It is worth noticing that the way people describe
a procedure is not the way the machine searches
over the graph. Thus, it is necessary to order the
fragments to better match human expression. For
example, we need to exchange fragment ® and
fragment@® of Group 1 in Figure 3. We achieve this
via a fragment ordering model, whose structure
is borrowed from Bin et al. (2023). Besides the
WikiHow documents, we train this model on the
remaining publicly available procedural document
datasets (Castelli et al., 2020; Zhang et al., 2020;
Lyu et al., 2021; Sakaguchi et al., 2021; Nandy
et al., 2021) to reorder sentences after random shuf-
fle. We use the pre-trained model to determine the
order of fragments in the same group.

Aggregating & Smoothing In a standard proce-
dural document, a single sentence (“If the customer
needs dishes, then choose the desired dishes and
specify the taste.”) may convey multiple procedu-
ral fragments (@ and @). Given this, we reuse the
boundary identification model to aggregate frag-
ments that should be presented in the same sen-
tence. The model is retrained to identify the correct
ends of sentences from randomly inserted ones on
the datasets used in the ordering phase. The pre-
trained model is used to assign sentence marks for
the fragments. We further add the actor informa-
tion before all fragments corresponding to each
actor. At this point, all fragments have been or-
ganized in proper order with group and sentence
marks. We paraphrase the fragments via ChatGPT,
which has shown near or even superior human-
level performance in many paraphrasing task (Chui,
2023). After paraphrasing, we notice that there are
a small number of redundant expressions caused
by repeatedly walked nodes and inconsistent ac-

tions/constraints generated by ChatGPT. Thus, we
further refine the documents with a few handwrit-
ing rules and manual corrections. At last, we de-
velop a dataset with 3,394 high-quality document-
graph pairs. On average, each document contains
10.67 sentences and each sentence contains 15.22
words. See Table 4 in Appx. A for more statistics.

3.3 Dataset Analysis

We analyze our datasets to investigate whether
the generated procedural documents are consistent
with the original graphs, whether the documents
are qualified according to human standards, and
whether the proposed strategies contribute to a bet-
ter quality of the dataset. Therefore, we conduct
both automatic and human evaluations to compare
the dataset constructed by our three-stage pipeline
with the datasets constructed by two variations.

Automatic Evaluation We adopt two commonly
used Data2Text metrics. The FINE score (Faille
et al., 2021) models the evaluation as a natural
language inference task — by inferring fragments
from the documents it checks omissions, while the
other direction checks hallucinations. The ESA
score (Faille et al., 2021) evaluates the coverage
of entities and actions in the documents. For both,
higher values indicate better performance. Details
are listed in the appendix B.

Human Evaluation Inspired by Miller (1979),
we ask three workers to score the document from
1 to 5 on five criteria: readability, the quality of
the document to be understood easily; accuracy,
the quality of the document accurately describing
the information in the procedure graph; clarity, the
quality of the document expressing the complex ex-
ecution of actions logically; simplicity, the quality
of the document not containing redundant informa-
tion; usability, the quality of the document aiding
users in accomplishing this procedure. Details are
listed in the appendix B.

Variations We create two variants of our three-
stage pipeline: concatenating, which directly con-
catenates all fragments to form the documents;
paraphrasing, which directly paraphrases the con-
catenation of all fragments using ChatGPT without
grouping, ordering and aggregating process. Note
that, we don’t involve concatenating in the auto-
matic evaluation. This is because the concatena-
tion of all fragments is always consistent with the

10833

https://www.wikihow.com/

concatenating ~ ® paraphrasing ours

w0 Automated evaluation Human evaluation
1. 5.00

0.96 4.50
0.92 4.00
0.88 3.50
0.84 3.00
0.80 2.50

> >
) \é}o\ . \{z;\\o\ é“&\d \\4@ n\\{ﬁ &(bcﬁ \ q;{@ &\c&d %&d
3 00\ 5y ,b(b & O ,@Q 0%%
g g &9
< g
s

Figure 4: Comparison of our method with two variations
via automatic and human evaluations.

information in the graphs but lacks fluency and
logicality which requires further human evaluation.

Results As shown in Figure 4, the proposed three-
stage pipeline achieves better performance than the
other two variations under both automatic and hu-
man evaluation. Automatic evaluation reveals that
although the paraphrasing variation obtains almost
close ESA scores to our pipeline, it loses the game
completely on the FINE metrics without the help
of grouping, ordering and aggregating strategies.
From human evaluation, we further demonstrate
the superiority of our pipeline to describe procedu-
ral graphs in a fluent, accurate, logical, simple, and
user-friendly way. Specifically, the concatenating
variation gets the lowest scores on all criteria due to
its inaction of unreadable spans, redundant informa-
tion, and chaotic orders. In line with the automatic
evaluation, we observe the largest gap between the
paraphrasing variation and our pipeline on the clar-
ity criterion due to its invisibility of complex logic
among the fragments. Note that, the ICC scores
of all evaluations are above 0.75, indicating the
reliability of human results (Koo and Li, 2016).

4 Experiments

We conduct systematic experiments to answer Q/
and Q2 raised in Sec. 1. We split the dataset into
train, validation and test sets with 3:1:2 ratio. For
Q1, we collect state-of-the-art baselines and evalu-
ate them in PAGED. We further introduce three met-
rics based on the underlying structure of graphs and
the surface form of elements. Specifically, we use
the BLEU scores to measure the performance of ac-
tor, action and constraint extraction and F1 scores
to measure the performance of gateway predic-
tion. Besides, the performance of flow prediction is
measured via soft F1 scores (Tandon et al., 2020),
which is computed based on the BLEU scores of

associated textual elements. For Q2, we involve
Flan-T5 (Chung et al., 2022), ChatGPT (Ouyang
et al., 2022) and Llama2 (Touvron et al., 2023) in
PAGED to show their potentials and improve their
performance using a self-refine strategy.

4.1 Performance of Baselines (Q1)

Baselines We collect five baselines:

* Sonbol et al. (2023) uses rules to extract sequen-
tial, exclusive, and parallel actions with a few
data constraints.

* Neuberger et al. (2023) designs a pipeline to ex-
tract sequential actions and organize partial non-
sequential actions, ignoring all constraints and
inclusive gateways.

* Sholiq et al. (2022) extracts actions, exclusive
gateways, and parallel gateways based on a pre-
defined representation of the procedural graph.

* PET (Bellan et al., 2023) trains a sequence tag-
ging model to extract actions with a few con-
straints and uses rules to construct the final graph.

* CIS (Bellan et al., 2022) presents a rough attempt
to use LLMs' for action extraction via few-shot
in-context learning and constructs the graphs via
handwritten rules.

Results As shown in Table 2 (Rows 1-5), ex-
isting studies are far from solving this task well,
especially when organizing the logical structure
of graphs (cf., the results on gateways and flows).
This is because either rules or neural models are
derived from limited data, leading to an incomplete
coverage of all elements and an incomprehensive
understanding of complex documents. Addition-
ally, we have the following observations:

1) Heuristic methods (Row 1-3) perform poorly
for actor, action and constraint extraction. The
reason is that hand-written rules fail to understand
various expressions and coreferences, resulting in
poor generalization.

2) PET (Row 4), though being a customized
deep neural model, only performs slightly better
than heuristic methods. This is because the PET
model is only trained on 45 samples and utilizes
several rules to construct the flows.

3) We conjecture the reason why all baselines
only meet part of the requirements of optimal pro-

'The LLM used in Bellan et al. (2022) is GPT3. We replace
it with ChatGPT in the current setting for a fair comparison.

10834

Table 2: Performances of state-of-the-art baselines and LLMs. Higher values indicate better performances.

. Constraint Gateway Flow
Row Model Actor | Action Data Action | Exclusive Inclusive Parallel | Sequence Condition Constraint

1 Sonbol et al. (2023) 0.028 | 0.308 | 0.213 - 0.485 - 0.279 0.056 0.047 0.017

2 Neuberger et al. (2023) 0.027 | 0.276 - 0.469 - 0.337 0.074 0.061 -

3 Sholiq et al. (2022) - 0.387 - 0.463 - 0.198 0.091 0.022 -

4 PET (Bellan et al., 2023) 0.085 | 0.430 | 0.069 - 0.493 - - 0.164 0.026 0.000

5 CIS (Bellan et al., 2022) 0.633 | 0.639 - 0.455 - - 0.203 0.157 -
Flan-T5 (Chung et al., 2022)

6 + Few-shot In-context Learning | 0.206 | 0.362 - - 0.376 - - 0.084 0.013 -

7 + Supervised Fine-tuning 0.659 | 0.684 | 0.589 0.366 0.419 0.045 0.393 0.395 0.168 0.363
ChatGPT (Ouyang et al., 2022)

8 + Few-shot In-context Learning | 0.625 | 0.681 | 0.687 0.286 0.477 0.173 0.388 0.408 0.158 0.444
Llama2 (Touvron et al., 2023)

9 + Few-shot In-context Learning | 0.502 | 0.573 | 0.357 0.049 0.446 0.067 0.128 0.193 0.107 0.201

10 + Supervised Fine-tuning 0.674 | 0.744 | 0.779 0.499 0.554 0.090 0.398 0.478 0.319 0.467

* The best results are marked in bold, and the second-best results are marked with underlines.

cedural graphs lies in the huge cost of writing rules
and annotating data. We believe this issue can be
alleviated with the dataset created in Sec. 3.

4) It is not surprising that CIS (Row 5) achieves
the highest scores on the action and actor extraction
among these baselines, as it gains more power to
understand word meanings from the LLM. Note
that, the increase in flow prediction between PET
and CIS also comes from more accurate action ex-
traction instead of more delicate rules to construct
the graph. This increase further encourages us to
investigate more potentials of LLMs in procedural
graph extraction.

5) All baselines perform poorly on flow predic-
tion, indicating the challenge of understanding log-
ical structures in documents. This motivates us to
find out, besides an in-depth study of LLMs, what
else matters to construct the logic in graphs.

4.2 Performance of LLMs (Q2)

LLMs We investigate three advanced LLMs. The
first one is ChatGPT (Ouyang et al., 2022), which
is good at information comprehension and text gen-
eration. Different from CIS (Bellan et al., 2022),
we use our high-quality dataset to apply few-shot
in-context learning (ICL) on ChatGPT. The other
two (Flan-T5 (Chung et al., 2022) and Llama2 (Tou-
vron et al., 2023)) are open-source alternatives to
ChatGPT. Besides ICL, we also deploy the alterna-
tives with supervised fine-tuning strategies.

Results As expected, the LLMs (Rows 6-10) up-
date state-of-the-art results on all metrics, espe-
cially for actor, action and constraint extraction.
However, for gateway and flow predictions, all
LLMs can hardly get > 0.5 F1 scores, exhibiting
their weakness in arranging logical structures of
graphs. We also have the following observations:

1) Our high-quality dataset significantly pro-
motes LLMs’ ability on procedural graph extrac-
tion. A piece of direct evidence is that we see a
rising trend between the results on Rows 5 and 8§,
whose only difference lies in the data used in the
few-shot ICL. Another piece of evidence is that the
gap between Flan-T5 and Llama?2 is rapidly nar-
rowed after using more data from our dataset for
tuning.

2) The procedural knowledge, especially the log-
ical structure of non-sequential actions, has been
overlooked during the initial training of LLMs.
This is demonstrated by the fact that fine-tuned
LLMs perform better than few-shot LLMs. The
Llama2 model even beats ChatGPT after learning
more procedural knowledge from supervised fine-
tuning.

3) LLMs, including CIS, show significant poten-
tial for actor, action and constraint extraction, in-
dicated by the large improvements compared with
Rows 1-4. This is because LLMs are good at un-
derstanding lengthy contexts and thus have the ad-
vantage of identifying meaningful elements from
procedural documents. We also believe that the
emergence of more powerful LLMs in the future
will continue to promote better results on these
metrics.

4) We believe the biggest challenge for LLMs to
extract accurate procedural graphs lies in the lack
of logic reasoning ability among actions, especially
non-sequentially executed ones. The supporting
evidence is that, though largely surpassing base-
lines on the actor, action and constraint extractions,
LLMs don’t present such impressive improvements
in gateway extraction. This implies that we can
boost LLMs’ performances by paying extra atten-
tion to non-sequential logic prediction.

10835

need dishes(” Choose the
Find an I— ot
-
need dnnks drinks

Create the
profile

Log in to
the system

N Receive Prepare | [Prepare the | [Serve the|
*| the order |”| the meal tableware meal

__

Svien: T S J fecdback
-' Condition Verifier IF

verify gateway type ®
need dishes No Exclusive
> . ‘wron,
need drinks NI | Conflict > <’> Gateway ->gmcway%ypc
Parallel Verifier

EEEE—— .
same object X

Create the profile i Cerente N - O

P selnaptlc (create >_> the profile _) wrong

Send the profile parsing | send /7 7 parallel
_ parallelpatien I

' 1
1 |

! Prepare the meal semantic prepare the meal potsitial i
| |[Prepare the tableware| parsing L C the tableware ! parallel |
' - actions !

__

Figure 5: The self-refine strategy, in which “System1”
extracts procedural graphs and “System2” verifies gate-
ways of graphs and provides feedback for refinement.

4.3 Self-refine Strategy

To overcome the above-mentioned challenge, in-
spired by Nye et al. (2021); Madaan et al. (2023),
we design a self-refine strategy to help LLMs gain
logic reasoning ability among actions from iterative
feedback and refinement. As shown in Figure 5, it
consists of two systems — “System1” is used to
directly extract procedural graphs from documents,
“System?2” is used to verify the extracted graphs and
provide feedback for further refinement of “Sys-
tem1”. In “System2”, we center on the shortest
slab and carefully examine the gateway prediction
results using the condition and parallel verifiers.

Condition Verifier We design the condition ver-
ifier to handle both exclusive and inclusive gate-
ways, whose key difference lies in the conditions
followed by gateways. It is worth noticing that,
with the exclusive gateway, there is always one
and only one condition that can be met. Accord-
ingly, we suppose if the conditions hold conflict,
the gateway should be the exclusive one; otherwise,
it should be the inclusive one. Particularly, we
use a pre-trained natural language inference (NLI)
model (Liu et al., 2019) to detect the conflict and
verify gateways. For example, after feeding “need
dishes” and “need drinks” into the NLI model,
we get “No Conflict”. This suggests the gateway
should be the inclusive one, which is different from
the result predicted by “System1”. In this case, the

ChatGPT
ChatGPT w/self-refining
B [J]ama2+fine-tuning

Parallel F

Inclusive

Exclusive _

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8

Llama?2 w/self-refining

Figure 6: F1 scores on gateway predictions of LLMs
and their variants with our self-refine strategy.

condition verifier is triggered to provide feedback
to refine “System1”.

Parallel Verifier We further design the parallel
verifier to reorganize the actions performed in paral-
lel. We notice that if the actions act on the same ob-
ject, they can never be executed in parallel. Given
that, we extract the objects of actions using the
semantic parsing tool and determine the parallel
gateway based on these objects. For example, as
“create the profile” and “send the profile” have the
same object “the profile”, they cannot be performed
in parallel. Besides, the optimal procedural graph is
expected to help users in a time-saving way (Miller,
1979). Thus, we further prepare another type of
feedback by examining the sequential actions. For
example, as “prepare the meal” and “prepare the
tableware” have different objects, they have a big
chance to be performed in parallel. We provide
“System1” with both types of feedback for the re-
finement of mistakes on parallel gateways.

Results We apply the self-refine strategy to the
top-two winners in Table 2, i.e., ChatGPT and
fine-tuned Llama2. As shown in Figure 6, both
ChatGPT and fine-tuned Llama2 have better per-
formances with the help of our self-refine strategy.
More surprisingly, there are significant improve-
ments in inclusive gateway extraction, whose previ-
ous scores are extremely poor. This indicates that,
with effective strategies, LLLMs have the potential
to gain logic reasoning ability among actions in-
cluding non-sequential ones. The improvement of
Llama2 is not as large as that of ChatGPT. This
is because the model’s gain from the self-refine
strategy drops as it encounters more procedural
knowledge. This suggests the importance of in-
corporating the learning of procedural knowledge
during the pre-training stage of LLMs, which will
be beneficial for LLMs’ logic reasoning ability.

10836

Action
1

Actor Constraint

Gateway Constraint Flow

Sequence Flow Condition Flow

[+ Naive Heuristic — Customized Neural Models — LLMs|

Figure 7: Best performances of heuristics, customized
neural models and LLMs on seven dimensions.

Auxiliary Analysis We group the methods into
three sets, i.e., the naive heuristics (rows 1-3), cus-
tomized neural models (row 4), and LLMs (rows
5-10). Towards a clear understanding of the ad-
vantages and challenges, we report the best perfor-
mances of each type of method on seven dimen-
sions in Figure 7. Even with the highest scores,
heuristic methods and customized neural models
exhibit poor performance across all dimensions and
can hardly handle condition and constraint flows
due to their neglect of the logical structure in doc-
uments. LLMs show substantial improvements
compared to the others in all dimensions except for
the gateway. This suggests that even the powerful
LLMs face challenges in managing non-sequential
actions, which is also the main challenge when
conducting optimal procedural graph extraction.

5 Conclusion and Future work

We propose the PAGED benchmark, where we sys-
tematically study the progress of current procedural
graph extraction methods and explore the potential
of emerging LL.Ms on this task. We equip PAGED
with a high-quality dataset, which is about ten times
larger than the previous largest ones. Experimen-
tal results of baselines in PAGED reveal that current
methods are far from solving this task well. We
further involve three advanced LLMs in PAGED to
demonstrate their advantages in extracting textual
elements and challenges in organizing local struc-
tures. To overcome the main challenge, we design
a novel self-refine strategy to empower the LLMs’
ability in reasoning gateways. The results show
that, with effective strategies, LLMs have the po-
tential of LLMs to comprehend the logical structure
among non-sequential actions.

We hope PAGED can benefit the research on opti-
mal procedural graphs extraction. There are several
directions for further work. First, to improve the

performance of LLMs, we suggest introducing pro-
cedural knowledge during the pre-training stage of
LLMs. Second, to gain better flow extraction, we
will explore more effective methods for handling
complex logic structures in the documents. Lastly,
we plan to find a real-world scenario to investigate,
besides accuracy, what else is limiting the practical
usage of automatic procedure graph extraction.

6 Ethics Statement

The dataset we constructed is sourced from a pub-
licly available model collection originated from the
BPM Academic Initiative and does not contain any
sensitive or personal privacy related information.
The procedural graphs used in our dataset are avail-
able for research purposes on the “CC BY-NC-SA
3.0 DEED” licence 2, which explicitly permits that
we can not only use the collected examples but also
“remix, transform, and build upon the material”.
Therefore, we believe that there is no ethical issue
with our work.

7 Limitations

The procedural documents in our dataset can hardly
be equal to the documents directly written by ex-
perts. Despite this fact, we believe our dataset can
still largely promote the study of automatic proce-
dural graph extraction. The samples for few-shot
learning are randomly selected from the dataset.
This may lead to fluctuations in LLMs’ results.
However, since the samples of all LLMs are ran-
domly chosen, we believe the experimental setup
is fair. We acknowledge that carefully selecting
samples would yield better results, but this is not
the focus of this benchmark. We only design one
prompt for all LLMs. Although using another elab-
orate prompt could introduce new variations to the
experimental results, we consider this as a topic for
future research.

Acknowledgement

This work was supported in part by the Na-
tional Natural Science Foundation of China (No.
62206191 and No. 62272330); in part by the Natu-
ral Science Foundation of Sichuan (No. 2023NS-
FSC0473), and in part by the Fundamental Re-
search Funds for the Central Universities (No.
2023SCU12089 and No. YJ202219).

2http://fundamentals—of—bpm.org/
process-model-collections/

10837

http://fundamentals-of-bpm.org/process-model-collections/
http://fundamentals-of-bpm.org/process-model-collections/

References

Lars Ackermann, Julian Neuberger, and Stefan Jablon-
ski. 2021. Data-driven annotation of textual pro-
cess descriptions based on formal meaning repre-
sentations. In International Conference on Ad-
vanced Information Systems Engineering, pages 75—
90. Springer.

Patrizio Bellan, Mauro Dragoni, and Chiara Ghidini.
2022. Leveraging pre-trained language models for
conversational information seeking from text. arXiv
e-prints, pages arXiv—2204.

Patrizio Bellan, Han van der Aa, Mauro Dragoni, Chiara
Ghidini, and Simone Paolo Ponzetto. 2023. Pet: An
annotated dataset for process extraction from natural
language text tasks. LECTURE NOTES IN BUSI-
NESS INFORMATION PROCESSING, 460:315-321.

Yi Bin, Wenhao Shi, Bin Ji, Jipeng Zhang, Yujuan Ding,
and Yang Yang. 2023. Non-autoregressive sentence
ordering. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 4198—4214.

Valeriia Bolotova, Vladislav Blinov, Sofya Filippova,
Falk Scholer, and Mark Sanderson. 2023. Wik-
ithowqa: A comprehensive benchmark for multi-
document non-factoid question answering. In Pro-
ceedings of the 61th Conference of the Association
for Computational Linguistics.

Vittorio Castelli, Rishav Chakravarti, Saswati Dana,
Anthony Ferritto, Radu Florian, Martin Franz, Di-
nesh Garg, Dinesh Khandelwal, J Scott McCarley,
Michael McCawley, et al. 2020. The techqa dataset.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1269—
1278.

Ho Chui Chui. 2023. Chatgpt as a tool for developing
paraphrasing skills among esl learners. Journal of
Creative Practices in Language Learning and Teach-
ing (CPLT), 11(2).

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Marlon Dumas, Marcello La Rosa, Jan Mendling,
Hajo A Reijers, et al. 2018. Fundamentals of busi-
ness process management, volume 2. Springer.

Song Duong, Alberto Lumbreras, Mike Gartrell, and
Patrick Gallinari. 2023. Learning from multiple
sources for data-to-text and text-to-data. In Inter-
national Conference on Artificial Intelligence and

Statistics, pages 3733-3753. PMLR.

Ondrej Dusek and Zden€k Kasner. 2020. Evaluating
semantic accuracy of data-to-text generation with
natural language inference. In Proceedings of the
13th International Conference on Natural Language
Generation, pages 131-137.

Elena Viorica Epure, Patricia Martin-Rodilla, Char-
lotte Hug, Rebecca Deneckere, and Camille Salinesi.
2015. Automatic process model discovery from tex-
tual methodologies. In 2015 IEEE 9th International
Conference on Research Challenges in Information
Science (RCIS), pages 19-30. IEEE.

Juliette Faille, Albert Gatt, and Claire Gardent. 2021.
Entity-based semantic adequacy for data-to-text gen-
eration. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 1530-1540.

Renato César Borges Ferreira, Lucinéia Heloisa Thom,
and Marcelo Fantinato. 2017. A semi-automatic ap-
proach to identify business process elements in nat-
ural language texts. In International Conference on
Enterprise Information Systems, volume 2, pages
250-261. SCITEPRESS.

Fabian Friedrich, Jan Mendling, and Frank Puhlmann.
2011. Process model generation from natural lan-
guage text. In Advanced Information Systems En-
gineering: 23rd International Conference, CAiSE
2011, London, UK, June 20-24, 2011. Proceedings
23, pages 482-496. Springer.

Zihao Fu, Bei Shi, Wai Lam, Lidong Bing, and Zhiyuan
Liu. 2020. Partially-aligned data-to-text generation
with distant supervision. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 9183-9193.

Robert P Futrelle. 1999. Summarization of diagrams in
documents. Advances in Automated Text Summariza-
tion, pages 403-421.

Robert P Futrelle. 2004. Handling figures in document
summarization. In Text Summarization Branches Out,
pages 61-65.

Emden Gansner, Eleftherios Koutsofios, and Stephen
North. 2006. Drawing graphs with dot.

Joachim Herbst and D Karagiannis. 1999. An inductive
approach to the acquisition and adaptation of work-
flow models. In Proceedings of the IJCAI, volume 99,
pages 52-57. Citeseer.

Krzysztof Honkisz, Krzysztof Kluza, and Piotr
Wisniewski. 2018. A concept for generating business
process models from natural language description.
In Knowledge Science, Engineering and Manage-
ment: 11th International Conference, KSEM 2018,
Changchun, China, August 17-19, 2018, Proceed-
ings, Part I 11, pages 91-103. Springer.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zdenék Kasner and Ondiej DusSek. 2022. Neural
pipeline for zero-shot data-to-text generation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3914-3932.

10838

Terry K Koo and Mae Y Li. 2016. A guideline of
selecting and reporting intraclass correlation coeffi-
cients for reliability research. Journal of chiropractic
medicine, 15(2):155-163.

Richard E. Korf. 1985. Depth-first iterative-deepening:
an optimal admissible tree search. Artif. Intell.,
27(1):97-109.

Hongru Liang, Jia Liu, Weihong Du, Dingnan Jin,
Wengiang Lei, Zujie Wen, and Jiancheng Lv. 2023.
Knowing-how & knowing-that: A new task for ma-
chine comprehension of user manuals. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 10550-10564.

Yupian Lin, Tong Ruan, Jingping Liu, and Haofen Wang.
2023. A survey on neural data-to-text generation.
IEEE Transactions on Knowledge and Data Engi-
neering.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Hugo A Lépez, Rasmus Strgmsted, Jean-Marie Niyo-
dusenga, and Morten Marquard. 2021. Declarative
process discovery: Linking process and textual views.
In International Conference on Advanced Informa-
tion Systems Engineering, pages 109—117. Springer.

Qing Lyu, Li Zhang, and Chris Callison-Burch. 2021.
Goal-oriented script construction. In Proceedings of
the 14th International Conference on Natural Lan-
guage Generation, pages 184-200.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Bilal Magbool, Farooque Azam, Muhammad Waseem
Anwar, Wasi Haider Butt, Jahan Zeb, Iqra Zafar,
Aiman Khan Nazir, and Zuneera Umair. 2019. A
comprehensive investigation of bpmn models gener-
ation from textual requirements—techniques, tools
and trends. In Information Science and Applications
2018: ICISA 2018, pages 543-557. Springer.

Jan Mendling, Henrik Leopold, Lucineia Heloisa Thom,
and Han van der Aa. 2019. Natural language process-
ing with process models (nlp4re report paper). In
REFSQ Workshops.

Carolyn R Miller. 1979. A humanistic rationale for
technical writing. College English, 40(6):610-617.

Yoshio Momouchi. 1980. Control structures for actions
in procedural texts and pt-chart. In COLING 1980
Volume 1: The 8th International Conference on Com-
putational Linguistics.

Abhilash Nandy, Soumya Sharma, Shubham Mad-
dhashiya, Kapil Sachdeva, Pawan Goyal, and Niloy
Ganguly. 2021. Question answering over electronic
devices: A new benchmark dataset and a multi-task
learning based qa framework. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2021, pages 4600-4609.

Julian Neuberger, Lars Ackermann, and Stefan Jablon-
ski. 2023. Beyond rule-based named entity recogni-
tion and relation extraction for process model gen-
eration from natural language text. arXiv preprint
arXiv:2305.03960.

Maxwell Nye, Michael Tessler, Josh Tenenbaum, and
Brenden M Lake. 2021. Improving coherence and
consistency in neural sequence models with dual-
system, neuro-symbolic reasoning. Advances in
Neural Information Processing Systems, 34:25192—
25204.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Kuntal Kumar Pal, Kazuaki Kashihara, Pratyay Baner-
jee, Swaroop Mishra, Ruoyu Wang, and Chitta Baral.
2021. Constructing flow graphs from procedural
cybersecurity texts. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3945-3957.

Chen Qian, Lijie Wen, Akhil Kumar, Leilei Lin, Li Lin,
Zan Zong, Shu’ang Li, and Jianmin Wang. 2020.
An approach for process model extraction by multi-
grained text classification. In Advanced Information
Systems Engineering: 32nd International Conference,
CAISE 2020, Grenoble, France, June 8—12, 2020,
Proceedings 32, pages 268-282. Springer.

Luis Quishpi, Josep Carmona, and Lluis Padré. 2020.
Extracting annotations from textual descriptions of
processes. In International Conference on Business
Process Management, pages 184-201.

Sebastian Raschka. 2018. Model evaluation, model se-
lection, and algorithm selection in machine learning.
arXiv preprint arXiv:1811.12808.

Haopeng Ren, Yushi Zeng, Yi Cai, Bihan Zhou, and
Zetao Lian. 2023. Constructing procedural graphs
with multiple dependency relations: A new dataset
and baseline. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 8474-8486.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proscript: Partially ordered scripts generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2138-2149.

Sholiq Sholiq, Riyanarto Sarno, and Endang Siti As-
tuti. 2022. Generating bpmn diagram from textual

10839

https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/0004-3702(85)90084-0

requirements. Journal of King Saud University-
Computer and Information Sciences, 34(10):10079—
10093.

Patrick E Shrout and Joseph L Fleiss. 1979. Intraclass
correlations: uses in assessing rater reliability. Psy-
chological bulletin, 86(2):420.

Riad Sonbol, Ghaida Rebdawi, and Nada Ghneim. 2023.
A machine translation like approach to generate busi-
ness process model from textual description. SN
Computer Science, 4(3):291.

Yixuan Su, Zaigiao Meng, Simon Baker, and Nigel
Collier. 2021. Few-shot table-to-text generation with
prototype memory. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
910-917.

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi,
Dheeraj Rajagopal, Peter Clark, Michal Guerquin,
Kyle Richardson, and Eduard Hovy. 2020. A dataset
for tracking entities in open domain procedural text.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6408—6417, Online. Association for Computa-
tional Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Mark von Rosing, Stephen White, Fred Cummins, and
Henk de Man. 2015. Business process model and
notation-bpmn.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei, and
Lei Li. 2019. Variational template machine for data-
to-text generation. In International Conference on
Learning Representations.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020.
Reasoning about goals, steps, and temporal ordering
with WikiHow. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4630-4639, Online. As-
sociation for Computational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

10840

https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://www.aclweb.org/anthology/2020.emnlp-main.374
https://www.aclweb.org/anthology/2020.emnlp-main.374

A Details of Data Construction

Decomposition & Transformation To narrow
the huge gap between the complex graph and the
length document and meanwhile maintain the con-
sistency between the transferred fragments and the
original graphs, such as the texts of the entities,
actions, etc., we design hand-written templates to
transfer the graphs into natural language fragments.
The designed templates are listed in Table 3. Ad-
ditionally, we find that not all units on the original
graphs are meaningful and need to be explicitly ex-
pressed in generated procedural documents. So we
filter out those meaningless units through heuristic
rules.

Aggregating & Smoothing We conduct rephras-
ing operation on the concatenation of the processed
fragments using LLM. We add the unique separa-
tor token “<SEP>" to indicate the group and sen-
tence marks of the fragments, which can prompt
the model to describe these fragments logically and
coherently. Moreover, we add the actor informa-
tion before all fragments corresponding to each
actor. For example, we add the text “For the cus-
tomer:” before all fragments corresponding to the
customer. We adopt ChatGPT (gpt-3.5-turbo) to
conduct the rephrasing operation. The designed
prompt is shown in Figure 9. At last, we develop
a dataset with 3,394 high-quality document-graph
pairs. Additionally, although it is difficult to ex-
actly define the large of the dataset, we argue our
dataset is large enough because it is about ten times
larger than the previous largest datasets and suc-
cessfully supports the evaluation of current studies
and the discovery of future directions in this field.
We present the statistics information of the con-
structed dataset in Table 4.

B Details of Dataset Quality Evaluation

Automatic Evaluation Following the evaluation
strategies commonly used in Data2Text task (Lin
et al., 2023), we conduct automatic evaluation to
evaluate whether the generated procedural docu-
ments provide information consistent with the orig-
inal graphs. The automatic metrics used for evalua-
tion are listed as follows:

FINE (Dusek and Kasner, 2020): evaluating the
semantic equivalence of generated documents with
a natural language inference model 3. The natural

Shttps://huggingface.co/FacebookAI/

language inference model can be used to determine
whether a “hypothesis” is true (entailment) given
a “premise”. We first compute the entailment be-
tween the generated document and the transferred
fragments to evaluate whether the generated doc-
ument fully covers the original graph’s informa-
tion (omission). We take the generated document
as the “premise” and use the natural language in-
ference model to determine whether the transferred
fragments are true (entailment), i.e., whether the se-
mantics of the transferred fragments are covered by
the generated document. Then we exchange their
positions to evaluate whether the generated docu-
ment not contains redundant information beyond
the graph (hallucination).

ESA (Faille et al., 2021): evaluating the faith-
fulness of the generated documents based on the
coverage of the entities and actions in the original
graphs. We use named entity recognition tool 4 to
extract the entities in the original graphs. Then we
evaluate whether the entities and actions in the orig-
inal graph are covered by the generated document
with exact lexical match.

Human Evaluation We design five criteria to
evaluate the generated documents through human
scoring. To ensure the reliability of human evalua-
tion, we hire three domain experts to evaluate the
generated documents and calculate the ICC (Intr-
aclass Correlation Coefficient) (Shrout and Fleiss,
1979) score between different experts. The higher
ICC score indicates higher consistency between
different experts and higher reliability of the evalu-
ation. Generally an ICC of 0.75 or higher indicates
that the evaluation is reliable (Koo and Li, 2016).
ICC is calculated as follows:

Msbetween - Mswithin

ICC =
MSbetween + (k - 1) X Mswithin

ey

where MSpetween 1S the mean square for between
groups variability, MSyiin 1S the mean square for
within groups variability and & is the number of
groups. And we ensure that the ICC scores for all
of our evaluations are > 0.75.

roberta-large-mnli
*https://huggingface.co/dslim/bert-base-NER

10841

https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/FacebookAI/roberta-large-mnli
https://huggingface.co/dslim/bert-base-NER

Table 3: Designed templates used to transfer the decomposed units into natural language procedural fragments. Due
to the fact that the gateways in the procedural graphs are paired, each pair of gateways includes a “branch gateway”
representing the beginning of the non-sequential execution of actions and a “merge gateway” representing the end
of the non-sequential execution. We use prefix “B_" to indicate the branch gateway, and prefix “M_" to indicate the
merge gateway. In addition, the “Flow” in a unit is used to connect different elements, while the “condition” in a
unit represents that this Flow connects exclusive or inclusive gateways with other elements, so there exists specific
condition on this Flow. For simplicity, we use “XOR”, “OR” and “AND” as abbreviations for exclusive, inclusive
and parallel gateways respectively.

Decomposed Unit Template
(Start, Flow, Action) In the beginning, { Action}.
(Start, Flow, B_Gateway) In the beginning,
(Actionl, Flow, Action2) {Actionl}, then {Action2}.
(Action, Flow, End) {Action}, and the procedure ends.
(B_XOR, condition, Action) If {condition}, then { Action}.
(B_XOR, condition, B_Gateway) If {condition},
(B_XOR, condition, M_Gateway, Flow, Action) | If {condition}, then {Action}.
(B_XOR, condition, End) If {condition}, then the procedure ends.
(B_OR, condition, Action) If {condition}, then { Action}.
(B_OR, condition, B_Gateway) If {condition},
(B_OR, condition, M_Gateway, Flow, Action) If {condition}, then { Action}.
(B_OR, condition, End) If {condition}, then the procedure ends.

(B_AND, Flow, 1)
(B_AND, Flow, 2)
(B_AND, Flow, 1)

{*1}, at the same time, {*?}.

(B_AND, Flow, %2) {x'}, at the same time, {2}, meanwhile, {3}.
(B_AND, Flow, *3)
(M_Gateway, Flow, Action) {Action}.
(M_Gateway, Flow, End) The procedure ends.
(Action, Flow, DataConstraint) “{Action}” produce “{DataConstraint}”.
(DataConstraint, Flow, Action) “{Action}” require access to “{DataConstraint}”.
(Action, Flow, ActionConstraint) For {Action}, pay attention to that { ActionConstraint}.
Table 4: Statistics of the constructed dataset. We present the publicly available dataset . A total of 3
statistical information on the number of documents and epochs are trained, the adopted optimizer is
various elements in the dataset. AdamW and the learning rate is set to Se-6.
Statistics Num Statistics Num — CIS: We use ChatGPT (Ouyang et al., 2022)
Document 3394 | Data Constraint | 3500 as the pre-trained language representation
Sentence 37226 | Action Constraint | 2307 model for in-context learning. We use the
Token 506639 | Sequence Flow | 36438 best-performed prompt templates following
Action 36537 Condition Flow | 10598 . . R
Exclusive Gateway | 7024 | Constraint Flow | 5807 the original paper to conduct extraction with
Inclusive Gateway 1204 Actor 22775 the model.
Parallel Gateway | 2050 — Flan-T5: We fine-tune the Flan-t5-xx1 model

on our train set data with low-rank adaptation
strategy Lora (Hu et al., 2021). A total of 10
epochs are trained and the learning rate is set

C Details of Experiments

C.1 Model Details

to le-4.
Heuristic models do not require training data, so we — Llama2: Similar to Flan-T5 model, we fine-
conduct evaluation for heuristic models according tune the Llama-2-70b-chat-hf model on our
to the original papers’ setting. The implementation train set data with Lora. A total of 10 epochs
details of other models are listed as follows: are trained and the learning rate is set to 2e-4.

— PET: We use Roberta-large (I.,iu et al., 2019) Shttps: //huggingface.co/datasets/
as the backbone-model and train the model on patriziobellan/PET

10842

https://huggingface.co/datasets/patriziobellan/PET
https://huggingface.co/datasets/patriziobellan/PET

— ChatGPT: We use the gpt-3.5-turbo model
to conduct conversation through the API pro-
vided by OpenAl ©. We set temperature to zero
and fix seed as 42 to eliminate the influence
of random sampling of the model and enable
stable reproduction.

C.2 Implementation Details

We split the dataset into train, validation and test
sets with 3:1:2 ratio and evaluate the performance
of all models uniformly on the test set. Heuristic
models do not require training data, and PET trains
the model on the sequence tagging data provided
by itself. Therefore, we directly conduct evaluation
for these models on our test set according to the
original papers’ setting. End to End models utilize
our train set data to fine-tune the model or construct
examples for few-shot in-context learning, and use
the validation set for model selection (Raschka,
2018). All the training process are conducted on
a machine with 8 x NVIDIA RTX A6000 GPUs.
We use Copilot as an aid for coding.

To facilitate the LL.Ms to extract the procedu-
ral graphs with text generation, we use a dot lan-
guage (Gansner et al., 2006) based graph repre-
sentation in the form of “Element -> (condition)
Element” to represent the extracted graphs. We
use “XOR”, “OR” and “AND” as abbreviations
for exclusive, inclusive and parallel gateways re-
spectively, and use numbers as suffixes to distin-
guish different gateways of the same type on the
graph (e.g., “OR1 -> (need dishes) Choose the de-
sired dishes”). Additionally, we require the model
to output the actors of corresponding extracted ac-
tions for actors predictions. Moreover, to make
good use of the capabilities of LLMs, we adopt
the few-shot in-context learning (ICL) and Chain-
of-thought (CoT) (Wei et al., 2022) strategy to
guide the reasoning process of extracting proce-
dural graphs from documents for the LLMs, espe-
cially for the organization of non-sequential actions.
The adopted prompt consisting of elaborate instruc-
tion and three examples is shown in Figure 10.

C.3 Metrics Details

We introduce three metrics based on the underly-
ing structure of graphs and the surface form of
elements to evaluate the model’s extraction of pro-
cedural graphs.

6https ://platform.openai.com/docs/
api-reference/chat/create

For actor, action and constraint extraction, we
adopt the F1 based BLEU score (Liang et al., 2023)
to evaluate how accurately can the model extract
the texts of these three types of textual elements
from the documents. Specifically, we first compute
the BLEU score for each extracted actor, action
or constraint by the model according to the ele-
ments with the same type in the gold procedural
graph (e.g., for an extracted action, we find the
most similar action in the gold procedural graph
and compute the extracted action’s BLEU score
based on the most similar action), thus calculating
the precision scores of these extracted three types
of textual elements. Then we do the same compu-
tation for all actors, actions and constraints in the
gold procedural graph according to the extracted
elements by the model to calculate the recall scores
of all these three types of textual elements in the
gold procedural graph. Then we can calculate the
F1 scores based on the precision scores and recall
scores. Note that we calculate the F1 scores of
actors based on the best matched action pair (e.g.,
we first find the most similar action in the gold
procedural graph for an extracted action and then
calculate the BLEU score of the extracted actor by
comparing these two actions’ actors).

For gateway extraction, we adopt the standard
F1 scores to evaluate whether the model can cor-
rectly use gateways to organize the non-sequential
actions in the procedural graphs. Due to the fact
that the gateways are meaningful only when paired
with the corresponding elements in the graphs (von
Rosing et al., 2015; Dumas et al., 2018), we con-
sider an extracted gateway is correct only if its type
and at least one of its paired element match those
of the gold procedural graph (e.g., an extracted ex-
clusive gateway and an action connecting with it by
flow match a pair of such exclusive gateway and ac-
tion in the gold procedural graph, this extracted ex-
clusive gateway is considered correctly extracted).
And for soft evaluation of the gateway extraction,
an action or constraint is considered matched with
the gold procedural graph if its BLEU score > 0.5.

For flow extraction, we measure the performance
via a soft metric (Tandon et al., 2020), which com-
putes the F1 scores based on the BLEU scores of
associated textual elements. Specifically, a flow
is considered correctly extracted only if its type
and connected elements match those of the gold
procedural graph. For condition flow, we compute
the BLEU score between its condition and the gold

10843

https://platform.openai.com/docs/api-reference/chat/create
https://platform.openai.com/docs/api-reference/chat/create

To make a cake by yourself, firstly, make the basic cake batter. If want some crispy
texture, sprinkle some chopped nuts. If you enjoy the fruity flavor, add some fruit you
like. Don’t forget to preheat the oven while preparing these ingredients. After that, put
the cake batter in the ovenand

(a) The document to be extracted

PET
want some

crispy texture
make the I— chopped nuts
basic cake 0 o
batter I_ add some
fruit you like

enjoy the
fruity flavor

put the
cake batter
in the oven

preheat
the oven

(b) Screenshot of the procedural graph extracted by PET

want some
crispy texture

sprinkle some
chopped nuts
add some
<} fruit you like 0

(c) Screenshot of the procedural graph extracted by fine-tuned
Llama2

Llama2 + fine-tuning

make the
basic cake
batter

put the
cake batter
in the oven

‘want some
crispy texture

sprinkle some
chopped nuts
add some
enjoy the fruit you like
fruity flavor

preheat the oven

(d) Screenshot of the procedural graph extracted by fine-tuned
Llama?2 with self-refine strategy

Llama2 w/ sclf-refining

make the
basic cake
batter

put the
cake batter
in the oven

Figure 8: Illustration of case study.

label’s condition if another condition flow in the
gold procedural graph can be matched.

C.4 Details of Improvement Strategies

Condition Verifier The designed templates used
to provide feedback to the model are shown in Fig-
ure 10(a) and Figure 10(b). We feed the generated
feedback based on the designed templates and ex-
traction results to the model, so that the model can
refine its extraction according to our provided feed-
back.

Parallel Verifier We use the off-the-shelf pars-
ing tool to parse the syntactic structure of the text
and obtain the predicate and object corresponding
to each action. The designed templates used to
provide feedback to the model are shown in Fig-
ure 10(c) and Figure 10(d).

C.5 Case Study

As shown in Figure 8, PET 8(b) fails to handle
the parallel actions in the document 8(a) due to
the lack of the ability to understand complex ex-
pressions, and it uses the wrong type of gateway

to organize the non-sequential actions “sprinkle
some chopped nuts” and “add some fruit you like”
as it can only deal with partial types of gateways.
Fine-tuned Llama2 8(c) successfully organizes the
parallel execution of actions in the document, but
also uses the wrong gateway to organize the non-
sequential actions “sprinkle some chopped nuts”
and “add some fruit you like”. With the help of
our designed verifier 8(d), fine-tuned Llama2 with
self-refine strategy correct the wrong gateway into
inclusive gateway through the feedback provided
by the verifier, as there exists no conflict between
the conditions “want some crispy texture” and “en-
joy the fruity flavor”. This demonstrates the effec-
tiveness of our proposed strategy by paying extra
attention to non-sequential logic prediction.

10844

(" *""Convert the following paragraph into fluent natural language document without changing its meaning.
The separator token <SEP> indicates the boundary between two parts of texts and it should not appear in the
output.
Please do not change the entities or actions mentioned in the paragraph and do not add any new entities or actions.
Make sure that those entities and actions in the generated document are exactly the same as those in the original
paragraph. Just make the paragraph more fluent and natural.

###
Paragraph:
{the concatenation of the processed fragments with separator tokens}

#H##
Output:

wan

Figure 9: The designed prompt used to rephrase the concatenation of the processed fragments.

For the following inclusive gateway, there exists conflict between the conditions followed by the gateway, which may
indicate that it is impossible to satisfy multiple conditions simultaneously:

{extracted graph snippet containing the gateway}

Please check the conflict between these conditions and correct the gateway type to exclusive gateway (XOR) if there
exists conflict between them.

(a) Template for inclusive gateway refinement

For the following exclusive gateway, there is no obvious conflict between the conditions followed by the gateway, which
may indicate that it is possible to satisfy multiple conditions simultaneously:

{extracted graph snippet containing the gateway}

Please check the conflict between these conditions and correct the gateway type to inclusive gateway (OR) if there exists
no conflict between them.

(b) Template for exclusive gateway refinement

For the following parallel gateway, these actions share the same object, which may prevent their parallel execution:
{extracted graph snippet containing the gateway}

Please check the difference of the objects for these parallel actions and convert them into sequential actions if these
actions are executed on the same object.

(c) Template for parallel gateway refinement

For the following sequential actions, there exists obvious differences between the objects of these actions, which may
support parallel execution of these actions:

{extracted graph snippet containing these sequential actions}

Please check the difference of the objects for these sequential actions and convert them into parallel actions if they
support parallel execution.

(d) Template for sequential actions refinement

Figure 10: Designed templates of our proposed verifiers.

10845

"""I want you to generate the Procedural Graph based on a Procedural Document.
The Procedural Graph contains the following types of "Nodes" and "Flows":

"Nodes":

"Start": start node indicates the start of a procedure, represented as "Start".

"End": end node indicates the ending of a procedure, represented as "End".

"Action": action node indicates a specific step in a procedure, represented as the step itself, such as "prepare
the ingredients”.

"XOR": exclusive gateway, indicates that only one of the following non-sequential actions can be executed,
distinguish by numbers, such as "XOR1".

"OR": inclusive gateway, indicates that one or more of the following non-sequential actions can be executed,
distinguish by numbers, such as "OR1".

"AND": parallel gateway, indicates that all of the following actions should be executed in parallel, distinguish
by numbers, such as "ANDI1".

"DataConstraint": DataConstraint indicates the constraints for the necessary data of the actions, represented
as "DataConstraint(data object)".

"ActionConstraint": ActionConstraint indicates essential notices need to be considered for the execution of

the actions, as "ActionCq notices)".
" Flows":
"SequenceFlow": flow that rep the ion of actions, such as "Start -> prepare the

ingredients”.

"ConditionFlow": the condition flow is used to indicate that the following action is performed under the
condition on the Condition Flow, such as "XOR1 -> (condition|) choose the first one".

"ConstraintFlow": flow that is used to connect the constraints with corresponding actions, such as "prepare
the i i -> ActionC i ial notices)".

In addition, the actor of corresponding actions is put in the front of corresponding elements to indicate the
actor of the following actions if needed, such as "For actorl:".

You should generate the graph in the format of "Node -> Node" line by line until generating the whole graph
for the given Procedural Document, and keep the text of the nodes and conditions consistent with the original
Procedural Document.

Here are some examples:

#ith

"Procedural Document":

Firstly, the customer needs to find an empty seat. If the customer needs dishes, then choose the desired dishes
and specify the taste. If the customer needs drinks, then order the drinks and specify the size. The customer
then submits the order, which is added to the order list. After enjoying the meal, the customer should choose
the payment method. If the credit card is available, the customer pays by credit card; else if the credit card is
not available, the customer should pay in cash. For the restaurant, once receiving the order from the order list,
it prepares the meal according to the order and prepares the tableware for the customer at the same time. The
meal is then served for the customer to enjoy. After that, the restaurant asks the customer to pay for the order
and then confirms the payment. Note that the restaurant should provide the receipt if the customer needs. And
the procedure ends.

#iH#

"Procedural Graph":

The procedure starts with the customer finding an empty seat. Then there is an inclusive gateway to indicate
the non-sequential actions because the customer can need dishes or drinks or both, and the customer should
specify the taste after choosing the desired dishes and specify the size after ordering the drinks. Then the
customer should submit the order to produce the order list data and enjoy the meal and then choose payment
method. Then there is an exclusive gateway to indicate the non-sequential actions because the credit card is
available or not. If the credit card is available, the customer pays by credit card: else if the credit card is not
available, the customer should pay in cash. And the procedure for the customer ends. Then for the restaurant,
there is a parallel gateway after receiving the order from the order list to indicate the non-sequential actions
because the restaurant should prepare the meal and prepare the tableware in parallel. Then the restaurant
serves the meal, asks the customer to pay for the order and confirms the payment. And note that provide the
receipt if the customer needs when confirming the payment. And the procedure for the restaurant ends.

So the Procedural Graph of this Procedural Document i: follows:

For the customer:

Start -> find an empty seat

find an empty seat -> ORI

ORI -> (needs dishes) choose the desired dishes
ORI -> (needs drinks) order the drinks

choose the desired dishes -> specify the taste
order the drinks -> specify the size

specify the taste -> OR2

specify the size -> OR2

OR2 -> submits the order

submits the order -> DataConstraint(order list)
submits the order -> enjoy the meal

enjoy the meal -> choose payment method
choose payment method -> XOR1

XORI1 -> (credit card is available) pay by credit card
XOR1 -> (credit card is unavailable) pay in cash
pay by credit card -> XOR2

pay in cash -> XOR2

XOR2 -> End

For the restaurant:

Start -> receive an order

DataConstraint(order list) -> receive an order

receive an order -> ANDI

ANDI -> prepare the meal

ANDI -> prepare the tableware

prepare the meal -> AND2

prepare the tableware -> AND2

AND2 -> serve the meal

serve the meal -> ask the customer to pay for the order

ask the customer to pay for the order -> confirm the payment
confirm the payment -> ActionConstraint(provide the receipt if the customer needs)
confirm the payment -> End

#i#

"Procedural Document":

In the beginning, the staff will receive an order request, and then checks the order type. If the order is
standard type, the sufficience of the stock is checked according to the stock table. If the order is special type,
upload the order to the factory system. If the stock is sufficient for standard order, the goods will be directly
shipped out, else if the stock is insufficient, they will need to be transferred from other warehouses. After that,
the staff updates the order status and provide order information to the user. At the same time, the staff needs
to bind order information to user account. Finally, the staff record the request status and the procedure ends.

#ith

"Procedural Graph":

The procedure starts with the staff receive an order request. After checking the order type, there is an
exclusive gateway to indicate the non-sequential actions because the order can be standard type or special
type. If the order is special type, upload the order to the factory system. And if the order is standard type, the
sufficience of the stock is checked according to the stock table data. And there is one more exclusive gateway
after checking the sufficience of the stock to indicate the non-sequential actions because the stock can be
sufficient or insufficient. If the stock is sufficient for standard order, the goods will be directly shipped out,
else if the stock is insufficient, they will need to be transferred from other warehouses. Then there is a parallel
gateway to indicate the non-sequential actions because the staff should update the order status and provide
order information to the user and meanwhile, bind order information to user account. Finally, the staff records
the request status and the procedure ends.

So the Procedural Graph of this Procedural Document is as follows:

For the staff:

Start -> receive an order request

receive an order request -> check the order type

check the order type -> XOR1

XORI -> (the order is standard type) check the sufficience of the stock
XORI -> (the order is special type) upload the order to the factory system
DataConstraint(the stock table) -> check the sufficience of the stock
check the sufficience of the stock -> XOR2

XOR2 -> (the stock is sufficient) directly shipped out the goods

XOR2 -> (the stock is insufficient) transfer the goods from other warehouses
directly shipped out the goods -> XOR3

transfer the goods from other warehouses -> XOR3

XOR3 -> XOR4

upload the order to the factory system -> XOR4

XOR4 -> AND1

ANDI -> update the order status

update the order status -> provide order information to the user

ANDI -> bind order information to user account

provide order information to the user -> AND2

bind order information to user account -> AND2

AND2 -> record the request status

record the request status -> End

Hith

"Procedural Document":

Start the service by receiving the email from the electronic mailbox, then parse the email content. If the email
contains account query request, reply the account information to the user. If the email contains account
modification request, record the information needs to be modified. After that, verify the validity of the
account and verify the legality of the modified information at the same time if there exists account
information to be modified. Otherwise update the verification timestamp of the account directly. Finally,
synchronize the email content to the system and the procedure ends.

#iH

"Procedural Graph":

The procedure starts with receiving the email from the electronic mailbox data. Then parse the email content
and there is an inclusive gateway to indicate the non-sequential actions because the email can contain account
query request or account modification request or both. If the email contains account query request, reply the
account information to the user. If the email contains account modification request, record the information
needs to be modified. After that, there is an exclusive gateway to indicate the non-sequential actions because
there exists account information to be modified or not. If there exists no account information to be modified,
update the verification timestamp of the account directly. Else if there exists account information to be
modified, there is a parallel gateway to indicate the non-sequential actions because we should verify the
validity of the account and verify the legality of the modified information in parallel. Then synchronize the
email content to the system and the procedure ends.

So the Procedural Graph of this Procedural Document is as follows:

Start -> receive the email

DataConstraint(electronic mailbox) -> receive the email

receive the email -> parse the email content

parse the email content -> OR1

ORI -> (the email contains account query request) reply the account information to the user
ORI -> (the email contains account modification request) record the information needs to be modified
reply the account information to the user -> OR2

record the information needs to be modified -> OR2

OR2 -> XOR1

XORI -> (there exists account information to be modified) AND1

XORI -> (otherwise) update the verification timestamp of the account directly

ANDI -> verify the validity of the account

ANDI -> verify the legality of the modified information

verify the validity of the account -> AND2

verify the legality of the modified information -> AND2

AND2 -> XOR2

update the verification timestamp of the account directly -> XOR2

XOR2 -> synchronize the email content to the system

synchronize the email content to the system -> End

Now you need to generate the corresponding Procedural Graph of the following Procedural Document:

#it#
"Procedural Document":

i

#ith
"Procedural Graph":

Figure 10: The adopted prompt consisting of elaborate instruction and three examples.

10846

