Arithmetic Control of LLMs for Diverse User Preferences:
Directional Preference Alignment with Multi-Objective Rewards

Haoxiang Wang*' Yong Lin*?> Wei Xiong*! Rui Yang? Shizhe Diao®> Shuang Qiu®
Han Zhao! Tong Zhang'
'University of Illinois Urbana-Champaign
2The Hong Kong University of Science and Technology

Abstract

Fine-grained control over large language mod-
els (LLMs) remains a significant challenge, hin-
dering their adaptability to diverse user needs.
While Reinforcement Learning from Human
Feedback (RLHF) shows promise in align-
ing LLMs, its reliance on scalar rewards of-
ten limits its ability to capture diverse user
preferences in real-world applications. To
address this limitation, we introduce the Di-
rectional Preference Alignment (DPA) frame-
work. Unlike the scalar-reward RLHF, DPA
incorporates multi-objective reward modeling
to represent diverse preference profiles. Ad-
ditionally, DPA models user preferences as
directions (i.e., unit vectors) in the reward
space to achieve user-dependent preference
control. Our method involves training a multi-
objective reward model and then fine-tuning
the LLM with a preference-conditioned vari-
ant of Rejection Sampling Finetuning (RSF),
an RLHF method adopted by Llama 2. This
method enjoys a better performance trade-off
across various reward objectives. In compari-
son with the scalar-reward RLHF, DPA offers
users intuitive control over LLM generation:
they can arithmetically specify their desired
trade-offs (e.g., more helpfulness with less ver-
bosity). We also validate the effectiveness of
DPA with real-world alignment experiments
on Mistral-7B. Our method provides straight-
forward arithmetic control over the trade-off
between helpfulness and verbosity while main-
taining competitive performance with strong
baselines such as Direct Preference Optimiza-
tion (DPO). The code and trained model are
released at https://github.com/RLHFlow/
directional-preference-alignment.

1 Introduction

Large language models (LLMs) (OpenAl, 2023;
Anthropic, 2023) have demonstrated remarkable
capabilities across various domains and tasks, such
as mathematical reasoning (Wei et al., 2022) and

medical question answering (Singhal et al., 2023a;
Wang et al., 2023a; Thirunavukarasu et al., 2023).
However, for an assistant to be truly useful, it must
align with human preferences, such as being help-
ful, honest, harmless, and managing verbosity.

Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017; Ziegler et al.,
2019; Ouyang et al., 2022; Bai et al., 2022b; Lee
et al., 2023), is the leading approach to adapt LLMs
towards these complex, often implicitly-defined
goals. Typically, the most popular RLHF frame-
work (Christiano et al., 2017; Ziegler et al., 2019;
Ouyang et al., 2022) first constructs a scalar reward
model to represent the difficult-to-specify goal of
being preferred by human and then use this reward
model to provide signals for the subsequent reward
optimization stage. Its success spans various prac-
tical applications, including recommendation sys-
tems (Pereira et al., 2019), image generation (Hao
et al., 2022; Wu et al., 2023a; Dong et al., 2023a),
robotics (Brown et al., 2019), and most notably,
aligning LLMs with human values and preferences,
such as ChatGPT (OpenAl, 2023), Claude (An-
thropic, 2023), Llama 2 (Touvron et al., 2023) and
Gemini (Team et al., 2023).

While recent advancements in RLHF are note-
worthy, a fundamental challenge persists due to
problem misspecification. This means that a sin-
gle reward function may not sufficiently capture
complex human values. For example, a generative
model aligned by RLHF for helpfulness tends to
produce verbose responses as shown in Figure 1
(Left) (Singhal et al., 2023b), even though many
users prefer answers that are both helpful and con-
cise. Assuming scalar-objective reward implies
a total order over preferences, which is hard to
satisfy when the preference is aggregated across
a diverse set of human groups (May, 1954; Tver-
sky, 1969), because humans typically have a set
of intricate or even contradictory targets (Biyik
and Sadigh, 2018). In real-world applications, the
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RLHF (DPO)

Input

System Prompt: You are a helpful assistant.

User: Please summarize “Romeo and Juliet”

Generation 869 characters

Assistant: Romeo and Juliet is a classic
tragedy written by William Shakespeare. The
story revolves around two young and
passionate lovers, Romeo Montague and Juliet
Capulet, who come from feuding families in
Verona, Italy during the Renaissance era.
Against the wishes of their families, Romeo
and Juliet secretly marry and consume
themselves with an all-consuming love for
each other... (495 more characters)

V.S.

Ours

Input

System Prompt: You are a helpful assistant.
Your response should maximize weighted
rating = helpfulness*0.8 - verbosity*0.6

User: Please summarize “Romeo and Juliet”

Generation
140 characters

Assistant: "Romeo and Juliet" is a play about
two young lovers who come from feuding
families. They meet, fall in love, and ultimately
meet a tragic end.

Figure 1: Arithmetic Prompting for Preference-Conditional Generalization: Comparison between conventional
RLHF methods such as DPO and our Directional Preference Alignment (DPA). In the case of DPO (left), it is
capable of generating helpful responses, but these tend to be excessively verbose. Conversely, with our DPA (right),
it allows for arithmetic control of LLMs to meet various user preferences. For instance, setting the directional
preference (unit vector) to v = (0.8, —0.6) leads to less verbose responses from our aligned LLM.

scalar-reward RLHF tends to align the LLMs to-
ward an “average-user” preference, which cannot
capture the complicated nature of human prefer-
ences and can be unfair for the under-represented
groups (Feffer et al., 2023). For example, consider
User-1, 2, 3, and responses A, B, C' in Fig. 2 (Left).
User-1 and 3 prefer response B over C' (B < (),
while User-2 prefers C' over B (C' < B). This
could occur as response C' is more verbose than B,
while User-2 prefers concise answers. When these
diverse preferences are aggregated across human
groups, the typical reward models with scalar re-
wards tend to learn the “average-user” preference
(which is B < C in this case), overlooking the in-
dividual preference of User-2, as shown in Figure 2
(Middle). This is also known as the “Condorcet
paradox” in the theory of social choice (Gehrlein,
2002). In general, human opinions and expertise
can vary significantly (Coello, 2000; Bobu et al.,
2023; Bansal et al., 2023). Meanwhile, the impor-
tance of these targets may also change over time,
depending on the users and their expectations.

To address the limitations of the existing scalar
reward model, previous works suggest the use of
multi-objective rewards that characterize human
preferences from different aspects (e.g., helpful-
ness, verbosity, harmlessness) (Pan et al., 2023;
Rame et al., 2023). One common way is to take
the human feedback as a multi-dimensional reward

vector and each dimension models one objective
(Rame et al., 2023; Dong et al., 2023b). Then,
one may apply a linear combination to transform
the multi-objective rewards into a scalar for LLM
alignment (Bakker et al., 2022; Wu et al., 2023b).
However, this approach still cannot handle the user-
dependent needs from a diverse user population
and can be unfair for minority groups. One may
further adopt a user-dependent linear combination
to multi-objective rewards for aligning a model for
each user preference (Rame et al., 2023; Jang et al.,
2023). However, this approach is quite inference-
unfriendly because we have to switch between dif-
ferent models in response to the different user pref-
erences. Finally, in social choice theory, a game-
based formulation was studied under the name max-
imal lotteries (Sternberg, 1965; Fishburn, 1984),
as well as the subsequent works in RLHF (Wang
et al., 2023b; Swamy et al., 2024; Ye et al., 2024),
to handle the diversity of user preferences. We
remark that their framework is fundamentally dif-
ferent from the multi-objective rewards and cannot
offer a user-dependent preference control in the
inference stage, either. Refer to Section 2.3 for a
more detailed discussion with existing methods.

In recognition of the aforementioned limitations,
we propose a novel and practical alignment ap-
proach, Directional Preference Alignment (DPA),
to enhance the adaptability and controllability of
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Figure 2: (Left) The illustration depicts preference conflicts among different users, where User-1 and User-3 favor
response B over response C, while User-2 prefers C over B. (Middle) Generally, the scalar-reward RLHF framework
tends to align toward the average-user preference, thus favoring B over C, which overlooks the preference of
User-2. (Right) Our Directional Preference Alignment (DPA) enables users to specify their preference vector in a
multi-dimensional space, allowing each user’s preference to be well represented within this context.

a single LLM. Our aligned LLM enjoys the flex-
ibility to be controlled with different preferences
embedded numerically into the system prompt. The
ability to control preferences can significantly en-
hance the model’s personalization ability during
inference. For example, as the model is aligned
with DPA with helpfulness and verbosity in
consideration, a user could simply control the
model’s generation by specifying a directional
preference v (v1,v9) that [jv]2 1, and
the model will generate responses that maximize
reward = v; X helpfulness + vy X verbosity
where helpfulness and verbosity are rewards
scored from different perspectives as shown in Fig-
ure 1 (Right). Figure 2 (Right) further shows that
the preferences of User-1, User-2, and User-3 can
be accurately represented by specifying the prefer-
ence vector in the 2-dimensional space. This is a
scenario where DPA can alleviate the problem of
misspecification in RLHF.

Our approach features two crucial aspects: 1).
Multi-Objective Rewards, which involve learning
with multiple different preference targets simulta-
neously, and 2). Directional Preference Alignment,
which encodes user preferences as unit vectors for
preference-aware LLM alignment. Specifically, we
summarize our contributions as follows.

* We identify the limitations of existing popu-
lar RLHF frameworks: 1) the limited capacity
for capturing the real-world complicated human
preference; 2) lacking in adaptability for user-

dependent preference;

¢ We propose Directional Preference Alignment
(DPA): a novel alignment approach that allows a
single LLM to accommodate users with varying
preferences.

¢ We consider both helpfulness and verbosity
rewards, and align Mistral-7B (Jiang et al.,
2023) with our DPA: empirical evaluations show
that DPA offers effective arithmetic control over
the trade-off between helpfulness and verbosity,
while maintaining competitive performance with
DPO (Rafailov et al., 2023).

2 Directional Preference Alignment

In a typical RLHF pipeline (Ouyang et al., 2022;
Bai et al., 2022a; Touvron et al., 2023), we first con-
struct a reward model based on a labeled preference
dataset (e.g., preference A < B < C annotated
by a labeler) and then use the reward model to
provide supervision for the subsequent reward op-
timization stage. In this section, we first present
the problem setup, where we additionally consider
multi-objective rewards and user preferences in the
framework. Then, we present our algorithm, the
Directional Preference Alignment, to handle the
problem of preference-aware alignment.

Notation. We denote the prompt space and the
response space as X’ and ), respectively. S*
{v e R¥ : ||[v|a = 1} is the unit sphere under
the ||-||2 norm. We use 7y to denote the policy
(generative) LLM whose parameter is 6.
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Figure 3: Illustration of the Directional Preference Alignment procedure
2.1 Multi-Objective Reward Model multi-objective reward space, that is, a unit vec-

We consider k-objective reward for a response y
given prompt x as

r(x,y) = (ri(z,y),...,re(x,y)) € R

where each r;(x,y) is the rating for a single at-
tribute such as helpfulness, correctness, and ver-
bosity. We use r to denote r(x, y) for short when
it is clear from the context. Let D, denote the
distribution of (z,y,r) (Wang et al., 2023c; Kopf
etal., 2023). We then train a multi-objective reward
model 7 with regression loss (Dong et al., 2023b):

min B, ), [F(@y) —r(z.9)[3. (1)

The trained reward model 7 can rate any prompt-
response pair (x, y) across k attributes.

2.2 Directional Preference Alignment

Our work aims to learn a collection of policies that
can traverse the Pareto front as efficiently as pos-
sible. Moreover, we intend to relate the learned
policies to the user’s preferences concerning var-
ious objectives and control the learning process
according to such preferences. To make multi-
objective optimization tractable and controllable, a
common approach is linear scalarization (Caruana,
1997; Ghane-Kanafi and Khorram, 2015; Hu et al.,
2023), which takes a linear combination of multiple
objectives. Through exploring all different linear
combinations, the solutions to these problems can
sufficiently cover a significant area of the Pareto
front, which justifies the application of the linear
scalarization approach.

Directional Preference. To achieve a fine-
grained representation of the preference signal,
we model user preference as a direction in the

tor v = (vy,...,v;) € S*. Then, the preference-
conditioned reward is

k
R(z,v,y) = v'r(z,y) = Y viri(z,y). ()
=1

To incorporate user preference into the language
model, we condition the text generation on v in
addition to x, such that the response is generated
according to y ~ mg(-|z, v). For a specific v, the
preference-conditional reward objective is

J(Uv 7T9) = E$~Dx Yy~ (-|z,v) [R(l', v, y)] 3)

We model the directional preferences of our tar-
geted user population as P, a probability distribu-
tion over S™. Finally, we optimize 6 by maximizing
the expected reward with respect to P,:

max Eyp, [J(v,m9)]. “4)

Reward Optimization via Rejection Sampling.
We now proceed to discuss the algorithmic de-
signs for optimizing the RL objective in Eq. (4).
While PPO is the most predominant approach for a
fixed reward function (OpenAl, 2023; Anthropic,
2023), it is known that PPO is unstable and sample-
inefficient in aligning LLMs (Choshen et al., 2019)
and imposes a heavy burden on GPU memory re-
sources (Ouyang et al., 2022; Yuan et al., 2023).
Hence, PPO requires extensive efforts to be tuned
to its best performance. In light of the above lim-
itations, we resort to an alternative approach, Re-
Jjection Sampling Fine-tuning (RSF) (Dong et al.,
2023a; Yuan et al., 2023; Gulcehre et al., 2023), a
RLHF algorithm used in the Llama 2 project (Tou-
vron et al., 2023), with appealing simplicity, stabil-
ity, and comparable reward gains. In essence, the
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original RSF learns from the best-of-n policy cre-

ated by the reward function. Initially, we generate

n responses using a base LLM and then rank them

using the reward model to select the responses with

the highest reward. We further finetune our LLM

based on these selected samples, and this process

can be repeated multiple times.

In our scenario, to address the multi-objective
nature and user-dependent preferences, we iter-
atively alternate among the following steps for
t=1,...,T iterations:

0. Preparation. Initialize an empty dataset D; =
. Prepare policy model mg, , obtained from
last iteration.

1. Rejection Sampling. For each randomly sam-
pled prompt x and directional preference v, gen-
erate n responses {y1,...yn} by m,_, (-|2,v)
and compute their multi-objective rewards by
7(x,y). Obtain the linear scalarization of
#(z,y) by R(x,v,y;) = v'#(z,y;). Then, rank
Y1, ---, Yn according to R(x, v, y;) and select the
highest-rank response y*. Add (z, v, y*) to D;.

2. Finetuning. Train on D;:

0 — arg ;naXE(x,v,y)~’Dt [F@(y’$, U)]

The whole procedure of our methods is summa-
rized in Figure 3.

2.3 Discussion with Existing Methods

Comparison with SteerLM (Dong et al., 2023b).
Recall that we have multi-objective reward r
(ri,r2,...,1)) of each response y to the prompt x.
Dong et al. (2023b) first fine-tunes the generative
model to maximize the likelihood of y by taking
both x and r as the input prompts:

m@ax E(:c,y,r)~D,' log Py (y\w, T)‘

When presented with a new input z, SteerLM
aims to produce a response that aligns with the
newly assigned multi-dimensional 7. Particu-
larly, a user could specify 7 as “(helpfulness =
10, verbosity 1)”, namely high helpful-
ness but low verbosity, for a new prompt ¥ =
“Please summarize ‘Romeo and Juliet’". SteerLM
could then generate answers according to 7. How-
ever, SteerLM will encounter a significant chal-
lenge when a user-specified  falls outside the
feasible region of rewards for the given 7, i.e.,
7 ¢ {r:(z,y,r) € D,}. Inthis case, if a user sets a

7 that is not achievable given Z, SteerLM may gen-
erate uncontrolled responses due to the infeasibil-
ity of 7 under z. For example, “(helpfulness =
10, verbosity = 1)" could be infeasible for  ac-
cording to the set S since it will be difficult or
impossible to generate a helpful summarization of
‘Romeo and Juliet’ in very few words.

Comparison with Soup Methods (Rame et al.,
2023; Jang et al., 2023). Soup methods trains a
policy 6; for each reward objective. Let r;(x,y)
denote the i-th objective, we have:

0; = arg max By, By oy (127 (2, Y)

During inference, when a user specifies the com-
bination vector (vy,vs, ..., vy) € S¥, reward soups
first combine the weight of k£ models as their inter-
polation ), v;6; and then query the interpolation
for response. Compared with our method, rewarded
soup can cause significant storage and computation
overhead because they need to maintain £ LLMs
and calculate different interpolations whenever a
new combination vector is assigned.

3 Empirical Results

We conduct experiments on Mistral-7B (Jiang
et al., 2023), focusing on two reward objectives:
helpfulness and verbosity. Our proposed DPA
achieves arithmetic control of LLM generations for
different helpfulness-verbosity preferences while
demonstrating an excellent balance between the
two objectives.

Verbosity Bias. Recently, the verbosity bias in
LLMs and humans, meaning that LLMs and hu-
mans sometimes prefer more verbose answers even
though they are of similar qualities, has attracted
considerable attention (Saito et al., 2023; Sing-
hal et al., 2023b). It has been exploited or even
“hacked” by the RLHF-aligned models. For in-
stance, Kabir et al. (2023) demonstrated that 77%
of ChatGPT answers are verbose, while Yuan et al.
(2024) found that the average output length in-
creases to 2.5 times as the DPO iterates. Prelimi-
nary experiments have been conducted in response
to this bias, such as those by Chen et al. (2024),
which explicitly consider verbosity as a response
feature. Benchmark creators like AlpacaEval (Li
et al., 2023) and MT-Bench (Zheng et al., 2023)
have observed verbosity bias in their LLM judges
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ALIGNMENT METHODS MULTI-OBJECTIVE REWARDS

PREFERENCE ARITHMETIC

SINGLE MODEL FEASIBILITY GUARANTEE

PPO (SCHULMAN ET AL., 2017) X

DPO (RAFAILOV ET AL., 2023) X

REWARD SOUP (RAME ET AL., 2023)

STEERLM (DONG ET AL., 2023B)

OURS

Table 1: Comparison among different RLHF algorithms. Multi-objective rewards: if the algorithm considers
multiple reward objectives. Preference arithmetic: if the model allows for arithmetic control of the preference.
Single model: if the algorithm can handle different preferences with a single LLM. Feasibility Guarantee: Whether
the model is free from the feasibility issue that the specified control vector (prompt) could be unreachable (refer to

Section 2.3 for details).

(typically GPT-4), and AlpacaEval-2.0 has adjusted
to account for output length'.

3.1 Implementation

Datasets. We use two datasets for experiments:

HelpSteer and UltraFeedback. Both datasets are

used for reward model training”, while only Ultra-

Feedback is used for finetuning.

* HelpSteer Wang et al. (2023d) comprises 10K
prompts and 37K annotated responses with
five attributes: helpfulness, correctness,
coherence, complexity, and verbosity. A
43B closed-source LLM generated responses,
and human labelers annotated each response on
a scale of 0-4 for the five attributes.

e UltraFeedback (Cui et al., 2023) includes
64K prompts, each of them are associated
with 4 responses of five attributes: honesty,
truthfulness, instruction-following,
helpfulness and overall-score. GPT-4 was
employed to label these responses. We use the
same training-validation prompt split® as Zephyr
(Tunstall et al., 2023).

Reward Modeling. We train a multi-objective
reward model on the union of HelpSteer and Ul-
traFeedback, initializing with Mistral-7B. Specif-
ically, we follow SteerLM-v2 practices* (Wang
et al., 2023c), attaching a linear regression head
layer on the last hidden state of Mistral-7B. We
include both regression and traditional language
modeling losses in the reward model training, as
we find the latter improves accuracy without addi-
tional observed costs. The reward model has 10

"tatsu-lab.github.io/alpaca_eval/

2We include HelpSteer since it has verbosi ty annotations.

3hf.co/datasets/HuggingFaceH4/ultrafeedback_
binarized

*The authors of SteerLM (Dong et al., 2023b) improved
the original training recipe in a follow-up work (Wang et al.,
2023c), which we denote as SteerLM-v2.

output dimensions: the first half corresponds to
HelpSteer’s five attributes, while the other half ac-
counts for UltraFeedback’s attributes. Rewards in
each dimension are rescaled to the range of 0-100
in the data preprocessing stage.

Alignment Setup. For a fair comparison with
DPO (Rafailov et al., 2023), we conduct a head-
to-head comparison with Zephyr-5 (Tunstall et al.,
2023), a DPO-trained Mistral-7B model that was
state-of-the-art (7B) at its release. Zephyr-(
uses supervised fine-tuning (SFT) on UltraChat-
200K (Ding et al., 2023) followed by DPO on
UltraFeedback (Cui et al., 2023). Since RLHF
typically begins with SFT models, we initialize
with the SFT checkpoint of Zephyr-£ and apply
DPA on UltraFeedback. Following practices of
Cui et al. (2023); Tunstall et al. (2023), we av-
erage instruction-following, truthfulness,
honesty, and helpfulness ratings of UltraFeed-
back for the overall helpfulness objective. We use
HelpSteer’s verbosity attribute for the verbosity
objective. Our multi-objective reward model anno-
tates helpfulness and verbosity for all UltraFeed-
back data and self-generated responses.

Rewards and Directional Preferences. We de-
note the reward objectives for helpfulness and ver-
bosity as r; and 79, respectively. As noted by Sing-
hal et al. (2023b), r; and ro correlate positively.
Therefore, aligning an LLM to maximize r; (help-
fulness) will also tend to increase ro (verbosity),
a trend documented in recent works (Yuan et al.,
2024; Chen et al., 2024). Consequently, when
using the preference-conditional reward v'r
V171 + VT, We argue that it is unnecessary to have
vg > 0 (i.e., to explicitly encourage verbosity).
Instead, we propose sampling the distribution of
(v1,v2) as arctan(“2) ~ Uniform(—7,0) with

vl
v € [V2/2,1] and vy € [—+/2/2,0]. Intuitively,
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Figure 4: The validation reward of different methods.
When t > 1, our DPA model Pareto-dominates SFT,
DPO, and SteerLLM. Further, DPA at iteration ¢ Pareto-
dominates models at previous iteration ¢’ with ¢’ < t.

this lets the user preference direction (v1, vo) be
uniformly sampled between (1, 0) (pure focus on
helpfulness) and (v/2/2, —v/2/2) (a balance favor-
ing less verbosity) on the unit circle.

Dataset Splitting. Iterative RLHF methods typi-
cally sample responses for unseen prompts in each
new iteration to prevent the model from simply
memorizing and repeating the responses (Dong
et al., 2023a; Xiong et al., 2023; Yuan et al., 2024).
In view of this, we split UltraFeedback dataset into
two disjoint subsets, D; and D, containing an
equal number of unique prompts. In each itera-
tion ¢, we initialize the policy model 7y, from an
SFT checkpoint rather than mg, ,, and we use a
different subset from the last iteration. The use of
alternative subsets ensures that the policy model
m, for response sampling in iteration ¢ + 1 has not
encountered the prompts before.

Rejection Sampling. We conduct rejection sam-
pling following our iterative algorithm detailed in
Sec. 2.2. Notice that to launch training in ¢t = 1,
we need mp,_, for sampling responses for a diverse
set of helpfulness-verbosity preferences. How-
ever, Zephyr-3-SFT is not designed for preference-
conditional generation, making it not a good choice
for my,_,. To resolve this, we train a SteerLM
model on D; (a half of UltraFeedback) that can gen-
erate responses conditioned on both user prompt
x (sampled from D;) and reward objectives r1, 2.
We use this model for rejection sampling in iter-
ation ¢ = 1 to obtain 7y, (for each prompt, we
generate 80 responses for diverse reward combina-

AlpacaEval-2.0

12 Model —-®
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Figure 5: AlpacaEval-2.0 evaluation results.

tions (r1,72)). In all the following iterations, for
each prompt, we sample 5 directional preferences
(v1,v2), and use 7p,_, to generate 16 responses per
preference, then keep the highest-reward response
and reject the rest 15.

Fine-tuning. For the response data obtained
through rejection sampling, we prepend the user’s
directional preference to the system prompt, as
illustrated in Fig. 1, to make the model aware
of the user preference. The fine-tuning process
then follows the same approach as SFT, optimiz-
ing the next-token prediction loss across the text
corpus. It is also worth noting that RLHF often
leads to performance degradation or knowledge
forgetting, a phenomenon referred to as alignment
tax in the literature (Askell et al., 2021; Lin et al.,
2023). To mitigate this issue, we adopt the mem-
ory replay techniques suggested in Instruct-GPT
(Ouyang et al., 2022) and Llama 2 (Touvron et al.,
2023) that can effectively reduce alignment tax (Lin
et al., 2023). Specifically, we incorporate original
responses from UltraFeedback, which constitute
about 15% of our finetuning data for each iteration.
Our algorithm is applied for iterations t = 1, . . ., 4.

Software, Hardware and Hyperparameters
We use PyTorch (Paszke et al., 2019) with Hugging-
Face’s TRL framework (von Werra et al., 2020) for
all fine-tuning experiments across t = 0,...,7.
All experiments are conducted on 8x A6000 GPUs.
The training cost of each DPA iteration is about 60
GPU hours. The AdamW optimizer (Loshchilov
and Hutter, 2019) is employed with a learning
rate of 107° and a cosine learning rate schedule
(20 warmup steps). We use a context window of
4096 tokens with sample-packing (packing short
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responses within the context window). The training
takes 2 epochs with a global batch size of 64. We
use vLLM (Kwon et al., 2023) for inference. In the
rejection sampling process, we conduct inference
with temperature 1.0. In evaluation (Sec. 3.2), we
use temperature 0.7.

3.2 Evaluation

Rewards on Validation Set For validation, we
used 2000 prompts from UltraFeedback and consid-
ered 10 uniformly sampled directional preferences
ranging from v = (1,0) to v = (1/2/2,/2/2).
For each prompt-preference combination, our DPA-
aligned models generated two responses. We then
calculated the average helpfulness and verbosity
rewards for all 2000 responses per preference us-
ing our reward model. For SteerLM°, five ver-
bosity reward values were sampled, and the high-
est corresponding helpfulness reward from Ultra-
Feedback was identified for each value. These
verbosity-helpfulness pairs were then used to con-
dition SteerLM’s generation, with the average re-
wards computed across prompts. In the case of
Zephyr-3’s DPO and SFT models, we generated re-
sponses using their original prompt templates and
averaged the rewards across the validation set. The
results, illustrated in Fig. 4, show thatas ¢ > 1, our
DPA model Pareto-dominates SFT, DPO, SteerLM,
and DPA at iteration ¢ Pareto-dominates the mod-
els of previous iterations. This demonstrates DPA’s
effective arithmetic control for different user pref-
erences, and with increasing finetuning iterations
t, the empirical front of DPA (i.e., each curve
in Fig. 4) expands, indicating that our finetuning
approach successfully maximizes rewards for all
user preferences of consideration. Notably, our
DPA’s empirical front significantly surpasses that
of SteerLM and DPO, even though all models were
trained on the same UltraFeedback dataset and orig-
inated from the same SFT model.

AlpacaEval-2.0 Evaluation AlpacaEval-2.0 (Li
et al., 2023) is an LLM-based automatic evalua-
tion benchmark that employs GPT-4-turbo as the
LLM judge. It includes 805 prompts, and model
responses to these prompts are compared with ref-
erence answers provided by GPT-4-turbo. Subse-
quently, the win-rate against the reference answers
is calculated as a metric for the models’ instruction-

>We trained a SteerLM model (initialized with the SFT
checkpoint of Zephyr-$3) on UltraFeedback, following prac-
tices of Wang et al. (2023c).

following capabilities. We evaluated SteerLM and
our DPA (at ¢ = 4) conditioned with various user
preferences and report the win rate and average
response length in Fig. 5, along with DPO and
SFT results for reference. Fig. 5 demonstrates that
our DPA model outperforms SteerLM and achieves
competitive performance against DPO while pro-
viding arithmetic control for diverse user prefer-
ences. The discrepancy between the validation
reward evaluation results and the AlpacaEval-2.0
outcomes may arise because our reward model has
different behaviors and preferences compared to
GPT-4-turbo. While DPA can closely fit the re-
ward model, this does not necessarily guarantee
generalization to GPT-4-turbo evaluations.

4 Related Works

Large Language Models. The landscape of natu-
ral language processing has been profoundly trans-
formed in recent years through the development
of large language models (LLMs), showcasing
human-level proficiency across a range of tasks
including text classification, generation, and com-
plex reasoning. This progress stems from exten-
sive pre-training on vast datasets, enabling these
models to address diverse challenges. Despite
their achievements, a distinction arises between
closed-source models (e.g., GPT-3 (Brown et al.,
2020), Bard (Google, 2023), Claude (Anthropic,
2023), and PaLM (Chowdhery et al., 2023)),
often surpassing their open-source counterparts
(e.g., megatron-turing-530b (Smith et al., 2022),
and Bloom (Workshop et al., 2022)) in perfor-
mance (Liang et al., 2022), which poses challenges
for open-source research. However, initiatives like
Meta’s LLaMA (Touvron et al., 2023) and subse-
quent works such as Alpaca (Taori et al., 2023),
Vicuna (Chiang et al., 2023), and LMFlow (Diao
et al., 2023), demonstrate significant open-source
contributions that continue to push the boundaries
of what’s possible with LLMs. These advance-
ments enabled by the fine-tuning techniques, aim
to improve LLMs’ ability and adapt to a wide range
of domains and tasks. Nonetheless, as these genera-
tive foundation models advance, they still face prob-
lems like implicit biases, underscoring the need for
ongoing alignment and ethical considerations in
their development and application. In this paper,
we focus on how to align LLMs with human pref-
erences, including the principles of being helpful,
honest, and harmless as outlined by (Askell et al.,
2021). This procedure is often achieved by Rein-
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forcement Learning with Human Feedback (RLHF)
(Ouyang et al., 2022).

RLHF Algorithmic Designs. Policy Optimiza-
tion (PPO) (Schulman et al., 2017) is the most
predominant approach, with its tremendous suc-
cess in Chat-GPT (OpenAl, 2023) and Claude (An-
thropic, 2023). However, PPO is significantly less
efficient and stable compared to supervised fine-
tuning (Choshen et al., 2019), and is also sensitive
to the parameter and code-level implementation
(Engstrom et al., 2020). Therefore, tuning the PPO
to its best performance is very challenging in prac-
tice and the results of Chat-GPT (OpenAl, 2023)
have not been widely reproduced so far. In view of
this, efforts have been made to develop supervised-
learning-based methods as an alternative approach
to the PPO, and we review them as follows. Re-
jection sampling finetuning (RSF) is proposed in
(Dong et al., 2023a; Yuan et al., 2023; Gulcehre
et al., 2023) with different variants, but essentially,
they learn from the positive samples selected by
a learned reward model. RSF was applied to the
RLHF of LLaMA?2 project (Touvron et al., 2023)
and we adopt the iterative implementation as sug-
gested in Dong et al. (2023a); Touvron et al. (2023);
Gulcehre et al. (2023). There is also another line of
work designing algorithms from the KL-constraint
reward optimization (Rafailov et al., 2023; Zhao
et al., 2023; Azar et al., 2023; Xiong et al., 2023),
which additionally requires the resulting model to
be close to the initial model. Among them, the
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) has attracted considerable attention
due to its simplicity and stability, and effectiveness.
We remark that it is also possible to incorporate
these algorithmic ideas into our DPA framework
and we leave the algorithmic design beyond RSF
to future work.

Fine-grained Preference Representation and Al-
gorithmic design. The scalar-reward-model has
been criticized mainly due to its limited capacity
(Wu et al., 2023b; Casper et al., 2023; Munos et al.,
2023) (see the discussion of preference intransitiv-
ity in Section 1 for an illustrative example). A line
of works has considered multi-objective rewards
to capture the different aspects of human prefer-
ences (Zhou et al., 2023; Jang et al., 2023; Touvron
et al., 2023; Wu et al., 2023b; Kopf et al., 2023;
Rame et al., 2023). However, the multi-objective
rewards are then combined in a fixed way (e.g., Wu
et al., 2023b; Touvron et al., 2023), mainly to rep-

resent a preference averaged over different human
groups, failing to capture the user-dependent prefer-
ence. By introducing the user preference as a unit
vector (direction) into the directional preference
alignment framework, we achieve a fine-grained
and user-dependent representation for the compli-
cated human preference. Notably, in social choice
theory (Sternberg, 1965; Fishburn, 1984), as well
as some very recent studies in RLHF (Wang et al.,
2023b; Swamy et al., 2024; Ye et al., 2024), the
RLHF is formulated as a game between two LLMs
to partially handle the diversity of preferences in
the population-level. The learning objective is ac-
cordingly adjusted to be solving the Nash equilib-
rium of the game. In comparison, our techniques
are fundamentally different from theirs and may
offer computational advantages since game-based
formulation is far more complicated.

5 Limitations

A primary constraint of our DPA framework is its
reliance on a robust multi-objective reward model.
The efficacy of DPA is intrinsically linked to the
precision and discriminative capability of this re-
ward model. Should the reward model not ade-
quately capture the subtleties of specific prefer-
ences or exhibit bias in its reward distribution, the
DPA might inadvertently exacerbate these short-
comings throughout the fine-tuning process. Fur-
thermore, if the reward model fails to recognize
harmful content, it could lead the aligned model to
produce such content during inference.

6 Conclusion

In this paper, we introduce Directional Preference
Alignment (DPA) to incorporate multidimensional
user preferences. DPA addresses the limitation
of conventional scalar reward models by alleviat-
ing conflicting user preferences through a high-
dimensional preference vector in a multidimen-
sional space. We demonstrate that DPA efficiently
explores the Pareto front in the multidimensional
reward space, revealing a more effective trade-off
between helpfulness and verbosity on Mistral-7B
compared to existing strong baselines such as DPO.
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A Additional Experiments

RewardBench (Lambert et al., 2024) is a newly re-
leased benchmark suite for RLHF, comprising 23
validation datasets that are categorized into Chat,
Chat Hard, Reasoning, and Safety. RewardBench
was originally designed to benchmark the perfor-
mance of reward models on challenging, structured,
and out-of-distribution prompts. However, it can
also be used to evaluate the generation quality of
aligned LLMs. Here is our evaluation protocol:

1. We selected a reference model and multiple
candidate models, and generated responses for
each prompt from the 23 validation datasets
of Reward-Bench using these models.

2. We employed a Mistral-7B Bradley-Terry
reward models® to assess the generated re-
sponses for each model. The reward model
outputs a score for each response given a
prompt.

3. We compared each candidate model against
the reference model using the reward model’s
ratings. For each prompt, the model that gen-
erated the response with the higher score was
considered the winner. We then averaged the
results over the datasets to compute the win-
rate of each candidate model against the refer-
ence model.

We demonstrate our empirical evaluation results in
the following two parts. Further, we will update
our manuscript with Reward-Bench evaluations in
the next revision.

The RLHEF literature has demonstrated that help-
fulness and harmlessness are two objectives that
sometimes exhibit a tradeoff (Rame et al., 2023),
making them suitable for our study. We have added
the harmlessness objective to our original objec-
tives of helpfulness and verbosity, resulting in a
total of three objectives. To train a DPA model
with these three objectives, we first train a three-
objective reward model, following the same train-
ing recipe detailed in our paper, with the addition
of one dataset: BeaverTails-30K (Ji et al., 2023).
This dataset has an is-safe attribute with scores
ranging from O to 1, averaged over three human
annotators. After training, we use the attribute
prediction for the is-safe attribute (multiplied by
100) as the harmlessness score.

https://hf.co/wequeasdas/RM-Mistral-7B

We initialized our model from a Supervised
Fine-Tuning (SFT) checkpoint of Gemma-2B’ and
adopted the same training procedures detailed in
the paper to train Gemma-2B with rejection sam-
pling finetuning. The only difference in training
is the introduction of the harmlessness objec-
tive, thus the directional preference becomes v =
(v1, v2, v3), where the three dimensions correspond
to helpfulness, verbosity, and harmlessness
and |v|| = 1. In the sampling stage, we randomly
sample the directional preference vectors while en-
suring that v; > vs = 0.

For comparison, we used a DPO checkpoint8
of Gemma-2B as the reference model, which was
initialized from the same SFT checkpoint. We eval-
uated our Gemma-2B DPA models (17" = 3) with
different directional preferences on Reward-Bench
(using the protocol explained above), comparing
their Win-Rate against the DPO model.

Directional Preference Chat  Chat Hard Reasoning Safety
v =(0.71,0,0.71) 56.17 58.13 49.87 63.94
v = (0.79,0,0.61) 44.63 49.63 44.61 67.21
v = (0.87,0,0.50) 46.15 51.5 44.83 65.62
v = (0.92,0,0.38) 36.91 47.23 45.41 65.92
v = (0.97,0,0.26) 4591 47.56 45.97 65.83
v = (0.99,0,0.13) 47.52 51.88 45.33 66.17
v =(1,0,0) 46.78 48.19 46.58 66.67

Here, we fix vy (corresponding to verbosity)
and vary the directional preference v for the
remaining two dimensions (helpfulness and
harmlessness). Clearly, there exist directional
preferences v such that the DPA responses are bet-
ter than or on par with DPO (Win-Rate = 50%
means tie).

"https://hf.co/wandb/gemma-2b-zephyr-sft
8https://hf.co/wandb/gemma-2b-zephyr-dpo
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