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Abstract

Recent work has showcased the powerful
capability of large language models (LLMs) in
recalling knowledge and reasoning. However,
the reliability of LLMs in combining these
two capabilities into reasoning through
multi-hop facts has not been widely explored.
This paper systematically investigates the
possibilities for LLMs to utilize shortcuts
based on direct connections between the
initial and terminal entities of multi-hop
knowledge. We first explore the existence
of factual shortcuts through Knowledge
Neurons, revealing that: (i) the strength of
factual shortcuts is highly correlated with
the frequency of co-occurrence of initial and
terminal entities in the pre-training corpora; (ii)
few-shot prompting leverage more shortcuts
in answering multi-hop questions compared
to chain-of-thought prompting. Then, we
analyze the risks posed by factual shortcuts
from the perspective of multi-hop knowledge
editing. Analysis shows that approximately
20% of the failures are attributed to shortcuts,
and the initial and terminal entities in
these failure instances usually have higher
co-occurrences in the pre-training corpus.
Finally, we propose erasing shortcut neurons
to mitigate the associated risks and find that
this approach significantly reduces failures
in multiple-hop knowledge editing caused
by shortcuts. Code is publicly available at
https://github.com/Jometeorie/MultiHopShortcuts.

1 Introduction

Large Language Models (LLMs) such as ChatGPT
(OpenAI, 2022) and LLaMA-2 (Touvron et al.,
2023), have impressive world knowledge modeling
and reasoning capabilities within their parameters
(Zhao et al., 2023; Hao et al., 2023). When
leveraging these two capabilities, it is intuitively
anticipated that LLMs should be capable of reliably
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Which continent will host
the next Olympic Games?

Asia.

Europe? Asia?

After Knowledge Editing: 

Before Knowledge Editing: 

Which continent will host
the next Olympic Games?

Figure 1: An illustrative example of a multi-hop
factual shortcut in LLMs. The LLM may have directly
encoded multi-hop knowledge (red) during the pre-
training phase, which results in inconsistencies after
a single-hop knowledge editing.

answering multi-hop knowledge questions without
any difficulty (Press et al., 2023).

Nonetheless, the underlying reasoning processes
of LLMs in responding to multi-hop knowledge
questions have not received thorough investigation.
Ideally, an LLM would systematically derive
each single-hop answer and culminate in the
correct result. However, in reality, LLMs may
leverage factual shortcuts learned from pre-training
corpora to directly obtain the final answer without
performing intermediate reasoning.

For conventional multi-hop question answering,
the consistency of the final endpoints of shortcuts
and multi-hop reasoning results may not cause risks
and could even remain unnoticed. However, with
the constant evolution of world knowledge, knowl-
edge editing techniques are garnering increased
attention (Wang et al., 2023b). After knowledge
editing, factual shortcuts in multi-hop scenarios
may cause significant inconsistency.

Figure 1 illustrates the potential pitfalls asso-
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ciated with factual shortcuts. During the pre-
training phase, an LLM may have forged a direct
association between the next Olympic Games and
Asia. Consequently, when queried with the prompt:

“Which continent will host the next Olympic Games”,
the LLM might bypass the need for reasoning
about the country and can directly furnish the
correct answer. However, applying knowledge
editing to the LLM, e.g., updating the host country
of the Olympic Games to France, can expose a
vulnerability. The persistence of the established
shortcut may lead the LLM to consistently output
“Asia” as the host continent even after the change,
instead of the correct “Europe”, thereby impeding
the success of multi-hop knowledge editing.

In this paper, we systematically investigate the
possibilities for LLMs to utilize factual shortcuts
based on direct connections between the initial and
terminal entities of multi-hop knowledge. Firstly,
we rethink and formalize the process through
which LLMs reason about multi-hop knowledge.
We introduce the hypothesis that LLMs may
leverage factual shortcuts from pre-training
corpora to facilitate cross-step reasoning.

Then, we deeply explore the existence of factual
shortcuts. We conduct a frequency analysis of
co-occurrences between the initial subject and
terminal object of multi-hop knowledge instances
in pre-training corpora. Additionally, we employ
Knowledge Neurons (Dai et al., 2022) to quantify
the overlap between the activated neurons for multi-
hop questions and all single-hop questions. A
low degree of overlap suggests that the reasoning
pattern of LLMs in response to multi-hop questions
is inconsistent with that of single-hop questions, in-
dicating the presence of shortcuts. Our experiments
on multi-hop knowledge reveal that:

(i) Few-shot questions exhibit more shortcuts
in comparison to chain-of-thought questions, sug-
gesting that LLMs often arrive at multi-hop
knowledge answers using unexpected cross-step
reasoning patterns.

(ii) Knowledge instances with a higher co-
occurrence frequency between initial subjects and
terminal objects tend to have more shortcuts,
indicating a strong correlation between the
existence of multi-hop factual shortcuts and the
word frequencies learned by LLMs during pre-
training phase.

Additionally, to provide insights into the po-
tential risks associated with multi-hop factual
shortcuts, we conduct a detailed analysis of the

reasons behind the failures in multi-hop knowledge
editing. We find that approximately 20% of the
failure instances are attributed to multi-hop
factual shortcuts. Furthermore, shortcut failure
instances often exhibit higher co-occurrence
frequencies of the initial and terminal entities,
providing compelling evidence that the presence
of shortcuts may disrupt the multi-hop reasoning
consistency of LLMs after knowledge editing.

Finally, we explore the feasibility of employing
Knowledge Neurons to eliminate factual shortcuts.
We erase crucial neurons associated with factual
shortcuts that co-occurred more than 10 times in the
pre-training corpus. Results show that the failure
rate of multiple-hop knowledge editing caused
by shortcuts significantly decreased, leading to
an overall improvement in the success rate after
our erasing approach. We hope this work can
facilitate increased interest in exploring the multi-
hop reasoning capabilities of LLMs and constrain
reasoning shortcuts during the pre-training stage.

2 Rethinking the Multi-Hop Knowledge

A basic fact can be formulated as a single-hop
knowledge tuple t = (s, r, o) with a subject (s),
a relation (r), and an object (o). For each query,
we ask the LLM if the object is correct given
the subject and the relation 1 {f (T (s, r)) = o},
where f and T denote the outputs of the LLM and
the prompt template for splicing s and o into a
cloze-style form.

In this paper, we mainly focus on the multi-hop
knowledge, which comprises a chain of single-hop
knowledge:

T = ⟨(s1, r1, o1) , ..., (sn, rn, on)⟩ , (1)

where si = oi−1. For each query, we directly
ask the LLM if the terminal object is correct
given the initial subject and the chain relation
1 {f (T (s1, rmul)) = on}, where rmul = r1 →
... → rn. This question can also be formulated as
asking the LLM of the knowledge tuple tmul =
(s1, rmul, on), which proves unproblematic in
general multi-hop question-answering, as tmul and
T share the same endpoint on.

However, tmul is in fact a shortcut, treating
a chain of relations as a separate composite
relation. If a knowledge-editing approach is
employed to modify the intermediate entity oi to
o∗i , the final answer of T will be altered. Since
tmul overlooks the intermediate entity, its answer
remains unaffected by knowledge editing.
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It is also reasonable from the cause-and-effect
perspective. For a two-hop knowledge e1 → e2 →
e3, it requires first deducing the intermediate entity
e2 to obtain the correct output e3. Any other
reasoning path, such as e1 → e3 and e1 → e4 →
e3, does not conform to the causal relationship.

Taking the multi-hop question of “Which con-
tinent will host the next Olympic Games” as an
illustrative example, if we edit the knowledge of the
“country” from Japan to France, according to the
chain-relation reasoning, the “continent” hosting
the Olympic Games should be converted to Europe.
However, if a composite relation is employed,
the “continent” would remain unchanged despite
alterations in the “country”.

A causal LLM probably encodes such composite
knowledge during the pre-training phase. The
initial subject s1 and the terminal object on are
likely to have direct associations in the corpus.
Still taking the example above, an LLM may have
learned the knowledge (the next Olympic Games,
continent of the country, Asia) from the corpus
directly, neglecting the causal relationship between
the country and the continent to which it belongs.
Therefore, for multi-hop knowledge, LLMs may
potentially arrive at the correct answer through
step-wise reasoning, but it is more likely that they
memorize the outdated answer by leveraging the co-
occurrence relationships in the pre-training corpus.

3 Exploring the Existence of Factual
Shortcuts

In this section, we explore the extent of shortcuts
in multi-hop question-answering. Concretely, we
first validate the correlation between multi-hop
shortcuts and the word frequency in the pre-training
corpus. Then, we locate crucial neurons in single-
hop, few-shot, and chain-of-thought question-
answering tasks to further elucidate the degree of
potential factual shortcuts.

3.1 Probing Shortcuts in Pre-training Corpus

Our analysis centers specifically on the MQUAKE-
CF-3K dataset released by Zhong et al. (2023). It
comprises 1,000 two-hop, 1,000 three-hop, and
1,000 four-hop instances of multi-hop question-
answering for knowledge editing extracted from
Wikidata (Vrandecic and Krötzsch, 2014). Essen-
tial information for one sample from the dataset
is shown in Appendix A. we compute the crucial
neurons of the first question within the ’questions’
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Figure 2: Frequency analysis of multi-hop knowledge
shortcuts in Wikipedia and Dolma.

key alongside the entirety of questions within
the ’single_hops’ key. It can also be adopted
in subsequent sections for further investigating
potential risks introduced by these multi-hop
factual shortcuts.

Considering that the existence of factual short-
cuts may drive from pre-training corpora, we
first compute the frequency of co-occurrence of
the initial subject s1 and the terminal object
on among these 3,000 items of knowledge on
Wikipedia (20231101-en) and Dolma corpus(v1_6-
sample) respectively. The Wikipedia dataset
contains approximately 6.41M rows of text, while
the Dolma dataset contains roughly 10 billion
tokens. We chose these two corpora due to their
comprehensive coverage of global knowledge and
their frequent utilization as a significant component
in the pre-training corpora for most LLMs. If s1
and on co-occur within the same paragraph, it is
highly plausible that the LLM establishes a direct
connection between them during the pre-training
phase.

We first conduct a frequency analysis of the
occurrences of these multi-hop knowledge short-
cuts in the Wikipedia corpus (Figure 2). It can be
observed that more than 2/3 of instances exhibited
various degrees of shortcuts, with some even
appearing over 10,000 times. This indicates that
certain pieces of knowledge exhibit significant
multi-hop shortcuts, which could potentially
influence the reasoning processes of LLMs.

We’ve also conducted the same frequency
analysis on the Dolma corpus (Figure 2). It can
be observed that the co-occurrence rate distribution
of vocabulary in the Dolma dataset is similar
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Figure 3: The degree of overlaps employed by GPT-
J in handling multi-hop questions and all single-hop
questions with varying word frequencies in pre-training
corpora under few-shot prompts and chain-of-thought
prompts. It is expected that the instances from Dcount>τ

contain more potential factual shortcuts.

to that in the Wikipedia dataset. We calculate
the Pearson Coefficient of the co-occurrence rate
between the two datasets, and the result is 0.74.
The similarity in the co-occurrence rates between
these two datasets indicates the strong correlation
between the two corpora, and therefore, Wikipedia
can be chosen as an approximate corpus.

Moreover, we select several examples with high
and low frequencies for illustration (Table 1) in
the Wikipedia corpus. It can be observed that
instances with high frequency exhibit a clear, direct
connection between s1 and on. For instance,
“Twitter” is inherently strongly associated with “the
United States”, obviating the need to think about
the country of citizenship of “Twitter’s CEO”. In
contrast, there is no apparent connection between
“Jerry Rivers” and “Donald Trump”, necessitating
the prior derivation of the nationality of “Jerry
Rivers” to arrive at the correct answer. Since “Jerry
Rivers” and “Donald Trump” rarely co-occur in the
pre-training corpus, LLMs may not contain factual
shortcuts related to such multi-hop knowledge.

3.2 Quantifying Shortcuts Using Knowledge
Neurons

Methods. The presence of multi-hop factual
shortcuts may result in a divergence in the rea-
soning mechanisms employed by the LLM when
responding to multi-hop questions as opposed to
directly answering individual single-hop questions.
To quantify the disparities, we employ Knowledge
Neurons (KN) proposed by Dai et al. (2022) to
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Figure 4: Distribution of the number of activated
neurons in GPT-J across different questions.

locate crucial neurons activated by the LLMs when
responding to various questions. Specifically, it
gradually changes each neuron w

(l)
i stored in FFN

from 0 to its original value w
(l)
i and meanwhile

integrates the gradients. We use the Riemann
approximation as a substitution for continuous
integrals:

Ãttr(w(l)
i ) =

w
(l)
i

m

m∑

k=1

∂P ( k
mw

(l)
i )

∂w
(l)
i

, (2)

where P (w
(l)
i ) = p(y|x,w(l)

i = ŵ
(l)
i ) is the

probability of the correct answer predicted by the
LLM when changing the value of neuron w

(l)
i to

ŵ
(l)
i , and m is the number of the approximation

steps. We choose neurons with attribution values
larger than v as crucial neurons reflecting LLM
decision-making patterns:

N =
{
w

(l)
i |Attr(w(l)

i ) > v
}
. (3)

In this paper, we set m to 20 and the attribution
threshold v to 0.2. In the scenario of a multi-hop
question devoid of any shortcuts, it should ideally
encompass a broader array of crucial neurons
inherent to single-hop questions, except those
specifically dedicated to lower-level components
such as lexical and syntactic neurons. Hence, we
define O as the degree of overlap between the
reasoning patterns of multi-hop knowledge answers
and all single-hop knowledge answers:

O =
|NT ∩Ntmul

|
|NT |

, (4)

where NT denotes the intersection of crucial
neurons for all single-hop questions, Ntmul

de-
notes the set of crucial neurons for multi-hop
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Subject (s1) Object (on) Multi-Hop Question fWikipedia fDolma

Rhode Island English Which languages are spoken, written, or signed in Rhode Island as the head of government there? 42754 21279
Twitter United States of America What is the country of citizenship of Twitter’s CEO? 35435 205862
Fanta Atlanta What is the location of the headquarters of the manufacturer of Fanta? 25834 72910

Jerry Rivers Donald Trump Who is the head of state of the country whose citizen is Jerry Rivers? 0 0
Alvar Aalto Mikael Agricola Who is the creator of the content in the language or languages spoken by Alvar Aalto? 0 0

Nick Rimando London What is the capital of the country where the sport of Nick Rimando’s position is originated? 0 0

Table 1: Examples of multi-hop knowledge with high and low frequency of co-occurrence of s1 and on, where f
denotes the frequency of co-occurrence in the pre-trained corpus.

questions. A higher degree of overlap indicates
that LLM’s reasoning patterns for answering multi-
hop questions are more closely aligned with those
for answering single-hop questions.

It is noteworthy to emphasize that our objective
does not entail the precise localization of neurons
storing knowledge; rather, we aim to discern the
decision-making processes of the LLMs across
various questions. Despite Anonymous (2024)’s
skepticism regarding whether neurons uncovered
by KN in the FFN truly constitute “knowledge”,
these neurons may store intricate “token expres-
sion patterns” that can still elucidate the LLM’s
decision-making processes.

We separately evaluate the degree of shortcuts in
few-shot and chain-of-thought multi-hop questions.
All single-hop questions and few-shot multi-
hop questions utilize the same demonstrations,
while chain-of-thought multi-hop questions employ
prompts with similar semantics.

For all single-hop questions, we adopt the few-
shot prompt shown in Table 6. Subsequently, we
locate crucial neurons based on the probability of
correct answer output by the LLM following the
"A:" prefix.

For multi-hop questions, we adopt both the few-
shot and chain-of-thought prompts. The few-shot
prompt mirrors that of single-hop questions, while
the chain-of-thought prompt is constructed with
semantically approximate expressions. We require
the LLM to articulate its reasoning process upon
receiving the question. Then we locate crucial
neurons based on the probability of correct answer
output by the LLM following the "Answer:" prefix
(see Table 7). Both prompts are provided in
Appendix B).

Besides, we partition the original dataset Do

into two subsets Dcount≤τ and Dcount>τ based on
word frequencies, where τ represents the threshold
for word frequencies. We compute the degree of
shortcuts for GPT-J (Figure 3).

Main Results. It can be observed that the LLM
adheres to a greater extent to reasoning patterns
overlapping with those for single-hop questions
under the chain-of-thought prompt. This obser-
vation suggests that the chain-of-thought prompt
indeed serves to induce the LLM to engage in step-
wise reasoning. It also aligns with our hypothesis
that LLMs tend to prioritize the utilization of
latent multi-hop factual shortcuts, relinquishing
them only when explicitly prompted to engage in
step-wise reasoning. Furthermore, the instances
within Dcount>τ exhibit lower degrees of reasoning
overlap, suggesting that LLMs indeed learn the
shortcut associations between s1 and on, with
word frequencies significantly influencing the
strength of these shortcuts.

Interestingly, although the overlap rates vary
across different scenarios, their values remain
low. We analyze the distribution of the number of
activated knowledge neurons for different instances
(Figure 4). Since single-hop knowledge typically
involves 2-4 questions, the number of activated
neurons is an order of magnitude higher than
that for multi-hop questions. Moreover, activated
neurons, in addition to reflecting the inherent
knowledge, may also be influenced by factors such
as the lexical and syntactic aspects of sentences.
Hence, the reasoning overlap rates tend to be
maintained at a low value.

For the hyper-parameter v, We randomly select
500 instances at v = 0.1 and v = 0.3 for
experiments (Table 3). The results show the
same trend in the figure with τ as the X-axis.
Although the magnitude of the values varies,
this is because as v decreases, more neurons
will be considered crucial neurons, which will
significantly increase the size of the denominator
|NT |, leading to a decrease in the overlap rate.
Nevertheless, our conclusions are correct under
different parameters: (i) the strength of factual
shortcuts is highly correlated with the frequency
of co-occurrence of initial and terminal entities in
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S Fsingle Fshortcut Fother

i = 1 i = 2 i = 3 Sum Sum i = 1 i = 2 i = 3 Sum i = 1 i = 2 i = 3 Sum

GPT-J (6B)
MEND 4.27 4.53 14.17 22.97 33.03 3.93 3.17 11.87 18.97 5.40 4.97 33.47 43.84
ROME 2.07 2.30 4.57 8.94 39.87 3.13 2.27 9.17 14.57 3.17 3.63 41.13 47.93
MEMIT 2.17 1.97 4.87 9.01 33.37 4.10 3.63 11.47 19.20 4.20 4.00 43.27 51.47

LLaMA-2 (7B)
MEND 7.40 4.80 7.77 19.97 43.57 5.63 5.70 9.63 20.96 5.90 6.20 26.90 39.00
ROME 5.33 3.00 3.83 12.16 25.37 6.30 6.17 11.67 24.14 6.80 7.00 44.67 58.47
MEMIT 5.13 3.60 3.83 12.56 32.00 6.00 5.47 10.17 21.64 6.20 7.13 40.33 53.66

Table 2: The percentage of successful (S) and failed (F) multi-hop knowledge edits, where i denotes the frequency
of success or failure within the three queries, "Sum" denotes the cases with at least one success or failure. We
mainly focus on failures caused by factual shortcuts (Fshortcut).

the pre-training corpora; (ii) few-shot prompting
leverage more shortcuts in answering multi-hop
questions compared to chain-of-thought prompting.

v = 0.1 v = 0.2 v = 0.3

Dcount≤10 (Few Shot) 3.09 3.41 7.67
Dcount>10 (Few Shot) 2.40 2.89 6.76
Dcount≤10 (Chain of Thought) 3.01 3.61 8.08
Dcount>10 (Chain of Thought) 2.73 3.46 7.82

Table 3: Ablation studies on the hyper-parameter v

4 Exploring the Potential Risks of Factual
Shortcuts

While these shortcuts may not have a significant
impact on the results in general multi-hop question
answering, their potential risks can be magnified
in the context of knowledge editing. Zhong et al.
(2023) have observed poor performance of LLMs
in multi-hop knowledge editing. In this section, we
will specifically analyze the reasons for the failure
of multi-hop knowledge editing, particularly under
the influence of shortcuts.

Concretely, we employ various knowledge edit-
ing methods to modify single-hop knowledge in-
stances in MQUAKE-CF-3K and pose three different
multi-hop questions about the edited knowledge.
Subsequently, we quantify the effects of various
knowledge editing methods and categorize error
instances into three categories.

Failure Categories. We consider three key cat-
egories of failures. The first category of failure
stems from the unsuccessful editing of single-
hop knowledge. We designate the set of failures
in this category as Fsingle. The second and
third categories are built upon the assumption
of successfully editing all single-hop knowledge
instances, yet the LLM still fails to answer multi-
hop questions correctly. The second category

signifies cases where the answer to multi-hop
knowledge questions remains the same as the
original unedited answer. We denote this set as
Fshortcut. Given that all single-hop questions can be
answered correctly, the persistence of the original
result in multi-hop questions indicates the existence
of shortcuts. The third category involves the LLM
providing alternative incorrect answers, potentially
arising from hallucinations or other reasons. We
denote this set as Fother.

For each multi-hop edited knowledge, we
interrogate the LLM with three distinct multi-hop
questions. All multi-hop questions are prefixed
with the same few-shot template comprising 16
demonstrations, which is consistent with the setup
of Zhong et al. (2023). We calculate the percentage
of editing successes (S) and failures (F) within
three questions. Detailed experimental settings can
be seen in the Appendix C.

Main Results. Table 2 presents the analysis
results. Consistent with the findings of Zhong
et al. (2023), knowledge editing algorithms exhibit
catastrophic failures when addressing multi-hop
factual questions, with only approximately 10%-
20% of instances avoiding complete errors across
three queries. Fsingle stems from the editing failure
of LLMs in addressing single-hop questions. Since
multi-hop questions may necessitate more than
one edit, it may be slightly higher than the edit-
wise failure rate. Fother may originate from the
insufficient reasoning capabilities of LLMs or the
hallucinations generated during editing. While
we utilize few-shot prompts instead of chain-of-
thought prompts to expose factual shortcuts, it may
also increase Fother.

It is noteworthy that Fshortcut also constitutes a
significant proportion. This type of failure implies
that LLMs respond with old ground truth for multi-
hop questions while capable of correctly answering
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Figure 5: The average co-occurrence frequency of s1 and on in the pre-training corpus. The horizontal axis
represents the number of occurrences of shortcut failures across three queries.

single-hop questions after all edits. In other words,
shortcuts enable LLMs to conveniently utilize the
rmul hard-coded during the pre-training phase to
directly obtain results, without genuinely engaging
in multi-hop knowledge reasoning. Experiments
indicate that these factual shortcuts are preva-
lent across various knowledge types in LLMs.

To further investigate the connection between
shortcut failures and falsely learned relations in the
pre-training corpus, we analyze the relationship
between the average co-occurrence frequency of
entities and the occurrence frequency of shortcut
failures (Figure 5). We observe that instances with
higher occurrences of shortcut failures, partic-
ularly those with three failures, exhibit higher
word co-occurrence frequencies between s1 and
on. This suggests that LLMs are highly likely
to leverage the multi-hop knowledge hardcoded
during the pre-training phase as reasoning shortcuts.
The presence of these factual shortcuts significantly
diminishes the reliability and plausibility of LLMs’
reasoning. In the context of multi-hop knowledge
editing, the LLMs are easily entangled in the
confusion between old shortcut knowledge and new
multi-hop knowledge.

5 Reducing Multi-Hop Factual Shortcuts

The existence of multi-hop factual shortcuts reveals
the unreliability of current LLMs’ reasoning
and increases the risk of failures in multi-hop
knowledge editing. Since these shortcuts represent
knowledge hardcoded into LLMs during the pre-
training phase, it is challenging to eliminate these
factual shortcuts fundamentally unless there are

substantial changes in the pre-training phase.

Methods. To reduce the risks of multi-hop fac-
tual shortcuts and further validate the hypotheses
presented in this paper, we adopt a simple yet
effective method inspired by Dai et al. (2022)
to erase these shortcuts (Figure 6). Compared
to Figure 1, we erase crucial neurons related to
the red factual shortcuts, compelling the LLM
to answer the continent that will host the next
Olympic Games using the correct path of reasoning
after knowledge editing.

Specifically, we use the integral gradient al-
gorithm to locate the crucial neurons associated
with multi-hop knowledge questions and set them
to zero. For each piece of multi-hop knowl-
edge, we query with three questions to obtain
the intersection of crucial neurons. Based on
the previous experiments (Figure 3), we posit
that multi-hop knowledge with a co-occurrence
frequency exceeding 10 exhibits evident short-
cuts. Consequently, we proceeded to eliminate
these multi-hop factual shortcuts from the dataset
Dcount>10. We compute the percentage of editing
success (S) and shortcut failure rate (Fshortcut) for
multi-hop knowledge editing before and after the
erase of factual shortcuts, respectively.

Main Results. Table 4 presents the success rate
and shortcut failure rate of multi-hop knowledge
editing before and after the erase of factual
shortcuts on Dcount>10. Compared to Tabel 2,
both the success rate and shortcut failure rate of
multiple-hop knowledge editing have increased on
Dcount>10. The result implies that instances with
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S ↑ Fshortcut ↓
i = 1 i = 2 i = 3 Sum i = 1 i = 2 i = 3 Sum

GPT-J (6B)

MEND Before Erasing 4.46 5.13 19.56 29.15 4.08 4.18 17.57 25.83
After Erasing 5.79 5.41 18.42 29.62 4.75 4.84 15.76 25.35

ROME Before Erasing 2.09 2.94 8.64 13.67 2.75 3.23 12.82 18.80
After Erasing 4.47 2.94 8.36 15.77 2.57 3.33 11.62 17.52

MEMIT Before Erasing 1.61 2.94 7.98 12.53 4.27 5.60 16.05 25.92
After Erasing 3.32 2.66 8.07 14.05 3.23 4.65 14.25 22.13

LLaMA-2 (7B)

MEND Before Erasing 9.21 5.79 9.97 24.97 6.27 7.03 17.76 31.06
After Erasing 8.36 6.08 9.31 23.75 7.79 8.17 5.51 21.47

ROME Before Erasing 5.98 4.65 7.03 17.66 6.84 6.93 18.33 32.10
After Erasing 7.50 4.75 6.93 19.18 7.03 6.36 11.97 25.36

MEMIT Before Erasing 5.60 4.84 7.12 17.46 6.08 6.17 17.09 29.34
After Erasing 8.36 5.03 6.74 20.13 6.36 5.88 9.88 22.12

Table 4: Success rate and shortcut failure rate of multi-hop knowledge editing before and after the erase of factual
shortcuts on Dcount>10.

Europe.

Which continent will host
the next Olympic Games?

Feed-Forward
Network Knowledge Neurons

Figure 6: An illustrative example for reducing multi-
hop factual shortcuts.

factual shortcuts are inherently more amenable to
editing, yet the presence of factual shortcuts also
entails a higher level of risk for these instances.
Thus, these latent factual shortcuts are far more
harmful than we realize.

Furthermore, the erasing of shortcuts can
significantly reduce the risks associated with
shortcut failures, leading to an appreciable
improvement in the success rate of multi-hop
knowledge editing. Due to the incapacity of
knowledge editing methods to address shortcut
knowledge tmul, inconsistencies arise in LLMs’
reasoning results. By erasing neurons correspond-
ing to tmul, we ensure that LLMs reason along the
correct path, thereby enhancing the success rate.

However, despite the efficacy of this approach
in mitigating the risk posed by factual shortcuts
to specific knowledge, it cannot serve as a
comprehensive solution to the problem. Due
to the ubiquitous nature of such shortcuts, it is

impractical to review and erase crucial neurons
for every multi-hop knowledge. Fundamentally,
to attain a trustworthy LLM with genuine multi-
hop reasoning capabilities, it is imperative to
address the issue at the pre-training stage to explore
improved pre-training methodologies.

6 Related Work

In this section, we discuss two lines of research
that are key to our work: knowledge editing and
multi-hop reasoning.

6.1 Knowledge Editing

Numerous studies have explored efficient knowl-
edge editing methods for LLMs, seeking resolu-
tions to challenges arising from outdated knowl-
edge. One prevalent and intuitive approach in-
volves employing external memorization, wherein
new knowledge is incorporated through external
context or parameters, without necessitating modifi-
cations to the LLM weights (Mitchell et al., 2022b;
Dong et al., 2022; Huang et al., 2023; Zheng et al.,
2023; Zhong et al., 2023). While these approaches
are simple and effective in ensuring consistency,
the substantial influx of supplementary knowledge
may result in redundancy and low timeliness at a
later stage (Wang et al., 2023b).

Another line of work focuses on directly up-
dating the LLM parameters. Some investigations
are dedicated to constrained fine-tuning (Chen
et al., 2020; Lee et al., 2022) or meta-learning
(Lee et al., 2022; Mitchell et al., 2022a), which
update the full parameters of LLMs. The other
investigations involve a preliminary stage of
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knowledge localization before editing, premised
on the assumption that knowledge is stored in
the form of key-value memories within the two-
layer Feedforward Neural Network (FFN) (Geva
et al., 2021). Dai et al. (2022) located and
refined knowledge neurons (KN) through integral
gradients (Sundararajan et al., 2017). Meng et al.
(2022) et al. proposed the Rank-One Model method
(ROME) to insert new knowledge in a specific FFN
layer, while MEMIT (Meng et al., 2023) further
extended address scenarios of mass editing.

While the effectiveness of single-hop knowledge
editing has been thoroughly investigated, there is
a notable dearth of attention given to multi-hop
knowledge editing. Zhong et al. (2023) systemati-
cally focused on this issue by introducing the multi-
hop knowledge editing evaluation benchmarks
MQUAKE-CF and MQUAKE-T. Their findings
revealed catastrophic performance degradation of
existing knowledge editing methods. In this paper,
we further investigate and elucidate the repercus-
sions stemming from the presence of reasoning
shortcuts in multi-hop knowledge editing.

6.2 Multi-Hop Reasoning

Multi-hop reasoning is often seen as a weakness
for LLMs (Huang and Chang, 2023). Early
efforts commonly employed in-context prompting,
which involves the provision of few input-output
demonstrations to LLMs (Brown et al., 2020;
Zhao et al., 2021; Chen et al., 2022). This
approach enables LLMs to solve problems through
reasoning implicitly. However, its effectiveness
diminishes significantly when confronted with
multi-hop questions (Valmeekam et al., 2022). To
incentivize LLMs to engage in explicit multi-hop
reasoning, the concept of chain-of-thought was
introduced by Wei et al. (2022). It encourages the
LLM to think step by step and output intermediate
deductive steps (Chu et al., 2023). In this paper,
we elucidate the process by which LLMs handle
multi-hop question-answering from the perspective
of factual shortcuts. We provide evidence that
the chain-of-thought prompting compels LLMs to
attend to the single-hop knowledge more faithfully.

7 Conclusion

In this paper, we systematically explore the latent
factual shortcuts that LLMs may employ when
answering multi-hop knowledge questions. We
first demonstrate the strong correlation between the

strength of factual shortcuts and the co-occurrence
of the initial subject and the terminal object in pre-
training corpora. Then, we delve into the potential
risks introduced by these shortcuts in the context
of multi-hop knowledge editing. Our exploration
reveals that approximately 20% of failures can
be attributed to factual shortcuts, particularly in
instances characterized by high co-occurrences
within pre-training corpora. Finally, we propose a
straightforward yet efficient approach to mitigate
shortcut failures in multi-hop knowledge editing by
selectively erasing shortcut neurons. We advocate
for increased research efforts directed towards
exploring the true boundaries of LLMs in the realm
of multi-hop reasoning, emphasizing the need to
better constrain shortcut generation during the pre-
training phase.
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Limitations

We posit that Wikipedia serves as a comprehensive
repository of global knowledge, thus making it
a suitable substitute for the entirety of the pre-
training corpora. However, despite our exhaustive
traversal of the Wikipedia dataset to calculate the
co-occurrence frequencies of initial and terminal
entities, it is noteworthy that the pre-training
corpora for LLMs often extend beyond the confines
of this dataset. This potential discrepancy may
introduce inaccuracies in statistical outcomes.
We advocate for future investigations to extend
statistical analyses to more expansive corpora.

For the erasing of factual shortcuts, our primary
objective is to further substantiate the potential
risks associated with these shortcuts, and the
observed improvement in editing success rates
after erasing serves to support this assertion.
However, it is imperative to recognize that this
approach functions as a mitigative measure, as the
complete eradication of factual shortcuts through
post-hoc removal is unattainable. A genuine and
thorough elimination of factual shortcuts must be
initiated during the pre-training phase, involving
the alignment of LLMs’ multi-hop reasoning
capabilities with human-level proficiency.
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Finally, due to space and resource constraints,
we only conduct detailed experiments on GPT-J
(6B) and LLaMA-2 (7B) and do not encompass all
publicly accessible LLMs, such as PaLM (Chowd-
hery et al., 2022), OPT (Zhang et al., 2022), and
Pythia (Biderman et al., 2023). We encourage
future research to undertake comprehensive experi-
ments on a broader spectrum of LLMs.

Ethical Statement

We conduct a reassessment of the multi-hop rea-
soning capabilities of LLMs and demonstrate that
the presence of factual shortcuts may compromise
the consistency of results in multi-hop knowledge
editing. Since the approach itself is unbiased
and all experiments are conducted on publicly
available datasets, we believe that our work creates
no potential ethical risk. Additionally, all use of
existing artifacts is consistent with their intended
use in this paper.

However, we have exposed the indiscrimi-
nate use of shortcuts by LLMs during multi-
hop reasoning, raising concerns regarding their
genuine reasoning capabilities. LLMs struggle
to engage in step-wise reasoning akin to human
cognitive processes, and the potential for parameter
confusion may arise following the assimilation
of new knowledge. These factors contribute to
our perplexity concerning the black-box nature of
LLMs and apprehensions regarding their applica-
tion in security-sensitive domains. We advocate for
more rigorous ethical scrutiny and improvements
in LLMs to ensure alignment with the human
reasoning process.
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A Dataset

We select the MQUAKE-CF-3K dataset as the
primary focus for exploration in this paper. It
comprises 3,000 multi-hop English knowledge
questions extracted from Wikipedia along with a
corresponding knowledge editing task. We present
essential information for one sample from the
dataset (Table 5). For Section 3, we compute
the crucial neurons of the first question within the
’questions’ key, alongside the entirety of questions
within the ’single_hops’ key. For Section 4, we
adopt knowledge editing methods of all knowledge
encapsulated within the ’requested_rewrite’ key.
Furthermore, we augment the original dataset
by introducing a new key, labeled as ’short-
cut_frequency’, which denotes the frequency of
co-occurrence in the pre-training corpus between
the initial subject and the terminal object for each
instance.

B Prompts for Knowledge Neurons

We employ prompt templates similar to that utilized
by Zhong et al. (2023) for finding crucial neurons.
Given the substantial computational overhead
associated with Knowledge Neurons, we adopt a
2-shot prompt, which is already sufficient for the
LLM to comprehend the task and furnish accurate
responses. The few-shot prompt and chain-of-
thought prompt are shown in Table 6 and Table 7.

C Experimental Details

C.1 Language Models

Our experiments are conducted on GPT-J (6B)
(Wang and Komatsuzaki, 2021) and LLaMA-2 (7B)
(Touvron et al., 2023). The selection of GPT-J is
motivated by the alignment with the pre-existing
work on knowledge editing (Meng et al., 2022,
2023; Zhong et al., 2023), while opting for LLaMA-
2 is motivated by its status as a recent, prominent
open-source LLM representative, providing a
robust reflection of the current capabilities of
LLMs. We use the huggingface package (Wolf
et al., 2020) for the specific implementation.

C.2 Knowledge Editing

We use the cloze-style statement templates for
knowledge editing, which is consistent with the
previous studies. We employ the EasyEdit package
(Wang et al., 2023a) for the specific implementa-
tion. All licenses of these packages allow us for

normal research use. The detailed specifics of the
three knowledge editing methods that are employed
in our training are as follows.

MEND. MEND (Mitchell et al., 2022a) trains
a lightweight model editor network to produce
edits to the LLM’s weight when provided with
the standard fine-tuning gradient. We train our
editor network on the ZsRE dataset (Levy et al.,
2017) with a maximum number of training steps
of 100,000. We set the learning rate scale to be 1.0
during inference. All experiments edit the MLP
weights in the last 3 Transformer blocks.

ROME. ROME (Meng et al., 2022) stands out
as a popular method for knowledge localization
and editing. It introduces a based on corruption
and restoration to identify relevant layers storing
knowledge. Subsequently, it inserts new knowl-
edge by key selection and value optimization in the
corresponding feed-forward network (FFN) layer.
We perform the intervention at layer 5 for GPT-J
(6B) and 6 for LLaMA-2 (7B). We compute the
second-order momentum statistics using 100,000
examples of Wikitext in fp32. For the remaining
hyperparameters, we adopt the default values
specified in Meng et al. (2022).

MEMIT. MEMIT (Meng et al., 2023) is a
subsequent work to ROME, designed to handle
extensive knowledge edits. In this paper, we
perform the intervention at layer {3, 4, 5, 6} for
GPT-J (6B) and {4, 5, 6, 7} for LLaMA-2 (7B).
We also compute the covariance statistics using
100,000 examples of Wikitext in fp32. For the
remaining hyperparameters, we adopt the default
values specified in Meng et al. (2023).

C.3 Computational Budget
For all the experiments mentioned in this paper,
we use one Nvidia A100-SXM4 GPU with 80GB
memory. We spend about 100, 200, and 250
GPU hours exploring the existence of factual
shortcuts (Section 3), exploring the potential risks
of factual shortcuts (Section 4) and reducing multi-
hop factual shortcuts (Section 5).
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case_id: 16
requested_rewrite: [

{
prompt: {} is a citizen of
target_new: Latvia,
target_true: United States of America,
subject: Jack Dorsey,
question: What is the country of citizenship of Jack Dorsey?

}
]
questions: [

What is the country of citizenship of Twitter's CEO?
From which country does Twitter's CEO hold citizenship?
Which country's citizenship is held by the CEO of Twitter?

]
answer: United States of America
answer_alias: ...
new_answer: Latvia
new_answer_alias: ...
shortcut_frequency: 35435
single_hops: [

{
question: Who is the chief executive officer of Twitter?
cloze: The chief executive officer of Twitter is
answer: Jack Dorsey
answer_alias: ...

}
{

question: What is the country of citizenship of Jack Dorsey?
cloze: Jack Dorsey is a citizen of
answer: United States of America
answer_alias: ...

}
]
new_single_hops: [

{
question: Who is the chief executive officer of Twitter?
cloze: The chief executive officer of Twitter is
answer: Jack Dorsey
answer_alias: ...

}
{

question: What is the country of citizenship of Jack Dorsey?
cloze: Jack Dorsey is a citizen of
answer: Latvia
answer_alias: ...

}
]

Table 5: Critical information for a sample in the multi-hop knowledge editing dataset MQUAKE-CF-3K. We have
added the ’shortcut_frequency’ key to the original dataset to store the frequency of shortcuts appearing in Wikipedia.
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Q: Who is the spouse of the US president? A: Jill Biden
Q: In which country is the company that created Nissan 200SX located? A: Japan
Q: [Input Question] A: [Output Answer]

Table 6: The few-shot prompt for Knowledge Neurons.

Question: Who is the spouse of the US president?
Thoughts: The US president is Joe Biden. The spouse of Joe Biden is Jill Biden.
Answer: Jill Biden.

Question: In which country is the company that created Nissan 200SX located?
Thoughts: Nissan 200SX was created by Nissan. Nissan is located in the country of Japan.
Answer: Japan.

Question: [Input Question]
Thoughts: [Output Thoughts]
Answer: [Output Answer]

Table 7: The chain-of-thought prompt for Knowledge Neurons.
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