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Abstract

Benchmarks have emerged as the central ap-
proach for evaluating Large Language Models
(LLMs). The research community often relies
on a model’s average performance across the
test prompts of a benchmark to evaluate the
model’s performance. This is consistent with
the assumption that the test prompts within a
benchmark represent a random sample from a
real-world distribution of interest. We note that
this is generally not the case; instead, we hold
that the distribution of interest varies according
to the specific use case. We find that (1) the
correlation in model performance across test
prompts is non-random, (2) accounting for cor-
relations across test prompts can change model
rankings on major benchmarks, (3) explanatory
factors for these correlations include semantic
similarity and common LLM failure points.

1 Introduction

Since the introduction of the Transformer architec-
ture (Vaswani et al., 2017), Large Language Mod-
els (LLMs) have progressed into sophisticated sys-
tems with an outstanding ability to comprehend and
generate text that mimic human language. Notable
models in this domain include ChatGPT1, utiliz-
ing the GPT-3.5-TURBO or GPT-4 architectures2,
LLaMA (Touvron et al., 2023), ChatGLM (Zeng
et al., 2023), Alpaca (Taori et al., 2023), and Fal-
con (Penedo et al., 2023).

Due to their effectiveness, LLMs are becoming
very popular in both academia and industry, mak-
ing their evaluation crucial. However, this effec-
tiveness comes at the cost of increased complexity,
which makes their evaluation very challenging. Al-
though prior research has introduced benchmarks
for different tasks along with evaluation measures,

†These authors contributed equally to this work.
1New chat: https://chat.openai.com/
2Models - OpenAI API: https://platform.openai.

com/docs/models/

these assessments often overlook potential biases.
When a benchmark includes multiple prompts with
similar characteristics, it can increase or decrease
the average performance of a model, so model com-
parisons can become brittle with respect to bench-
mark composition (see Figure 1 for an illustrative
example). In this work, we show that the inherent
connections between the prompts in current bench-
marks impact the models’ performance and their
relative rankings.

The standard approach for evaluation on a bench-
mark is to (i) obtain model responses for each
prompt in the benchmark, (ii) compute the per-
formance metrics for each response, (iii) aggregate
(usually average) the performance metrics to obtain
a single performance metric over the benchmark,
and (iv) compare models by comparing their aggre-
gate performance.

When aggregating performance metrics in
step iii above, each prompt is generally weighted
equally (Yang and Menczer, 2023; Peña et al.,
2023). However, using equal weights reflects the
assumption that prompts in the benchmark are
“equal”, in the sense that prompts are representa-
tive samples of a target distribution of interest. In
the case of LLMs, the notion of a target distribu-
tion (i.e., the distribution of all possible prompts
for a given use case) is usually not well-defined.
For example, different Natural Language Inference
(NLI) applications may have very different target
distributions, and we should not expect a single
benchmark to capture every one. Therefore, one
must ask: What distribution do the prompts in the
benchmark represent? Would considering different
distributions fundamentally change model compar-
isons? In this work, we present a novel approach to
assess the robustness and adequacy of benchmarks
used in evaluating LLMs, by analyzing the perfor-
mance of multiple LLMs on a set of four major
benchmarks.

Our key contributions are outlined below:
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Benchmark prompts LLM ranking

(a) All prompts contribute equally during evaluation.

Benchmark prompts 
with adjusted weights New LLM ranking

(b) Prompts are weighted during evaluation.

Figure 1: Illustrative example showcasing how different
distributional assumptions of benchmarks affect model
rankings. Consider a benchmark containing prompts re-
flecting three different tasks: math (red triangles), code
generation (blue circles), and text generation (green
squares). In Figure 1a, each benchmark prompt con-
tributes equally to the model evaluation. In contrast,
Figure 1b accounts for correlations between prompts
and the weights of the prompts are adjusted accordingly
during evaluation. In scenario 1a, the red LLM ranks
highest because it excels in math, and the benchmark
is biased towards math tasks (7 out of 12 prompts are
math-related). When considering different weights in
scenario 1b, we observe a different ranking outcome.

1. For each considered benchmark, we observe
that the correlation of model performance across
prompts is significant (p-value < 0.05). This
demonstrates the existence of relationships be-
tween prompts within the investigated benchmarks.

2. We explore the robustness of model compar-
isons to different distributional assumptions based
on correlation structure, and we observe shifts in
performance as large as 10% and rank changes as
large as 5 (out of 14 models).

3. We provide a characterization of performance
over the distribution of all possible prompt weights.
This constitutes a robustness check that can be in-
corporated in comparative studies.

4. We show that model performance similarity
across prompts can be explained by semantic sim-
ilarity, but it is most likely derived by common
failure points of the LLM.

2 Related work

Evaluating the performance of LLMs has become
a critical area of research, drawing significant at-
tention in recent years. Comprehensive surveys
of LLM evaluation and benchmark quality can be
found in Chang et al. (2023); Guo et al. (2023);
Perlitz et al. (2023), and Liang et al. (2022).

When assessing the quality of LLMs, the ro-
bustness aspect is becoming of increasing impor-
tance (Wang et al., 2022; Goel et al., 2021). Ro-
bustness investigates the stability of a model when
confronted with unforeseen prompts. Robustness
research can be divided into four main lines of
work (Li et al., 2023): (i) robustness under distri-
bution shift (Wang et al., 2021; Yang et al., 2023),
(ii) robustness to adversarial input (Zhu et al., 2023;
Wang et al., 2023a), (iii) robustness to prompt
formats, including instruction templates (Mizrahi
et al., 2023; Voronov et al., 2023; Weber et al.,
2023; Sclar et al., 2023), and (iv) robustness to
dataset bias (Gururangan et al., 2018; Le Bras et al.,
2020; Niven and Kao, 2019). Our work falls into
the latter category.

Reducing bias on benchmarks is a long-standing
area of research spanning many diverse fields. Ap-
plications range from weighing survey responses
to match a target population (DeBell, 2018), to
accounting for language biases in visual question-
answering (Goyal et al., 2017). In the context of
NLI, researchers have looked into improving the
quality of prompts in order to mitigate certain types
of biases. Work in this area has focused on deter-
mining the quality of prompts by generating op-
timal prompts (Pryzant et al., 2023; Deng et al.,
2022) or by clustering prompts based on semantic
similarity (Kuhn et al., 2023). Additionally, re-
searchers have investigated data leakage between
benchmarks and LLM training data (Zhou et al.,
2023; Oren et al., 2023).

Limited research has been conducted to study
inherent biases in LLM benchmarks. Among ex-
isting works, Gururangan et al. (2018) and Niven
and Kao (2019) have shown that models leverage
spurious statistical relationships in the benchmark
datasets and, thus, their performance on the bench-
marks is overestimated. In the same spirit, Le Bras
et al. (2020) propose to investigate AFLITE (Sak-
aguchi et al., 2023), an iterative approach to filter
datasets by removing biased data points to mitigate
overestimation of language models’ performance.
More recently, Alzahrani et al. (2024) show that
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performance of LLMs is highly sensitive to minor
changes in benchmarks with multiple-choice ques-
tions. Other studies demonstrate that benchmarks
often include redundancy and effective LLM evalu-
ation can be achieved with a significantly smaller
sample size (Polo et al., 2024; Vivek et al., 2024).

Our work is orthogonal yet complementary to
previous work. In particular, we propose a new
method to identify biases in a benchmark by look-
ing at the performance of multiple recent LLMs
on that benchmark. We show that similarity in per-
formance correlates with similarity in prompts. To
the best of our knowledge, our work is the first
approaching benchmark biases by analyzing and
leveraging the performance of a collection of mod-
els on a set of major benchmarks; as well as inves-
tigating the impact of inherent distributional biases
in benchmarks used on LLM comparative studies.

3 Proposed method

In this section, we outline the problem setup and
introduce the notation and expressions that will
be employed throughout the paper. Second, we
present the approach to evaluate whether relation-
ships between prompts (based on models’ perfor-
mance) are statistically non-random. Furthermore,
we describe our method for analyzing how sensitive
model comparisons are with respect to different dis-
tributional assumptions of the benchmark. Finally,
we present our proposed methodology for explor-
ing the origins of relationships between prompt
performance vectors.

3.1 Problem setup

Consider a benchmark containing n prompts
{p1, . . . , pn}, and a set of k LLMs {m1, . . . ,mk}
being evaluated. We define the performance matrix
Q as an n× k matrix, where every cell Q[i, j] rep-
resents the performance of model mj on prompt
pi. We refer to the i-th row of that matrix, qi, as a
performance vector for prompt pi. To measure how
similar two prompts are with respect to model per-
formance, we compute the similarity between their
performance vectors sperf (pi, pj) := s(qi,qj),
where s(·, ·) is a similarity function. Here, we
consider cosine, Jaccard, and Hamming similar-
ity. Given a performance matrix Q and a simi-
larity function s, we compute a n × n similarity
matrix Ts(Q), where every cell T [i, j] is the per-
formance similarity for prompts pi, pj : T [i, j] =
sperf (pi, pj).

Semantic meaning from text is commonly un-
derstood through the use of embeddings. An em-
bedding of a prompt is a numerical vector that con-
tains the learned representations of semantic mean-
ing. Measuring semantic similarity between two
prompts is achieved by measuring the distance be-
tween their embeddings. In this paper, we use ada-2
embeddings from OpenAI3. The ada-2 embeddings
are widely used and have been proven effective in
various NLP tasks. These embeddings have shown
strong performance in assessing semantic similarity
between texts (Aperdannier et al., 2024; Kamalloo
et al., 2023; Freestone and Santu, 2024). For a set
of prompts {p1, . . . , pn}, we compute a matrix of
embeddings E = {e1, . . . , en}. E is a n × s ma-
trix, where s is the size of the embedding vectors.
To measure semantic similarity between pairs of
prompts, we compute similarity metrics between
the corresponding rows: ssem(pi, pj) = s(ei, ej).

3.2 Determining if performance vectors are
correlated

Given a benchmark, we assess whether the ob-
served similarity among performance vectors is
significant. If the observed similarity is signifi-
cantly high, this implies the existence of specific
connections between prompts. These connections
lead to similar model behavior when responding to
these prompts.

To test this hypothesis, we perform permutation
tests. We generate permutations of the performance
matrix Q by randomly shuffling the cells of each
column. In this way, we permute the values of
the model responses across prompts, while holding
constant the overall performance of each model
(i.e., the column averages of Q). We then compute
a similarity matrix Ts(Q) for the observed perfor-
mance matrix Q, as well as for each permutation Q′

of the performance matrix: [Ts(Q
′
1), Ts(Q

′
2), . . .].

We compare the distribution of values from Ts(Q)
with the distribution of values from the permuted
tables [Ts(Q

′
1), Ts(Q

′
2), . . .]. We conduct a permu-

tation test to compare the average, 75th, and 95th
percentiles of these distributions. The p-value of
the permutation test is calculated as the proportion
of permuted tables for which the statistic is greater
than the one obtained with the observed table. Ad-
ditionally, we use the Kolmogorov-Smirnov (KS)
test to compare the entire distribution of values be-
tween observed and permuted similarity matrices.

3
https://openai.com/blog/new-and-improved-embedding-model
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To further support our findings, we cluster the
observed and permuted performance vectors. If
there are non-random correlations between perfor-
mance vectors, we would expect the clustering of
the observed vectors to have higher clustering qual-
ity metrics, such as silhouette score.

3.3 Effect of non-uniform weights in
aggregate performance metrics

So far, we have focused on aggregate performance
measures that treat prompts as if they are inde-
pendent and identically distributed (i.i.d.) samples
from some real-world distribution of interest—i.e.,
each prompt is given equal weight in calculating
aggregate performance metrics. In this section, we
examine the implications of relaxing this assump-
tion for ranking models based on their performance.
Generally, there is no universally correct distribu-
tion of interest—it depends on each user’s appli-
cation. Here, we look into three different ways of
capturing distributional assumptions (i.e., of defin-
ing weights) for a given benchmark.

Cluster-based: We leverage the clustering of per-
formance vectors described above. We consider the
following variants for evaluating performance:

1. Only include prompts that are cluster repre-
sentatives (i.e., the medoids of the clusters). This
effectively decreases the size of the benchmark.

2. Include all prompts, but weigh them based on
their distance from their cluster representative. We
employ two types of weights:
(i) Distance-based: The further away a prompt is
from the cluster representative, the larger its weight.
This setting gives more emphasis on diversity of
the benchmark. More formally, let pi be a prompt
in cluster Cj , prj be the representative prompt of
cluster Cj , and d(·, ·) the distance function between
two prompts. The weight w for pi is:

w(pi) =
d(pi, p

r
j)

∑
pk∈Cj

(
d(pk, p

r
j)
) |Cj |∑

i |Ci|

The first factor is the within-cluster weight of the
prompt (normalized within cluster). The second
factor weighs all prompts of a given cluster propor-
tionally to the cluster’s size.
(ii) Inverse-distance weights: The closer a prompt
is to the cluster representative, the larger its weight.
This setting effectively smooths out the hard clus-
tering we produced: all data points contribute to
the performance, not just the cluster representatives.

The weight w for pi is computed as:

w(pi) =
d−1(pi, p

r
j)

∑
pk∈Cj

(
d−1(pk, p

r
j)
) |Cj |∑

i |Ci|

Increasing benchmark size We start with a ran-
dom prompt and iteratively add new prompts into
the benchmark. To select the next prompt to add,
we use two methods: (i) most informative: select
the prompt with the largest cosine distance (low-
est cosine similarity) from the previously selected
ones in order to obtain an informative test set with
a reduced semantic similarity between prompts,
(ii) random: select a random prompt.

Random distributions of weights We weigh
each prompt and compute weighted performance,
with weights drawn uniformly at random. To
achieve that, we sample uniformly at random from
the unit simplex using the sampling technique de-
scribed in Smith and Tromble (2004). This ap-
proach aims to provide a characterization over all
possible weight configurations.

3.4 Comparing performance vectors with
semantic embeddings of prompts

Having established that model performance is sim-
ilar across prompts, we next investigate where this
similarity stems from. Our hypothesis is that for
a pair of prompts, similar model performance can
occur if the prompts are semantically similar.

We use linear regression to determine if there
exists a significant relationship between semantic
similarity and model performance similarity:

sperf (pi, pj) = ssem(pi, pj)β + ϵ

where β is the coefficient of how much semantic
similarity contributes to the model and ϵ is error.

Using all prompt pairs raises concerns about the
data being i.i.d., given that each observation is a
pairwise comparison and each member of a pair
appears in many observations. To avoid that, we
estimate one model for each prompt, including all
the pairwise observations of which that prompt
is a part. We collect p-values for the coefficients
across all models and perform multiple hypothe-
ses adjustment to generate False Discovery Rate
(FDR) values. We repeat the same approach for
1000 permutations as described in Section 3.2 for
both pairwise performance and semantic similarity
vectors. Finally, we compare the distribution of
coefficients and FDRs between original data and
permutations using the KS test.
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4 Experimental setup

In this section, we describe the setting of our ex-
periments. Specifically, we provide details on the
benchmarks and evaluation metrics we use, the
LLMs we consider, and how we evaluate perfor-
mance of the LLMs on the benchmarks.

4.1 Benchmarks

We investigate four major benchmarks that are de-
signed for different tasks.

ANLI The Adversarial Natural Language Infer-
ence (ANLI) dataset4 is a large-scale dataset for
natural language inference (NLI) (Nie et al., 2020).
It is collected via an iterative, adversarial human-
and-model-in-the-loop procedure, making it more
difficult than its predecessors. The dataset used
here comprises approximately 100K samples for
the training set, 1,200 for the development set, and
1,200 for the test set. Each sample contains a con-
text, a hypothesis, and a label. The goal is to deter-
mine the logical relationship between the context
and the hypothesis. The label is the assigned cat-
egory indicating that relationship. In the context
of NLI, the labels typically include “entailment”,
“contradiction”, or “neutral”. Finally, ANLI makes
available a reason (provided by the human-in-the-
loop), explaining why a sample was misclassified.

HellaSwag This is a commonsense natural lan-
guage inference dataset (Zellers et al., 2019), task-
ing machines with identifying the most probable
followup for an event description. Comprising
70,000 instances, each scenario presents four po-
tential outcomes, with only one being accurate. En-
gineered to be challenging for cutting-edge mod-
els, the dataset employs Adversarial Filtering to
incorporate machine-generated incorrect responses,
frequently misclassified by pretrained models. Cov-
ering diverse domains, HellaSwag demands a fu-
sion of world knowledge and logical reasoning for
successful interpretation.

CommonsenseQA This is a multiple-choice
question-answering dataset that requires different
types of commonsense knowledge to predict the
correct answers (Talmor et al., 2019). It con-
tains 12,102 questions with one correct answer and
four distractor answers. The questions are crowd-
sourced and cover a wide range of topics such as

4
https://huggingface.co/datasets/anli

open-domain-qa, real-life situations, elementary
science, social skills.

CNN/Daily Mail The CNN/Daily Mail dataset
is a widely used benchmark for text summariza-
tion (Nallapati et al., 2016). The dataset com-
prises news stories from CNN and Daily Mail web-
sites. In total, the corpus contains 286,817 training,
13,368 validation, and 11,487 test pairs.

4.2 Evaluation measures

For ANLI, HellaSwag, and CommonsenseQA, the
performance matrix contains binary values (correct
/ incorrect answer). Hence, we use average accu-
racy to evaluate the performance of each model, as
commonly done with these benchmarks (Nie et al.,
2020; Wei et al., 2022; Zellers et al., 2019; Talmor
et al., 2019). For CNN/Daily Mail, following pre-
vious work (See et al., 2017), we measure model
performance using the ROUGE score.

4.3 Considered LLMs

In order to have a diverse collection of LLMs,
we include models from several developers, such
as OpenAI and Meta. These include GPT
LLMs (Brown et al., 2020; OpenAI, 2023), Llama
LLMs (Touvron et al., 2023), and other popular
LLMs, such as Falcon-180b (Almazrouei et al.,
2023), Koala 13B (Geng et al., 2023), Alpaca
7B (Wang et al., 2023b). Table 1 shows the various
models used for each benchmark5.

4.4 Performance evaluation

For ANLI, we evaluate each model on the test
dataset, which contains 1200 prompts. For each
sample, we use 7 few-shot samples extracted from
the ANLI dev set. For the remaining benchmarks,
we randomly sample 10% of each benchmark for
test and use the rest for few-shot selection. This
results in 1005, 1221, and 1150 test samples for
HellaSwag, CommonsenseQA, and CNN/Daily
Mail respectively. For HellaSwag, we use 10 few-
shot examples, while for CommonsenseQA and

5Due to constraints in LLMs’ availability, we use different
LLMs for each benchmark. This does not impact our work, as
each benchmark analysis is standalone and independent of the
remaining benchmarks.
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CNN/Daily Mail we use 5 few-shots.
TypeModel ANLIHSCSQACNN/DM

G
PT

ChatGPT-Turbo-Base-0516 ✓ ✓
ChatGPT-Turbo-0301 ✓ ✓
ChatGPT-Turbo-0613 ✓
ChatGPT-202301 ✓
DaVinci (GPT-3) ✓
Text-Davinci-002 ✓
Text-Davinci-003 ✓
GPT-4-0314 ✓
GPT-4-0314 (Chat) ✓ ✓ ✓
GPT-4-0613 (Chat) ✓
GPT-4-Turbo-1106 (Chat) ✓ ✓ ✓
GPT-4-Turbo-1106 ✓
Text-Alpha-002-Current ✓ ✓
DV3-FP8 ✓
Babbage-0721 ✓
ChatGPT-202301 ✓

L
L

A
M

A

Llama-13B ✓
Llama-2-13B ✓ ✓
Llama-30B ✓ ✓
Llama-65B ✓
Llama-2-70B ✓ ✓ ✓

O
th

er

Persimmon 8B1 ✓ ✓ ✓
Vicuna 13B2 ✓ ✓
Claude-23 ✓ ✓ ✓
Falcon-180b ✓ ✓
Koala 13B ✓ ✓
Mistral7b4 ✓ ✓
Alpaca 7B ✓
Total 12 13 14 8

1 https://www.adept.ai/blog/persimmon-8b
2 https://lmsys.org/blog/2023-03-30-vicuna/
3 https://www.anthropic.com/index/claude-2
4 https://mistral.ai/news/announcing-mistral-7b/

Table 1: Summary of LLMs used for ANLI, HellaSwag
(HS), CommonsenseQA (CSQA), and CNN/Daily Mail
(CNN/DM). Check marks denote which LLMs were
used for the specific benchmark.

5 Results

In this section, we present the results of the experi-
ments described in Section 3 on the benchmarks.

5.1 Performance vectors are correlated

To determine if prompt performance vectors are
correlated, we perform the permutation tests de-
scribed in Section 3.2, using different correlation
measures. The obtained p-values for ANLI, Hel-
laSwag, and CommonsenseQA are depicted in Ta-
ble 2. On ANLI and CommonsenseQA, the per-
mutation tests show strong evidence that the cor-
relations between the prompt performance vectors
are significant. For HellaSwag, our findings re-
veal consistently low p-values across all correlation
measures when using the 75th percentile, as well
as a low p-value when averaging Jaccard similari-
ties. For the three benchmarks above, the KS test
is significant across all correlation measures.

For CNN/Daily Mail the performance matrix

Hamming Cosine Jaccard

A
N

L
I Average 0.60 0.59 0.0009

75th percentile 0.66 0.0009 0.67
95th percentile 0.0009 0.0009 0.0009
KS test 2e-5 2e-5 2e-5

H
S

Average 0.52 0.57 0.0009
75th percentile 0.0009 0.0009 0.0009
95th percentile 0.88 0.85 0.87
KS test 2e-5 2e-5 2e-5

C
SQ

A

Average 0.53 0.52 0.0009
75th percentile 0.0009 0.0009 0.0029
95th percentile 0.0009 0.0009 0.0009
KS test 2e-5 2e-5 2e-5

Table 2: p-values obtained with permutation tests and
the KS test using different correlation measures and
aggregation functions for ANLI, HellaSwag (HS), and
CommonsenseQA (CSQA).

Benchmark observed permuted
ANLI 0.52 0.21
HellaSwag 0.54 0.24
CommonsenseQA 0.61 0.29
CNN/Daily Mail 0.25 0.21

Table 3: Average silhouette score of clustering observed
performance vectors and a random permutation of per-
formance vectors for the various benchmarks.

contains ROUGE scores, which are continuous val-
ues. Thus, we use cosine similarity to compare the
average correlations obtained from the original and
permuted performance matrices. The results show
that the correlations among original performance
vectors are significantly greater.

To further support this finding, we cluster the
model responses using spherical k-means (Dhillon
and Modha, 2001). We choose the optimal num-
ber of clusters to maximize the average silhouette
score, computed using cosine distance. Table 3
contains the average silhouette scores of clustering
the performance vectors and a random permutation
of them. For all benchmarks, the performance vec-
tors produce higher silhouette scores compared to
the permuted performance vectors. This provides
additional evidence to support the outcome of the
hypothesis tests presented above: the performance
vectors are similar.

5.2 Impact of prompt weights on performance
and relative ranking of models

In this section, we present the results of different
weighting schemes for the prompts of a benchmark,
as described in Section 3.3.

5.2.1 Cluster-based evaluation
First, we cluster the performance vectors of each
benchmark as described earlier. Then, we compute
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the average accuracy of models for each bench-
mark, using only the cluster representatives of that
benchmark. We also compute weighted perfor-
mance using distance-based and inverse-distance-
based weights. Figure 2 illustrates how these
weighting schemes affect the relative ranking of
models for each benchmark. The rows correspond
to different weighting schemes, while the columns
correspond to the different models and are ordered
by increasing original performance (i.e., decreas-
ing rank). Every cell contains the ranking change
(compared to the original benchmark) of the model
of that column for the method of that row. If there
were no ranking changes, all values would be 0.
However, we observe that there are multiple rank-
ing changes as great as 5 (model is ranked 5 posi-
tions above the original benchmark).

5.2.2 Increasing size of benchmark
Next, we study how performance is affected by the
size and diversity of the benchmark. We start with
a random prompt and iteratively add new prompts
to the benchmark, either by adding the most in-
formative prompt (i.e., the one with the maximum
average distance from the current benchmark), or
a random one. Figure 3 shows the average per-
formance for each model as the benchmark size
increases (maximum benchmark size corresponds
to the original benchmark). Looking at the most
informative method for ANLI (Figure 3a), the first
400 prompts result in random performance (0.5) for
all models. This suggests that the initial prompts
chosen with this method are the most “difficult”, in
that the models are exhibiting performance close
to random (accuracy 50%). Similar results are ob-
served for HellaSwag and CommonsenseQA (see
Appendix C, Figure 10), but not for CNN/Daily
Mail (Figure 3b), where the performance on the
reduced benchmark follows a similar pattern as the
performance on the original benchmark. The ran-
dom method tracks the original performance for all
benchmarks (see Appendix C, Figure 11).

5.2.3 Random distributions of weights
We explore the distribution of all weighting
schemes and the effect they have on the weighted
accuracy and relative ranking of the models. As
described in Section 3.3, we sample 100,000 ran-
dom weight configurations. For each model, we
compute the weighted performance based on these
weights.

For ANLI, HellaSwag, and CommonsenseQA

the performance of a model can change up to 10%.
For CNN/Daily Mail, the range is smaller, up to 3%.
Detailed results are included in Appendix D. We
note that the range is similar for all models within
a benchmark, indicating that it is a property related
to the benchmark and not the specific models.

To further demonstrate changes in relative rank-
ing of models, we take a closer look at the pair-
wise ranking differences. Figure 4 depicts a pair-
wise comparison of weighted performance for each
benchmark. Every cell shows how often the model
in the row outperforms the model of the column.
For ANLI, approximately for half of the weight
configurations the ranking of the top two models is
reversed! However, for the CNN/Daily Mail data,
there are effectively no reversals (less than 0.01%).

5.3 Relationship between model performance
and semantic similarity of prompts

Having established that model performance is cor-
related across prompts, we investigate what can
explain these correlations. Our hypothesis is that it
is driven by semantic similarity. We use the method
described in Section 3.4 to assess if there is a sig-
nificant relationship between semantic similarity
and model performance similarity.

Our findings show that only CNN/Daily Mail
presents a significant relationship between prompt
semantic similarity and prompt performance simi-
larity (see Figure 5d). This benchmark is a text sum-
marization task, where the success of the ROUGE
metric highly depends on the ability to extract rele-
vant entities from text. For example, we find that
prompts referring to the economy or global warm-
ing have high correlation in model performance
(see Appendix B, Table 5).

ANLI also makes available a reason component:
what human agents state as the explanation for why
the LLM gave a wrong answer. We find a sig-
nificant relationship between semantic similarity
using the reason component and prompt perfor-
mance similarity (as seen in Figure 5a). The input
prompt—consisting of the context, hypothesis and
label components—shows no relationship, which is
most likely because the creators of ANLI put great
effort into ensuring diversity in the benchmark (Nie
et al., 2020). This is also evident in Figure 3. The
significance of the reason component indicates that
the model performance vectors correlate because
of how the model generates a response. We observe
prompts where the reasons for similar model per-
formance indicate that the model cannot do math,
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Figure 2: Visualization of ranking changes (compared to original benchmark) for various benchmark modifications.
Rows show different weighting methods, columns show the models. Each cell contains the ranking change (original
ranking minus new ranking) of the column-model for the row-method. We observe rank changes as great as 5.
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Figure 3: Average performance as benchmark size in-
creases. Prompts are added to maximize average cosine
distance. Maximum benchmark size corresponds to per-
formance on the original benchmark.

e.g., “The system may have missed this as it did not
add up the losses from both sets” and “the model
might not know math” (see Appendix B, Table 4).

Hellaswag and CommonsenseQA use a multiple-
choice format. The lack of strong evidence sup-
porting the correlation in these benchmarks (see
Figures 5b and 5c) is likely due to the embed-
dings picking up similarities between the different
choices, rather than the logic the LLMs employ to
arrive at their conclusion. This is consistent with
our findings for ANLI, where a significant relation-

ship does not stem from inputs to the model, but
from the LLMs’ failure points.

Our findings indicate there is a larger question
about why the model performance vectors are corre-
lated, and investigating this is central to understand-
ing model performance. Semantic similarity can be
a factor, but it depends on the task the benchmark
is designed for. Based on our results for ANLI, it
appears that the reasoning required for the task (i.e.,
reasoning types that cause models to fail), can be
even more important than semantic similarity.

6 Conclusion and future work

LLMs are commonly evaluated on benchmarks that
may include multiple prompts testing similar skills.
In this work, we demonstrate this bias on major
benchmarks, by showing that model performance
across different prompts is significantly correlated.
Furthermore, we demonstrate that LLM compara-
tive studies can be significantly altered when using
non-uniform weights for prompts during evaluation.
The suggested approach can serve as a consistency
check in comparative studies of LLMs, ensuring
that the results take into consideration benchmark
biases. Finally, we show that similar model per-
formance across prompts can be explained by se-
mantic similarity, but is most likely derived from
common failure points of the LLM.

Our findings could influence a larger diagnos-
tics tool for evaluating the robustness of model
quality comparisons with respect to distributional
assumptions of benchmarks. Future work also in-
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Figure 4: Pairwise comparison of weighted perfor-
mance. Each cell is the percentage of times the model
of the row outperforms the model of the column.

cludes identifying additional factors that may ex-
plain these biases. This information can give rise
to solutions for improving benchmarks robustness.
These findings could help researchers generating
novel benchmarks to identify and eliminate biases.

7 Limitations

Our study requires access to multiple LLMs to gen-
erate model performance vectors for each prompt
in a benchmark. This can be computationally ex-
pensive and require GPUs. Some models, such as
OpenAI’s GPT-4, have limited API calls, making
data collection time consuming.

While we provide a novel approach for re-
searchers to investigate bias in their own studies,
providing a comprehensive de-biasing methodol-
ogy is not within the scope of this work.

Finally, we have only touched the surface on why
prompts have similar performance across multiple
LLMs. There are many other components to inves-
tigate, such as the length of the prompt and prompt
complexity. This information could be leveraged to
propose solutions on improving benchmarks, with-
out running prompts through multiple LLMs.
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Figure 5: Distribution of semantic similarity coefficients
and FDRs for all benchmarks. Red is original data, blue
is permutations. KS tests for all distributions shown
have p-values < 2e-5.
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A Prompt structure

The prompts used for inference are depicted in
Figures 6, 7, 8 and 9 for ANLI, HellaSwag, Com-
monsenseQA and CNN/Daily respectively.

Given the following context: {premise}
Question:{hypothesis}

True, False or Neither?
The answer is:

Figure 6: Prompt used during inference for ANLI.

### System: You are an AI assistant. Pro-
vide a detailed answer so user do not need
to search outside to understand the answer.

### User: Category: {activity_label}
Text: {ctx}

Completion options:
(1) {choice_1}
(2) {choice_2}
(3) {choice_3}
(4) {choice_4}

### Assistant: The most
likely text completion is:

Figure 7: Prompt used during inference for HellaSwag.

Question: {{question}}
Answer options:
(A) {{choiceA}}
(B) {{choiceB}}
(C) {{choiceC}}
(D) {{choiceD}}
(E) {{choiceE}}
The answer is:

Figure 8: Prompt used during inference for Common-
senseQA.

### Article:
{Text to summarize}

### Summary:

Figure 9: Prompt used during inference for CNN/Daily
Mail.

B Results: Semantically similar prompts

For the statistical tests in Section 3.4, we describe
a set of linear regression models being generated
where each model contains the prompt pairs of a

specific single prompt. Here, we display semanti-
cally similar prompts from these models where the
semantic similarity coefficient is high and signifi-
cant in explaining the model performance depen-
dent variable.

In Table 4, the ANLI reason component demon-
strates that the prompts are adversarial because the
model is unable to perform simple math operations.
In other words, the prompts elicit the same mathe-
matical operation task. For CNN/Daily Mail data,
the prompts either refer to the economy or global
warming as seen in Table 5. This entails that the
models’ performance had similar capabilities in
extracting text about these subjects.

C Results: Increasing size of benchmark

Figure 10 shows results for all benchmarks for our
experiments on increasing size of benchmark us-
ing the most informative method, as described in
Section 5.2.2. Figure 11 shows results for all bench-
marks when adding prompts in random order.

D Results: Distributions of weighted
performance

Figure 12 shows distribution of weighted perfor-
mance and pairwise ranking changes for all bench-
marks.
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Table 4: List of ANLI reasons having high semantic similarity with model performance.

Reason Text
1 it says osaka beat williams 6-2, 6-4. So osaka lost 6 games total. The system may have

missed this as it did not add up the losses from both sets
2 The 1972–73 California Golden Seals had a 13–55–10 record - so they lost about 4 times

as many [55] as they won [13]; the model might not know math.
3 Although Shigeko Sasamori was interviewed about this event, it’s uncertain if she wit-

nessed it personally. I think the system is confused because of so many matching words.
4 It does not state whether she was rebound leader - although her points total was tied with

another player - which might have confused the model.
5 his record is 6-5 not 5-5

Table 5: List of Daily/CNN grounded truth summaries having high semantic similarity with model performance.

Label Text
1 Jeffrey Sachs : Raw capitalism is the economics of greed . Last year was the Earth’s

hottest year on record, he says.
2 Adam Sobel : California’s steps against drought are a preview for rest of U.S. and world.

Tying climate change to weather doesn’t rest on single extreme event, Sobel says. The big
picture should spur us to prepare for new climates by fixing infrastructure, he says.

3 India predicted to outpace China as as world’s fastest-growing economy in next year.
China’s economy is slowing after over 25 years of breakneck growth. But experts say
India simply can’t size up against China ’s raw economic might.

4 Bill Richardson : U.S announced plan to cut greenhouse gas emissions by 26 to 28 percent
below 2005 levels by 2025. He says China, India, major corporations, cities among those
already setting goals for cutting emissions. U.S. must lead in this effort.
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Figure 10: Average performance as benchmark size increases. Prompts are added to maximize average cosine
distance. Maximum benchmark size corresponds to performance on the original benchmark.
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Figure 12: Left column: Distribution of weighted performance for randomly sampled weights. The black dot
corresponds to performance when using uniform weights. Right column: Pairwise comparison of weighted
performance. Every cell corresponds to the proportion of times the model in the row outperforms the model of the
corresponding column.
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