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Abstract
Individual neurons participate in the represen-
tation of multiple high-level concepts. To what
extent can different interpretability methods
successfully disentangle these roles? To help
address this question, we introduce RAVEL
(Resolving Attribute–Value Entanglements in
Language Models), a dataset that enables
tightly controlled, quantitative comparisons
between a variety of existing interpretabil-
ity methods. We use the resulting concep-
tual framework to define the new method
of Multi-task Distributed Alignment Search
(MDAS), which allows us to find distributed
representations satisfying multiple causal cri-
teria. With Llama2-7B as the target language
model, MDAS achieves state-of-the-art results
on RAVEL, demonstrating the importance of
going beyond neuron-level analyses to identify
features distributed across activations. We re-
lease our benchmark at https://github.com/
explanare/ravel.

1 Introduction

A central goal of interpretability is to localize an
abstract concept to a component of a deep learning
model that is used during inference. However, this
is not as simple as identifying a neuron for each
concept, because neurons are polysemantic – they
represent multiple high-level concepts (Smolensky,
1988; Rumelhart et al., 1986; McClelland et al.,
1986; Olah et al., 2020; Cammarata et al., 2020;
Bolukbasi et al., 2021; Gurnee et al., 2023).

Several recent interpretability works (Bricken
et al., 2023; Cunningham et al., 2024; Geiger et al.,
2023b; Wu et al., 2023) tackle this problem us-
ing a featurizer that disentangles the activations of
polysemantic neurons by mapping to a space of
monosemantic features that each represent a dis-
tinct concept. Intuitively, these methods should
have a significant advantage over approaches that
identify concepts with sets of neurons. However,
these methods have not been benchmarked.
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Figure 1: An overview of the RAVEL benchmark, which
evaluates how well an interpretability method can find
features that isolate the causal effect of individual at-
tributes of an entity.

To facilitate these method comparisons, we in-
troduce a diagnostic benchmark, RAVEL (Resolv-
ing Attribute–Value Entanglements in Language
Models). RAVEL evaluates interpretability meth-
ods on their ability to localize and disentangle the
attributes of different types of entities encoded as
text inputs to language models (LMs). For exam-
ple, the entity type “city” has instances such as
“Paris” or “Tokyo”, which each have attributes for
“continent”, namely “Europe” and “Asia”. An in-
terpretability method must localize this attribute to
a group of neurons N, learn a featurizer F (e.g., a
rotation matrix or sparse autoencoder), and identify
a feature F (e.g., a linear subspace of the residual
stream in a Transformer) for the attribute. RAVEL

contains five types of entities (cities, people names,
verbs, physical objects, and occupations), each with
at least 500 instances, at least 4 attributes, and at
least 50 prompt templates per entity type.

The metric we use to assess interpretability meth-
ods is based on interchange interventions (also
known as activation patching). This operation has
emerged as a workhorse in interpretability, with
a wide swath of research applying the technique
to test if a high-level concept is stored in a model
representation and used during inference (Geiger
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et al., 2020; Vig et al., 2020; Geiger et al., 2021;
Li et al., 2021; Finlayson et al., 2021; Meng et al.,
2022; Chan et al., 2022; Geva et al., 2023; Wang
et al., 2023; Hanna et al., 2023; Conmy et al., 2023;
Goldowsky-Dill et al., 2023; Hase et al., 2023;
Todd et al., 2024; Feng and Steinhardt, 2024; Cun-
ningham et al., 2024; Huang et al., 2023; Tigges
et al., 2023; Lieberum et al., 2023; Davies et al.,
2023; Hendel et al., 2023; Ghandeharioun et al.,
2024).

Specifically, we use the LM to process a prompt
like “Paris is in the continent of” and then
intervene on the neurons N to fix the feature F to
be the value it would have if the LM were given a
prompt like “Tokyo is a large city.” If this
leads the LM to output “Asia” instead of “Europe”,
then we have evidence that the feature F encodes
the attribute “continent”. Then, we perform the
same intervention when the LM processes a prompt
like “People in Paris speak”. If the LM outputs
“French” rather than “Japanese’, then we have
evidence that the feature F has disentangled the
attributes “continent” and “language”.

A variety of existing interpretability methods are
easily cast in the terms needed for RAVEL evalu-
ations, including supervised probes (Peters et al.,
2018; Hupkes et al., 2018; Tenney et al., 2019;
Clark et al., 2019), Principal Component Analysis
(Tigges et al., 2023; Marks and Tegmark, 2023),
Differential Binary Masking (DBM: Cao et al.
2020; Csordás et al. 2021; Cao et al. 2022; Davies
et al. 2023), sparse autoencoders (Bricken et al.,
2023; Cunningham et al., 2024), and Distributed
Alignment Search (DAS: Geiger et al. 2023b; Wu
et al. 2023). Our apples-to-apples comparisons re-
veal conceptual similarities between the methods.

In addition, we propose multi-task training ob-
jectives for DBM and DAS. These objectives allow
us to find representations satisfying multiple causal
criteria, and we show that Multi-task DAS is the
most effective of all the methods we evaluate at
identifying disentangled features. This contributes
to the growing body of evidence that interpretabil-
ity methods need to identify features that are dis-
tributed across neurons.

2 The RAVEL Dataset

The design of RAVEL is motivated by four high-
level desiderata for interpretability methods:

1. Faithful: Interpretability methods should accu-
rately represent the model to be explained.

Entity
Type

Attributes # Entities # Prompt
Templates

City Country, Language,
Latitude, Longitude,
Timezone, Continent

3552 150

Nobel
Laureate

Award Year, Birth Year,
Country of Birth, Field,
Gender

928 100

Verb Definition, Past Tense,
Pronunciation, Singular

986 60

Physical
Object

Biological Category,
Color, Size, Texture

563 60

Occupation Duty, Gender Bias,
Industry, Work Location

799 50

Table 1: Types of entities and attributes in RAVEL.

2. Causal: Interpretability methods should ana-
lyze the causal effects of model components on
model input–output behaviors.

3. Generalizable: The causal effects of the iden-
tified components should generalize to similar
inputs that the underlying model makes correct
predictions for.

4. Isolating individual concepts: Interpretability
methods should isolate causal effects of individ-
ual concepts involved in model behaviors.

The goal of RAVEL is to assess the ability of meth-
ods to isolate individual explanatory factors in
model representations (desideratum 4), and do so
in a way that is faithful to how the target models
work (desideratum 1). The dataset train/test struc-
ture seeks to ensure that methods are evaluated by
how well their explanations generalize to new cases
(desideratum 3), and RAVEL is designed to support
intervention-based metrics that assess the extent
to which methods have found representations that
causally affect the model behavior (desideratum 2).

RAVEL is carefully curated as a diagnostic
dataset for the attribute disentanglement problem.
RAVEL has five types of entity, where every in-
stance has every attribute associated with its type.
Table 1 provides an overview of RAVEL’s structure.

The Attribute Disentanglement Task We begin
with a set of entities E = {E1, . . . , En}, each with
attributes A = {A1, . . . , Ak}, where the correct
value of A for E is given by AE . Our interpretabil-
ity task asks whether we can find a feature F that
encodes the attribute A separately from the other
attributes A \ {A}. For Transformer-based models
(Vaswani et al., 2017), a feature might be a dimen-
sion in a hidden representation of an MLP or a
linear subspace of the residual stream.

We do not know a priori the degree to which it is
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possible to disentangle a model’s representations.
However, our benchmark evaluates interpretability
methods according to the desiderata given above
and so methods will need to be faithful to the
model’s underlying structure to succeed. In other
words, assuming methods are faithful, we can favor
methods that achieve more disentanglement.

2.1 Data Generation
Selecting Entity Types and Attributes We first
identify entity types from existing datasets that
potentially have thousands of instances (see Ap-
pendix A.1), such as cities or famous people. More-
over, each entity type has multiple attributes with
different degrees and types of associations. For
example, for attributes related to city, “country” en-
tails “continent”, but not the reverse; “country” is
predictable from “timezone” but non-entailed; and
“latitude” and “longitude” are the least correlated
compared with the previous two pairs, but have
identical output spaces. These entity types together
cover a diverse set of attributes such that predicting
the value of the attribute uses factual, linguistic, or
commonsense knowledge.

Constructing Prompts We consider two types
of prompts: attribute prompts and entity prompts.
Attribute prompts PA

E contain mentions of E
and instruct the model to output the attribute
value AE . For example, E = Paris is an
instance of the type “city”, which has an at-
tribute A = Continent that can be queried with
prompts “Paris is in the continent of”.
Prompts can also be JSON-format, e.g., “{"city":
"Paris", "continent":"”, which reflects how
entity–attribute association might be encoded in
training data. For each format, we do zero- and few-
shot prompting. In addition to attribute prompts,
entity prompts WE contain mentions of the E, but
does not query any A ∈ A. For example, “Tokyo
is a large city”. We sample entity prompts
from the Wikipedia corpus.1

For a set of entities E and a set of attributes to
disentangle A, the full set of prompts is

D = {x : x ∈ PA
E ∪WE , E ∈ E , A ∈ A}

Generating Splits RAVEL offers two settings,
Entity and Context, to evaluate the generalizabil-
ity (desideratum 3) of an interpretability method

1We use the 20220301.en version pre-processed
by HuggingFace at https://huggingface.co/datasets/
wikipedia

across unseen entities and contexts. Each setting
has a predefined train/dev/test structure. In Entity,
for each entity type, we randomly split the entities
into 50%/25%/25% for train/dev/test, but use the
same set of prompt templates across the three splits.
In Context, for each attribute, we randomly split
the prompt templates into 50%/25%/25%, but use
the same set of entities across the three splits.

Filtering for a Specific Model When evaluating
interpretability methods that analyze a model M,
we generally focus on a subset of the instances
where M correctly predicts the values of the at-
tributes (see Appendix A.2). This allows us to
focus on understanding why models succeed, and
it means that we don’t have to worry about how
methods might have different biases for incorrect
predictions.

2.2 Interpretability Evaluation

Interchange Interventions A central goal of
RAVEL is to assess methods by the extent to which
they provide causal explanations of model behav-
iors (desideratum 2). To build such analyses, we
need to put models into counterfactual states that
allow us to isolate the causal effects of interest.

The fundamental operation for achieving this is
the intervention (Spirtes et al., 2000; Pearl, 2001,
2009): we change the value of a model-internal
state and study the effects this has on the model’s
input–output behavior. In more detail: let M(x) be
the entire state of the model when M receives input
x, i.e., the set of all input, hidden, and output rep-
resentations created during inference. Let MN←n

be the model where neurons N are intervened upon
and fixed to take on the value n ∈ Values(N).

Geiger et al. (2023b) generalize this operation to
intervene upon features that are distributed across
neurons using a bijective featurizer F . Let MF←f

be the model where neurons N are projected into a
feature space using F , the feature F is fixed to take
on value f , and then the features are projected back
into the space of neural activations using F−1. If
we let τ(M(x)) be the token that a model predicts
for a given prompt x ∈ D, then comparisons be-
tween τ(M(x)) and τ(MF←f (x)) yield insights
into the causal role that F plays in model behavior.

However, most conceivable interventions fix
model representations to be values that are never re-
alized by any input. To characterize the high-level
conceptual role of a model representation, we need
a data-driven intervention that sets a representation
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to values it could actually take on. This is achieved
by the interchange intervention, which fixes a fea-
ture F to the value it would take if a different input
x′ were provided:

II(M, F, x, x′) def
=

τ
(
MF←GetFeature(M(x′),F )(x)

)
(1)

where GetFeature(M(x′), F ) is the value of F in
M(x′). Interchange interventions represent a very
general technique for identifying abstract causal
processes that occur in complex black-box systems
(Beckers and Halpern, 2019; Beckers et al., 2020;
Geiger et al., 2023a).

Evaluation Data For evaluation, each interven-
tion example consists of a tuple: an input x ∈ PA

E ,
an input x′ ∈ PA′

E′ ∪ WE′ , a target attribute A∗,
and an intervention label y. If A∗ = A, then
y is AE′ and otherwise y is AE . For exam-
ple, if the set of “city” entities to evaluate on is
{"Paris", "Tokyo"} and the goal is to disentan-
gle the “country” attribute from the “continent” at-
tribute, then the set of test examples becomes the
one shown in Figure 1.

Metrics If M achieves behavioral success on
a dataset, we can use that dataset to evaluate an
interpretability method on its ability to identify a
collection of neurons N, a featurizer F for those
neurons, and a feature F that represents an attribute
A separately from all others attributes A \ {A}.

If F encodes A, then interventions on F should
change the value of A. When M is given a prompt
x ∈ PA

E , we can intervene on F to set the value to
what it would be if a second prompt x′ ∈ PA′

E′ ∪
WE′ were provided. The token predicted by M
should change from AE to AE′ :

Cause(A,F,M,D)
def
=

ED
[
II(M, F, x, x′) = AE′

]

If F isolates A, then interventions on F should not
cause the values of other attributes A∗ ∈ A \ {A}
to change. When M is given a prompt x∗ ∈ PA∗

E ,
we can again intervene on F to set the value to what
it would be if a second prompt x′ ∈ PA′

E′ ∪ WE′

were provided. The token predicted by M should
remain A∗E :

Iso(A,F,M,D)
def
=

1

|A \ {A}|
∑

A∗∈A\{A}
ED

[
II(M, F, x∗, x′) = A∗E

]

To balance these two objectives, we define the
Disentangle score as a weighted average between
Cause and Iso.

Disentangle(A,F,M,D) =

1

2

[
Cause(A,F,M,D) + Iso(A,F,M,D)

]

The score on RAVEL for an entity type is its
average Disentangle score over all attributes.

In practice, two attributes might not be fully dis-
entanglable in the model M so there is no guar-
antee that it is possible to find a feature F that
achieves Cause = 1 and Iso = 1 at the same time.
However, evidence that two attributes might not
be separable is an insight into how knowledge is
structured in the model.

3 Interpretability Methods

We use RAVEL to evaluate a variety of interpretabil-
ity methods on their ability to disentangle attributes
while generalizing to novel templates and enti-
ties. Each method uses data from the training
split to find a set of neurons N, learn a featur-
izer F , and find a feature FA that captures an
attribute A ∈ A independent from the other at-
tributes. In Section 4, we describe the baseline
procedure we use for considering different sets of
neurons. In this section, we define methods for
learning a featurizer and identifying a feature given
a set of neurons. For each method, the core inter-
vention for A is given by II(M, FA, x, x

′) where
FA is defined by the method. In this section, we
use GetVals(M(x),N) to mean the activations of
neurons N when M processes input x.

3.1 PCA

Principal Component Analysis (PCA) is a dimen-
sionality reduction method that minimizes informa-
tion loss. In particular, given a set of real valued
vectors V ⊂ Rn, |V| > n, the principal compo-
nents are n orthogonal unit vectors p1, . . . ,pn that
form an n× n matrix:

PCA(V) =
[
p1 . . . pn

]

For our purposes, the orthogonal matrix formed by
the principal components serves as a featurizer that
maps neurons N into a more interpretable space
(Chormai et al., 2022; Marks and Tegmark, 2023;
Tigges et al., 2023). Given an attribute A, a training
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dataset D from RAVEL for a particular entity type,
a model M, and a set of neurons N, we define

FA(n) =

nTPCA({GetVals(M(x),N) : x ∈ D})
PCA is an unsupervised method, so there is no

easy way to tell what information is encoded in
each principal component. To solve this issue, for
each attribute A ∈ A we train a linear classifier
with L1 regularization to predict the value of A
from the featurized neural representations. Then,
we define the feature FA to be the set of dimensions
assigned a weight by the classifier that is greater
than a hyperparameter ϵ.

3.2 Sparse Autoencoder
A recent approach to featurization is to train an
autoencoder to project neural activations into a
higher dimensional sparse feature space and then
reconstruct the neural activations from the features
(Bricken et al., 2023; Cunningham et al., 2024).
We train a sparse autoencoder on the loss
∑

x∈D
||GetVals(M(x),N)−

(
W2f+b2

)
||2+||f ||1

f = ReLU(W1(GetVals(M(x),N)− b2) + b1)

with W1 ∈ Rn×m, W2 ∈ Rm×n, b1 ∈ Rm, and
b2 ∈ Rn. To construct a training datset, we sam-
ple 100k sentences from the Wikipedia corpus for
each entity type, each containing a mention of an
entity in the training set. We extract the 4096-
dimension hidden states of Llama2-7B at the target
intervention site as the input for training a sparse
autoencoder with 16384 features.

We use the autoencoder to define a featurizer

FA(n) = ReLU(W1(n− b2) + b1)

and an inverse F−1A (n) = W2n+ b2.
An important caveat to this method is that the

featurizer is only truly invertible if the autoencoder
has a reconstruction loss of 0. The larger the loss
is, the more unfaithful this interpretability method
is to the model being analyzed. All other methods
considered use an orthogonal matrix, which is truly
invertible up to floating point precision.

Similar to PCA, sparse autoencoders are an un-
supervised method that does not produce features
with obvious meanings. Again, to solve this issue,
for each attribute A ∈ A we train a linear classifier
with L1 regularization and define the feature FA to
be the set of dimensions assigned a weight that is
greater than a hyperparameter ϵ.

3.3 Relaxed Linear Adversarial Probe

Supervised probes are a popular interpretability
technique for analyzing how neural activations cor-
relate with high-level concepts (Peters et al., 2018;
Hupkes et al., 2018; Tenney et al., 2019; Clark
et al., 2019). When probes are arbitrarily powerful,
this method is equivalent to measuring the mutual
information between the neurons and the concept
(Pimentel et al., 2020; Hewitt et al., 2021). How-
ever, probes are typically simple linear models in
order to capture how easily the information about
a concept can be extracted. Probes have also been
used to great effect on the task of concept erasure
(Ravfogel et al., 2020; Elazar et al., 2021; Ravfogel
et al., 2022).

Following the method of Ravfogel et al. (2022),
we train a relaxed linear adversarial probe (RLAP)
to learn a linear subspace parameterized by a set of
k orthonormal vectors W ∈ Rk×n that captures an
attribute A, using the following loss objective:

min
θ

max
W

∑

x∈D
CE

(
θT f , AEx

)

f = (I −W TW )
(
GetVals(M(x),N)

)

where f is the representation of the entity with
the attribute information erased, and θ is a linear
classifier that tries to predict the attribute value
AEx from the erased entity representation.

We define the F using the set of k orthonormal
vectors that span the row space of W and the set of
n− k orthonormal vectors that span the null space:

FA(n) = n
[
r1 . . . rk uk+1 . . . un

]

Our feature FA is the first k dimensions of the
feature space, i.e. the row space of W . Intuitively,
since the linear probe was trained to extract the
attribute A, the rowspace is the linear subspace of
neural activations that the probe is “looking at” to
make predictions.

3.4 Differential Binary Masking

Differential Binary Masking (DBM) learns a binary
mask to select a set of neurons that causally rep-
resents a concept (Cao et al., 2020; Csordás et al.,
2021; Cao et al., 2022; Davies et al., 2023). The
loss objective used to train the mask is a combina-
tion of matching the counterfactual behavior and
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Method Supervision Entity Context

Full Rep. None 40.5 39.5
PCA None 39.5 39.1
SAE None 48.6 46.8
RLAP Attribute 48.8 50.9
DBM Counterfactual 52.2 49.8
DAS Counterfactual 56.5 57.3
MDBM Counterfactual 53.7 53.9
MDAS Counterfactual 60.1 65.6

Table 2: The disentanglement score on RAVEL for each
interpretability method. Numbers are represented in %.

forcing the mask to be sparse with coefficient λ:

LCause = CE(τ(MN←n(x)), AE′) + λ||m||1
n =

(
1− σ(m/T )

)
◦ GetVals(M(x),N)

+ σ(m/T ) ◦ GetVals(M(x′),N)

where the intervention is determined by inputs x, x′

and learnable parameter m ∈ Rn, where ◦ is ele-
ment wise multiplication and T ∈ R is a tempera-
ture annealed throughout training.

The feature space is the original space of neural
activations, i.e., featurizer FA(n) = n. The feature
FA is the set of dimensions i where 1−σ(mi/T ) <
ϵ for a (small) hyperparameter ϵ.

3.5 Distributed Alignment Search
Distributed Alignment Search (DAS) (Geiger et al.,
2023b) learns a linear subspace of a model repre-
sentation with a training objective defined using
interchange interventions. In the original work, the
linear subspace learned by DAS is parameterized
as an n × n orthogonal matrix Q = [u1 . . .un],
which rotates the representation into a new coor-
dinate system, i.e., FA(n) = Q⊤n. The set of
feature FA is the first k dimensions of the rotated
subspace, where k is a hyperparameter. The matrix
Q is learned by minimizing the following loss:

LCause(A,FA,M) = CE(II(M, FA, x, x
′), AE′)

Computing Q is expensive, as it requires comput-
ing n orthogonal vectors. To avoid instantiating
the full rotation matrix, we use an alternative pa-
rameterization where we only learn the k ≪ n
orthogonal vectors that form the feature FA (see
Appendix B.4).

3.6 Multi-task DBM and DAS
To address the disentanglement problem, we pro-
pose a multitask extension of DBM (MDBM) and
DAS (MDAS). The original training objective of
DBM and DAS only optimizes for the Cause score,

Figure 2: Cause and Iso scores for each method when
using different feature sizes, shown as the ratio (%)
between the dimension of FA and the dimension of the
output space of F . Each method has three data points
that vary from using very few (≈1%) to half (≈50%) of
the dimensions. Increasing feature dimensions generally
leads to higher Cause score, but lower Iso score. Figure
best viewed in color.

without considering the impact on the Iso score.
We introduce the Iso aspect into the training objec-
tive through multitask learning. For each attribute
A∗ ∈ A \ {A}, we define the Iso objective as

LIso(A,FA,M) = CE(II(M(x), FA, x
′), A∗E)

We minimize a linear combination of losses from
each task:

LDisentangle(A, FA,M) =

LCause(A,FA,M)+
∑

A∗∈A\{A}

LIso(A
∗, FA,M)

|A \ {A}|

4 Experiments

We evaluate the methods described in Section 3 on
RAVEL with Llama2-7B (Touvron et al., 2023), a
32-layer decoder-only Transformer model, as the
target LM. Implementation details of each method
are provided in Appendix B.

4.1 Setup
We consider the residual stream representations
at the last token of the entity as our potential in-
tervention sites. For autoregressive LMs, the last
token of the entity tE (e.g., the token “is” in the
case of “Paris”) likely aggregates information of
the entity (Meng et al., 2022; Geva et al., 2023).
For Transformer-based LMs like Llama2, an ac-
tivation vector NL

t in the residual stream is cre-
ated for each token t at each Transformer layer
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(a) Cause score for all attributes when intervening on the attribute features iden-
tified by DAS (left) and MDAS (right). A Cause score of 0.62 for column
Continent, row Timezone (bottom left corner), means that, when intervening on
the Continent feature, the same subspace changes Timezone 62% of the time.

(b) The Cause, Iso, and Disentangle score
on the Entity split for the “country” feature
found by MDAS. The attributes of cities be-
come more disentangled across layers.

Figure 3: Additional results for the MDAS method.

L. As the contributions of the MLP and attention
heads must pass through the residual stream, it
serves as a bottleneck. Therefore, we will limit our
methods to examining the set of representations
N = {NL

tE
: L ∈ {1, . . . , 32}}.

This simplification is only to establish baseline
results on the RAVEL benchmark. We expect the
best methods will consider other token representa-
tions, such as the remainder of the token sequence
that realizes the entity.

4.2 Results

We evaluate each method on every representation
NL

tE
and report the highest disentanglement score

on test splits in Table 2. We additionally include a
baseline that simply replaces the full representation
NL

tE
regardless of what attribute is being target-

ted (see Full Rep. in Table 2). A breakdown of
the results with per-attribute Cause and Iso is in
Appendix C.

In Figure 2, we show for each method, how the
Iso and Cause scores vary as we change the dimen-
sionality of FA, the feature targeted for interven-
tion. For RLAP, DAS, and MDAS, the dimension-
ality of FA is a hyperparameter we vary directly.
For other methods, we vary the coefficient of L1
penalty to vary the size of FA. Details are given in
Appendix B.

In Figure 3, we focus on using MDAS, the best
performing method, to understand how attributes
are disentangled in Llama2-7B. Figure 3a shows
two heat maps summarizing the performance of
DAS and MDAS on the entity type “city”. These
heat maps also show how attributes have different

levels of disentanglement. Figure 3b shows how
the Cause, Iso, and Disentangle scores change
for the “country” attribute across model layers.

Methods with counterfactual supervision
achieve strong results while methods with
unsupervised featurizers struggle. MDAS is
the state-of-the-art method on RAVEL, being able
to achieve high Disentangle scores while only
intervening on a feature FA with a dimensionality
that is 4% of |N| where N are the neurons the
feature is distributed across (Figure 2). DBM,
MDBM, and DAS, the other methods that are
trained with interventions using counterfactual
labels as supervision, achieve the next best perfor-
mance. PCA and Sparse Autoencoder achieve the
lowest Disentangle scores, which aligns with the
prior finding that disentangled representations are
difficult to learn without supervision (Locatello
et al., 2018). Unsurprisingly, more supervision
results in higher performance.

Multi-task supervision is better at isolating at-
tributes. Adding multitask objectives to DBM
and DAS increases the overall disentanglement
score by 1.5%/4.1% and 3.6%/8.3% on the
Entity/Context split respectively. To further il-
lustrate the differences, we compare DAS with
MDAS in Figure 3a. On the left, attributes such
as “continent” and “timezone” are naturally entan-
gled with all other attributes; intervening on the
feature learned by DAS for any city attribute will
also change these two attributes. In contrast, in
Figure 3a right, MDAS is far more successful at
disentangling these attributes, having small Cause
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scores in all off-diagonal entries.

Some groups of attributes are more difficult
to disentangle than others. As show in Fig-
ure 3a, the attribute pairs “country–language” and
“latitude–longitude” are difficult to disentangle.
When we train DAS to find a feature for either
of these attributes (Figure 3a left), the same feature
also has causal effects on the other attribute. Even
with the additional supervision (Figure 3a right),
MDAS cannot isolate these attributes. Changing
one of these entangled attributes has seemingly un-
avoidable ripple effects (Cohen et al., 2024) that
change the other. In contrast, the attribute pair
“language–continent” can be disentangled. More-
over, the pairs that are difficult to disentangle are
consistent across all five supervised methods in
our experiment, despite these methods using dif-
ferent training objectives. We include additional
visualizations in Appendix C.2.

Attributes are gradually disentangled across lay-
ers. The representations of different attributes
gradually disentangle as we move towards later lay-
ers, as shown in Figure 3b. Early layer features
identified by MDAS fail to generalize to unseen
entities, hence low Cause score. While MDAS is
able to identify a feature with relatively high Cause
starting at layer 8, the Iso increases from 0.5 to 0.8
from layer 8 to layer 16. It is not until layer 16 that
the highest Disentangle score is achieved.

5 Related Work

Intervention-based Interpretability Methods
Intervention-based techniques, branching off from
interchange intervention (Vig et al., 2020; Geiger
et al., 2020) or activation patching (Meng et al.,
2022), have shown promising results in uncovering
causal mechanisms of LMs. They play important
roles in recent interpretability research of LMs such
as causal abstraction (Geiger et al., 2021, 2023b),
causal tracing to locate factual knowledge (Meng
et al., 2022; Geva et al., 2023), path patching or
causal scrubbing to find causal circuits (Chan et al.,
2022; Conmy et al., 2023; Goldowsky-Dill et al.,
2023), and Distributed Alignment Search (Geiger
et al., 2023b). Previous works suggest that activa-
tion interventions that result in systematic counter-
factual behaviors provide clear causal insights into
model components.

Isolating Individual Concepts LMs learn highly
distributed representations that encode multiple

concepts in a overlapping sets of neurons (Smolen-
sky, 1988; Olah et al., 2020; Elhage et al., 2022).
Various methods have been proposed to find com-
ponents that capture a concept, such as finding a
linear subspace that modifies a concept (Ravfo-
gel et al., 2020, 2022; Belrose et al., 2023; Cao
et al., 2020; Geiger et al., 2023b) and generating
a sparse feature space where each direction cap-
tures a word sense or is more interpretable (Arora
et al., 2018; Bricken et al., 2023; Cunningham et al.,
2024; Tamkin et al., 2023). However, these meth-
ods have not been evaluated against each other on
their ability to isolate concepts. Isolating an indi-
vidual concept is also related to the goal of “disen-
tanglement” in representation learning (Schölkopf
et al., 2021), where each direction captures a sin-
gle generative factor. In this work, we focus on
isolating the causal effect of a representation.

Knowledge Representation in LMs Under-
standing knowledge representation in LMs starts
with probing structured linguistic knowledge (Con-
neau et al., 2018; Tenney et al., 2019; Manning
et al., 2020). Recent work expands to factual knowl-
edge stored in Transformer MLP layers (Geva et al.,
2021; Dai et al., 2022; Meng et al., 2022), associa-
tions represented in linear structures (Merullo et al.,
2023; Hernandez et al., 2024; Park et al., 2023), and
deeper study of the semantic enrichment of subject
representation (Geva et al., 2023). These findings
suggest LMs store knowledge modularly, motivat-
ing the disentanglement objective in our work.

Benchmarking Interpretability Methods Test-
ing the faithfulness of interpretability method relies
on counterfactuals. Existing counterfactual bench-
marks use behavioral testing (Atanasova et al.,
2023; Schwettmann et al., 2023; Mills et al., 2023),
interventions (Abraham et al., 2022), or a combi-
nation of both (Huang et al., 2023). Recent model
editing benchmarks (Meng et al., 2022; Zhong
et al., 2023; Cohen et al., 2024) also provide coun-
terfactuals that have potential for evaluating in-
terpretability methods. MQUAKE (Zhong et al.,
2023) and RIPPLEEDITS (Cohen et al., 2024), in
particular, consider entailment relationships of at-
tributes, while we focus on disentanglement.

6 Conclusion

We present RAVEL a benchmark for evaluating
the ability of interpretability methods to localize
and disentangle entity attributes in LMs in a causal,
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generalizable manner. We show how RAVEL can
be used to evaluate five different families of in-
terpretability methods that are commonly used in
the community. We benchmark several strong in-
terpretability methods on RAVEL with Llama2-7B
model as baselines, and we introduce a multi-task
objective that improves the performance of Dif-
ferential Binary Masking (DBM) and Distributed
Alignment Search (DAS). Multi-task DAS achieves
the best results in our experiments. Results on our
attribute disentanglement task also offer insights
into the different levels of entanglement between
attributes and the emergence of disentangled repre-
sentations across layers in the Llama2-7B model.

The community has seen an outpouring of in-
novative new interpretability methods. However,
these methods have not been systematically eval-
uated for whether they are faithful, generalizable,
causally effective, and able to isolate individual
concepts. We release RAVEL2 to the community
and hope it will help drive the assessment and de-
velopment of interpretability methods that satisfy
these criteria.

Limitations

Our attribute disentanglement results in Section 4
are based on the Llama2-7B model. While Llama2-
7B uses the widely adopted decoder-only Trans-
former architecture, different model architectures
or training paradigms could produce LMs that fa-
vor different interpretability methods. Hence, when
deciding which interpretability method is the best
to apply to a new model, we encourage people to
instantiate RAVEL on the new model.

When choosing intervention sites, we limit our
search to the residual stream above the last entity
token. However, representations of attributes can
be distributed across multiple tokens or layers. We
encourage future work to explore different inter-
vention sites when using this benchmark.

Ethics Statement

In this paper, we present an interpretability bench-
mark that aims to assess the faithfulness, general-
izability, causal effects, and the ability to isolate
individual concepts in language models. While an
interpretability method that satisfies these criteria
could be useful for assessing model bias or steering
model behaviors, the same method might also be

2https://github.com/explanare/ravel

used for manipulating models in undesirable ap-
plications such as triggering toxic outputs. These
interpretability methods should be studied and used
in a responsible manner.
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A Dataset Details

Attributes |AE | Sample Values Sample Prompts

City

Country 158 United States, China,
Russia, Brazil, Australia

city to country: Toronto is in Canada. {E} is in,
[{"city": "Paris", "country": "France"}, {"city": "{E}",

"country": "

Continent 6
Asia, Europe, Africa,
North America, South
America

{E} is a city in the continent of,
[{"city": "{E}", "continent": "

Latitude 122 41, 37, 47, 36, 35 [{"city": "Rio de Janeiro", "lat": "23"},
{"city": "{E}", "lat": ", [{"city": "{E}", "lat": "

Longitude 317 30, 9, 10, 33, 11 [{"city": "Rome", "long": "12.5"}, {"city": "{E}", "long": ",
"long": "122.4"}, {"city": "{E}", "long": "

Language 159 English, Spanish, Chi-
nese, Russian, Portuguese

[{"city": "Beijing", "lang": "Chinese"},
{"city": "{E}", "lang": ",

[{"city": "{E}", "official language": "

Timezone 267

America/Chicago,
Asia/Shanghai,
Asia/Kolkata,
Europe/Moscow, Amer-
ica/Sao_Paulo

Time zone in Los Angeles is America/Santiago;
Time zone in {E} is,

[{"city": "New Delhi", "timezone": "UTC+5:30"},
{"city": "{E}", "timezone": "UTC

Nobel Laureate

Field 7 Medicine, Physics, Chem-
istry, Literature, Peace

Jules A. Hoffmann won the Nobel Prize in Medicine.
{E} won the Nobel Prize in,

name: {E}, award: Nobel Prize in

Award
Year

118 2001, 2019, 2009, 2011,
2000

"name": {E}, "award": "Nobel Prize", "year": ",
laureate: Frances H. Arnold, year: 2018, laureate: {E}, year:

Birth
Year

145 1918, 1940, 1943, 1911,
1941

Alan Heeger was born in 1936. {E} was born in,
laureate: {E}, date of birth (YYYY-MM-DD):

Country
of Birth

81
United States, United
Kingdom, Germany,
France, Sweden

name: {E}, country:,
Roderick MacKinnon was born in United States. {E} was born in

Gender 4 his, male, female, her name: {E}, gender:,
David M. Lee: for his contributions in physics. {E}: for

Table 3: Attributes in RAVEL. |AE | is the number of unique attribute values. In sampled prompts, {E} is a
placeholder for the entity.

A.1 Details of Entities and Attributes

We first identify entity types from existing datasets such as the Relations Dataset (Hernandez et al., 2024)
and RIPPLEEDITS (Cohen et al., 2024), where each entity type potentially contains thousands of instances.
We then source the entities and ground truth references for attribute values from online sources.3 4 5 6 7 8

These online sources are distributed under MIT, Apache-2.0, and CC-0 licenses. Compared with similar
entity types in the Relations Dataset and RIPPLEEDITS, RAVEL has expanded the number of entities by a
factor of at least 10 and included multiple attributes per entity.

We show the cardinality of the attributes, most frequent attribute values, and random samples of prompt
templates in Table 3.

A.2 The RAVEL Llama2-7B Instance

The RAVEL Llama2-7B instance is used for benchmarking interpretability methods in Section 4. There
are a total of 2800 entities in the Llama2-7B instance. Table 4 shows the number of entities, prompt

3https://github.com/kevinroberts/city-timezones
4https://github.com/open-dict-data/ipa-dict/blob/master/data/en_US.txt
5https://github.com/monolithpl/verb.forms.dictionary
6https://www.nobelprize.org/prizes/lists/all-nobel-prizes/
7https://huggingface.co/datasets/corypaik/coda
8https://www.bls.gov/ooh,https://www.bls.gov/cps
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Attributes |AE | Sample Values Sample Prompts

Verb

Definition 986
take hold of, make certain,
show, express in words,
make

talk: communicate by speaking; win: achieve victory; {E}:,
like: have a positive preference; walk: move on foot; {E}:

Past
Tense

986 expanded, sealed, termi-
nated, escaped, answered

present tense: {E}, past tense:,
write: wrote; look: looked; {E}:

Pronun-
ciation 986 k@n"fju:z, fI"nIS, bOIl,

In"SU@r, tIp
create: kri"eIt; become: bI"k2m; {E}:,
begin: bI"gIn; change: tSeIndZ; {E}:

Singular 986
compensates, kicks,
hunts, earns, accompa-
nies

tell: tells; create: creates; {E}:,
present tense: {E}, 3rd person present:

Physical Object

Category 29 plant, non-living thing,
animal, NO, fruit

bird is a type of animal: YES; rock is a type of animal: NO;
{E} is a type of animal:,

Among the categories "plant", "animal", and "non-living thing",
{E} belongs to "

Color 12 green, white, yellow,
brown, black

The color of apple is usually red. The color of violet is
usually purple. The color of {E} is usually,

The color of apple is usually red. The color of turquoise
is usually blue. The color of {E} is usually

Size 4 cm, mm, m, km

Among the units "mm", "cm", "m", and "km",
the size of {E} is usually on the scale of ",

Given the units "mm" "cm" "m" and "km",
the size of {E} usually is in "

Texture 2 soft, hard

hard or soft: rock is hard; towel is soft;
blackberry is soft; wood is hard; {E} is,

Texture: rock: hard; towel: soft; blackberry: soft;
charcoal: hard; {E}:

Occupation

Duty 650
treat patients, teach stu-
dents, sell products, cre-
ate art, serve food

"occupation": "photographer", "duties": "to capture
images using cameras"; "occupation": "{E}", "duties": "to,

"occupation": "{E}", "primary duties": "to

Gender
Bias

9 he, male, his, female, she The {E} left early because
The newspaper praised the {E} for

Industry 280
construction, automotive,
education, health care,
agriculture

"occupation": "sales manager", "industry": "retail";
"occupation": "{E}", "industry": ",

"occupation": "software developer", "industry":
"technology"; "occupation": "{E}", "industry": "

Work
Loca-
tion

128 office, factory, hospital,
construction site, studio

"occupation": "software developer", "environment": "office";
"occupation": "{E}", "environment": "

Table 3: Attributes in RAVEL, continued.

Entity Type # Entities # Prompts
Templates

# Test Examples in
Entity/Context Accuracy (%)

City 800 90 15K/33K 97.1
Nobel Laureate 600 60 9K/23K 94.3
Verb 600 40 12K/20K 95.1
Physical Object 400 40 4K/6K 94.3
Occupation 400 30 10K/16K 96.4

Table 4: Stats of RAVEL in its Llama2-7B instance, created by sampling a subset of examples where Llama2-7B has
a high accuracy in predicting attribute values.

templates, and test examples, i.e., the number of base–source input pairs for interchange intervention in
the Llama2-7B instance.

The RAVEL Llama2-7B instance is created by filtering examples where the pre-trained Llama2-7B has
a high accuracy in predicting attribute values. For each entity type, we take the k entities with the highest
accuracy over all prompt templates and the n prompt templates with the highest accuracy over all entities,
with the average accuracy over all prompts shown in Table 4. For most attributes, we directly compare
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model outputs against the ground truth attribute values. For “latitude” and “longitude” of a city, we relax
the match to be ±2 within the ground truth value. For “pronunciation” of a verb, we relax the match to
allow variations in the transcription. For attributes with more open-ended outputs, including “definition”
of a verb and “duty” of an occupation, we manually verify if the outputs are sensible. For “gender bias”
of an occupation, we check for the consistency of gender bias over a set of prompts that instruct the model
to output gender pronouns.

B Method Details

B.1 PCA
For PCA, we extract the 4096-dimension hidden state representations at the target intervention site as
the inputs. The representations are first normalized to zero-mean and unit-variance using mean and
variance estimated from the training set. We use the sklearn implementation9 to compute the principal
components. We then apply L1-based feature selection10 to identify a set of dimensions that most likely
encode the target attribute A. We undo the normalization after projecting back to the original space.

We vary the coefficient of the L1 penalty, i.e., the parameter “C” in the sklearn implementation, to
experiment with different intervention dimensions. We experiment with C ∈ {0.1, 1, 10, 1000}. We
observe that regardless of the intervention dimension, the features selected have a high overlap with the
first k principal components. For most attributes, the highest Disentangle score is achieved when using
the largest intervention dimension.

B.2 Sparse Autoencoder
For the sparse autoencoder, we use a single-layer encoder-decoder model.11 The autoencoder is trained on
Wikipedia data as described below.

Model Encoder: Fully connected layer with ReLU activations, dimensions 4096 × 16384. Decoder:
Fully connected layer, dimensions 16384× 4096. Latent dimension: 4× 4096. The model is trained to
optimize a combination of an L2 loss to reconstruct the representation and an L1 loss to enforce sparsity.

Training Data For each entity type, we sample 100k sentences from the Wikipedia corpus, each
containing a mention of an entity in the training set. We extract the 4096-dimension hidden states at the
target intervention site as the input for training the sparse autoencoder.

Similar to PCA, we apply L1-based feature selection on the latent representation to identify a set of
dimensions that most likely encode the target attribute A. We vary the coefficient C of the L1 penalty to
experiment with different intervention dimension. The optimal C varies across attributes.

B.3 RLAP
RLAP learns a set of linear probes to find the feature F . Each linear probe aims to predict the attribute value
from the entity representations. Similar to PCA and sparse autoencoders, we use the 4096-dimension
hidden state representations at the target intervention site as the initial inputs and the corresponding
attribute value as labels. In the case of attributes with extremely large output spaces, e.g., numerical
outputs, we approximate the output with the first token. Table 5 shows the linear classifier accuracy on
each attribute classification task.

We use the official R-LACE implementation12 and extract the rank-k orthogonal matrix W from the
final null projection13 as FA. For each attribute, we experiment with rank k ∈ {32, 128, 512, 2048}. We
run the algorithm for 100 iterations and select the rank with the highest Disentangle score on the dev
set. The optimal intervention dimension is usually small, i.e., 32 or 128, for attributes that have a high
accuracy linear classifier.

9https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
10https://scikit-learn.org/stable/modules/feature_selection.html#l1-based-feature-selection
11https://colab.research.google.com/drive/1u8larhpxy8w4mMsJiSBddNOzFGj7_RTn?usp=sharing#scrollTo=

Kn1E_44gCa-Z
12https://github.com/shauli-ravfogel/rlace-icml
13https://github.com/shauli-ravfogel/rlace-icml/blob/master/rlace.py#L90
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Attribute Entity Context

City
Country 0.78 1.00
Continent 0.96 1.00
Latitude 0.18 1.00
Longitude 0.13 1.00
Language 0.60 1.00
Timezone 0.68 1.00
Nobel Laureate
Field 0.82 1.00
Award Year 0.08 1.00
Birth Year 0.01 1.00
Country of Birth 0.63 1.00
Gender 0.93 1.00
Verb
Definition 0.03 1.00
Past Tense 0.00 1.00
Pronunciation 0.00 1.00
Singular 0.00 1.00
Physical Object
Category 0.90 1.00
Color 0.49 1.00
Size 0.86 1.00
Texture 0.75 1.00
Occupation
Duty 0.06 1.00
Gender Bias 0.17 0.99
Industry 0.43 1.00
Work Location 0.44 1.00

Table 5: Accuracy of linear probes on dev splits using the Llama2-7B residual stream representations extracted
from layer 7 above the last entity token. For most attribute, there exists a linear classifier with significant higher
accuracy than random baseline on the entity dev split. For all attributes, there exists a linear classifier with close to
perfect accuracy on the context dev split.

B.4 DBM-based and DAS-based Methods
For DBM- and DAS-based methods, we use the implementation from the pyvene library.14 For training
data, both methods are trained on base–source pairs with interchange interventions.

For DBM and MDBM, we use a starting temperature of 1e−2 and gradually reducing it to 1e−7. The
feature dimension is controlled by the coefficient of the L1 loss. The optimal coefficient for the DBM
penalty is around 0.001, while no penalty generally works better for MDBM, as the multi-task objective
naturally encourages the methods to select as few dimensions as possible.

For DAS and MDAS, we do not instantiate the full rotation matrix, but only parameterize the k
orthogonal vectors that form the feature FA. The interchange intervention is defined as

II(M, FA, x, x
′) = (I −W⊤W )(GetVals(M(x),N)) +W⊤W (GetVals(M(x′),N))

where the rows of W are the k orthogonal vectors. We experiment with k ∈ {32, 128, 512, 2048} and
select the dimension with the highest Disentangle score on the dev set. For most attributes, a larger
intervention dimension, e.g., 512 or 2048, leads to a higher Disentangle score.

B.5 Computational Cost
All models are trained and evaluated on a single NVIDIA RTX A6000 GPU.

For training, the computational cost of sparse autoencoders is the lowest, as training sparse autoencoders
does not involve backpropagating through the original Llama2-7B model or computing orthogonal
factorization of weight matrices. Each epoch of the sparse autoencoder training, i.e., iterating over
100k examples, takes about 100 seconds with Llama2-7B features extracted offline. The computational
cost of RLAP- and DAS-based method largely depends on the rank of the nullspace or the intervention
dimension, i.e., the number of orthogonal vectors. For RLAP, it takes 1 hour per 100 iterations with

14https://github.com/stanfordnlp/pyvene
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Method Continent Country Language Latitude Longitude Timezone Iso Cause Disentangle

Entity
PCA 32.7 45.2 36.3 58.6 34.2 33.3 32.7 44.2 39.3 35.4 36.0 36.6 35.2 42.2 38.7
SAE 82.5 15.2 40.4 70.0 91.8 5.0 92.1 17.4 93.3 21.2 91.1 13.6 81.9 23.7 52.8
RLAP 89.4 21.0 38.2 55.8 44.6 48.0 58.1 48.2 38.2 54.0 41.1 50.0 51.6 46.2 48.9
DBM 65.9 70.0 44.8 70.6 42.9 54.3 45.1 59.8 44.9 57.0 72.2 54.0 52.6 61.0 56.8
DAS 67.3 86.4 30.1 83.8 36.3 74.0 52.7 63.2 50.3 56.6 71.0 74.0 51.3 73.0 62.1
MDBM 72.6 68.2 58.6 73.0 56.7 52.3 59.1 55.2 59.9 54.4 75.7 56.4 63.8 59.9 61.8
MDAS 92.1 69.2 82.7 65.6 86.4 51.7 91.4 47.6 93.1 46.0 92.9 62.4 89.8 57.1 73.4
Context
PCA 27.9 46.1 31.4 52.5 29.2 19.0 26.8 40.0 27.5 53.0 28.8 47.5 28.6 43.0 35.8
SAE 65.6 28.9 29.3 75.4 88.6 4.5 87.0 18.0 88.4 26.5 65.8 27.0 70.8 30.0 50.4
RLAP 86.0 21.4 22.4 84.7 36.8 43.0 46.1 55.0 28.3 72.5 34.8 51.0 42.4 54.6 48.5
DBM 58.7 58.6 37.9 66.0 36.4 36.0 38.3 61.4 38.9 69.0 67.4 53.5 46.3 57.4 51.8
DAS 58.9 84.9 17.7 89.3 27.7 54.0 33.9 77.6 40.9 72.5 64.6 73.5 40.6 75.3 58.0
MDBM 65.4 56.4 50.7 67.6 52.1 32.0 51.9 58.2 53.3 66.5 70.0 55.5 57.2 56.0 56.6
MDAS 86.6 64.9 70.5 70.7 90.3 20.0 88.0 57.0 89.8 62.0 90.0 57.5 85.9 55.4 70.6

(a) Scores of city attributes.

Method Award Year Birth Year Country of Birth Field Gender Iso Cause Disentangle

Entity
PCA 24.2 22.7 30.8 2.3 22.4 70.0 24.3 78.3 4.3 81.0 21.2 50.9 36.0
SAE 79.8 0.7 80.1 0.7 39.8 49.0 43.4 54.0 71.3 63.7 62.9 33.6 48.2
RLAP 87.3 0.3 90.3 1.0 68.0 8.7 82.5 54.0 95.3 71.0 84.7 27.0 55.8
DBM 91.8 0.7 98.6 0.3 61.5 32.0 71.3 57.7 92.6 71.7 83.2 32.5 57.8
DAS 57.1 5.0 72.7 2.3 80.9 25.3 80.1 72.7 80.8 77.7 74.3 36.6 55.5
MDBM 40.8 19.3 70.2 2.0 66.9 36.3 69.2 62.3 76.4 79.7 64.7 39.9 52.3
MDAS 83.6 4.0 85.2 2.0 88.8 28.0 86.9 58.0 93.4 78.0 87.6 34.0 60.8
Context
PCA 19.2 25.4 22.6 3.3 18.4 73.2 23.6 76.0 3.0 67.0 17.4 49.0 33.2
SAE 74.9 1.0 73.8 1.0 38.1 38.3 65.1 28.0 64.8 35.0 63.3 20.7 42.0
RLAP 88.1 0.4 90.3 0.8 54.4 67.3 77.7 67.3 94.0 61.0 80.9 39.4 60.1
DBM 88.1 0.2 96.9 0.0 50.6 50.2 56.1 59.3 96.8 61.7 77.7 34.3 56.0
DAS 42.7 18.4 13.9 7.5 37.1 72.8 30.2 82.3 88.0 72.7 42.4 50.7 46.5
MDBM 38.6 20.6 69.5 2.2 65.8 54.2 66.7 65.7 91.6 72.0 66.4 42.9 54.7
MDAS 80.2 27.4 83.9 12.3 86.6 72.8 90.2 72.0 93.4 73.0 86.9 51.5 69.2

(b) Scores of Nobel laureate attributes.

Table 6: Per-task results.

a feature dimension 4096 and a target rank of 128. For DAS and MDAS with the reduced parameter
formulation, the training time for an intervention dimension of 128 (out of a feature dimension of 4096)
over 1k intervention examples is about 50 seconds. The computational cost of DBM-based method is
about 35 seconds per 1k intervention examples.

For evaluation, the inference speed of our proposed framework is 20 seconds per 1k intervention
examples.

C Results

For all methods, we conduct hyper-parameter search on the dev set. We report a single-run test set results
using the set of hyper-parameters that achieves the highest score on the dev set. For intervention site, we
choose layer 16 for city attributes and layer 7 for the rest attributes.

C.1 Breakdown of Benchmark Results

Table 6 shows the breakdown of benchmark results in Table 2. For each method, we report a breakdown
of the highest Disentangle score per attribute, i.e., the pair of Cause score and Iso score that add up
to the highest Disentangle score. The final score in Table 2 is an average of the Disentangle score
over all five entity types. For example, for PCA, the Disentangle score under the Entity setting is
(38.7 + 36.0 + 41.3 + 43.3 + 38.1)/5 = 39.5.
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Method Definition Past Tense Pronunciation Singular Iso Cause Disentangle

Entity
PCA 4.9 59.5 4.6 95.3 2.1 66.5 4.2 93.3 4.0 78.6 41.3
SAE 93.4 3.5 15.4 87.3 85.4 3.0 14.3 82.3 52.1 44.0 48.1
RLAP 22.1 42.0 15.8 87.3 23.9 45.5 13.5 85.3 18.8 65.0 41.9
DBM 22.0 51.0 16.3 88.7 10.2 58.0 14.2 87.0 15.7 71.2 43.4
DAS 90.3 12.0 11.9 92.0 89.4 19.5 13.6 85.8 51.3 52.3 51.8
MDBM 55.8 30.0 32.8 70.5 66.4 20.0 25.4 75.8 45.1 49.1 47.1
MDAS 97.6 6.5 88.4 1.2 89.5 25.0 85.4 2.5 90.2 8.8 49.5
Context
PCA 9.6 57.0 8.3 84.3 4.3 44.0 9.2 78.3 7.9 65.9 36.9
SAE 84.3 10.5 16.8 77.3 74.1 5.5 16.2 73.7 47.9 41.8 44.8
RLAP 19.5 46.5 15.0 80.7 19.1 46.5 13.9 79.3 16.9 63.2 40.0
DBM 21.7 53.0 16.3 84.3 12.3 52.5 14.7 81.0 16.3 67.7 42.0
DAS 69.5 36.5 8.7 93.3 77.4 49.0 7.4 89.7 40.7 67.1 53.9
MDBM 64.4 29.5 28.4 70.0 62.9 28.0 27.5 68.0 45.8 48.9 47.3
MDAS 94.5 21.5 74.2 17.3 84.3 44.0 70.3 24.3 80.8 26.8 53.8

(c) Scores of verb attributes.

Method Category Color Size Texture Iso Cause Disentangle

Entity
PCA 45.6 49.8 35.1 63.7 27.7 50.5 26.3 47.5 33.7 52.9 43.3
SAE 94.2 7.9 34.2 63.2 95.0 3.0 95.3 29.0 79.6 25.8 52.7
RLAP 85.6 30.6 83.9 8.0 62.0 28.5 58.7 47.5 72.5 28.7 50.6
DBM 70.1 35.6 62.0 40.0 98.0 2.0 97.7 30.0 81.9 26.9 54.4
DAS 77.3 52.0 79.7 28.7 87.2 24.0 92.0 47.5 84.0 38.1 61.1
MDBM 59.8 48.5 53.5 59.2 74.5 27.5 81.2 49.0 67.3 46.1 56.7
MDAS 85.1 49.8 87.0 19.8 88.5 19.5 91.5 46.5 88.0 33.9 60.9
Context
PCA 43.1 66.8 40.3 63.3 30.8 46.5 25.4 68.0 34.9 61.1 48.0
SAE 39.9 70.0 43.8 62.2 91.4 6.0 90.9 34.5 66.5 43.2 54.9
RLAP 83.6 47.2 82.3 22.5 64.6 30.0 60.9 61.0 72.8 40.2 56.5
DBM 72.1 47.2 64.6 46.0 97.3 2.5 97.5 32.5 82.9 32.1 57.5
DAS 70.7 75.8 72.2 67.8 82.2 53.5 85.6 64.5 77.7 65.4 71.5
MDBM 64.3 59.0 60.6 59.7 78.6 33.0 83.2 59.5 71.7 52.8 62.2
MDAS 84.8 73.0 83.1 61.5 87.8 46.0 86.3 65.0 85.5 61.4 73.4

(d) Scores of physical object attributes.

Method Duty Gender Bias Industry Work Location Iso Cause Disentangle

Entity
PCA 39.9 33.7 28.1 61.7 36.3 38.0 35.9 31.0 35.1 41.1 38.1
SAE 68.9 4.0 57.1 49.0 61.7 10.5 64.3 13.0 63.0 19.1 41.1
RLAP 62.1 17.7 93.8 44.0 58.9 18.5 62.0 18.0 69.2 24.5 46.9
DBM 59.3 23.3 93.2 42.7 67.2 18.3 66.4 16.0 71.5 25.1 48.3
DAS 59.8 23.0 83.7 75.7 57.9 29.3 57.9 27.0 64.9 38.7 51.8
MDBM 52.0 35.3 81.7 66.0 57.8 29.5 59.3 24.5 62.7 38.8 50.8
MDAS 82.5 12.0 85.0 70.0 82.5 17.5 83.7 14.5 83.4 28.5 56.0
Context
PCA 39.2 45.0 21.9 68.0 33.8 42.7 38.3 44.5 33.3 50.0 41.7
SAE 66.7 7.7 47.7 61.0 58.9 14.3 65.1 14.5 59.6 24.4 42.0
RLAP 60.3 23.0 92.5 51.0 56.7 23.3 62.3 24.0 68.0 30.3 49.1
DBM 49.5 14.7 87.3 29.5 56.4 18.0 56.4 21.5 62.4 20.9 41.7
DAS 46.9 49.7 79.7 85.0 44.2 55.3 46.0 46.0 54.2 59.0 56.6
MDBM 43.6 22.7 77.7 70.5 54.2 31.3 60.9 27.0 59.1 37.9 48.5
MDAS 78.7 32.0 81.0 85.5 70.1 38.7 74.1 27.0 75.9 45.8 60.9

(e) Scores of occupation attributes.

Table 6: Per-task results, continued.
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(a) Cause score from RLAP. (b) Cause score from DBM. (c) Cause score from MDBM.

Figure 4: Additional feature disentanglement results for RLAP, DBM, and MDBM methods.

C.2 Additional Attribute Disentanglement Results
In Figure 3, we show the feature entanglement results from DAS and MDAS. We provide additional
results from all other supervised methods: RLAP, DBM, and MDBM in Figure 4. Though these methods
are trained on different objectives and identify different features FA, they show similar patterns in terms
of entanglement between attribute representations. For all methods, representations of most attributes
are entangled with “continent” (and “timezone”, which for most cases starts with the continent name).
Representations of attributes such as “county–language” are also highly entangled.
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