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Abstract

Simultaneous Machine Translation (SiMT) gen-
erates target outputs while receiving stream
source inputs and requires a read/write policy
to decide whether to wait for the next source
token or generate a new target token, whose
decisions form a decision path. Existing SiMT
methods, which learn the policy by exploring
various decision paths in training, face inherent
limitations. These methods not only fail to pre-
cisely optimize the policy due to the inability to
accurately assess the individual impact of each
decision on SiMT performance, but also cannot
sufficiently explore all potential paths because
of their vast number. Besides, building decision
paths requires unidirectional encoders to simu-
late streaming source inputs, which impairs the
translation quality of SiMT models. To solve
these issues, we propose Self-Modifying State
Modeling (SM2), a novel training paradigm for
SiMT task. Without building decision paths,
SM2 individually optimizes decisions at each
state during training. To precisely optimize
the policy, SM2 introduces Self-Modifying pro-
cess to independently assess and adjust deci-
sions at each state. For sufficient exploration,
SM2 proposes Prefix Sampling to efficiently
traverse all potential states. Moreover, SM2 en-
sures compatibility with bidirectional encoders,
thus achieving higher translation quality. Ex-
periments show that SM2 outperforms strong
baselines. Furthermore, SM2 allows offline
machine translation models to acquire SiMT
ability with fine-tuning 1.

1 Introduction

Simultaneous Machine Translation (SiMT) (Gu
et al., 2017; Ma et al., 2019; Zhang et al., 2020)
outputs translation while receiving the streaming
source sentence. Different from normal Offline
Machine Translation (OMT) (Vaswani et al., 2017),

* Corresponding Author
1Our source code is available at https://github.com/

EurekaForNLP/SM2
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Figure 1: Illustration of different paradigms. (a) Train-
ing paradigm based on decision paths. All decisions
along a path are optimized in an integrated manner. (b)
Self-Modifying State Modeling. The decisions at each
state are optimized individually.

SiMT needs a suitable read/write policy to de-
cide whether to wait for the coming source inputs
(READ) or generate target tokens (WRITE).

As shown in Figure 1(a), to learn a suitable pol-
icy, existing SiMT methods usually require build-
ing a decision path (i.e., a series of READ and
WRITE decisions made by the policy) to simulate
the complete SiMT process during training (Zhang
and Feng, 2022c). Methods of fixed policies (Ma
et al., 2019; Zhang and Feng, 2021) build the de-
cision path based on pre-defined rules, and only
optimize translation quality along the path. Meth-
ods of adaptive policies (Zheng et al., 2019; Miao
et al., 2021; Zhang and Feng, 2023) dynamically
build the decision path and optimize the policy
based on the SiMT performance along this path.

However, the current training paradigm based
on decision paths faces inherent limitations. First,
it can lead to imprecise optimization of the pol-
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icy during training. For fixed policies, pre-defined
rules cannot ensure optimal decisions at each state.
For adaptive policies, there exists a credit assign-
ment problem (Minsky, 1961), which means it is
difficult to identify the impact of each individual
decision on the global SiMT performance along
a path, thus hindering the precise optimization of
each decision. Second, due to numerous poten-
tial decision paths, existing methods (Zheng et al.,
2019; Miao et al., 2021; Zhang and Feng, 2023)
often prohibit the exploration of some paths during
training, but this insufficient exploration cannot
ensure the optimal policy. Third, for building deci-
sion paths in training, existing methods require uni-
directional encoders to simulate streaming source
inputs and avoid the leakage of source future infor-
mation (Elbayad et al., 2020), which impairs SiMT
models’ translation quality (Iranzo-Sánchez et al.,
2022; Kim and Cho, 2023).

To address these issues, we propose Self-
Modifying State Modeling (SM2), a novel training
paradigm for SiMT task. As shown in Figure 1(b),
instead of constructing complete decision paths,
SM2 individually optimizes decisions at all poten-
tial states during training. This paradigm neces-
sitates addressing two critical issues: firstly, how
to independently optimize each decision based on
its own contribution to SiMT performance; and
secondly, how to sufficiently explore all potential
states during training. To realize the independent
optimization, SM2 assesses each decision by esti-
mating confidence values which measure the trans-
lation credibility. High confidence means the SiMT
model can predict a credible target token at cur-
rent state and WRITE is beneficial for SiMT per-
formance; otherwise, READ is preferred. Since
golden confidence values are unavailable, SM2 in-
troduces Self-Modifying process to learn accurate
confidence estimation (DeVries and Taylor, 2018;
Lu et al., 2022). Specifically, during training, the
SiMT model is allowed to modify its prediction
based on the received source prefix with the pre-
diction based on the complete source sentence, and
the confidence is estimated to determine whether
the modification is necessary to ensure a credible
prediction at current state. To sufficiently explore
all potential states, SM2 conducts Prefix Sampling
to divide all states into groups according to the
number of their received source prefix tokens, and
sample one group for optimization in each iteration.

Compared to the training paradigm based on de-
cision paths, SM2 presents significant advantages.

First, the Self-Modifying process can assess each
decision independently, which realizes the precise
optimization of policy without the credit assign-
ment problem. Second, Prefix Sampling ensures
sufficient exploration of all potential states, pro-
moting the discovery of the optimal policy. These
benefits enable SM2 to learn a more effective pol-
icy. Furthermore, without building decision paths
in training, SM2 ensures compatibility with bidi-
rectional encoders, thereby improving translation
quality. This compatibility also allows OMT mod-
els to acquire the SiMT capability via fine-tuning.
Our contributions are outlined in the following:

• We propose Self-Modifying State Modeling
(SM2), a novel training paradigm that individ-
ually optimizes decisions at all states without
building complete decision paths.

• SM2 can learn a better policy through precise
optimization of each decision and sufficient
exploration of all states. With bidirectional en-
coders, SM2 achieves higher translation qual-
ity and compatibility with OMT models.

• Experimental results on Zh→En, De→En and
En→Ro SiMT tasks show that SM2 outper-
forms strong baselines under all latency levels.

2 Background

Simultaneous machine translation For SiMT
task, we respectively denote the source sentence as
x = (x1, ..., xM ) and the corresponding target sen-
tence as y = (y1, .., yN ). Since the source inputs
are streaming, we denote the number of source to-
kens available when generating yi as gi, and hence
the prediction probability of yi is p(yi | x≤gi ,y<i)
(Ma et al., 2019). Thus, the decoding probability
of y is given by:

p (y | x) =
N∏

i=1

p(yi | x≤gi ,y<i) (1)

Decision state and decision path We define the
state sij as the condition in which the source
prefix x≤j has been received and the target pre-
fix y<i has been generated. At sij , a decision
dij ∈ {WRITE,READ} can be made based on
the context (x≤j ,y<i) (Grissom II et al., 2014; Gu
et al., 2017; Zhao et al., 2023). Specifically, if
x≤j is sufficient for the SiMT model to predict yi
accurately, dij should be WRITE; otherwise, dij
should be READ. As shown in Figure 1(a), a series
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Figure 2: Overview of SM2. Sj contains the states where x≤j is received. SM contains the states where complete x
is received. We introduce a confidence net (ConfNet) to estimate the confidence of each state. The model parameters
in SiMT setting and OMT setting are shared. In this figure, the sentence lengths of the source and target sides are
set to M = 5 and N = 4 respectively, and j = 3 in the Prefix Sampling step.

of decisions [d00, ..., dNM ] are made in the SiMT
process, which forms a decision path from s00 to
sNM . Along the decision path, the SiMT model
can finish reading the whole x and outputting the
complete y (Zhang and Feng, 2022c). Since these
concepts are usually used in SiMT methods based
on reinforcement learning (RL) (Grissom II et al.,
2014; Gu et al., 2017), we compare our method
with RL-based methods in Appendix A for clarity.

3 The Proposed Method

We propose Self-Modifying State Modeling (SM2),
which individually optimizes decisions at all states.
The overview of SM2 is shown in Figure 2. To inde-
pendently optimize each decision, SM2 learns con-
fidence estimation to assess decisions at each state
by modeling the Self-Modifying process (Sec.3.1).
To ensure sufficient exploration during training,
SM2 conducts Prefix Sampling to traverse all poten-
tial states (Sec. 3.2). Then, based on estimated con-
fidence at each state, SM2 can determine whether
the received source tokens are sufficient to generate
a credible token and make suitable decisions during
inference (Sec.3.3).

3.1 Self-Modifying for Confidence Estimation

Intuitively, when a translation model has access
to the complete input x (i.e., OMT setting), it can
produce credible outputs. Therefore, a prediction
made by the translation model at sij (i.e. SiMT
setting) is considered credible if it aligns with that
in OMT setting. Conversely, if the prediction in

SiMT setting is incredible, it will be modified in
OMT setting. Based on this insight and Ask For
Hints (DeVries and Taylor, 2018; Lu et al., 2022),
we model the Self-Modifying process to assess the
translation credibility of each state. Specifically,
we provide the SiMT model an option to modify
its prediction in SiMT setting with that in OMT
setting, and confidence estimation is defined as a
binary classification determining whether the cur-
rent generation requires the modification to ensure
a credible prediction. Through measuring trans-
lation credibility, decisions at each state can be
independently assessed. High confidence means
the SiMT model can generate a credible token at
sij without modification and the WRITE decision
is beneficial for SiMT performance; whereas low
confidence indicates the prediction is inaccurate at
sij and the READ decision is preferred.

During training, the Self-Modifying process is
conducted in two steps: prediction in SiMT setting
& OMT setting and confidence-based modification.

For prediction in SiMT setting& OMT setting,
the SiMT model outputs different predictions at
sij in SiMT setting and OMT setting respectively.
These predictions are calculated as follows:

pij = p(yi | x≤j ,y<i)

pi = p(yi | x,y<i)
(2)

It is noted that the model parameters in SiMT set-
ting and OMT setting are shared.

For confidence-based modification, an additional
confidence net is used to predict the confidence cij
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Algorithm 1: Confidence-based Policy
Input :Streaming inputs x≤j , Threshold

γ, i = 1, j = 1, y0 ← ⟨BOS⟩
Output :Target outputs y

1 while yi−1 ̸= ⟨EOS⟩ do
2 calculate confidence cij as Eq.(3);
3 if cij ≥ γ then // WRITE
4 generate yi with x≤j ,y<i;
5 i← i+ 1;
6 else // READ
7 wait for next source token xj+1;
8 j ← j + 1;
9 end

10 end

at sij . The confidence net is represented as:

cij = sigmoid(W T · hij + b) (3)

where hij is the hidden representation from the top
decoder layer in SiMT setting and θ = {W, b} are
trainable parameters. If pij is credible, cij should
be close to 1; otherwise, cij should be close to 0.
To accurately calibrate cij in the training process,
we integrate the modification into the prediction
probability as follows:

pmij = cij · pij + (1− cij) · pi (4)

Subsequently, the translation loss is calculated us-
ing the modified probability:

Lsij = −yi log(pmij ) (5)

Notably, the SiMT model can enhance the predic-
tion credibility by estimating a lower cij for more
modification. However, this manner may cause an
over-reliance on pi. To avoid that, an additional
penalty term for cij is introduced:

Lcij = − log(cij) (6)

Through Self-Modifying process, SM2 indepen-
dently optimizes each decision based on their indi-
vidual effect on the SiMT performance, thus realiz-
ing the precise optimization of the policy without
credit assignment problem. We provide a gradient
analysis of the independent optimization in Ap-
pendix B for further explanation.

3.2 Prefix Sampling
To sufficiently explore all potential states during
training, Prefix Sampling is conducted in SM2.
As shown in Figure 2, states are categorized into
groups, and one group is randomly sampled for
optimization in each iteration. Specifically, all pos-
sible states of (x,y) are divided into M groups
according to the number of their received source
prefix tokens, and each group comprises N states,
which can be formulated as follows:

Sj = {sij | 1 ≤ i ≤ N}, j ∈ [1,M ] (7)

In each iteration, we sample j ∼ U(1,M).
Then, SM2 respectively predicts target translation
in SiMT setting based on Sj and those in OMT
setting based on SM , where the complete source
sentence is received. Thus, the modified transla-
tion loss and the penalty item of each iteration are
computed as follows:

LSj =
N∑

i=1

Lsij

LCj =
N∑

i=1

Lcij

(8)

Besides, to ensure the pi in OMT setting can
provide effective modification, the translation loss
in OMT setting is required, which is formulated as:

Lomt = −
N∑

i=1

log(pi) (9)

The total training loss is the following:

L = Lomt + LSj + λLCj (10)

where λ is the super parameter. We discuss the
effect of λ in Appendix C.

Through Prefix Sampling, SM2 explores all po-
tential states without building any decision paths.
Therefore, SM2 can employ bidirectional encoders
without the leakage of source future information in
the training process.

3.3 Confidence-based Policy in Inference
During inference, SM2 utilizes cij to assess the
credibility of current prediction, thus making suit-
able decisions between READ and WRITE at sij .
Specifically, a confidence threshold γ is introduced
to serve as a criterion for making decisions. As
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shown in Algorithm 1, if cij > γ, SM2 selects
WRITE; otherwise, SM2 selects READ. This deci-
sion process is constantly repeated until the com-
plete translation is finished. It is noted that we only
utilize SiMT setting in the inference process.

By adjusting γ, SM2 can perform the SiMT task
under different latency levels. A higher γ encour-
ages the SiMT model to predict more credible tar-
get tokens and the latency will be longer. Con-
versely, a lower γ reduces the latency but may lead
to a decrease in translation quality. The values
of γ employed in our subsequent experiments are
detailed in Appendix D.

4 Experiments

4.1 Datasets

We conduct experiments on three datasets:
Zh→En We use LDC corpus which contains

2.1M sentence pairs as the training set, NIST 2008
for the validation set and NIST 2003, 2004, 2005,
and 2006 for the test sets.

De→En We choose WMT15 for training, which
contains 4.5M sentence pairs. Newstest 2013 are
used as the validation set and newstest 2015 are
used as the test set.

En→Ro WMT16 (0.6M) is used as the training
set. We choose newsdev 2016 as the validation set
and newstest 2016 as the test test.

We apply BPE (Sennrich et al., 2016) for all lan-
guage pairs. In Zh→En, the vocabulary size is 30k
for Chinese and 20k for English. In both De→En
and En→Ro, a shared vocabulary is learned with
32k merge operations. Additional experiments on
WMT15 En→Vi are provided in Appendix E.

4.2 System Settings

The models used in our experiments are introduced
as follows. All baselines are built based on Trans-
former (Vaswani et al., 2017) with the unidirec-
tional encoder unless otherwise stated. More de-
tails are presented in Appendix D.

OMT-Uni/OMT-Bi(Vaswani et al., 2017): OMT
model with an unidirectional/bidirectional encoder.

wait-k (Ma et al., 2019): a fixed policy, which
first reads k tokens, then writes one token and reads
one token in turns.

m-wait-k (Elbayad et al., 2020): a fix policy,
which improves wait-k by randomly sampling dif-
ferent k during training.

ITST (Zhang and Feng, 2022b): an adaptive
policy, which models the SiMT task as a transport

problem of information from source to target.
HMT (Zhang and Feng, 2023): an adaptive

policy, which models the SiMT task as a hidden
Markov model, by treating the states as hidden
events and the predicted tokens as observed events.

SM2-Uni/SM2-Bi: Our proposed method with
an unidirectional/bidirectional encoder.

4.3 Evaluation Metric
For SiMT, both translation quality and latency re-
quire evaluation. Since existing datasets mainly
focus on the OMT task, the metric based on n-gram
may cause inaccurate evaluation (Rei et al., 2020).
Therefore, we measure the translation quality with
both SacreBLEU (Post, 2018) and COMET2 scores.
For latency evaluation, we choose Average Lagging
(AL) (Ma et al., 2019) as the metric.

Furthermore, to assess the quality of read/write
policy in different SiMT models, we follow Zhang
and Feng (2022b) and Kim and Cho (2023) to use
Satisfied Alignments (SA), the proportion of the
ground-truth aligned source tokens received before
translating. Specifically, when generating yi, the
number of received source tokens gi should be no
less than the golden-truth aligned source position
ai, so that the alignment between yi and xai can be
satisfied in the SiMT process. Thus, SA(↑) can be
calculated as:

SA =
1

N

N∑

i=1

I(ai ≤ gi) (11)

5 Results and Analysis

5.1 Simultaneous Translation Quality
We present the translation quality under various
latency levels of different SiMT models in Figure 3
and Figure 4. These results indicate that SM2 out-
performs previous methods across three language
pairs in terms of both SacreBLEU and COMET
scores. With the unidirectional encoder, SM-Uni
achieves higher translation quality compared to cur-
rent state-of-the-art SiMT models (ITST, HMT) at
low and medium latency levels (AL∈ [0, 6]), and
maintains comparable performance at high latency
level (AL∈ [6, 12]). We attribute this improve-
ment to the effectiveness of learning a better policy
during training. Furthermore, with the superior ca-
pabilities of the bidirectional encoder, SM2-Bi out-
performs previous SiMT models more significantly

2Unbabel/wmt22-cometkiwi-da
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Figure 3: SacreBLEU against Average Lagging (AL) on Zh→En, De→En and En→Ro.
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Figure 4: COMET against Average Lagging (AL) on Zh→En, De→En and En→Ro.

across all latency levels. All SiMT models with uni-
directional encoders can approach the translation
quality of OMT-Uni at high latency levels, but only
SM2-Bi achieves similar performance to OMT-Bi
as the latency increases. These experimental results
prove that SM2 achieves better performance than
other SiMT methods for learning better policy and
improving translation quality. Detailed numerical
results are provided in Appendix E, supplemented
with additional evidence demonstrating the robust-
ness of SM2 to sentence length variations.

5.2 Superiority of SM2 in Learning Policy

To verify whether SM2 can learn a more effective
policy, we compare SA(↑) under various latency
levels of different SiMT models. Following Zhang
and Feng (2022b) and Kim and Cho (2023), we con-
duct the analysis on RWTH3, a De→En alignment
dataset. The results are presented in Figure 5. Com-
pared with existing methods, both SM2-Uni and
SM2-Bi receive more aligned source tokens before
generating target tokens under the same latency. Es-
pecially at medium latency level (AL∈ [4, 6]), SM2

3https://www-i6.informatik.rwth-aachen.de/
goldAlignment/

can receive about 8% more source tokens than fixed
policies (wait-k, m-wait-k) and 3.6% more than
adaptive policies (ITST, HMT). We attribute these
improvements to the advantages of SM2 in learn-
ing policy. Through precise optimization, SM2 can
make more suitable decisions at each state, which
generates faithful translations once receiving suf-
ficient source tokens and waits for more source
inputs when the predicted tokens are incredible.
With sufficient exploration, SM2 can investigate all
possible situations and reduce unnecessary latency
in the SiMT process.

5.3 Precise Optimization for Each Decision
To validate whether the confidence-based policy is
precisely optimized at each state, we examine the
relationship between estimated confidence cij and
the probability of the correct token yi in the predic-
tion, denoted as pcij . Specifically, we employ SM2

to decode the validation set in a teacher-forcing
manner, calculating the cij and pcij for all possible
states. Subsequently, a correlation analysis is per-
formed between cij and pcij . The results in Table
1 demonstrate a strong correlation, evidenced by
high values in Pearson (0.82) and Spearman (0.84)
coefficients, with a slightly moderate but signifi-
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Figure 5: Evaluation of different SiMT policies. We
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Correlation Coefficient Pearson Spearman Kendall’s τ

Value 0.82 0.84 0.65

Table 1: Correlation between cij and pcij .

cant Kendall’s τ coefficient (0.65). These results
suggest a robust linear and monotonic relationship
between cij and pcij , indicating the capacity of cij
to accurately assess the credibility of the current
predicted token. Consequently, this confirms the ef-
fectiveness of the confidence-based policy in mak-
ing precise decisions at each state.

5.4 Advantage of Sufficient Exploration

Existing methods often prohibit the exploration of
some paths due to the possible decision paths being
numerous (Zheng et al., 2019; Miao et al., 2021;
Zhang and Feng, 2023). To investigate the impact
of the prohibition on SiMT models and the supe-
riority of SM2 in sufficiently exploring all states,
we attempt to train these methods without prohibi-
tion, but they fail to converge. Therefore, we ana-
lyze the impact by employing the same prohibition
in HMT (Zhang and Feng, 2023) and RIL(Zheng
et al., 2019) to train SM2, which restricts SM2 to
explore states only between wait-k1 and wait-k2
paths in training. As shown in Figure 6(a), we set
k1 = 1 and k2 = 10 in our experiments. The per-
formances of SM2 with prohibition (SM2-Uni-P
and SM2-Bi-P) are shown in Figure 6(c), indicat-
ing a decline in performance. These results suggest
that the prohibition causes insufficient exploration,
leading to diminished performance. In contrast,
SM2 ensures comprehensive exploration, which is
shown in Figure 6(b), thereby achieving higher per-
formance. Further analysis of the policy quality is
provided in Appendix F.
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Figure 6: The visualization and effect of prohibition.
In (a) and (b), the shaded areas represent the states
allowed for exploration in training. We apply the same
prohibition in HMT (Zhang and Feng, 2023) to train
SM2-Uni-P and SM2-Bi-P.

5.5 Compatibility with OMT Models

SM2 allows for the parallel training of the bidirec-
tional encoder. Due to this compatibility, SM2-Bi
achieves superior translation quality than existing
SiMT methods with unidirectional encoders (Fig-
ure 3,4). To further present the superiority of this
compatibility, we propose fine-tuning OMT mod-
els according to SM2, so that the translation abil-
ity in OMT models can be easily utilized to gain
SiMT models. Specifically, two distinct methods
are used: fine-tuning all model parameters (SM2-
FT) and fine-tuning with adapters (SM2-adapter)4.
As shown in Figure 7(a), SM2-adapter can achieve
comparable performance with current state-of-the-
art SiMT models, and SM2-FT closely matches the
performance of SM2-Bi.

Additionally, we further explore the effect of
the OMT models’ translation abilities on the cor-
responding SiMT abilities after fine-tuning. We
conduct the full-parameter fine-tuning on OMT
models with Transformer-small, Transformer-base,
and Transformer-big respectively. The OMT and
SiMT capabilities of these models are illustrated in
Table 2 and Figure 7(b), which reveal that models

4We add adapters after the feed-forward networks of each
encoder and decoder layer. For each adapter, the input di-
mension and output dimension are 512, and the hidden layer
dimension is 128.
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Figure 7: The SiMT performance of different OMT
models after fine-tuning according to SM2.

SacreBLEU
OMT model Parameters before FT after FT

Transformer-small 47.9M 30.86 31.33
Transformer-base 60.5M 31.93 31.87
Transformer-big 209.1M 32.99 32.75

Table 2: The OMT performance of different OMT mod-
els before/after fine-tuning according to SM2.

with stronger OMT abilities achieve better SiMT
performance after fine-tuning. Besides, the results
in Table 2 show that these models’ original OMT
abilities are not hurt, indicating that SM2 enables
models to support both OMT and SiMT abilities.

5.6 Ablation Study

We conduct ablation studies on SM2 to analyze the
effect of Lomt and modification from OMT setting.

Effect of Lomt As shown in Figure 8, the SiMT
model withoutLomt drops quickly. We argue this is
because training without Lomt may cause a worse
modification. The results in Table 3 show that the
OMT performance of SM2 trained without Lomt

is significantly affected, even worse than its SiMT
performance in the high latency levels. This poor
OMT ability cannot provide accurate modification,
thus disrupting the policy learning process.

Effect of OMT modification Following Ask For
Hints (DeVries and Taylor, 2018; Lu et al., 2022),
we use the one-hot label as the "hints" to modify the
prediction in SiMT setting. Specifically, we denote
ti as the ground-truth label of the i-th target token,
and hence the modification in SM2 is adjusted as:

pmij = cij · pij + (1− cij) · ti (12)

As shown in Figure 8, the performance of SM2

trained with modification in Eq.(12) also drops.
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Figure 8: Effect of Lomt and modification from OMT
setting on the SM2."w/o Lomt" is SM2 trained without
Lomt, and "w/o pi" means SM2 trained using one-hot
rather than OMT setting for modification.

Model SM2-Bi w/o Lomt w/o pi OMT

SacreBLEU 31.87 30.33 31.95 31.93

Table 3: Effect of Lomt and pi on the OMT ability.

We argue that the modification from ti cannot re-
flect the real available gain from the modification
after receiving the complete source sentence, thus
learning a worse policy.

6 Related Work

Simultaneous Machine Translation Different
from offline machine translation (Vaswani et al.,
2017; Zhao et al., 2020; Wu et al., 2024), exist-
ing SiMT methods are divided into fixed policy
and adaptive policy. For fixed policy, Ma et al.
(2019) proposed wait-k, which starts translation
after receiving k tokens. Elbayad et al. (2020) pro-
posed multipath wait-k, which randomly samples
k during training. For adaptive policy, heuristic
rules Cho and Esipova (2016) and reinforcement
learning Gu et al. (2017) are used to realize the
SiMT task. Ma et al. (2020b) integrated multi-head
monotonic attention to model the decision process,
where each head independently makes decisions.
Similarly, Zhang and Feng (2022a) utilized Gaus-
sian multi-head attention to model the alignment,
thus improving the decision-making ability of each
head. Miao et al. (2021) proposed a generative
framework to learn a read/write policy. Zhang and
Feng (2022b) measured the information SiMT had
received and proposed an information-based policy.
Zhang and Feng (2023) used the Hidden Markov
model in SiMT task to learn an adaptive policy.

Previous methods based on decision paths are
limited in policy learning and model structure. Our
proposed SM2 individually explores all states dur-
ing training, overcoming these limitations.
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Confidence Estimation for OMT Confidence es-
timation is used to measure the models’ credibility.
Wang et al. (2019) used Monte Carlo dropout to
propose an uncertainty-based confidence estima-
tion. Wan et al. (2020) utilized the confidence
score to guide self-paced learning. DeVries and
Taylor (2018) evaluated the confidence by measur-
ing the level it asks for hints from the ground-truth
label, and Lu et al. (2022) transferred it to OMT to
improve the out-of-distribution detection.

7 Conclusion

In this paper, we propose Self-Modifying State
Modeling (SM2), a novel training paradigm for
SiMT. SM2 eschews the construction of complete
decision paths during training, opting to explore
all potential states individually instead. By intro-
ducing the Self-Modifying process, SM2 indepen-
dently assesses each state to precisely optimize
the read/write policy without the credit assignment
problem. Through Prefix Sampling, SM2 ensures
sufficient exploration of all potential states. Experi-
mental results across three language pairs validate
the superior performance of SM2, and our analyses
further confirm that SM2 can learn a more effective
read/write policy. More promisingly, SM2 demon-
strates the potential to endow OMT models with
SiMT capability through fine-tuning.

Limitations

In this paper, we propose SM2, a novel paradigm
that individually optimizes decisions at each state.
Although our experiments show the superiority of
not building decision paths during training, there
are still some parts to be further improved. For ex-
ample, using a more effective way to independently
assess the individual effect of each decision on the
SiMT performance. Besides, how to leverage other
pre-trained encoder-decoder models like BART and
T5, to gain SiMT models, is still a promising di-
rection to explore. These will be considered as
objectives for our future work.
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A Comparison between SM2 and
RL-based SiMT methods

In the following, we will compare the similarities
and differences between our proposed SM2 and
RL-based methods.

On the one hand, both SM2 and RL-based meth-
ods train SiMT models to learn read/write actions
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at each state sij . Specifically, the read/write policy
π(aij | sij) in SM2 can be described as:

π(aij | sij) =
{
cij aij = WRITE
1− cij aij = READ

(13)

For each state sij , the reward in SM2 can be de-
scribed as:

rij = yi log(p
m
ij ) (14)

During training, the policy can be optimized based
on the reward and converge to the optimal policy.

On the other hand, SM2 offers additional advan-
tages over RL-based methods. Firstly, the reward
in SM2 is differentiable, allowing the policy to be
optimized by directly using the reward as the ob-
jective. In contrast, the reward in RL-based meth-
ods (Grissom II et al., 2014; Gu et al., 2017) is
undifferentiable, which can hinder stable training.
Secondly, SM2 independently assesses each state,
avoiding the credit assignment problem in existing
RL-based methods.

B Gradient Analysis

In this section, we provide a gradient analysis of
the independent optimization in SM2. The train-
ing loss function L of SM2 is formulated in Eq.
(10). During training, this loss function adjusts
each decision dij at state sij by changing the value
of corresponding confidence cij . Specifically, the
gradient of L with respect to cij is calculated as:

∂L
∂cij

=
∂Lsij
∂cij

+ λ
∂Lcij
∂cij

= − yi
pmij
·
∂pmij
∂cij

− λ

cij

= − yi(pij − pi)

cij · pij + (1− cij) · pi
− λ

cij

(15)

It is evident that this gradient does not contain any
ci′j′ (i′ ̸= i or j′ ̸= j). Therefore, in the training
process, the estimated value of cij is adjusted only
based on its current value and the prediction prob-
ability of the current state, without being affected
by the decisions at other states, thus allowing for
the independent optimization of cij .

In contrast, existing SiMT methods usually con-
duct training on decision paths and can not ensure
independent optimization. Taking ITST (Zhang
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Figure 9: Effect of λ on SM2.

and Feng, 2022b) as an example, whose loss func-
tion L′ is formulated as:

L′ = Lce + Llatency + Lnorm

Llatency =

I∑

i=1

J∑

j=1

Tij × Cij

Lnorm =
I∑

i=1

∥∥∥∥∥∥

J∑

j=1

Tij − 1

∥∥∥∥∥∥
2

(16)

where Lce is the cross-entropy for learning trans-
lation ability, and Cij is the latency cost for each
state. During training, the decision is dominated
by Tij . The gradient of L′ with respect to Tij is
calculated as:

∂L′
∂Tij

=
∂Lce
∂Tij

+ Cij + 2(

J∑

j=1

Tij − 1) (17)

It is noted that the gradient of Tij is also affected by
the current values of Tij′(j′ = 1, 2, ..., J). These
decisions are coupled in the optimization, thus not
enabling the independent optimization of each de-
cision. This can trigger mutual interference during
training (Zhang and Feng, 2023) and lead to a credit
assignment problem.

C Effect of λ

We analyze the effect of λ, which is the weight
of the penalty during training. We train SM2 with
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Hyper-parameter

encoder layers 6
encoder attention heads 8
encoder embed dim 512
encoder ffn embed dim 1024
decoder layers 6
decoder attention heads 8
decoder embed dim 512
decoder ffn embed dim 1024
dropout 0.1
optimizer adam
adam-β (0.9, 0.98)
clip-norm 1e-7
lr 5e-4
lr scheduler inverse sqrt
warmup-updates 4000
warmup-init-lr 1e-7
weight decay 0.0001
label-smoothing 0.1
max tokens 8192

Table 4: Hyper-parameters of our experiments.

different λ ranging from 0.1 to 1, in increments
of 0.1. As shown in Figure 9(a), the SM2 models
trained with different λ show comparable perfor-
mance across all latency. This indicates that SM2

is robust to variations in hyper-parameters λ.
When λ becomes larger, the corresponding γ

at the same latency will also increase. Therefore,
we further analyze the effect of λ on the applica-
ble latency range of SM2. We denote the "MAX
AL" as the latency of SM2 when γ is set as 0.99
during inference. The results are shown in Figure
9(b). When λ becomes larger, "MAX AL" also de-
creases, which means a smaller applicable latency
range. For example, when λ = 1.0 in training, it
is hard for SM2 to perform SiMT task under the
latency levels where AL is larger than 5.79 since
the threshold γ has been close to 1.

D Hyper-parameters

The system settings in our experiments are shown
in Table 4. We set λ = 0.1 during training. Be-
sides, we follow Ma et al. (2020b) to use greedy
search during inference for all baselines. The val-
ues of γ we used are 0.3,0.4,0.5,0.55,0.6,0.65 for
Zh→En, 0.3,0.4,0.5,0.55,0.6,0.65,0.7 for De→En,
and 0.3,0.4,0.5,0.6,0.65,0.7,0.75 for En→Ro.

E Main Results Supplement

E.1 Numerical Results
Table 5, 6, 7 respectively report the numeri-
cal results on LDC Zh→En, WMT15 De→En,
WMT16 En→Ro measured by AL, SacreBLEU
and COMET. Figure 10, 11 and Table 8 report
the results on WMT15 En→Vi with Transformer-
small, which also present the superior performance
of SM2-Uni and SM2-Bi.

E.2 Robustness of SM2 to Sentence Length
To validate the robustness of SM2 to Sentence
Length, we conduct additional experiments on
De→En SiMT tasks. Specifically, we divide the
test set into two groups based on sentence length:
LONG group and SHORT group. The average
lengths and the number of sentences in each group
are shown in Table 9. Then, we test SM2-Bi and
SM2-Uni separately on these two groups. The
translation quality under different latency levels
for SM2-Bi and SM2-Uni are presented in Figure
12. For clearer comparison, we also provide the per-
formances of OMT models (OMT-Bi, OMT-Uni)
on LONG and SHORT groups.

The results in Figure 12 indicate that when ap-
plied to longer sentences, the performance changes
of SM2 are similar to OMT models in both unidirec-
tional and bidirectional encoder settings. Since the
performance of OMT models unavoidably drops
as the sentences become longer (Neishi and Yoshi-
naga, 2019; Kang et al., 2020; Ma et al., 2020a;
Variš and Bojar, 2021; Zhang et al., 2023), it is
not SM2 that triggers the decrease of translation
quality. Therefore, SM2 is still effective on long
sentences.

F Effect of Prohibition on Policy

To further validate that the prohibition of explo-
ration negatively affects the policy. We compare
the SA of SM2 with and without the prohibition on
RWTH dataset. The results in Figure 13 indicate
that the prohibition makes SM2 learn a worse pol-
icy. Therefore, we can conclude that the prohibition
will hurt the quality of policy. This further presents
the advantage of SM2 in sufficiently exploring all
states through Prefix Sampling.
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Chinese→English

wait-k
k AL SacreBLEU COMET
1 -0.60 23.14 67.06
3 3.03 31.94 73.91
5 4.96 35.56 75.87
7 6.87 37.50 76.99
9 8.82 38.90 77.85

m-wait-k
k AL SacreBLEU COMET
1 0.72 28.06 70.85
3 2.80 32.41 74.29
5 4.76 35.05 75.81
7 6.81 36.68 76.86
9 8.64 37.61 77.37

HMT
(L,K) AL SacreBLEU COMET
(2,4) 2.93 35.59 76.90
(3,6) 4.52 37.81 78.08
(5,6) 6.11 39.41 78.73
(7,6) 7.69 40.33 79.11
(9,8) 9.64 41.37 79.58

(11,8) 11.35 41.75 79.85

ITST
δ AL SacreBLEU COMET

0.2 0.62 30.31 73.66
0.3 2.88 35.87 77.02
0.4 4.88 39.27 78.41
0.5 6.94 41.20 79.27
0.6 9.17 42.23 79.68
0.7 11.40 42.75 79.93

SM2-Uni
γ AL SacreBLEU COMET

0.3 -0.63 29.52 73.62
0.4 1.99 36.16 77.02
0.5 4.56 39.94 78.66
0.55 6.24 41.06 79.13
0.6 8.51 42.21 79.50
0.65 9.75 42.54 79.61

SM2-Bi
γ AL SacreBLEU COMET

0.3 -0.14 31.41 75.00
0.4 2.35 37.77 78.09
0.5 4.68 41.15 79.42
0.55 6.19 42.47 79.91
0.6 8.37 43.51 80.21
0.65 11.61 44.34 80.45

Table 5: Numerical results on LDC Zh→En.

German→English

wait-k
k AL SacreBLEU COMET
1 0.10 20.11 70.74
3 3.44 26.34 76.24
5 6.00 28.96 78.44
7 8.08 29.52 78.92
9 9.86 30.23 79.71

m-wait-k
k AL SacreBLEU COMET
1 0.03 20.71 70.49
3 2.94 24.85 74.49
5 5.48 27.43 76.80
7 7.66 28.2 77.67
9 9.63 28.87 78.23

HMT
(L,K) AL SacreBLEU COMET
(2,4) 2.20 25.67 75.66
(3,6) 3.58 28.29 77.94
(5,6) 4.96 29.33 78.76
(7,6) 6.58 29.47 79.23
(9,8) 8.45 30.25 79.82
(11,8) 10.18 30.29 79.74

ITST
δ AL SacreBLEU COMET

0.2 2.27 25.17 75.17
0.3 2.85 26.94 76.86
0.4 3.83 28.58 77.98
0.5 5.47 29.51 78.85
0.6 7.60 30.46 79.28
0.7 10.17 30.74 79.53
0.8 12.72 30.84 79.61

SM2-Uni
γ AL SacreBLEU COMET

0.3 1.39 24.68 75.58
0.4 2.4 27.88 78.09
0.5 3.56 29.6 79.51
0.55 5.2 30.67 80.28
0.6 6.33 30.86 80.36
0.65 8.06 30.89 80.42
0.7 10.74 31.08 80.53

SM2-Bi
γ AL SacreBLEU COMET

0.3 1.52 24.74 75.96
0.4 2.73 28.48 78.85
0.5 3.73 30.17 80.21
0.55 5.49 31.11 80.83
0.6 7.03 31.42 81.00
0.65 9.22 31.65 81.18
0.7 12.33 31.92 81.25

Table 6: Numerical results on WMT15 De→En.
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English→Romanian

wait-k
k AL SacreBLEU COMET
1 2.70 26.62 74.12
3 5.05 29.74 77.52
5 7.18 31.61 78.54
7 9.10 31.86 79.20
9 10.92 31.89 78.97

m-wait-k
k AL SacreBLEU COMET
1 2.66 26.65 74.27
3 5.07 30.11 77.44
5 7.18 31.05 78.35
7 9.07 31.44 78.71
9 10.89 31.37 78.62

HMT
(L,K) AL SacreBLEU COMET
(1,2) 1.98 24.11 71.73
(2,2) 2.77 27.18 74.85
(4,2) 4.47 30.41 77.65
(5,4) 5.48 31.56 78.80
(6,4) 6.45 31.88 78.94
(7,6) 7.41 31.85 79.17
(9,6) 9.24 31.98 79.05

ITST
δ AL SacreBLEU COMET

0.1 2.75 22.76 71.19
0.2 3.25 28.40 75.58
0.3 5.09 30.52 77.53
0.4 7.47 31.37 78.28
0.45 8.81 31.62 78.49
0.5 10.30 31.63 78.51
0.55 11.69 31.74 78.73

SM2-Uni
γ AL SacreBLEU COMET

0.3 2.52 27.85 75.45
0.4 2.72 29.21 76.62
0.5 3.16 30.21 77.59
0.6 4.17 31.20 78.26
0.65 5.13 31.56 78.58
0.7 6.56 31.72 78.77
0.75 8.67 31.67 78.98

SM2-Bi
γ AL SacreBLEU COMET

0.3 2.60 28.74 76.81
0.4 2.91 30.27 78.20
0.5 3.57 31.33 79.04
0.6 5.11 32.03 79.56
0.65 6.51 32.40 79.90
0.7 8.15 32.59 79.85
0.75 10.10 32.74 79.95

Table 7: Numerical results on WMT16 En→Ro.

English→Vietnamese

wait-k
k AL SacreBLEU COMET
1 2.49 25.29 68.89
3 4.28 28.03 70.28
5 6.07 28.73 70.56
7 7.89 28.72 70.72
9 9.57 28.78 70.75

m-wait-k
k AL SacreBLEU COMET
1 2.78 27.02 69.88
3 4.38 28.59 70.61
5 6.12 28.74 70.75
7 7.88 28.69 70.78
9 9.61 28.78 70.83

HMT
(L,K) AL SacreBLEU COMET
(1,2) 2.9 27.69 70.22
(4,2) 5.33 29.23 71.04
(5,4) 6.23 29.36 71.01
(6,4) 7.1 29.34 71.15
(7,6) 8.01 29.42 70.99

ITST
δ AL SacreBLEU COMET

0.1 3.28 28.55 70.61
0.15 4.52 29.04 70.90
0.2 5.72 29.01 70.89

0.25 8.38 29.13 70.83
0.3 9.69 29.24 70.95

SM2-Uni
γ AL SacreBLEU COMET

0.6 1.87 28.29 70.46
0.7 3.04 28.82 70.84

0.75 5.31 29.28 71.16
0.8 6.25 29.41 71.27
0.9 9.45 29.57 71.30

SM2-Bi
γ AL SacreBLEU COMET

0.6 2.62 28.70 70.74
0.7 4.47 29.38 71.27

0.75 5.95 29.73 71.44
0.8 7.07 29.75 71.40
0.9 8.18 29.79 71.34

Table 8: Numerical results on WMT15 En→Vi.

LONG SHORT

Average Sentence Length 36.95 14.07
Number of Sentences 1085 1084

Table 9: Statistics on the average sentence length and
number of sentences for LONG and SHORT groups.
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Figure 10: SacreBLEU against Average Lagging (AL)
on En→Vi
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Figure 11: COMET against Average Lagging (AL) on
En→Vi
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Figure 12: Translation quality against latency of SM2

on LONG and SHORT groups. We provide the perfor-
mance of OMT models for a clearer comparison.
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Figure 13: Evaluation of policies in SM2 with and with-
out prohibition. We calculate SA (↑) under different
latency levels.
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