
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8813–8831
August 11-16, 2024 ©2024 Association for Computational Linguistics

Mobile-Bench: An Evaluation Benchmark for LLM-based Mobile Agents
Shihan Deng13∗ ‡ , Weikai Xu13∗ ‡ , Hongda Sun23∗ ‡ , Wei Liu3, Tao Tan2, Jianfeng Liu3,

Ang Li3, Jian Luan3, Bin Wang3, Rui Yan2† and Shuo Shang1†

1University of Electronic Science and Technology of China
2Gaoling School of Artificial Intelligence, Renmin University of China

3XiaoMi AI Lab
{dengshihan7, xuwk266, jedi.shang}@gmail.com

{sunhongda98, ruiyan}@ruc.edu.cn

Abstract
With the remarkable advancements of large lan-
guage models (LLMs), LLM-based agents have
become a research hotspot in human-computer
interaction. However, there is a scarcity of
benchmarks available for LLM-based mobile
agents. Benchmarking these agents generally
faces three main challenges: (1) The ineffi-
ciency of UI-only operations imposes limita-
tions to task evaluation. (2) Specific instruc-
tions within a singular application lack ade-
quacy for assessing the multi-dimensional rea-
soning and decision-making capacities of LLM
mobile agents. (3) Current evaluation metrics
are insufficient to accurately assess the pro-
cess of sequential actions. To this end, we
propose Mobile-Bench, a novel benchmark for
evaluating the capabilities of LLM-based mo-
bile agents. First, we expand conventional
UI operations by incorporating 103 collected
APIs to accelerate the efficiency of task com-
pletion. Subsequently, we collect evaluation
data by combining real user queries with aug-
mentation from LLMs. To better evaluate dif-
ferent levels of planning capabilities for mo-
bile agents, our data is categorized into three
distinct groups: SAST, SAMT, and MAMT,
reflecting varying levels of task complexity.
Mobile-Bench comprises 832 data entries, with
more than 200 tasks specifically designed to
evaluate multi-APP collaboration scenarios.
Furthermore, we introduce a more accurate
evaluation metric, named CheckPoint, to as-
sess whether LLM-based mobile agents reach
essential points during their planning and rea-
soning steps. Dataset and platform are available
at https://github.com/XiaoMi/MobileBench.

1 Introduction

Interacting with mobile devices using natural
language is a long-standing pursuit in human-
computer interaction (Bolt, 1980; Karat et al.,

∗ Equal contribution.
† Corresponding authors: Rui Yan and Shuo Shang.
‡ Work done during the internship at XiaoMi.

"Clock": [
 "API Command": "adb shell am start -a android.intent.action.SET_ALARM --ei
android.intent.extra.alarm.HOUR <x> --ei android.intent.extra.alarm.MINUTES <y>"

User Instruction
Set an alarm for 7:30 am.

Check If Exist
Callable API

No

Yes,Call
this API

Click

Click

Click

API Start!API command

<button>
clock open
<button>

<button>
new alarm
<button>

<button>
rolling search
<button>

<button>
alarm ready
<button>

Figure 1: For the task of “Setting an alarm for seven
thirty.”, accomplishing it solely through UI operations
requires four steps, while API calls can achieve the same
task in just one step.

2002; Følstad and Brandtzæg, 2017). With the re-
markable advancements in large language models
(LLM) (Bai et al., 2022; Chowdhery et al., 2022;
Du et al., 2021; Touvron et al., 2023; Ouyang et al.,
2022), LLM-driven agents are at the forefront, yet
their reasoning capability to navigate mobile appli-
cation functionalities lags behind their proficiency
with web pages on PCs (Yao et al., 2022; Sun et al.,
2023). To faithfully replicate a typical mobile envi-
ronment, it’s imperative to incorporate a diverse set
of applications and leverage authentic data, moving
beyond the limitations of purely simulated scenar-
ios. The development challenges in the mobile
domain stem from a trio of core issues: a limited
understanding of mobile interfaces, a scarcity of
application variety, and a lack of real-world data.

Due to Google’s breakthrough (Wang et al.,
2023) in UI interface representation, LLM agent’s
understanding of UI pages becomes easier, leading
to the creation of UI platforms such as Android-
Env (Toyama et al., 2021) and Mobile-Env (Zhang
et al., 2023), which tasks are defined within indi-
vidual games or search engines. However, these
works collectively face the following challenges:
(1) UI actions depend on the textual descriptions
of interfaces, where structured text fails to capture

8813

https://github.com/XiaoMi/MobileBench

Platform&BenchMark InfoUI API&UI Real APP Real Query Multi-APP
World of Bits (Shi et al., 2017) ✓ ✗ ✗ ✗ ✗

WebShop (Yao et al., 2022) ✓ ✗ ✗ ✗ ✗

AndroidEnv (Toyama et al., 2021) ✗ ✗ ✓ ✗ ✗

MobileEnv (Zhang et al., 2023) ✓ ✗ ✓ ✗ ✗

Mobile-Bench (Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of Mobile-Bench with existing LLM-based agent platforms. ‘InfoUI’ represents whether UI
information is used for interaction with agents, ‘API&UI’ represents whether the agent’s actions like API calls and
UI interface operations, ’Real APP’ represents whether real applications are used, ‘Real Query’ represents whether
real user queries are used, and ‘Multi-APP’ represents whether there are tasks involving multiple applications.

the content of graphical buttons or images which
can lead to wrong actions. A single API action
might be equivalent to dozens of UI steps, leading
to UI’s inefficiency. (2) Their tasks are far removed
from real-world task scenarios encountered in daily
use, which require cooperation between multiple
applications, with user commands being ambigu-
ous and not specifying target applications. (3) The
evaluation of tasks should not solely rely on LLMs,
without any objective quantitative metrics.

In fact, voice assistants on mobile phones can
meet most of the users’ daily needs, yet they do not
interact directly with UI interfaces but operate by
invoking the APIs (Qin et al., 2023) behind applica-
tions. As shown in Figure 1, in mobile applications,
APIs are more efficient than UI interfaces; a single
API call can be equivalent to multiple UI opera-
tions to achieve the same outcome. However, a
single API is insufficient for more complex tasks,
especially when user commands are unclear, neces-
sitating reliance on LLMs to interpret user intent.
Therefore, an agent capable of utilizing both UI
and APIs would be best suited for the job. Simul-
taneously, It requires developing a strategy for the
selection and order of the application usage, with
human oversight merely focusing on reviewing the
outcomes. This is a function that voice assistants
currently lack (Wen et al., 2023a,b). To this end,
we develop a combination of API and UI actions
to circumvent the limitations of UI interfaces, each
action can be chosen between UI interactions and
API calls; all tasks begin from the mobile HOME
page rather than from the launch page of a specific
application, enabling the agent to determine sin-
gle or multiple applications it will use; queries in
the task are gathered from real users, and instruc-
tion generation is only applied to some complex
ones which undergo rigorous manual review; we

draw inspiration from objective metrics in software
automation testing, named CheckPoint, and have
made necessary adjustments to accommodate the
unpredictable semantic outputs of LLMs. Above
all, we propose a mobile phone environment that
includes a platform supporting both API and UI in-
teractions, and a corresponding dataset with multi-
APP tasks. Table 1 presents a comparison among
recent platforms and benchmark work based on
API and UI.

Our contributions are summarized as follows:
(1) To the best of our knowledge, we are the first

to establish a running platform for LLM-based mo-
bile agents that simultaneously supports both UI
and API calls.

(2) We propose an evaluation dataset containing
diverse tasks for multi-APP interactions. Our tasks
starting from the home page are more appropriate
for testing the planning capabilities for agents. Our
dataset and platform will be released soon.

(3) We introduce a new category-based evalua-
tion metric to assess the task completion capabili-
ties of the agent in the context of both UI and API
interactions.

2 Related Work

2.1 Mobile Platforms

Prior to the emphasis on LLM-based agents, re-
search efforts were directed towards RL-based
agents, exemplified by the Android-Env platform
(Toyama et al., 2021). This open-source platform
tailored for reinforcement learning experiments
within the Android ecosystem, successfully tested
various RL-based agents like DDPG (Zhang and
Van Huynh, 2023), D4PG (Barth-Maron et al.,
2018), MPO (Abdolmaleki et al., 2018), DQN
(Mnih et al., 2015), IMPALA (Espeholt et al.,
2018) and R2D2 (Kapturowski et al., 2018).

8814

More significant research has focused on LLM-
based agents (Liu et al., 2024; Sun et al., 2024b,a).
Regarding the domain of tool-using agents, they
can be categorized into three main types:

1) For mobile tasks. Platforms like AutoDroid,
DroidBot-GPT, GPT-Droid, and WebShop (Wen
et al., 2023a,b; Liu et al., 2023b; Yao et al., 2022)
create an interactive environment enabling LLMs
to engage with mobile tasks, and generate human-
like operations for automation test. Mobile-Env
(Zhang et al., 2023) is specifically designed to eval-
uate agents’ capabilities in handling multi-step in-
teractions.

2) For PC Tasks. Researchers developed Tool-
lama (Qin et al., 2023) to evaluate the capabilities
to use tools and API calls. AgentBench (Liu et al.,
2023a) presents a standardized Agent task evalua-
tion architecture with strong decoupling and scal-
ability. PPTC Benchmark (Guo et al., 2023) pro-
posed to evaluate the ability of LLM-based agents
on PowerPoint tasks.

3) Other Methods. Toolformer (Schick et al.,
2023) and HuggingGPT (Shen et al., 2023) evalu-
ate LLM’s capability to master tools.

2.2 Benchmarks for LLM agents
To assess agents’ proficiency in understanding user
interfaces, a diverse dataset covering various tasks
is crucial (Liu et al., 2023a). The widely used
RICO dataset (Deka et al., 2017) is commonly em-
ployed for this purpose, with Screen2Vec (Li et al.,
2021) utilizing it to evaluate agent performance.

However, due to the absence of specific stan-
dards for evaluating agent performance, efforts
have focused on designing evaluation frameworks.
PPTC Benchmark (Guo et al., 2023) devised 279
multi-round dialogue tasks for PPT file operations.
DroidTask (Wen et al., 2023a) and various un-
named datasets (Liu et al., 2023b; Wen et al.,
2023b) covering various mobile applications have
also been established. Additionally, Screen2Words
used a sampling method to sample screens from the
RICO-SCA (Li et al., 2020) dataset and hired pro-
fessional annotators to generate English summaries
for these screens (Wang et al., 2021).

Current evaluation standards align with vari-
ous works. ToolBench proposes Win Rate gauges
the model’s solution quality against benchmarks
like RoBERTa (Liu et al., 2019), GPT-3 (Brown
et al., 2020), PaLM (Chowdhery et al., 2023),
OPT (Zhang et al., 2022), ChatGPT (Bubeck et al.,
2023) and GPT-4 (OpenAI, 2023). Although

Fan (Fan et al., 2024) found that the cost of in-
ference can be reduced by using only the necessary
layers for inference, it is still expensive to calcu-
late the win rate. Mobile-Env (Zhang et al., 2023)
evaluates agent performance based on the comple-
tion status, average steps, and average rewards in
WikiHow tasks. PPTC Benchmark (Guo et al.,
2023) uses Turn-based and Session-based accuracy.
Android in the Wild (Rawles et al., 2023) makes
use of Out-of-distribution Generalization. Over-
all, metrics such as success rate, episode length,
and match score are currently the most commonly
employed.

3 Our Environment

3.1 Mobile-Bench Benchmark
Data collection. The queries in the dataset are
divided into the following three categories:

• SAST: Single-App-Single-Task. A real
dataset containing only one task text, includ-
ing single-task operations such as opening and
closing APP, such as "Help me open the map".

• SAMT: Single-App-Multi-Task. A real
dataset containing multiple task texts, as well
as constructed single-APP data. A complex
multi-task on single APP, such as "Help me
open the map, and navigate to Eiffel Tower.".

• MAMT: Multi-App-Multi-Task. Constructed
multi-APP data, complete a complex multi-
task, such as "Help me search for the latest
technology news and share it with friends."

SAST is directly derived from real voice requests
processed by the voice assistants loaded on the
mobile phone. We select a subset of this query
collection, primarily filtering out the portion that
requires voice assistant processing and involves
multimodal tools. Additionally, querys that exceed
permissions or involve privacy are also filtered out.

Since there are fewer SAMT and MAMT data
in real data and the quality is not high, refer to
Toollama (Qin et al., 2023) method, we use GPT-4
to construct SAMT and MAMT data. For MAMT,
we randomly sample 6 applications from the en-
tire application collection, and then provide some
examples of real multi-APP data to prompt GPT-
4 to select 2-4 applications to generate tasks. By
integrating real and constructed data, we create
the final dataset. An example of data is shown in
Figure 2.

8815

ID: 3
Query:
 I want to book a flight from Beijing to Shanghai next
Friday. Are there any recommended flights?
APP:
 Amap & (Ctrip Travel | Qunar)
CheckPoints:
• Package:
 com.autonavi.minimap & (ctrip.android.view | com.Qunar)
• Key phrase:
 [flight, Beijing, Shanghai, next Friday]
• API:

• adb shell am start -n
com.autonavi.minimap/com.autonavi.-
map.activity.SplashActivity

• adb shell am start -a androidintent.action.VIEW -
damapuri://route/plan/?dname=Shanghai
com.autonavi.mini-map

Figure 2: A test case in MAMT. & stands for conjunc-
tion check, CC; | stands for disjunction check, DC; []
stands for sequential check, SC. The package Check-
Point passes when the action history includes either
Amap and Ctrip Travel, or Amap and Qunar. Key phrase
CheckPoint comes from the orange parts in the case.

APP & API collection. To ensure task compre-
hensiveness, we select not only the applications
included in SAST and SAMT but also the most
popular free applications from each category in the
APP Store. Obtaining the API is to analyze the
package of each application to obtain its external
reserved interface (Desnos and Gueguen, 2011).
The advantage of this is that the obtained API is
naturally classified for the application. Since the
description of the API in the decompilation result
is not as detailed as the development document, we
use the ADB(Android Debug Bridge) command to
verify the feasibility of the API one by one. Ow-
ing to its debugging properties, system-level APIs
can also be invoked normally, allowing access to
functions such as checking the battery status and
performing memory cleaning. For more specific
application names and categories, please refer to
Appendix B.3

Dataset statistics. Including several default ap-
plications within the system, we collected a total
of 29 applications. For applications, we collected a
total of 103 usable APIs, which primarily serve
the following functions: system calls, opening
pages, closing pages, searching for information,
viewing details, and controlling device switches.
These functions are summarized into the following
main aspects: page switch, details view, broadcast,
search. In Table 2, we have tabulated the number
of APIs and the functional categories covered by

APP Category API Quantity APP Number API Functions
Travel Transportation 5 3 ①, ②, ④

Audiovisual Vision 15 5 ①, ②, ③

Social Communication 3 1 ①, ②, ④

Fashion Shopping 14 6 ①, ④

Information News 11 4 ①, ②, ④

Practical Tool 38 8 ①, ②, ③, ④, ⑤

Home Life 5 1 ①, ⑤

Book Reading 7 2 ①, ②, ④

Universal Buttons 5 0 ⑤

Table 2: Our dataset covers nine major categories of
applications, and we compared them based on the API
function. The above API functions can be summarized
into five categories: ① Page Navigation, ② Viewing
Details, ③ Playback, ④ Searching, and ⑤ System Calls.

SAST SAMT MAMT
0.0

0.2

0.4

0.6

0.8

1.0

(a)API&UI, UI task ratio

API & UI
UI

SAST SAMT MAMT
0

100

200

300

400

500

600

700

800

(b)Checkpoints number

Package
Key phrase
Api

Figure 3: (a) The API&UI, UI task ratio. In SAST
and SAMT, API&UI task ratio is 85%, in MAMT, it is
100%. (b) The number of CheckPoints.

APIs, categorized by the type of APP. We orga-
nized the available APIs and APP descriptions for
each APP, and generated an APP list as the basis
for selecting applications, shown in Appendix B.3.

In the Mobile-Bench dataset, we collected a total
of 332, 300, 200 queries for SAST, SAMT, and
MAMT. We sort out the APIs actually used by
each task in real voice requests. Provide these API
as an example to GPT-4 for query generation. As
shown in Figure 3(a), we calculated the ratio of
tasks calling APIs, ensuring a sufficient number of
tasks in the dataset that include steps to call API.
This approach ensures that we have sufficient data
to analyze the role of APIs in task completion.

Quality verification. (Bolotova-Baranova et al.,
2023) The initial test data originates from software
automation tests, but some complex data points are
generated by GPT-4. To ensure the quality of our
dataset, we randomly sampled 100 data points from
each of the SAST, SAMT, and MAMT, resulting in
a total of 300 quality test data. We conducted cross-
source validation to verify the feasibility of these
CheckPoints. The specific formula for calculation

8816

is as follows:

Overlap(CP1, CP2) =
|CP1 ∩ CP2|

|CP1|
(1)

CP1,CP2 representing the CheckPoint sequences
generated by CPinstruction and CPHuman, respec-
tively. In Table 3, we list the human evaluation
results for three types of data. From the table, it
can be observed that a higher proportion of terminal
data corresponds to better data quality. However,
all MAMT data is generated by instructions, its
quality does not exhibit an unacceptable gap com-
pared to SAST. See appendix B.1 for more analysis.

Statistics SAST SAMT MAMT Total
CPinstruction 395 546 513 1454
CPHuman 412 598 623 1633
CPinstruction ∩ Human 372 466 412 1250
Overlap 0.94 0.85 0.80 0.86

Table 3: Human Evaluation Results

3.2 Test Platform
Overview Mobile-Bench is designed as a univer-
sal interaction platform that supports hybrid API
and UI interactions. Users are able to construct
their own evaluation data following a fixed for-
mat, yet they must adhere to our prescribed eval-
uation method. As shown in Figure 4 users can
interact with the environment using the following
commands.

• Start: Open the test environment and load the
preset snapshot using this command. Each test
case must start from the same environment.

• Stop: Stop the test environment and end test.
• Close: Close the test environment and save

the test process and results.
• Check: Capture a screenshot snapshot of the

current test environment.
• ReSet: Load a previously saved environment

snapshot into the test environment.

Observation space To enable the agent to read
information on the android emulator in a human-
like manner, we use Appium to obtain page infor-
mation. Following the method described by Wang
(Wang et al., 2023), we convert XML to HTML,
as the training data for LLMs is predominantly
sourced from the Internet, which includes numer-
ous HTML files. Therefore, we believe that LLM
has a better understanding of HTML than XML.

User Instruction

Agent

APP List

×N
User Instruction

Interaction

1.
2.

30.

API List
1. 2. m.

· Start
· Stop
· Close
· Check
· ReSet

Amap
Ctrip Travel
Qunar

Figure 4: Test Platform Overview. The test platform is
linked by the user, the simulator, and the Agent. After
the user’s instructions are issued, the entire test execu-
tion process is completed by the Agent, which can view
and manage the test tasks through the preset interface in
the cloud.

Given the tree structure of XML, we initially con-
vert the XML into a tree format and subsequently
transform the nodes that need to be displayed to
the agent into HTML. The agent simulates human
interaction with smartphones, performing three ma-
jor operations: click, input, and scroll. Humans
visually identify which elements can be clicked or
receive input, and use their fingers to determine if
they can scroll the screen. Therefore, we provide
the agent with elements that are visible and scrol-
lable. Due to the limit on context length, we only
convert the information required by the agent in
XML to HTML:

• Type: HTML element categories inherited di-
rectly from XML formatted information.

• ID: “ID” inherits from the XML “resource-id”
attribute, uniquely identifying the existence of
an element.

• Package: the package name of the current
application.

• Class: the class of the element, such as Im-
ageView, TextView.

• Description & text: describe the function and
shape of the element.

• Clickable & Scrollable: whether the element
is clickable and scrollable.

• Bounds: if the element is scrollable, this at-
tribute will be present and scope the scroll
component, such as:

[xi, yi] [xj, yj]

The scrollable rectangle ranges from [xi, yi]

8817

to [xj , yj].

And, there is an example of HTML elements:
<button package="com.ximalaya.ting.android"
class="android.widget.Button" clickable="true">
message </button>

Action space Our Mobile-Bench imitates human
behavior in using mobile and summarizes three
actions (Zhang et al., 2023) and imitates the process
of calling the API on the test platform (Sengupta
et al., 2023):

• Click: simulate real user click actions by pass-
ing in specific elements.

• Scroll: simulate real user scrolling actions by
tapping - dragging - releasing.

• Input: simulate real user input actions by
clicking-typing.

• API Call: launch an activity or send an intent
by invoking an API through ADB commands.

3.3 Evaluation Method
CheckPoint. Automated test CheckPoint cover-
age (Bajunaid and Menascé, 2018) is a test metric
for the software execution process. It cannot assist
in checking the software results, but it can visually
inspect whether the software runs in the specified
unit sequence. During data construction, we supply
APPs and APIs, which naturally serve as detec-
tion indicators. Additionally, we incorporated a
CheckPoint to verify if the UI operation correctly
clicks on the intended element. After sorting out
the above CheckPoints, we constructed the follow-
ing three CheckPoints:

• Package: the unique package name corre-
sponding to the application. Checking the
package can determine whether the correct
application is used.

• Key phrase: the key phrase extracted from the
query, represents key steps in the UI execution
process.

• API: API commands that need to be called
during the execution process.

To evaluate the agent’s selection and execution ca-
pabilities, we divide the inspection granularity into
two levels: CheckPointl1 - whether it uses the cor-
rect application, and CheckPointl2 - whether it fol-
lows the predefined paths to complete the task. For
CheckPointl1, we check the number of correctly
called packages. For CheckPointl2, we check the
number of correctly called package, key phrase,

API. For CheckPoints, we identify three logical
relationships: sequential, conjunctive, and disjunc-
tive checks. These correspond to the instability
of LLM output and its tendency for synonym sub-
stitution. The calculation formula for "sequential
check" is as follows:

ScoreSequen =
|∑Str∈SC∩AH Str|
|∑Str∈SC Str| (2)

SC represent Sequential Check Set and AH repre-
sent Actions History. The calculation formulas for
conjunctive checks is as follows:

Scoreconjun =

{
1, if ∀str ∈ CC, str ∈ AH

0, otherwise
(3)

CC represent Conjunctive Check Set. The calcula-
tion formulas for disjunctive checks is as follows:

Scoredisjun =

{
1, if ∃str ∈ DC, str ∈ AH

0, otherwise
(4)

DC represent Disjunctive Check Set. The
weighted sum of the above three scores will be
the final CheckPoint coverage rate.

As shown in Figure 3, the number of key phrase
CheckPoints is significantly higher than that of
packages, indicating the need for more semantic
information to ensure tasks are completed step-by-
step. Analyzing the dataset from a proportional
perspective, we find that the distributions of the
three types of CheckPoints are 0.212, 0.493, 0.294,
with key phrase CheckPoints remaining the most
predominant method of checking.

In general, a test case should include at least the
following contents: ID, Query, APP List, Check-
Points(Package, Key phrase, API). Figure 2 is a
test case that contains the above three CheckPoints.

PassRate. (Qin et al., 2023) We assess an agent’s
human-computer interaction capabilities by calcu-
lating the proportion of queries successfully com-
pleted within the specified step limits. During this
process, we organized the emulator’s current state.
Subsequently, GPT-4 evaluates the task comple-
tion status. We computed the percentage of pass
tasks, yielding a PassRate as an indicator of agent’s
human-computer interaction capabilities.

Average steps. (Zhang et al., 2023) We quan-
tified the step size required by Mobile-Bench to
complete tasks as a metric for evaluating the effi-
ciency of the agent. In Mobile-Bench, a ’step’ is

8818

Check Point Action History

Overall Plan

Clock Video

Concrete Step

API List

HTML Before

HTML After

Search The
API List

Thought
Generation

Compare
current status

Action Status

Yes No

Yes,Finished

Output!

No

Continue Execution Loop

F Times

Start Execution Overall Plan Generate

Check If Exist
 Callable API

Check if the task
is completed

Step1

＋

＋

×

＋

Step2.

StepF.

Action History
1. 2. k.

1. 2. m.

Exam-
ple2.
Open an
unknown
video
software

Screen
Operation

Example1.
Set
an
alarm
clock

＋

Figure 5: Baseline Model Overview. The entire process framework consists of sensors, reflection components,
controllers, execution components, and environments. Once a task starts, these components will run iteratively until
the task is completed or the maximum number of steps is reached.

defined as the completion of a UI operation or the
execution of an API call.

4 Experiment

4.1 Baseline Model

Our model’s architecture, illustrated in Algorithm
1, begins by obtaining the smartphone’s UI infor-
mation in XML format through Appium and trans-
forms it into HTML format through a heuristic
algorithm. Subsequently, as illustrated in Figure 5
leveraging the HTML, task details, and APP list,
LLM generates a comprehensive task plan, outlin-
ing the necessary applications and corresponding
sub-tasks. As the collection of APIs is organized
based on the classification of APPs, we can get the
API set that may be used in plan.

The task plan is executed iteratively. In each
iteration, the model either performs an API call or
a UI operation. After each execution, the model
records the success or failure of the action in its
history, generates the subsequent thought, and eval-
uates whether the task has been completed. For the
actual running process of an algorithm, please refer
to the appendix C.7.

4.2 Setup

We evaluate four popular LLMs on the proposed
Mobile-Bench task set: GPT-3.5-turbo (Ouyang
et al., 2022), GPT-4 (Nori et al., 2023), LLaMA-
13B and LLaMA-70B(Touvron et al., 2023), while
ChatGPT-3.5 and GPT-4 are accessed through the

Algorithm 1 Baseline Model
Input: description of the Task, Task; APP list, LAPP ; API

list, LAPI ; max loop step, Mstep; initial thought, Tho;
Output: actions history, AH; total steps, Step; finish flag,

Finish;
1: Html← Appium(Emulator)
2: Plan← LLM(Task, LAPP)
3: Step = 0, Finish = False
4: AH = []
5: while (Step ≤Mstep)and(Finish ̸= True) do
6: Step++;
7: Html← Appium(Emulator);
8: API←LLM(Task, LAPI , AH, Tho, P lan,Html)
9: if API then

10: Action(API)
11: AH.append(API)
12: else
13: UI ← LLM(Task,AH, Tho, P lan,Html)
14: Action(UI)
15: AH.append(UI)
16: end if
17: Html← Appium(Emulator);
18: Tho← LLM(Task,AH,P lan,Html)
19: Finish← LLM(Task,AH, Tho,Html)
20: end while

online APIs of OpenAI. The experiments are con-
ducted with a 3-shot in-context learning under sam-
pling temperature of 0.1. Recognizing that task
execution incurs costs, we preset different maxi-
mum step limits for tasks based on their difficulty
levels. For the three categories of SAST, SAMT,
and MAMT, we set the max step to 10, 20, and 50
respectively. Owing to the limit of budget, only
GPT-3.5 utilizes an interface with a context length
of 16K. GPT-4 uses a standard interface, which
necessitated compression and trimming of actions

8819

Metric LLaMA-13B LLaMA-70B GPT-3.5-turbo GPT-4

SAST SAMT MAMT SAST SAMT MAMT SAST SAMT MAMT SAST SAMT MAMT
Average #Steps 7.43 18.76 49.52 5.97 16.63 48.91 4.53 12.06 48.73 3.79 13.94 44.86
PassRate 44.58 27.67 8 56.62 54 13.5 64.94 64 15.5 80.96 63 26.5
CheckPointl1 46.08 43.67 28.74 56.62 61 39.98 66.75 67 43.16 81.57 72.66 61.34
CheckPointl2 34.85 29.13 21.39 63.12 62.73 41.21 76.21 71.29 44.09 83.76 77.35 52.98

Table 4: Results of the agents based on different LLMs on Mobile-Bench dataset. On MAMT data, due to context
length limitations, a compression is applied to the actions history by retaining only the most recent 20 entries.

history. See Appendix A for other settings.

4.3 Results
As observed in Table 4, it can be observed
that GPT-3.5 outperforms GPT-4 in PassRate on
SAMT(64%>63%), and it requires fewer steps to
complete the task(12.06<13.94). To investigate this
phenomenon, we analyze the output files and find
that models with poorer performance exhibit Pass-
Rate misjudgments: they prematurely terminate
even when the task is not completed. This phe-
nomenon is also present in LLaMA, which exhibits
a high PassRate (44.58%) but low CheckPoint cov-
erage (34.85%). At the same time, we delved
into why the results for MAMT are so low(15.5%,
26.5%). Our analysis revealed that LLMs often ex-
hibit greedy exploration behavior when completing
tasks, meaning they struggle to determine when
to exit the current application and transition to the
next one. This tendency is particularly prevalent in
certain generation tasks. Moreover, as the actions
history increases, its ability to accurately judge task
progress becomes increasingly challenging. For
more detailed result, please refer to Table 7.

Settings Average #Steps CheckPointl2 PassRate
SAST (GPT-4) 3.79 83.76 80.96
SAMT (GPT-4) 13.94 77.35 63
MAMT (GPT-4) 44.86 52.98 26.5

SAST (w/o API) 6.13 72.73 74.39
SAMT (w/o API) 16.86 56.74 48
MAMT (w/o API) 49.17 31.69 9.5

Table 5: API Ablation Study based on GPT-4.

4.4 Impact of API Calls
API Calls can accelerate task execution, as a sin-
gle call often replaces several sequential UI steps.
From another perspective, the ability of the agent
to select appropriate APIs and input parameters
warrants further investigation. Choosing the wrong
API may lead the task in an incorrect direction
or require a significant number of steps to rectify.

Therefore, in Table 5, we evaluate and analyze
the impact of introducing APIs on task completion
based on GPT-4.

From Table 5, it can be seen that even in
SAST, the PassRate has decreased by 6.57% (from
80.96 to 74.39). Furthermore, the values for
CheckPointsl2 exhibit a more pronounced decrease
after API removal, with a drop exceeding 20% in
SAMT. Simultaneously, we have observed varying
increases in the average number of steps, which
align with our expectations. We analyzed the re-
sults and found that the inability to accurately scroll
pages, inefficient exploration of page functional-
ity, and failure to click graphical buttons are the
primary reasons for the low efficiency of UI opera-
tions.

Settings Average #Steps CheckPointl1 CheckPointl2 PassRate
SAST (GPT-4) 3.63 82 79.74 76
SAST (w/o thought) 8.86 82 29.16 24
SAST (w/o plan) 3.98 76 74.54 72
SAMT (GPT-4) 13.94 63 72.66 77
SAMT (w/o thought) 19.54 63 18.31 20
SAMT (w/o plan) 17.09 52 58.02 62

Table 6: Thought and Plan Ablation Study on SAST
(subset 50) and SAMT (subset 200) based on GPT-4.

4.5 Impact of Plan and Thought

Since observation-thought-action is already a stan-
dardized process in the agent direction(Qin et al.,
2023), and verified by experimental results, plan-
ning and thought before action are essential. From
the experimental results, we can find that without
the observation-thought step, the agent is almost un-
able to complete the task(77->20, 76->24), which
is because it cannot determine the next action cate-
gory and the current task status. In more complex
tasks SAMT, losing the plan has more negative
consequences(77->62). But they will have almost
no impact on CheckPointl1(82->82 63->63), be-
cause the application selection is almost done by
the API Call.

8820

5 Conclusion

In this work we have proposed an agent capability
testing environment that supports API and UI inter-
action on mobile phone. This holds significant im-
portance for exploring how LLMs can be integrated
with mobile operating systems. Additionally, it can
serve as a valuable reference for developing test-
ing platforms for operating systems to evaluate the
capabilities of LLM agents. We collected and re-
leased a test dataset containing tasks for multiple
APPs, ensuring its quality through human verifica-
tion. Based on this data set and environment, we
tested the planning, decision-making and execution
of various LLM-based agents. Please refer to the
Section 6 for the limitations of our benchmark.

6 Limitations

While general large models exhibit strong capabil-
ities in reasoning and planning, they tend to have
pronounced illusions in API calls. As a result, the
language model may become confused about the
application’s functionality, leading to a reluctance
to continue and complete the task. Therefore, fine-
tuning a model for instructions is highly necessary.

Automatic CheckPoint is a process evaluation
metric, making it challenging to assess the quality
of the final outcome. This depends on whether
the agent has obtained the necessary information
(actions) on the required pages.

The enhancement of the agent’s capabilities re-
lies on extensive API and SDK libraries, requiring
substantial support from application development
companies.

7 Ethics Statement

We have rigorously refined our dataset to remove
any elements that could compromise personal pri-
vacy, thereby guaranteeing the highest level of pro-
tection for individual data. The evaluation of our
work was carried out through a meticulously ran-
domized selection of IT professionals. This pro-
cess ensured a gender-balanced and educationally
diverse panel, reflecting a wide spectrum of per-
spectives and expertise.

8 Acknowledgements

We thank the Xiaoai Voice Department of Xiaomi
Technology Corporation for their raw data support
for this project. We additionally thank our crowd
annotators for their diligent work, Junfeng Peng

and Yifan Cheng for contributing to the human per-
formance estimates, and the anonymous reviewers
for their constructive comments. This work was
supported by the NSFC (U2001212, 62032001, and
61932004).

References
Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval

Tassa, Remi Munos, Nicolas Heess, and Martin Ried-
miller. 2018. Maximum a posteriori policy optimisa-
tion. arXiv preprint arXiv:1806.06920.

Y Bai, S Kadavath, S Kundu, A Askell, J Kernion,
A Jones, A Chen, A Goldie, A Mirhoseini, C McK-
innon, et al. 2022. Constitutional ai: Harmlessness
from ai feedback (arxiv: 2212.08073). arxiv.

Noor Bajunaid and Daniel A Menascé. 2018. Efficient
modeling and optimizing of checkpointing in concur-
rent component-based software systems. Journal of
Systems and Software, 139:1–13.

Gabriel Barth-Maron, Matthew W Hoffman, David Bud-
den, Will Dabney, Dan Horgan, Dhruva Tb, Alistair
Muldal, Nicolas Heess, and Timothy Lillicrap. 2018.
Distributed distributional deterministic policy gradi-
ents. arXiv preprint arXiv:1804.08617.

Valeriia Bolotova-Baranova, Vladislav Blinov, Sofya
Filippova, Falk Scholer, and Mark Sanderson. 2023.
Wikihowqa: A comprehensive benchmark for multi-
document non-factoid question answering. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 5291–5314.

Richard A Bolt. 1980. “put-that-there” voice and ges-
ture at the graphics interface. In Proceedings of the
7th annual conference on Computer graphics and
interactive techniques, pages 262–270.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

8821

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hi-
bschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017. Rico: A mobile app
dataset for building data-driven design applications.
In Proceedings of the 30th annual ACM symposium
on user interface software and technology, pages
845–854.

Anthony Desnos and Geoffroy Gueguen. 2011. An-
droid: From reversing to decompilation. Proc. of
Black Hat Abu Dhabi, 1:1–24.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2021.
Glm: General language model pretraining with
autoregressive blank infilling. arXiv preprint
arXiv:2103.10360.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Si-
monyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, et al. 2018. Im-
pala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International
conference on machine learning, pages 1407–1416.
PMLR.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng
Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. 2024. Not all layers of llms
are necessary during inference. arXiv preprint
arXiv:2403.02181.

Asbjørn Følstad and Petter Bae Brandtzæg. 2017. Chat-
bots and the new world of hci. interactions, 24(4):38–
42.

Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao,
and Duan Nan. 2023. Pptc benchmark: Evaluating
large language models for powerpoint task comple-
tion. arXiv preprint arXiv:2311.01767.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi
Munos, and Will Dabney. 2018. Recurrent experi-
ence replay in distributed reinforcement learning. In
International conference on learning representations.

Clare-Marie Karat, John Vergo, and David Nahamoo.
2002. Conversational interface technologies. The
human-computer interaction handbook, pages 169–
186.

Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and
Brad A Myers. 2021. Screen2vec: Semantic embed-
ding of gui screens and gui components. In Proceed-
ings of the 2021 CHI Conference on Human Factors
in Computing Systems, pages 1–15.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020. Mapping natural language instruc-
tions to mobile ui action sequences. arXiv preprint
arXiv:2005.03776.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. 2023a. Agent-
bench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yuhan Liu, Xiuying Chen, Xiaoqing Zhang, Xing Gao,
Ji Zhang, and Rui Yan. 2024. From skepticism to
acceptance: Simulating the attitude dynamics toward
fake news. arXiv preprint arXiv:2403.09498.

Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo
Chen, Boyu Wu, Xing Che, Dandan Wang, and
Qing Wang. 2023b. Chatting with gpt-3 for zero-
shot human-like mobile automated gui testing. arXiv
preprint arXiv:2305.09434.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. nature,
518(7540):529–533.

Harsha Nori, Nicholas King, Scott Mayer McKinney,
Dean Carignan, and Eric Horvitz. 2023. Capabili-
ties of gpt-4 on medical challenge problems. arXiv
preprint arXiv:2303.13375.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. 2023. Android in the
wild: A large-scale dataset for android device control.
arXiv preprint arXiv:2307.10088.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

8822

http://arxiv.org/abs/2303.08774

Aritro Sengupta, Amit Singh, and BM Vinjit. 2023. A
platform independent and forensically sound method
to extract whatsapp data from mobile phones. Inter-
national Journal of Electronic Security and Digital
Forensics, 15(3):259–280.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of bits: An
open-domain platform for web-based agents. In In-
ternational Conference on Machine Learning, pages
3135–3144. PMLR.

Hongda Sun, Hongzhan Lin, Haiyu Yan, Chen Zhu,
Yang Song, Xin Gao, Shuo Shang, and Rui Yan.
2024a. Facilitating multi-role and multi-behavior
collaboration of large language models for on-
line job seeking and recruiting. arXiv preprint
arXiv:2405.18113.

Hongda Sun, Yuxuan Liu, Chengwei Wu, Haiyu Yan,
Cheng Tai, Xin Gao, Shuo Shang, and Rui Yan.
2024b. Harnessing multi-role capabilities of large
language models for open-domain question answer-
ing. In Proceedings of the ACM on Web Conference
2024, pages 4372–4382.

Hongda Sun, Weikai Xu, Wei Liu, Jian Luan, Bin
Wang, Shuo Shang, Ji-Rong Wen, and Rui Yan. 2023.
Determlr: Augmenting llm-based logical reasoning
from indeterminacy to determinacy. arXiv preprint
arXiv:2310.18659.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe-
orghe Comanici, Amelia Glaese, Zafarali Ahmed,
Tyler Jackson, Shibl Mourad, and Doina Precup.
2021. Androidenv: A reinforcement learning plat-
form for android. arXiv preprint arXiv:2105.13231.

Bryan Wang, Gang Li, and Yang Li. 2023. Enabling
conversational interaction with mobile ui using large
language models. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems,
pages 1–17.

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi
Grossman, and Yang Li. 2021. Screen2words: Au-
tomatic mobile ui summarization with multimodal
learning. In The 34th Annual ACM Symposium on
User Interface Software and Technology, pages 498–
510.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. 2023a. Empowering

llm to use smartphone for intelligent task automation.
arXiv preprint arXiv:2308.15272.

Hao Wen, Hongming Wang, Jiaxuan Liu, and Yuanchun
Li. 2023b. Droidbot-gpt: Gpt-powered ui automation
for android. arXiv preprint arXiv:2304.07061.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,
35:20744–20757.

Bolun Zhang and Nguyen Van Huynh. 2023. Deep
deterministic policy gradient for end-to-end commu-
nication systems without prior channel knowledge.
arXiv preprint arXiv:2305.07448.

Danyang Zhang, Lu Chen, and Kai Yu. 2023. Mobile-
env: A universal platform for training and eval-
uation of mobile interaction. arXiv preprint
arXiv:2305.08144.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

8823

A Settings

We conduct experiments on the Android 14.0 version emulator and use Appium UiAutomator2 Driver for
automated testing. Before each execution of a task, we load a snapshot to ensure the emulator in the same
environment every time. For all applications, we have logged in to the account in advance to ensure that
the full function of the application can be used. Since we tests in the real world, we filtered out any tasks
that included payments.

B Details of Dataset

B.1 Dataset quality analysis

The root cause of low-quality data often lies in the inaccuracies in the descriptions of applications.
Additionally, ambiguity in query generation also plays a significant role. For example, in the query ”Help
me find pictures related to Beijing”, although the user has not explicitly specified the source application,
for a human, the expected result would likely be a search engine or a map application, as the images are
not likely to be from the user themselves. However, for LLM, because the statement includes the word
“pictures”, it might be reasonable for it to spend all its time searching for pictures in the gallery application,
even though this effort would ultimately be in vain. CheckPoint coverage is calculated as the weighted
sum of the scores for the three types of CheckPoints mentioned above.

B.2 Prompts for Instruction Generation

Below we list the detailed prompt for instruction generation, including single-APP-multi-task description,
multi-APP-multi-task description.

single-APP-multi-task description:
You will be provided with an application with descriptions, an available API list including adb command,

function description and parameter information. You should create 5 varied, innovative, and detailed multi
task queries that employ this application as a tool, API can be used as an auxiliary.

Each query should include the necessary parameters. Note that you shouldn’t ask ‘which APP to use’,
rather, simply state your needs that can be addressed by these APPs. You should also avoid asking for
the input parameters required by the APP call, but instead directly provide the parameter in your query.
Those related APP and APIs have to strictly come from the provided lists.

At the same time, you also need to provide the CheckPoint of this query, including package, key phrase
and API. The package comes from the package corresponding to the APP to be used. Key phrase is the
key click element or key input character that the Android emulator will perform when executing this
query, which is used to check whether the query has been completed. Key phrase should be noun and part
of query, should be kept as short as possible.

Key phrase can contain multiple pieces of information, "|" means the query passes when any of the
following texts are completed. "|" is used to separate synonymous expressions of the same noun; "&"
indicates that the query must be passed when all texts are completed; sequential CheckPoints are stored in
"[]", and the count increases by one for each passed element. The "ADB Command" to be used is stored
in the API, which may also be empty.

Deliver your response in this format:
[{

"id": "number"
"query": "text"
"APP": "APP name"
"CheckPoint": {

"package": "APP package name"
"key phrase": ["text1", ...]
"API: ["API1", ...]"
}

}
8824

...
]

multi-APP-multi-task description:
You will be provided with some APPs with descriptions, available API list including adb command,

function description and parameter information. You should create 3 varied, innovative, and detailed multi
queries that employ multi-APP as a tool, API can be used as an auxiliary.

Each query should include the necessary parameters. Note that you shouldn’t ask ‘which APP to use’,
rather, simply state your needs that can be addressed by these APPs. You should also avoid asking for
the input parameters required by the APP call, but instead directly provide the parameter in your query.
Those related APPs and APIs have to strictly come from the provided lists. You should first think about
possible related APP combinations, then give your query. Keep in mind that each query should call upon
two to four APPs.

At the same time, you also need to provide the CheckPoint of this query, including package, key phrase
and API. The package comes from the package corresponding to the APP to be used. Key phrase is the
key click element or key input character that the Android emulator will perform when executing this
query, which is used to check whether the query has been completed. Key phrase should be noun and part
of query, should be kept as short as possible.

Key phrase can contain multiple pieces of information, "|" means the query passes when any of the
following texts are completed. "|" is used to separate synonymous expressions of the same noun; "&"
indicates that the query must be passed when all texts are completed; sequential CheckPoints are stored in
"[]", and the count increases by one for each passed element. The "ADB Command" to be used is stored
in the API, which may also be empty. For different queries, overlap of related APPs should be as little as
possible.

Deliver your response in this format:
[{

"id": "number"
"query": "text"
"APP": ["APP name1", ...]
"CheckPoint": {

"package": ["APP package name1", ...]
"key phrase": ["text1", ...]
"API: ["API1", ...]"
}

}
...
]

B.3 APP&API statistics
As can be seen from Figure 6, each functional area contains at least one application and its corresponding
API. These applications are sufficient to meet the daily needs of users. In other words, our simulation
environment is almost consistent with the real daily use environment, and it is consistent with the real
daily use environment. Open world information exchange. There are so many practical tools that are
the basic functions of mobile . They have been automatically installed and completed during system
installation, and standard API interfaces for tools are easier to obtain. Our next step is to increase the
number of APIs and SDKs for third-party applications.

B.4 Case study
CheckPoints is a group of words, including packages, key phases, and API, which represent the package
name, action keywords, and API instructions of the application respectively. We regularize these words
and action histories to check whether they select a sufficient and correct number of applications, UI
elements, and APIs to accomplish the given task.

Next, we will give an example of CheckPoints in Figure 7 and Figure 8.

8825

 Ⅱ
 Ⅲ

 Ⅳ

 Ⅴ

 Ⅵ

 Ⅶ Ⅷ Ⅰ

(A) API
COUNT:103

(B) APP
COUNT:30

Ⅰ.Travel Transportation

5

15

3

14

11

38&5

5
7

Ⅱ.Audiovisual Vision Ⅲ.Social Communication Ⅳ.Fashion Shopping
Ⅴ.Information News Ⅵ.Practical Tool&Universal Buttons Ⅶ.Home Life Ⅷ.Book Reading

MicroBlog: 3
Topbuzz: 2

Weather: 5

Calendar: 1
Clock: 6

System: 13

Calculator: 5
Mi Video: 3

Dear Translate: 4
Duokan: 3

MIJIA: 5
Note: 3

Contacts: 4
Message: 4

Photo: 4
File Management:

Ctrip: 0
Amap: 4
Qunar: 1
Himalaya: 2
iQIYI: 4

Tik Tok: 3
JOOXMusic: 3

Theme Wallpaper: 3
App Store: 4

Dianping: 3
YOUPIN: 2

Mi Store: 1

Temu: 1
QQ: 3

Figure 6: APP classification and quantity chart: The largest category is utility tools, where we categorize fundamental
mobile applications. Their distinctive feature is the use of standard API interfaces, and the API functionality is more
comprehensive.

ID: 7
Query:
 Open Ctrip Travel.
APP:
 Ctrip Travel
CheckPoints:
• Package:
 ctrip.android.view
• Key phrase:
 Ctrip
• API:

• ctrip.android.view/.ui.LocalAppsActivity

Figure 7: A test case in SAST.

ID: 2
Query:
 Open Himalaya and play the history.
APP:
 ximalaya
CheckPoints:
• Package:
 com.ximalaya.ting.android
• Key phrase:
 Play history | history
• API:

• com.ximalaya.ting.android/.host.activity.MainActi
vity

Figure 8: A test case in SAMT.

Figure 9 and Figure 10 is an example of a data set and action history. Note that CheckPoints only
check successfully executed instructions in the action history. From the action history, we can see that
the emulator successfully opened the application by API, perform tasks in ctrip package, and selected
"air ticket", "Beijing", and "Shanghai" elements, but failed to input the correct date. According to the
definitions of level 1 and level 2 CheckPoints, level 1 CheckPoint score counts package CheckPoints
covered, and the score of the example is 1/1, level 2 CheckPoint score counts all CheckPoints covered,
and the score of the example is 5/6.

B.5 Supplementary experiments

As can be seen from the table 7, categories with smaller average execution steps generally have higher
success rates and CheckPoints scores. Among them, the travel transportation task has the largest average
number of execution steps and the lowest PassRate. We can think that more complex tasks require longer
execution steps, and the PassRate and CheckPoint score of complex tasks are lower. Travel transportation
task contains more uncertainties and it is difficult to determine whether it is completed, so the PassRate is
the lowest.

8826

ID: 17
Query:
 Please help me search for air tickets from Beijing to Shanghai. I plan to
leave on December 12th.
APP:
 ctrip.android.view
CheckPoints:
• Package:
 ctrip.android.view
• Key phrase:

air ticket,
Beijing,
Shanghai,
December 12th

• API:
• adb shell am start -a ctrip.android.view.flight.FlightSearchActivity

Figure 9: A test case in SAMT.

{'API call': 'adb shell am start -a ctrip.android.view.flight.FlightSearchActivity'
[Call result]:API execution successful'}
{'Action': 'click(<p package="ctrip.android.view" class="android.widget.TextView"
clickable="true">air ticket </p>)'}
{'Action': 'click(<p id="ctrip.android.view:id/a" package="ctrip.android.view"
class="android.widget.TextView" clickable="true">Chengdu</p>)'}
{'Action':input(<p id="ctrip.android.view:id/a" package="ctrip.android.view"
class="android.widget.TextView" clickable="true">Chengdu</p>, Beijing)'}
{'Action': 'click(<p id="ctrip.android.view:id/b" package="ctrip.android.view"
class="android.widget.TextView" clickable="true">Chongqing</p>)'}
{'Action':input(<p id="ctrip.android.view:id/b" package="ctrip.android.view"
class="android.widget.TextView" clickable="true">Chongqing</p>, Shanghai)'}
{'Action': '[Fail]: Invalid element input(<p id="ctrip.android.view:id/a"
package="ctrip.android.view" class="android.widget.TextView" clickable="true">
January 25th </p>, December 12th)'}
{'Action': 'click(<button id="ctrip.android.view:id/a" package="ctrip.android.view"
class="android.widget.Button" clickable="true"> search </button>)'}

Figure 10: A action history of a test case in SAMT.

APP Category Case Quantity Average #Steps PassRate(%) CheckPointl1 CheckPointl2
Travel Transportation 18 8.17 39 83 68
Audiovisual Vision 34 4.03 82 68 72
Social Communication 30 6.40 77 57 63
Fashion Shopping 35 7.97 54 63 61
Information News 24 6.46 67 83 68
Practical Tool 61 2.08 89 87 89
Home Life 46 1.67 89 72 91
Book Reading 23 4.17 78 74 84
Universal Buttons 61 1.20 98 98 99

Table 7: Results on SAST classified by APP categories

C Details for Baseline Model

C.1 Examples for HTML

Figure 11 shows the correspondence between the components in the UI page and the corresponding
HTML code. It is easy to find that most components have text descriptions, but the switch of the alarm
clock does not have a corresponding text description, and LLM will hardly think of it. To click this button,
therefore, component function exploration is what we need to do next.

C.2 Prompts for application Selection and Planning

You are a large language model agent stored on a mobile phone, below I will provide you with a task, the
environment of the current mobile phone interface(Apps information).

Please help me choose the correct APP to perform the task based on the Apps information. If the APP
you want is not available on the current page, you can go to play store and download a suitable APP.

On this basis, you should make a simple plan for completing the task.
Let’s Begin!

C.3 Prompts for API Selection

You are the greatest large language model agent stored on a mobile phone. You will be provided with a
API list that can be called by mobile phone, the task you need to complete, the thought about what have
done and what need to do now.

You are just the first step to interact with the phone, and your follow-up is UI interaction components. If
you find that there is no suitable API and the next step is UI interaction, please answer directly sorry. You
should not use the API to complete the work that has been completed by the UI interactive components in
the previous steps.

Your decision should consider the following factors:

8827

<img id="com.android.deskclock:id/more" package="com.android.deskclock"

class="android.widget.ImageView" description="更多设置" clickable="true">

<p package="com.android.deskclock" class="android.widget.TextView" clickable="true"> 闹钟 </p>

<p package="com.android.deskclock" class="android.widget.TextView" clickable="true"> 时钟 </p>

<p package="com.android.deskclock" class="android.widget.TextView" clickable="true"> 秒表 </p>

<p package="com.android.deskclock" class="android.widget.TextView" clickable="true"> 计时 </p>

<div id="com.android.deskclock:id/viewpager" class="androidx.viewpager.widget.OriginalViewPager"

clickable="false" scrollable="true" bounds="[0,441][1080,2400]"> </div>

<p id="com.android.deskclock:id/time_display" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 06:00 </p>

<p id="com.android.deskclock:id/am_pm" package="com.android.deskclock" class="android.widget.TextView"

clickable="true"> 上午 </p>

<p id="com.android.deskclock:id/days_of_week" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 每天 </p>

<p id="com.android.deskclock:id/time_display" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 07:00 </p>

<p id="com.android.deskclock:id/am_pm" package="com.android.deskclock" class="android.widget.TextView"

clickable="true"> 上午 </p>

<p id="com.android.deskclock:id/days_of_week" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 周一至周五 </p>

<p id="com.android.deskclock:id/time_display" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 08:00 </p>

<p id="com.android.deskclock:id/am_pm" package="com.android.deskclock" class="android.widget.TextView"

clickable="true"> 上午 </p>

<p id="com.android.deskclock:id/days_of_week" package="com.android.deskclock"

class="android.widget.TextView" clickable="true"> 周六 周日 </p>

<button id="com.android.deskclock:id/end_btn2" package="com.android.deskclock"

class="android.widget.ImageButton" description="添加闹钟" clickable="true"> </button>

Figure 11: An example for HTML. The orange box illustrates clickable elements, and the blue frame illustrates the
scrollable range.

1. You need to first judge based on the UI information and actions complete whether the planned action
has been completed.

2. You must only choose one API that should be executed most at present to finish the first action in
next actions.

3. If there is no suitable API, you can just say sorry without providing any additional suggestions.
Strings within "<>" needs to be replaced with specific parameters, you must return a fully executable

adb command. Perhaps you can hand over this task to the UI interaction module.
[API list]:
[Examples]:
"adb shell input tap <x> <y>" is strictly prohibited as an answer. Your [Answer] can only follow the

two templates: "Yes, the most suitable API function call is [adb command]" or "Sorry, [explain]".
Let’s Begin!

C.4 Prompts for UI Selection

You are a large language model agent stored on a mobile phone, You need to give the current one-step
action that needs to be taken to complete the task. Below I will provide you with a task, a plan, the
environment of the current mobile phone interface(UI information), action history, though about the
current status of task completion.

You need to select the most suitable one element and give the corresponding one action based on the UI
information and thought. You need to first judge based on the UI information and action history whether
the planned action has been completed. Your selection should also consider action history, and have the
courage to try new buttons instead of the same buttons from history.

Action can only be the following three functions:
1. click(element)
Click a element, only when clickable="true", the element can be clicked.
2. input(element, text)
When you decide to enter, you first need to select the unit by clicking.
3. scroll [xstart, ystart][xend, yend]

8828

Scroll the screen from [xstart, ystart] to [xend, yend]. The four parameters you fill in cannot be directly
the same as xmin, ymin, xmax, ymax. x cannot exceed (xmin, xmax), and y cannot exceed (ymin, ymax).

[Examples]:
Remember:
1.Click and input have higher priority than scrolling. Scrolling is only considered when all elements of

the current interface are indeed irrelevant to the task.
2.When you fail to try repeatedly in one interface, maybe you can try to turn back to select other

options.
3.When you need to switch APPs, you need to return to the desktop first.
4.When input fails multiple times, you should first select it with click.
Let’s Begin!

C.5 Prompts for Thought Generation

You are a large language model agent stored on a mobile phone, below I will provide you with a task,
a plan, the environment of the current mobile phone interface before action (Previous UI information),
current action, the environment of the current mobile phone interface(Now UI information), action history.
Action history records completed operations, including click, input, scroll and API list.

You need to summarize these four aspects: changes in the UI page, actions that have been completed,
task progress, one next action.

[one next action] need to choose one among click, input, scroll and one API as the next action, and give
one and only one operation object. [One next action] strictly refer to [current action] and [action history]
result to do the next action.

[action history] are all previous historical actions, and [current action] is the current action that causes
the UI page to change.

[Examples]:
Let’s Begin!

C.6 Prompts for Task Completion

You are a large language model agent stored on a mobile phone, below I will provide you with a task, the
environment of the current mobile phone interface(UI information), historical action information. You
need to judge whether the current task has been completed based on the current environment and historical
action information.

C.7 Algorithm Examples

This is a running process of the algorithm on a test case of SAMT
[data]:
{

"id": 2,
"query": [

"Play recent records in history with Himalaya."
],
"check_point": {

"activity":[
"com.ximalaya.ting.android.host.activity.MainActivity",
& "com.ximalaya.ting.android.host.activity.MainActivity"

],
"key phrase": [

"Playing history" | "history "
],

"package": "com.ximalaya.ting.android"
},

8829

"domain": "smartApp/Ximalaya"
}

According to algorithm 1, LLM generates a plan based on the query in data as a task and a given list of
available applications as follows:
[Task]: Play recent records in history with Himalaya.
[app list]:
[
{

"name": "ctrip",
"function_description": "As an authoritative online travel service company in the industry, Ctrip’s

travel hotel booking platform covers approximately 1.4 million hotels around the world; air ticket
products cover more than 300 international airlines; these airlines operate flights to major cities around
the world, providing more than 2 million Air routes connect more than 5,000 cities in about 200 countries
and regions..."
},

...
]
[Plan]: I should open the Himalaya app and find the "Playback History" option in the app to view recent
playback history.

Then the task plan is executed iteratively. In each iteration, the model accepts task, app list, action
history, plan, and current HTML as input, and outputs execution API calls or UI operation instructions.

A short example of AH(action history), thought, Html will be shown below:
[Action History]:
{’API call’: ’adb shell am start -n com.ximalaya.ting.android/.host.activity.MainActivity. [Call result]:API
execution successful’}
{’Action’: ’[Fail]: Invalid element click(<div id="com.ximalaya.ting.android:id/xm_ad_host_count_down
_click_lay_no_click_view" package="com.ximalaya.ting.android" class="android.view.View" descrip-
tion="Skip ads" clickable="true"> </div>)’}
{’Action’: ’click(<button id="com.ximalaya.ting.android:id/tab_myspace_and_listen" pack-
age="com.ximalaya.ting.android" class="android.widget.RadioButton" clickable="true"> my
</button>)’}
[thought]:
Changes: The current page is the main page of the Ximalaya app. There is no change between the
previous and current pages.
Task progress: From the current action and action history, I am currently on the main page of the
Ximalaya app, ready to check the play history.
Actions completed: From the current action and action history, I have opened the Ximalaya app.
One next action: Click on the "play history" option to view the recent play history.
[HTML]:
<p package="com.ximalaya.ting.android" class="android.widget.TextView" clickable="true"> member-
ship </p>
<p id="com.ximalaya.ting.android:id/main_tv_user_level" package="com.ximalaya.ting.android"
class="android.widget.TextView" clickable="true"> user level </p>
<p id="com.ximalaya.ting.android:id/main_tv_listen_duration_title" pack-
age="com.ximalaya.ting.android" class="android.widget.TextView" clickable="true"> Listen (minutes)
</p>
<p package="com.ximalaya.ting.android" class="android.widget.TextView" clickable="true"> fans </p>
<p package="com.ximalaya.ting.android" class="android.widget.TextView" clickable="true"> Follow
</p>
<p package="com.ximalaya.ting.android" class="android.widget.TextView" clickable="true"> live </p>
<button package="com.ximalaya.ting.android" class="android.widget.Button" clickable="true"> message

8830

</button>
<button package="com.ximalaya.ting.android" class="android.widget.Button" clickable="true"> history
</button>
<button package="com.ximalaya.ting.android" class="android.widget.Button" clickable="true"> favorite
</button>
<button package="com.ximalaya.ting.android" class="android.widget.Button" clickable="true"> local
</button>
<button package="com.ximalaya.ting.android" class="android.widget.Button" clickable="true">
purchased </button>
<img package="com.ximalaya.ting.android" class="android.widget.ImageView" description="play"
clickable="true">
A example of api action or ui action will be shown below:
[Action]: [adb shell am start -n com.ximalaya.ting.android/.host.activity.MainActivity]
[Action]: click(<button package="com.ximalaya.ting.android" class="android.widget.Button" click-
able="true"> history </button>)

After successful execution, the current action will be added to the action history, the updated HTML of
the emulator will be read, and handed over to LLM to generate a new thought and determine whether the
task is over.
[thought]:
Changes: The current page is the "My" page in the Ximalaya app.
Actions Complete: I have opened the Ximalaya app and clicked the "my" button, then clicked the "play
history" button.
Task progress: The current mission progress is to view the play history.
One next action: Click on the "play" item to continue playing.
[Finished]: No, task is not finished.

8831

