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Abstract

Pre-trained language models (LMs) are capable
of in-context learning (ICL): they can adapt to
a task with only a few examples given in the
prompt without any parameter update. How-
ever, it is unclear where this capability comes
from as there is a stark distribution shift be-
tween pre-training text and ICL prompts. In
this work, we study what patterns of the pre-
training data contribute to ICL. We find that
LMs’ ICL ability depends on parallel struc-
tures in the pre-training data—pairs of phrases
following similar templates in the same con-
text window. Specifically, we detect parallel
structures by checking whether training on one
phrase improves prediction of the other, and
conduct ablation experiments to study their ef-
fect on ICL. We show that removing parallel
structures in the pre-training data reduces LMs’
ICL accuracy by 51% (vs 2% from random ab-
lation). This drop persists even when excluding
common patterns such as n-gram repetitions
and long-range dependency, showing the di-
versity and generality of parallel structures. A
closer look at the detected parallel structures
indicates that they cover diverse linguistic tasks
and span long distances in the data.

1 Introduction

A surprising ability that emerged from language
model pre-training is in-context learning (ICL);
ICL allows LMs to adapt to a task given merely a
few input-output pairs in the prompt without any
parameter update (Brown et al., 2020; Chowdhery
et al., 2023). It is the basis for chain-of-thought
reasoning (Wei et al., 2022b) and is widely used to
steer model behavior (Lin et al., 2022; Sun et al.,
2023). However, it is still unclear how this abil-
ity emerges from learning to predict the next word
in natural text. While previous work has shown
that transformers can acquire ICL when trained on
sequences of in-context examples (i.e. concatena-
tions of input-output pairs from a task) (Chen et al.,

Parallel Structure

In-Context Prompt
Great movie! Sentiment: Positive. I hate the movie! Sentiment: 
Negative. This movie is awesome. Sentiment: Positive.

The possible causes of this trend may include inadequate 
neonatal care. We will estimate infant and neonatal mortality 
rates again in 2015 to see if this trend continues and, if so, to 
assess how it can be reversed. Infant mortality in 2013 was 
22.4 per 1000 live births compared with 20.2 in 2008 (p = 
0.61), and this change reflected a statistically significant  
increase in neonatal mortality (from 12.0 to 20.3 per 1000 live 
births, p = 0.01)

Figure 1: Parallel structures vs. In-context prompts.
We define a parallel structure (PS) as two phrases in the
window that follow the same distribution. Each phrase
consists of a context and a token (bold). While natu-
ral language is unlikely to contain abundant in-context
prompts, it often contains parallel structures that ex-
hibit diverse semantic (underlined) and syntactic (italic)
patterns. We hypothesize that parallel structures are
essential for LMs to acquire ICL (Section 3).

2022; Garg et al., 2022; Chan et al., 2022), real
pre-training data is quite different from in-context
examples. A better understanding of the source of
ICL may help explain other emergent abilities of
pre-trained LMs (Wei et al., 2022a; Lu et al., 2023)
and predict when they might fail.

In this work, we adopt a data-centric perspec-
tive and study the question: What structures of
the pre-training data yield ICL? This question is
underexplored due to the scale of data and com-
pute required. As a result, prior work has mainly
focused on synthetic data (Xie et al., 2021), in-
context examples (Chan et al., 2022), coarse data
properties such as size and domain (Shin et al.,
2022), or task-specific data selection (Han et al.,
2023).

We introduce a simple structure that produces
ICL and verify it through ablation on real pre-
training data. Our key observation is that while
natural language is unlikely to contain abundant in-
context examples, it often contains multiple phrases
following a similar template within a context win-
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dow (Figure 1), e.g., “We will estimate infant and
neonatal morality rates again in 2015 to see if
this trend [...] reversed. Infant mortality in 2013
was 22.4 per 1000.” These phrases can thus be
considered as examples from the same “task”, re-
sembling in-context examples. This motivates us
to hypothesize that such co-occurring phrases in
pre-training data are essential for LMs to acquire
ICL (Section 3).

To formalize our hypothesis, we introduce the
concept of parallel structure (PS), defined as a pair
of phrases that co-occur in a context window and
follow the same distribution. To detect PSs in the
pre-training data, our algorithm is based on the
intuition that, since the two phrases are sampled
from the same distribution, learning to predict one
phrase should improve prediction on the other (Fig-
ure 2). To verify our hypothesis, we measure the
effect of PSs on the model’s ICL ability. Specifi-
cally, we ablate the detected PSs, train an LM on
the ablated data, and measure the ICL performance
drop relative to a reference model trained on clean
data (Section 4).

Results on GPT-2 model series (Radford et al.,
2019) and OpenWebText (Gokaslan and Cohen,
2019) show that ablating PSs in the pre-training
data significantly reduces the ICL accuracy of LMs
with a relative decrease of 51%, while ablating
randomly sampled tokens of the same amount only
reduces ICL accuracy by 2%. Furthermore, this
effect holds as we increase model size. This result
indicates that PSs are a major source of ICL (Sec-
tion 6). We also compare PSs to two other struc-
tures suggested by prior work as sources of ICL:
repetitions (Yan et al., 2023; Olsson et al., 2022)
and long-range dependency (Shi et al., 2023), and
find that PSs have a larger effect on ICL.

By analyzing characteristics of the detected PSs,
we find that they are suggestive of ICL abilities
we observe in large LMs. For example, parallel
structures exhibit diverse pattern matching tasks,
ranging from n-gram repetitions, text formats, syn-
tactic constituents, to more complicated ones that
require reasoning and knowledge. Pre-training on
such a huge diversity of tasks may explain why
LMs can generalize to various downstream tasks
through ICL (Raventós et al., 2023). In addition,
we find that the two phrases in a PS are often far
from each other (343 tokens away on average),
which may explain why LMs don’t forget early
examples in in-context prompts and why ICL per-

formance improves with more examples (Li and
Qiu, 2023).

2 Problem Statement

Pre-trained LMs Autoregressive LMs are pre-
trained on natural text to predict the next token con-
ditioned on the context. The pre-training dataset
D consists of a sequence of context windows
a = (a1, . . . , aL), where ai denotes the i-th to-
ken in it. An LM is a distribution over a token
given its prefix. The parameters of this distribution
w are typically learned by maximum likelihood
estimation:

maximize
∑

a∈D

L∑

i=1

log p(ai | a<i;w) . (1)

In-Context Learning (ICL) To adapt a pre-
trained LM to a task via ICL, it is prompted with
in-context examples, which is the concatenation of
a sequence of input-output examples of the task:
c1 ◦ x1 ◦ · · · ◦ ck ◦ xk, where ci and xi denote the
task input and output, and ◦ denotes concatenation
of two strings. To make predictions, a test input
cquery is appended to the in-context examples to
form an in-context prompt, and the model predicts
the output as the next word distribution given the
prompt: p(· | c1 ◦ x1 ◦ · · · ◦ ck ◦ xk ◦ cquery).

Since there is a clear divergence between the pre-
training data distribution (natural text) and the in-
context prompt distribution (concatenations of task
input-output pairs), it is unclear where LMs acquire
their ICL ability from pre-training. To bridge this
gap, we aim to identify pre-training examples—
tokens and their prefixes—that have large impact
on the ICL performance of LMs.

3 Parallel Structures

While the pre-training data does not contain a large
number of strict in-context prompts, we observe
that it often contains phrases following a similar
template in the same context window. These phrase
pairs resemble in-context examples of a shared
“task”, but they are less structured. As shown in Fig-
ure 1, they cover a diverse range of linguistic skills,
including n-gram copying (e.g., “mortality rates
again in 2015” and “infant mortality in 2013”),
syntactic construction (e.g., “We will estimate” and
“it can be” share the template of subject–modal
verb–main verb), world knowledge (e.g., “among
Palestine” and “in Gaza” mention locations in the
same geographical region) and so on.
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We conjecture that these co-occurring phrases
following similar templates, termed parallel struc-
tures, are critical for LMs to develop ICL abil-
ity during pre-training. In the rest of this sec-
tion, we first formally define parallel structures
(Section 3.1); we then propose an algorithm to de-
tect them in natural text (Section 3.2); finally, we
describe how to measure their effect on ICL ability
of pre-trained LMs through ablation (Section 3.3).

3.1 Definition

Intuitively, phrases following the same template
are from the same distribution. A phrase is a se-
quence of tokens and we represent each phrase
as a (context, token) tuple, (c, x), where x is the
the last token in the sequence and c is its prefix,
e.g., (“mortality rates again in”, “2015”). Given a
context window, a parallel structure (PS), denoted
by s, consists of a pair of phrases in the window
that follow the same distribution psstruct(c, x). We
use (cf , xf ) to denote the former phrase, which
occurs before the latter phrase (cl, xl) in the con-
text window. For example, given the context
window “increase among Palestine refugee new-
borns in Gaza”, (cf=“among”, xf=“Palestine”) and
(cl=“in”, xl=“Gaza”) form a PS, both following a
distribution of prepositional phrases for locations
in a specific area.

3.2 Finding Parallel Structures in Natural text

To study the effect of PSs on ICL, a natural solu-
tion is to compare the ICL ability after ablating PSs
from the pre-training data, which requires us to
first detect them. Toward this goal, we first define
a measure to estimate whether two given phrases
come from the same distribution (i.e. whether they
form a PS according to our definition). Next, we
introduce an efficient algorithm to identify PSs ap-
proximately from a large dataset of natural text.

Measuring parallel structure strengths. Given
two phrases, how do we know if they come from
the same distribution? Since we only have two data
points, most statistical tests won’t apply. Following
the standard supervised learning guarantee with the
i.i.d. assumption, if they come from the same distri-
bution, then training on one phrase would improve
prediction on the other in general. In other words,
we can think of (cf , xf ) and (cl, xl) as two exam-
ples for the task of predicting x given c. Motivated
by this intuition, we measure the parallel structure
strength of two phrases by how much the loss of

We will estimate infant and neonatal mortality rates again in 
2015 to see if this trend continues and, if so, to assess how it 
can be reversed. Infant mortality in 2013 …

LM inference: log p (2013 | Infant mortality in) = −8.2
Train LM on mortality rates again in => 2015

LM inference: log p (2013 | Infant mortality in) = −6.4

+1.8 > 0
Parallel 
Structure

Figure 2: To measure the parallel structure strength of
two phrases (cf , xf ) and (cl, xl), we take a pre-trained
LM (gray), fine-tune it on xf conditioned on its context
cf (purple), and measure the change in its predicted
probability on xl conditioned on context cl (blue).

the latter phrase is reduced from training on the
former phrase. A larger reduction suggests better
generalization from the former phrase to the latter
phrase, which indicates that they are likely to come
from similar distributions.

As shown in Figure 2, we measure the PS
strength of two phrases (cf , xf ) and (cl, xl) by
training an LM on the former phrase and test it
on the latter. Formally, given an auto-regressive
LM p(·;w) parametrized by w, we update w using
the negative log-likelihood loss for one gradient
descent step with learning rate η:

wf = w + η∇w log p(xf | cf ;w) . (2)

Then, the PS strength of the phrase pair is measured
by the difference between the log likelihood of the
latter token conditioned on its context given by the
LM before and after the update:

α((cf , xf ), (cl, xl)) (3)

= log p(xl | cl;wf )− log p(xl | cl;w) , (4)

where α ∈ R and larger α means stronger PS
strength.

Detection algorithm. Given a context window
(i.e. a sequence of tokens) from the pre-training
data, a = (a1, . . . , aL), our goal is to score the PS
strength of all pairs of phrases in it and take the
top ones as the identified PSs. However, the naive
scoring strategy that enumerates all spans in the
window has quadratic complexity in the window
size L, and is prohibitively expensive when scaled
to the pre-training dataset. Therefore, we apply
two approximations for efficiency. First, we only
score a subset of phrase pairs. Second, we train
the LM on a group of former phrases instead of
training on each one separately as in Equation (2).
We describe the process in detail below.
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At a high level, to compute the PS strength, we
need to come up with a set of former phrases, up-
date the LM on each phrase, and test the LM on
the corresponding latter phrases. To come up with
the former and latter phrases, we first decide the
last token in a phrase; then, instead of enumerating
prefixes of varying lengths, we set the prefix of
former phrases to be all tokens before the last to-
ken, and the prefix of latter phrases to be all tokens
before the last token limited in a segment of the
context window. We set the prefix of latter phrases
to be short to pinpoint the exact latter phrase that
forms a PS with preceding tokens in the context
window, which we will then ablate. Specifically,
given a context window a, we create a set of former
phrases Df (a) = {(a<i, ai)}Li=2. To create the set
of latter phrases, we partition the context window a
into overlapping segments of length m with stride
m/2. Let B be the set of all such segments in a.
We then extract latter phrases from each segment:
Dl(a) =

⋃
b∈B{(b<i, bi)}mi=m/2.

a xf b xl
cf cl

mL

Note that the prefix length of former phrases range
from 1 to L− 1, whereas the prefix length of latter
phrases range from m/2 to m, limited by the seg-
ment b. Instead of enumerating all phrase pairs, we
only consider phrases in Df (a) and Dl(a).

Now, for each former phrase in Df (a), we can
update an LM p(·;w) on it, and test the updated
LM on latter phrases in Dl(a) that occur after the
former phrase (i.e. their last tokens occur after the
last token of the former phrase). However, this
requires us to perform Θ(L) independent updates
of p(·;w) and the gradient computation cannot be
batched (as we need the wf after each update). To
save compute, we sort the former phrases in Df (a)
by the position of the last token of each phrase and
split them into batches of size l. For each former
phrase (cf , xf ) in a batch Bf , we approximate the
update in Equation (2) by a minibatch update on
all l phrases in the batch:

wf = w +
η

l

∑

(c,x)∈Bf

∇w log p(x | c;w) . (5)

This way, we reduce Θ(L) gradient updates to
Θ(L/l) (number of batches) updates. We then use
wf to compute the PS strengths for all latter phrases
that occur after all former phrases in Bf , which
only requires batched forward passes. As a result,

all former phrases in Bf have the same PS strength
with a latter phrase. Intuitively, this process does
not identify a specific former phrase that has high
PS strength with a specific latter phrase; instead,
it identifies a segment where some phrases could
form a PS with the latter phrase. We will check in
Section 4.2 if the computed PS strengths are close
to the ground-truth PS strengths when we train the
LM on each former phrase separately.

3.3 Ablating the Pre-training Data

Now that we have scored a set of potential parallel
structures, we conduct ablation studies to measure
their effect on models’ ICL ability. Specifically,
we ablate PSs in pre-training data through noising,
train LMs on ablated data, and compare their ICL
accuracy to reference LMs trained on clean data.

Ideally, we would pre-train randomly initialized
LMs from scratch on the ablated data, just as how
LMs are usually pre-trained, but this is expensive.
Due to compute constraints, we follow prior work
and continue pre-training off-the-shelf pre-trained
LMs (Gururangan et al., 2020; Yang et al., 2022;
Ke et al., 2023; Gupta et al., 2023) on clean and
ablated data to study the effect of PSs on ICL.

Recall that our detection algorithm returns pairs
of a former phrase and a latter phrase, as well as
their PS strength. We set a threshold on the PS
strength and identify the top-p% highest-scoring
pairs as PSs. To ablate the identified PSs in the
pre-training data, we replace the last token of each
latter phrase with a token sampled uniformly at
random from the vocabulary. The introduced noise
allows the LM to unlearn parallel structures (and
the induced ICL ability) learned earlier during pre-
training from scratch. Thus, it is more aggressive
than excluding updates on tokens in parallel struc-
tures during continue pre-training, which would
retain any existing ICL ability of the LM.

4 Experiment Setup

We present the setup for continual pre-training in
Section 4.1 and the setup for parallel structure de-
tection in Section 4.2.

4.1 Continual Pre-training

Models We continue pre-training GPT-2 mod-
els of different sizes (Radford et al., 2019): Small
(117M parameters), Medium (345M parameters),
Large (744M parameters), XLarge (1.6B parame-
ters). We choose GPT-2 models because autoregres-
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Task Description Example
N

at
ur

al
L

an
g. Verb Inflection Convert a verb between present tense/past tense/past participle “fly” ⇔ “flew” ⇔ “flown”

Adjective ⇔ Noun Convert an adjective to a noun or a noun to an adjective “exciting” ⇔ “excitement”

Case Change Switch a word’s case between lower and upper “hello” ⇔ “Hello”

Synonym/Antonym Clf Classify whether two words are synonyms or antonyms “happy cheerful” ⇒ [syn]

Sy
m

bo
lic

Copy Copy the input “hi apple” ⇒ “hi apple”

Last Token Copy the last token of the input “hi bad orange” ⇒ “orange”

Search Clf Given a token sequence x and token y, classify if y appears in x “hi good [del] hi” ⇒ [yes]

Palindrome Clf Classify if the input is a palindrome “apple hi apple” ⇒ [yes]

Pattern Completion Complete the last token of a pattern (aa, aba, abab or aaba) aba: “hi good” ⇒ “hi”

Table 1: ICL tasks. We evaluate the ICL ability of LMs on four natural language tasks and five symbolic tasks.

sive LMs from the GPT family have been shown
to be highly successful in ICL (Brown et al., 2020;
OpenAI, 2023), and to balance compute cost and
ICL capability following prior work (Wang et al.,
2023; Olsson et al., 2022; Shin et al., 2022; Chan
et al., 2022).

Data To minimize the distribution shift between
the data used for pre-training from scratch and the
data used for continual pre-training, we fine-tune
GPT-2 on OpenWebText (Gokaslan and Cohen,
2019), a publicly available version of WebText
used by GPT-2. We segment the data into context
windows of length 1024.

Training We use batch size 128 and AdamW
optimizers (Loshchilov and Hutter, 2017) with
learning rate 3e-4 for Small/Medium and 1e-4 for
Large/XLarge. We early stop when the perplexity
on the development set converges.

4.2 Parallel Structure Detection

We construct latter phrases by partitioning each
context window into segments of length m=12. We
group former phrases into batches of l=128 (Sec-
tion 3.2). To measure parallel structure strengths,
we fine-tune the pre-trained GPT2-Small model
(Radford et al., 2019) on former phrases with a
learning rate of η=1e-4. As a sanity check, we
evaluate the similarity between the PS strengths
calculated with and without the approximation of
minibatch update on multiple former phrases, and
find them to strongly correlate (Pearson correlation
+0.71) on 10K randomly sampled context windows.
This indicates that PS strengths are relatively robust
under the proposed approximations.

We also check whether our algorithm based
on loss decrease can detect same-distribution seg-

ments (PSs) effectively. First, we construct a same-
distribution corpus with ICL prompts covering 8
tasks, where each ICL prompt is the concatena-
tion of 64 input-output pairs of the same task. The
input-output pairs in each ICL prompt are all from
the same task, and thus the output tokens in each
prompt are all sampled from the same distribution
conditioned on the inputs. We then evaluate if our
loss-based algorithm can detect same-distribution
tokens in these ICL prompts among generic natural
text where same-distribution tokens are much rarer.
Specifically, we threshold our algorithm at top p%
of tokens of generic text, and evaluate recall on to-
kens in ICL prompts. Thresholding our algorithm
at top 5% / 10% / 15% / 20% of tokens of generic
text yields 66.6% / 76.0% / 80.3% / 82.7% recall
on the ICL tokens, respectively. The much higher
recall on same-distribution ICL tokens indicates
that our loss-based algorithm is able to identify
same-distribution tokens among generic text.

To evaluate LMs pre-trained on different noise
rates, we ablate pre-training data with p%=5%,
10%, 15%, 20%, continue pre-training a LM on
each, and measure their average ICL accuracy over
all tasks.

5 ICL Evaluation

Tasks We evaluate the ICL capability of LMs
on four natural language tasks and five symbolic
reasoning tasks (Table 1). Natural language tasks
test linguistic knowledge, while symbolic tasks test
abstract reasoning that doesn’t depend on the se-
mantic meanings of tokens.

Data Generation For natural language tasks, we
prompt GPT-4 to generate the evaluation data. We
manually check a random subset of 100 examples
for each task and find no error. For symbolic tasks,

5
8586



M Data VrbI A-N Case Syn Cpy LstT Paln Srch Pttn Avg
G

P
T

2-
S

CLEAN 28.0 10.4 56.6 12.6 18.5 22.9 6.9 16.0 29.6 22.4
-RAND 18.2 8.4 37.5 11.6 9.3 16.6 7.1 19.3 27.2 17.3
-PS 3.4 2.6 17.6 5.2 0.4 1.1 -0.1 10.4 4.9 5.1
-Dp+PS 8.6 5.6 29.3 8.4 2.7 6.3 7.9 20.8 20.8 12.3
-PS+Rp 6.7 4.0 20.0 6.5 0.4 1.1 1.9 13.2 11.5 7.3

G
P

T
2-

M

CLEAN 55.7 27.2 77.5 17.2 29.6 31.9 14.8 22.1 37.4 34.8
-RAND 55.4 25.7 68.0 16.1 24.8 27.5 22.9 28.8 45.0 34.9
-PS 28.2 12.0 52.8 9.3 0.9 4.7 11.3 17.6 14.0 16.7
-Dp+PS 47.1 22.0 62.0 13.5 3.9 15.8 25.4 30.0 32.9 28.1
-PS+Rp 38.4 16.9 54.8 10.9 0.6 6.5 16.7 23.0 19.3 20.8

G
P

T
2-

L

CLEAN 51.1 33.3 84.5 21.2 41.0 38.0 14.5 17.5 46.3 38.6
-RAND 60.4 31.7 75.9 20.6 46.6 40.7 23.3 27.8 56.5 42.6
-PS 29.5 19.6 59.3 12.6 13.1 15.9 12.9 22.8 33.3 24.3
-Dp+PS 53.3 27.8 68.6 17.3 31.0 31.3 25.1 31.5 52.8 37.6
-PS+Rp 42.2 24.3 63.0 15.2 13.1 17.3 16.8 26.2 39.6 28.6

G
P

T
2-

X
L CLEAN 59.2 35.9 85.3 30.5 29.4 37.1 11.9 17.4 41.6 38.7

-RAND 61.3 35.9 77.9 30.2 30.4 40.8 17.0 22.3 54.5 41.2
-PS 44.2 27.8 63.1 19.1 5.5 10.0 5.6 12.9 27.9 24.0
-Dp+PS 62.4 35.6 73.5 25.2 23.5 27.9 14.6 21.6 54.2 37.6
-PS+Rp 59.8 33.2 67.4 22.6 10.6 17.7 11.3 18.2 45.7 31.8

Table 2: We measure the effect of different data ab-
lations on the ICL ability of pre-trained LMs. Results
show that parallel structures are crucial for LMs to ac-
quire ICL. Pre-training on data with parallel structures
ablated consistently incurs a larger drop in ICL accuracy
compared to pre-training on data with random tokens
ablated (51.1% vs 1.5% relative drop in accuracy av-
eraged across model sizes). We also compare parallel
structures to n-gram repetitions (Rp) and long-range de-
pendency (Dp) and find parallel structures to have larger
effect on ICL. The pre-training setting that incurs the
largest drop in ICL performance is bold for each task
and model size.

we generate the data following the procedures in
Li et al. (2021). We generate 1200 examples for
each natural language task on average, and 4000
examples for each symbolic reasoning task. We
construct the in-context prompts by concatenating
input-output pairs, with delimiters between the in-
put and the output and and between examples.

Metric We evaluate models given various num-
bers of in-context examples (64, 96, 128), and re-
port the average ICL accuracy as how much the
LM outperforms the random baseline (absolute).

6 Results

We first measure the effect of parallel structures
on ICL (Section 6.1), then compare their effect
to other structures identified by prior work (Sec-
tion 6.2), and finally analyze characteristics of
parallel structures in the pre-training data (Sec-
tion 6.3).

-RANDOM -PS
GPT2-S 50.4 49.9
GPT2-M 54.0 53.9
GPT2-L 60.0 59.6
GPT2-XL 62.1 62.4

Table 3: Fine-tuning accuracy of LMs. Contrary to
the ICL results, LMs further pre-trained on data with
parallel structures ablated have comparable fine-tuning
accuracy as LMs trained on randomly ablated data.

6.1 Measuring the Effect of Parallel
Structures on ICL

To measure the effect of parallel structures on ICL,
we continue pre-training the LM on ablated data
(−PS), and compare its ICL accuracy with LMs
continually pre-trained on the clean data (CLEAN)
and the randomly noised data (−RAND), where
tokens sampled uniformly at random from the clean
data are ablated. We ablate the same amount of
tokens in −PS and −RAND.

Ablating parallel structures hurts ICL. In
Table 2, both −RAND and −PS hurt ICL perfor-
mance compared to CLEAN, which is expected as
data noise can hurt model performance in general.
However, ablating PSs is particularly detrimental
to ICL performance compared to ablating random
tokens of the same amount (51.1% vs 1.5% relative
drop in accuracy averaged across model sizes).

Ablating PSs does not hurt task ability. One
caveat in the above numbers is that ICL accuracy
confounds ICL ability with task ability. Low ICL
accuracy can be caused by a failure to identify the
task based on ICL examples (ICL ability) or by a
failure to perform the identified task (task ability).
To disentangle the two sources of failure, we evalu-
ate a LM’s task ability by measuring its fine-tuning
accuracy and zero-shot accuracy. For fine-tuning
accuracy, for each task we fine-tune the LM on
128 examples and report the average task accuracy.
Contrary to the ICL results where ablating paral-
lel structures (−PS) consistently leads to larger
accuracy reduction than ablating random tokens
(−RAND), the two ablations have comparable fine-
tuning accuracy as shown in Table 3. Ablating
parallel structures does not hurt zero-shot learn-
ing either—zero-shot accuracy of ablating parallel
structures is 14.3, while ablating random tokens
has accuracy 14.1. Thus, we conclude that the drop
in ICL accuracy from ablating parallel structures is
mainly due to a drop in ICL ability, not task ability.
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6.2 Comparing Parallel Structures with Other
Structures

We compare parallel structures with two other
structures of pre-training data hypothesized to pro-
duce ICL: n-gram repetitions and long-range de-
pendency (Table 2).

Parallel structures that are not n-gram repeti-
tions are also important for ICL. Prior work
has shown that ICL is closely related to n-gram rep-
etitions in the pre-training data (Yan et al., 2023;
Olsson et al., 2022). N-gram repetitions are a sub-
category of parallel structures where the former and
latter phrases are identical. Are parallel structures
crucial for ICL only because they include n-gram
repetitions? To answer this question, we measure
the effect of parallel structures that are not n-gram
repetitions on ICL, denoted as −PS + RP. Specif-
ically, during PS scoring we exclude phrase pairs
that end with the same bigram, e.g., “mortality rates
in 2013” and “mortality rates again in 2013”. We
then take the top-p% PSs and perform ablation as
described in Section 3.3.

Pre-training on −PS +RP consistently incurs a
larger drop in ICL performance compared to ablat-
ing random tokens of the same amount (37.9% vs.
1.5% relative reduction in accuracy averaged across
model sizes), which indicates that parallel struc-
tures that are not n-gram repetitions are also impor-
tant for LMs to acquire ICL. We conjecture that
pre-training on diverse parallel structures helps LM
generalize to various downstream tasks where copy-
ing alone is insufficient (e.g., synonym/antonym
classification and palindrome classification).

In particular, we observe that ablating parallel
structures that are not repetitions incurs a large drop
in ICL accuracy on the copy task as well (81.8% rel-
ative reduction in accuracy averaged across model
sizes), even though all parallel structures that are
repetitions are preserved. This indicates that LMs
learn to generalize between parallel structures/in-
context examples of different tasks.

Parallel structures have a larger effect on ICL
than long-range dependency. Prior work iden-
tified long-range dependency in pre-training data
as crucial for LMs to acquire ICL (Shi et al., 2023).
Parallel structures are a subcategory of long-range
dependency, where the dependency is the similarity
between two phrases from the same distribution.
Are PSs crucial for ICL only because they capture
long-range dependency? In other words, is long-

range dependency that are not PSs equally crucial
for ICL? To answer this question, we measure the
effect of long-range dependency that is not parallel
structures on ICL, denoted as −DP + PS. Moti-
vated by Sun et al. (2021); Olsson et al. (2022),
for each latter phrase (cl, xl) in a segment b whose
context length is at most m, it has long range de-
pendency if including additional context improves
the log probability of xl under the language model.

Specifically, the long context includes all
previous tokens in the context window a as
illustrated below:

a b xl

p(xl | long context)

p(xl | short context)

Formally, given a context window a, for each
(cl, xl) where xl = ai, we measure the long-range
dependency strength of the phrase by

β(cl, xl = ai) (6)

= log p(ai | a<i;w)− log p(ai | cl;w) (7)

Same as detecting parallel structures, we use pre-
trained GPT2-Small as the language model for scor-
ing and ablate the top-p% (cl, xl) with long range
dependency by replacing xl with a random token.

Pre-training on −DP +PS consistently incurs
a smaller drop in ICL performance compared to
pre-training on −PS on all four model sizes (17.5%
vs 51.1% relative reduction in accuracy averaged
across model sizes). This indicates that parallel
structures are crucial for ICL not because they cap-
ture long-range dependency, and that parallel struc-
tures have a larger effect on ICL than long-range
dependency.

6.3 Analyzing Characteristics of Parallel
Structures

In addition to the ablation results, we analyze char-
acteristics of the detected parallel structures in pre-
training data, and find that they are suggestive of
ICL abilities we observe on large LMs. These links
between parallel structures and ICL present addi-
tional evidence that PSs produce ICL, and more im-
portantly, open up new directions/methods to study
ICL by tracing back to PSs in the pre-training data.

Parallel structures exhibit diverse patterns.
We find that the detected parallel structures in pre-
training data exhibit diverse patterns, including
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n-gram repetitions, synonyms, text formats (e.g.,
“\n\n” followed by a ⟨year number⟩), syntactic con-
stituents (e.g., a ⟨pronoun⟩ followed by a ⟨verb⟩),
punctuation and line break patterns, and more com-
plicated ones that require reasoning and knowl-
edge (e.g., a ⟨basketball player⟩ followed by ⟨their
position⟩). Each type of parallel structures cor-
responds to the text distribution of some “task”
that the model needs to learn in-context, so the
types of parallel structures in the pre-training data
corresponds to the number of pre-training “tasks”.
Prior work also hypothesized the importance of
task diversity for learning new linear regression
tasks (Raventós et al., 2023) and the importance
of domain diversity for ICL (Shin et al., 2022).
Our work detects the in-context “tasks” in real pre-
training data, and finds that their diversity is crucial
for LMs to acquire ICL.

Parallel structures span long distances. We
measure the distance (i.e. number of tokens) be-
tween the former and latter phrases in the identified
PSs, and find that parallel structures often span
long distances (skewed to the right with an aver-
age of 343 tokens, a median of 292 tokens, and
a standard deviation of 275 tokens). Pre-training
on parallel structures spanning long distances may
encourage LMs to use patterns of early tokens in
the context to predict the next token. This ability
may explain why LMs do not forget early exam-
ples in in-context prompts (Li and Qiu, 2023) and
achieve monotonically higher accuracy with more
ICL examples on most tasks (Brown et al., 2020).

7 Related Work

Effect of Pre-training Data on ICL. Prior work
has studied what structures of pre-training data
are crucial for LMs to acquire ICL. We introduce
them below and discuss their relations to parallel
structures.

Long-range dependency. One line of work
showed that pre-training LMs on data with long-
range coherence produces ICL. Xie et al. (2021)
generated a synthetic dataset where each context
window consists of multiple segments sampled
from the same Hidden Markov Model, and showed
that pre-training on this synthetic dataset produces
ICL. Shi et al. (2023) verified the importance of
long-range coherence on natural language text by
empirically showing that concatenating relevant
text during pre-training improves ICL. Parallel

structures are a special kind of long-range depen-
dency that is more important for ICL.

N-gram repetitions. Olsson et al. (2022) found
that n-gram repetitions are closely related to ICL
through induction heads: LMs learn induction
heads from n-gram repetitions, and this process
happens concurrently with the emergence of ICL
during pre-training. Yan et al. (2023) claimed that
LMs learn token co-occurrence reinforcement from
n-gram repetitions, which is essential for ICL. Par-
allel structures include n-gram repetitions as a sub-
category, but also include less structured patterns
that are also crucial for ICL.

Diversity. Shin et al. (2022) found that increas-
ing corpus diversity by merging datasets of differ-
ent domains improves ICL. Our results show that
diverse parallel structures are crucial for ICL.

Long-tail tokens. Han et al. (2023) identified
supportive pre-training data with similar gradients
as in-context examples, and found that the sup-
portive data has higher density of long-tail tokens
compared to natural text. Instead of studying the ef-
fect of pre-training data on ICL, Chan et al. (2022)
studied the effect of in-context tuning (i.e. training
on in-context prompts (Chen et al., 2022)) data on
ICL, and also found that increasing the number of
long-tail classes improves ICL. It is unclear how
long-tail tokens are related to parallel structures.

Mechanistic Interpretability of ICL. Prior
work has proposed different theories to explain
how ICL works. We introduce them below and
discuss the connection between those mechanisms
and parallel structures.

Induction heads. Olsson et al. (2022) claimed
that LMs perform ICL via induction heads: atten-
tion heads that attend to a previous occurrence of
a similar phrase and copy from it. Their work sup-
ported their claim by showing that ICL and induc-
tion heads appear concurrently during pre-training.
As a follow-up work, Wang et al. (2023) studied
how LMs use attention heads to perform ICL, and
found that label words of ICL examples aggregate
information processed in shallow layers and pro-
vide anchors for induction heads. We conjecture
that LMs may also use induction heads to predict
parallel structures, and leave it to future work.

Implicit gradient descent. Multiple concurrent
work (Akyürek et al., 2022; Von Oswald et al.,
2023; Mahankali et al., 2023) claimed that LMs
perform ICL via implicit gradient descent, where
one layer of model inference on in-context exam-
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ples corresponds to one step of gradient descent
on those examples. This group of work supported
its claim on linear regression tasks, which is then
generalized to natural language tasks by Dai et al.
(2023). We detect parallel structures using gradient
descent, and an interesting future direction is to
explore if the LM’s behavior on parallel structures
in text also resembles gradient descent.

8 Conclusion

We study what structures of the pre-training data
yield in-context learning, and hypothesize that par-
allel structures are crucial for LMs to acquire ICL
ability. We verify our hypothesis with ablation ex-
periments on real pre-training data, where we find
that ablating parallel structures incurs a significant
drop in ICL performance. Detailed analysis further
reveals that parallel structures are more important
than n-gram repetitions and long-range dependency
for ICL, and exhibit diverse linguistic patterns. We
hope our findings can inspire future methods to
construct better pre-training data to improve ICL
performance, and to better understand the source
of emergent ICL ability.

Limitations

Our work has several limitations that we leave to
future work. First, due to limited computational re-
sources we only experiment with models up to 1.5
billion parameters. Future work should scale up our
experiments to larger LMs and explore pre-training
randomly initialized LMs from scratch. Second,
despite our efforts in creating a set of diverse and
representative tasks to evaluate ICL ability, most
tasks are relatively straightforward due to limita-
tions imposed by the LM size we experiment with
(i.e. our experimented LMs fail on most complex
tasks). Future work should study evaluate ICL abil-
ity on more complicated tasks with larger LMs.
Third, our study focuses on parallel structures and
ICL in the text modality. Future work should study
the role of parallel structures in multi-modal ICL.
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