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1 Abstract

Model selection for a given target task can be costly,
as it may entail extensive annotation of the qual-
ity of outputs of different models. We introduce
DiffUse, an efficient method to make an informed
decision between candidate text generation models
based on preference annotations. DiffUse reduces
the required amount of annotations, thus saving
valuable time and resources in performing evalu-
ation. DiffUse intelligently selects instances by
clustering embeddings that represent the semantic
differences between model outputs. Thus, it is able
to identify a subset of examples that are more in-
formative for preference decisions. Our method
is model-agnostic, and can be applied to any text
generation model for selecting between models,
prompts and configurations. Moreover, we propose
a practical iterative approach for dynamically deter-
mining how many instances to annotate. In a series
of experiments over hundreds of model pairs, we
demonstrate that DiffUse can dramatically reduce
the required number of annotations – by up to 75%
– while maintaining high evaluation reliability.

2 Introduction

Model evaluation is a prerequisite for informed de-
cisions – predominantly, choosing the right model
for the task. As such, an essential requirement is
the ability to compare models based on how well
they perform.

Moreover, since a given model can be configured
in many ways, there is a need for an even wider
range of comparisons. For instance, comparing
different prompts a model is provided with can
affect task performance significantly.

Comparing model performance generally re-
quires some sort of oracle – a human annotator or
LLM-based evaluator – that can judge model out-
puts and prefer one output over another. However,
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Figure 1: Aggregated success rate over
CNN/DailyMail, across all 666 model pairs (×10
repetitions for each pair). DiffUse demonstrates a clear
advantage in correctly determining the stronger model,
based on a small number of oracle-annotated examples.

depending on the nature of the oracle, such judg-
ments can incur significant costs, particularly in
terms of annotation budgets (Ein-Dor et al., 2020;
van der Lee et al., 2019) and computational require-
ments (Liang et al., 2022; Biderman et al., 2023;
Perlitz et al., 2023). Specifically for text generation
tasks, the oracle is burdened with making nuanced
judgments of the quality of generated texts (Celiky-
ilmaz et al., 2020); often, this can only be done by
expert human annotators (van der Lee et al., 2021),
or possibly by powerful LLMs (e.g., GPT-4, Zheng
et al., 2023), both of which are costly to apply at
scale. Moreover, as the number of models and tasks
increases, conducting these evaluations becomes
prohibitively expensive (Perlitz et al., 2023).

Our goal is to address the costs associated with
evaluating model outputs in text generation, by re-
ducing the burden on the oracle. To our knowledge,
this goal has not been addressed in the literature.
Specifically, we focus on the use case of directly
comparing two candidate models, where the oracle
is asked to make preference judgements between
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the outputs generated by the two models. Our fo-
cus is on comparative judgments and not absolute
scores, as these are considered more reliable for
evaluating text generation (Callison-Burch et al.,
2007; Sedoc et al., 2019; Li et al., 2019; Liang
et al., 2020).

In this work, we propose a method that substan-
tially reduces the number of examples that must
be annotated by the oracle, while yielding a more
reliable estimate of the preferred model for the task.

Our approach - DiffUse - selects pairs of model
outputs that on the one hand are representative of
the space of differences between model behaviors
on a given task, and on the other hand are more in-
formative, showing clearer preference. Specifically,
we calculate embedding vectors that represent the
semantic difference between the outputs of the two
models; then, by partitioning these embeddings
into clusters, we can intelligently select a diverse
informative subset of instances for annotation.

DiffUse is inherently generic and does not as-
sume anything about the models, tasks, unlabeled
test data, prompts, or model hyper-parameters. Our
results (§6) demonstrate its stability and effective-
ness for different text generation tasks, across hun-
dreds of pairs of generative models, and across a
broad range of annotation budgets. One represen-
tative example of this can be seen in Figure 1. We
also propose an iterative real-world solution for
practitioners (§6.2), which enables making reliable
and cost-efficient choices between candidate mod-
els. We find this method to be better in all of our
experiments, achieving a reduction in annotations
of up to 75% compared to random sampling.

Furthermore, we conduct a comprehensive anal-
ysis (§7) of the components of our method. Our
findings suggest that our method tends to select ex-
amples from regions in the output-difference space
that are dominated by the preferred model.

3 Definitions and Problem Formulation

In this work, we focus on comparative evaluation
of models. Given two text generation models, we
wish to evaluate which one is stronger with respect
to a given generation task, based on preference
labels of an oracle over the model outputs.

For an input instance x and a pair of mod-
els MA,MB with corresponding outputs yA,yB , a
preference label ypref ∈ {MA,MB, T} indicates
whether yA is better than yB (MA), worse than yB
(MB) or similar to yB (T ).

Test winning model The model for which the
outputs over the test set Dtest are more frequently
preferred by the oracle. Formally:

Wtest =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
MA if PMA

test > P
MB
test

MB if PMA
test < P

MB
test

T if PMA
test = P

MB
test

where

P
m
test =

1∣Dtest∣ ∑(x,ypref)∈Dtest

1{ypref=m} (1)

is the test winning probability of model m ∈{MA,MB}, and 1{ypref=m} is the indicator function

that takes the value 1 if ypref = m and 0 otherwise.1

Test winning distance The absolute difference
between the test winning probabilities of the two
models, ∣PMA

test − P
MB
test ∣.

Problem formulation Calculating the test win-
ning model requires preference labels for every
point in the test set. However, this is often costly
and impractical. Thus, our goal is to maximize the
probability of identifying the test winning model,
under a given annotation budget N , by wisely se-
lecting only a subset of examples Dobserved

test ⊆ Dtest
from the test set to be labeled by the oracle.

A naive baseline for estimating the test winning
model is to uniformly sample N test instances, la-
bel them, and compute the winning model over
these instances.

4 Method

Our algorithm, DiffUse, is simple and effective,
and relies solely on the outputs generated by the
models. The full flow is described in Figure 2.

We aim to represent examples in a manner that
captures the distribution of model mismatching be-
haviors, i.e., various types of differences between
model outputs. To this end, we first embed model
outputs into a semantic vector space (using off-the-
shelf methods). Subsequently, we generate differ-
ence vectors by subtracting the embeddings of one
model from the embeddings of the other, for each
example in the test set.

Then, we cluster these difference vectors and
select one representative from each cluster to be
labeled by the oracle.

1
P

m
test is itself an unbiased estimate of Pm, i.e., the (un-

known) winning probability over all possible input instances
from the same distribution.
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Figure 2: DiffUse flow. Our method consists of 5 steps: performing inference with the models on the test set,
encoding the generated outputs, performing pairwise subtraction, clustering the resulting vectors, and selecting
representatives for evaluation. A comprehensive description is provided in §4.

Given the construction of the difference vectors,
we expect this vector space to largely carry infor-
mation about semantic differences, i.e., the nature
of disagreements between models. Choosing an
example from each cluster ensures that the set of
selected examples is representative of this space;
hence, these examples are expected to be informa-
tive for estimating which is the preferred model.

5 Experiments

5.1 The Data

Throughout our experiments, we utilize data from
the HELM benchmark (Liang et al., 2022, version
0.2.22). We rely on data from its core scenarios,
which encompass inputs, outputs, and scores for
various models, datasets, and tasks.

The scores in HELM are automated metrics that
compare model outputs to human reference an-
swers, and not direct preference annotations. We
chose this data due to its large scale, containing
multiple models with their inference results over
several well-defined generation tasks. The metric
scores in HELM serve as the ground-truth data,
such that the preference label of an example is the
model with a higher score for this example (or a tie
if scores are equal).

For each scenario we report results for several
reference-based metrics, hence simulating a range
of different kinds of oracles.

In our experimental setup, we explore 6 distinct
text generation scenarios. This encompasses eval-
uating the results of 666 unique model pairings,
comprising comparisons among 37 different mod-
els. Furthermore, we also investigate comparisons
involving a single model paired with 3 different
versions of prompts (§6.3), yielding an additional

2
https://crfm.stanford.edu/helm/v0.2.2/?group=

core_scenarios

111 paired comparisons per scenario. The tasks we
experimented with are summarization and question
answering (i.e., the text generation tasks in HELM),
as detailed in Appendix Table 1. As shown in
Fig. 3, the winning distances between model pairs
in HELM span a large range, but are often small; in
other words, HELM showcases diverse behaviors
but determining the winning model is usually not
trivial.
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Figure 3: Distribution of test winning distances (§3)
in HELM between pairs of generative models.

5.2 Example Selection Method

As outlined above (§4), DiffUse consists of calcu-
lating difference vectors that represent the model
output behaviors, clustering them, and sampling
examples based on the resulting clusters.

Specifically, we use Sentence-BERT (Reimers
and Gurevych, 2019) all-MiniLM-L6-v2 encoder to
embed the outputs3, and subtract the resulting em-
beddings to obtain difference vectors. For cluster-
ing the vectors, we opt for Hierarchical Agglomer-
ative Clustering (Müllner, 2011) with Ward link-

3
https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2
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Figure 4: Comparing example selection methods. Success rates (± standard error) in identifying the best of two
competing generative models (listed in the plot title), in terms of their performance over CNN/DailyMail (using
Rouge-2 as the oracle).

age4 and Euclidean distance.
For a given budget of N examples to be anno-

tated by the oracle, we select them by partitioning
the vectors into N clusters. Then, from each cluster
we select a single example, and specifically the one
whose embedding is closest (in cosine distance) to
the center of the cluster.

Note that while we found this setup to work
particularly well, opting for a different choice of
clustering algorithm, or for a different approach
of selecting examples given the clusters, does not
dramatically affect the results (§7.1).

5.3 Example Selection Experiments

Our main experiments examine the success rate of
an example selection method, defined as follows.

For a given dataset, a budget of size N , and a pair
of generative models, we use a selection method to
select N examples for annotation. This sample is
then annotated by the oracle, and used to determine
the sample winning model. An example selection
run is successful when the sample winning model
equals the test winning model. These binary results
are then aggregated across several random seeds
and across all generative model pairs to determine
the success rate of the example selection method.

DiffUse is compared to the baseline of random
selection, where the N examples are sampled i.i.d.
from the dataset.

To better estimate the robustness of the selection
4
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.cluster.hierarchy.linkage.html

methods, for each experimental run (seed) we sam-
ple a large subset of the full data (800 out of 1000
scenario examples in HELM) and treat this subset
as if it were the full test set.

For each of the 6 HELM scenarios, we report re-
sults across 666 unique model pairs, 10 runs (seeds)
for each, and varying N between 5 and 200.

6 Results

We start by comparing the success rate of DiffUse
to that of the random selection baseline.

Figure 4 illustrates two such comparisons, each
for a specific pair of models. As can be seen, suc-
cess rates can vary greatly between cases where
there is a relatively large performance difference be-
tween the generative models (left panel) and those
with a small performance difference (right panel).
As for the latter, estimating the preferred model is
harder and requires more annotated instances. Nat-
urally, the model preference estimation becomes
more accurate as the budget N increases and the
preference decision relies on a larger set of exam-
ples annotated with oracle preference.

In the two cases presented in Fig. 4, DiffUse
achieves higher success rates at identifying the bet-
ter generative model, in comparison to random sam-
pling. These results showcase that with DiffUse
one can reach the correct decision with a smaller
number of examples to be annotated by the oracle.

To give a broader and quantitative picture,
Figure 1 depicts the aggregated results for the
CNN/DailyMail summarization data, averaged
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across all 666 model pairs. The plot demonstrates a
clear advantage of our approach over random selec-
tion, arriving at the correct decision more often and
using fewer examples. Thus, using DiffUse there
is a much lower risk of choosing the wrong model.
This pattern is quite consistent across the different
datasets tested, as can be seen in Appendix A.1.

Note that while DiffUse demonstrates a clear
advantage, its effect does vary across datasets, and
across “oracles” (in our case, different reference-
based metrics).

6.1 Estimated Winning Distance

Our focus is on making accurate preference choices
between models, i.e. choosing the better perform-
ing one, according to the oracle preferences. How-
ever, another facet of model evaluation is the size of
the performance gap between the two models (e.g.,
model B won by 18% over model A). We define
this performance gap, over the entire test set, as
the test winning distance (§3). When using a small
set of examples to estimate this performance gap,
we obtain an estimated winning distance. Thus,
an interesting question is what is the difference
between the estimated and test winning distance.

Figure 5 depicts this difference, for each exam-
ple selection method, over a varying budget size.
Random selection, being an unbiased estimator,
naturally has an average deviation of zero from
the test winning distance5. In contrast, the figure
demonstrates that DiffUse provides an estimated
winning distance that is biased toward the winning
model. This bias, which is particularly large with
small budgets, explains how the method is able
to outperform random selection at binary prefer-
ence choices - being biased on average towards
the winner, there would also be fewer cases where
the losing model is accidentally selected (note the
lower bounds of the shaded areas in Fig. 5).

6.2 Practical Iterative Selection Algorithm

Accuracy in estimating the winning model can vary
widely, depending on the budget size as well as the
actual performance gap (Fig. 4). In a real-world
scenario, however, users do not know in advance
the size of the performance gap between the models
they compare; moreover, after annotating some ex-
amples with the oracle and estimating the winning

5This does not imply that a single estimation using random
selection is likely to be accurate; rather, that across many
estimations, the expected value of the difference is zero.
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Figure 5: Difference between the estimated and test
winning distance, aggregated across all model pairs
over XSum. Shaded areas denote standard error (av-
eraged across pairs). Clearly, DiffUse favors the test
winning model, giving a biased estimate in its favor.
The bias dissipates with additional annotations, converg-
ing to the true distance for the full set of examples.

model, users will not know whether the estimation
is in fact correct.

Thus, in order to reduce oracle effort in prac-
tice, there is a need for an approach that deter-
mines the minimal budget required, and provides
some approximation of the reliability of the win-
ning model selection. To this end, we propose
an iterative method for selecting examples. In
this approach, the number of examples sent to the
oracle is increased gradually, until a predefined
reliability-oriented threshold is met. Hierarchical
clustering naturally lends itself to an iterative so-
lution: suppose we have clustered the difference
vectors into k clusters, and the oracle has annotated
the k selected examples, yet we suspect that the
preference estimation is not sufficiently reliable.
In this case, we can now cluster the vectors into
k + 1 clusters; this will further partition one of
the previous clusters, providing two new examples
to be labeled by the oracle6. With each partition-
ing step, the amount of information increases, and
this procedure is repeated until reaching the thresh-
old/stopping criterion.

The full iterative selection flow is described in
Algorithm 1. For the stopping criterion, we propose
a reliability threshold based on the hypergeometric
distribution (for details, see App. A.3). The thresh-
old is a heuristic that approximates the level of risk,

6Partitioning a cluster means selecting two new examples,
in addition to the one originally annotated for the cluster; we
discard the original example (ec in Alg. 1) from the preference
decision, as it is presumed to be less informative at this point.
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Algorithm 1: Iterative Selection Algorithm - Risk-based Threshold
Input: Two models {MA,MB}, dataset D, and oracle O
Parameters: Threshold p ∈ (0, 1), Minimum number of annotations n, Maximum budget N
Output: Winning model (or inconclusive)
Calculate the difference vectors V (D,MA,MB), as described in Section 4.
Cluster V into n clusters.
Choose representatives En = {e1, . . . , en}, one from each cluster.
Get the oracle tags Tn = O(En), and calculate the probability sfhypergeom(Tn) (see App. A.3)
Initialize k = n + 1, T = Tn

while sfhypergeom(T ) > p and ∣labeled examples∣ < N do
Find the next cluster c to be split (1 ≤ c < k), and split it.
Choose representatives Ek = {ek, ek+1}, one from each of two splits.
Get the oracle tags Tk = O(Ek).
k = k + 1, T = (Tn − {ec}) ∪ Tk

Return the winning model according to T .

where a threshold of 0.1, for example, loosely cor-
responds to a likelihood of up to 10% of choosing
the wrong model. The threshold is set in advance,
and reflects a preferred point on a trade-off: be-
tween the user’s tolerance for error, and the amount
of examples the oracle will need to annotate.

Results for the iterative algorithm are shown in
Figure 6. Clearly, DiffUse provides a significant
advantage over random selection, increasing the
likelihood of successfully determining the winner
(right panel), while significantly reducing the num-
ber of examples sent to the oracle (left panel).

Note that the number of annotations in practice
varies widely, and is linked to the performance gap
between the models. For instance, in the Closed-
Book version of NaturalQuestions, a large number
of examples is annotated, and the outcome is usu-
ally inconclusive (left panel of Fig. 6, App. Tab. 2);
the reason for this is that the test winning distances
in this dataset are quite small (cf. Fig. 3), making
it difficult to conclusively determine the winner.

6.3 Prompt Selection

Naturally, task performance varies depending on
the underlying model used. However, there are ad-
ditional configurations affecting downstream task
performance. One such crucial aspect is the choice
of prompt and of in-context examples (Polo et al.,
2024; Mizrahi et al., 2023).

Thus, we also test our approach in distinguish-
ing between different prompts and in-context ex-
emplars. Specifically, for each model and scenario,
we apply our method to the model outputs using
different prompt variants. As done with outputs

from different models, the instances selected with
DiffUse are then used to estimate the the better
performing variant. We utilized the scenario data
provided by HELM, which includes three prompts
for each model with variations on the few-shot ex-
emplars given before the input.

We find that akin to the between-model experi-
ments, our method is also effective in identifying
the better prompt for a given model, using much
fewer samples than a random selection. The results,
depicted in Appendix A.6, are consistent across
datasets, tasks and scores.

7 Analysis

7.1 Method Parameters

Next, we examine 3 components in the flow of Dif-
fUse (Fig. 2): the representations of examples, the
clustering algorithm and the cluster representa-
tive selection.

Our method relies on difference vectors (i.e.,
subtraction of output embeddings) to represent ex-
amples. A naive alternative would be to cluster
the embeddings of inputs, akin to some methods
in active learning (Zhang et al., 2022). However,
we find that this approach does not consistently
outperform random sampling (App. Figure 14).

In contrast, we find that the choices of cluster-
ing algorithm and representative selection are less
significant, and performance differences are not
dramatic (Appendix A.4). Note that all configura-
tions significantly outperform the random baseline.
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Figure 6: Iterative selection results (Algorithm 1; with p = 0.2, n = 5, and N = 200), comparing DiffUse to
random sampling. Results are aggregated across 666 model pairs. The left panel depicts the mean number of
examples annotated by the oracle before reaching the stopping criterion. The right panel depicts the proportion
of outcomes of the iterative selection experiments – i.e., was a winning model determined, and was this decision
correct – aggregated across all datasets. See also App. Table 2, 3.

7.2 Which examples are selected?

As shown above, the success of our method hinges
on the use of output difference vectors. Next, we
perform several analyses to better understand how
clustering these vectors enables selecting examples
that are informative for the oracle.

The difference vectors represent variance in the
outputs, and thus in the models’ behavior for a
given task. Assuming an ideal semantic encoder,
highly distinct outputs should yield difference vec-
tors with high norms, signifying pronounced dis-
similarities. Conversely, similar outputs would re-
sult in lower norms, indicating subtle differences.

Figure 7: Example 2-D projection. A t-SNE (van der
Maaten and Hinton, 2008) projection of the difference
vectors from a randomly selected pair of models in
XSum. The observed behavior, where most vectors are
centered around zero, and the distribution is sparser
away from it, is consistent across model pairs.

7.2.1 Cluster Sizes and Difference Norms
In distance-based clustering, vectors with smaller
norms have a higher tendency to be clustered to-
gether. This is nicely demonstrated in Figure 7,
which depicts an example two-dimensional projec-
tion of difference vectors for a pair of models. The
projection reveals a densely populated region close
to zero, corresponding to cases where the model
outputs show more subtle differences.

Figure 8 illustrates the relation between the sizes
of clusters and the average norm of difference vec-
tors within the cluster. Evidently, clustering the
difference vectors tends to result in a small number
of large clusters, which have a low average norm
(bottom-right area of Fig. 8), alongside a large num-
ber of small clusters with higher norm values. Of-
ten, over half of the vectors are assigned to a single
cluster with small norms. As DiffUse selects one
example from each cluster, the sub-population of
examples with small difference norms is under-
represented in the set of selected examples.

Figure 9 directly depicts the norm size distribu-
tion of the selected examples. Again, we see that
DiffUse is biased toward high-norm instances.

7.2.2 Norms and Winning Model
We have demonstrated that our method over-
represents difference vectors with a higher norm.
This leads to the question of how this tendency
relates to model preference.

Figure 10 depicts the relation between the norm
of difference vectors and estimation of the test win-
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Figure 8: Cluster size vs. average vector norm. Hi-
erarchical clustering results of the difference vectors,
partitioning XSum into 50 clusters. Each point repre-
sents a single cluster; in total, the plot depicts ∼ 33K
points (666 model pairs × 50 clusters per pair). The
x-axis reflects the percentage of all examples that are in
the cluster (i.e., indication of cluster size), and the y-axis
is the average vector norm within the cluster. Results are
characterized by a few very large clusters with a small
average norm (bottom right); this pattern is consistent
across different numbers of clusters (App. Fig. 15).

ning model. As can be seen, the preference label
of instances with higher difference norms is more
likely to align with the test winning model. This is
in line with the winner-bias shown in Fig. 5.

A possible explanation for this observation is
that larger semantic differences between the mod-
els’ outputs are expected to be associated with
larger quality gaps; meanwhile, the chances that
the weaker model will beat the stronger model’s
output by a large margin are low. Thus, the lower
the difference norm, the higher the probability of
the preference label to be “erroneous”, namely for
the weaker model to be preferred by the oracle.

Given that high-norm pairs are informative, a
simple approach would be to forgo clustering, and
simply select the instances with the highest norm
for annotation. However, this results in inferior
performance (App. A.5), likely due to low diversity
and representativeness of the selected subset. This
is not surprising; selecting by norm alone can result
in outliers, and may not be representative of the
space of difference vectors.

To sum, clustering difference vectors over-
represents output pairs with a large difference norm
(§7.2.1). These, in turn, are more strongly associ-
ated with the winner (§7.2.2). Thus, our analyses
illustrate how DiffUse is able to correctly determine
the test winning model using fewer annotations.
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Figure 9: Norms of selected examples. The histograms
depict the norm of difference vectors for the output
pairs selected for annotation (across all NarrativeQA
selection runs). Compared to random sampling, DiffUse
selects examples with higher vector norms.

8 Related Work

In light of the soaring costs of language model eval-
uation, even when using automatic metrics, some
recent works (Perlitz et al., 2023; Maynez et al.,
2023) have studied the effects of reducing the size
of evaluation sets – via random sampling – on the
reliable ranking of models.

Other prior works have examined methods of in-
telligently selecting subsets of examples for evalua-
tion, aiming to find sets of examples that are more
informative than randomly sampled instances.

Rodriguez et al. (2021); Vania et al. (2021) look
at selecting examples for evaluating new models,
given fully-annotated question answering data for
an existing set of models. They show that some
selection strategies, based on item response the-
ory (Lord et al., 1968), outperform the random
selection baseline for ranking new models on a
question answering task. Several works have ad-
dressed label-efficient assessment in the context
of classifier performance. Katariya et al. (2012)
propose a label-efficient algorithm to gain better
accuracy estimates of classifiers, by selecting ex-
amples to label based on stratified sampling. Ji
et al. (2021) suggest an active Bayesian approach
that uses inferred uncertainty to guide selection of
instances. Inspired by works on active learning,
Kossen et al. (2021) propose methods based on a
stochastic acquisition process, to avoid unwanted
and highly problematic biases involved in active
selection of test set examples. Ha et al. (2021) sug-
gest an iterative method that utilizes a surrogate
model to estimate the metrics of interest over the
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Figure 10: Norms and preference estimation. The plot
depicts the success rate at estimating the test winning
model, based on sub-populations with varying vector
norms. For each model pair, the difference vectors were
partitioned based on their norm sizes into 50 equal-count
bins, and each bin of instances was used to estimate the
test winning model. The plot presents an aggregation
across all model pairs over NarrativeQA.

unlabeled test set, and labels examples that lead to
maximal uncertainty reduction of the metric esti-
mation. With a similar spirit to our work, Vivek
et al. (2023) find anchor examples in classifica-
tion datasets that represent how confident different
models are over those input examples.

Our work differs from these prior efforts in that
we tailor our approach to the nature of text gener-
ation. Existing methods for example selection are
not easily adapted from classification to generation
tasks – the concepts of uncertainty, confidence and
errors are inherently different for natural language
generation, necessitating a different approach. In
addition, unlike e.g., Rodriguez et al. (2021); Vania
et al. (2021), our method does not require any an-
notations and assumes only a set of model outputs.

9 Discussion

We have demonstrated that our method, DiffUse,
provides significant cost savings in model selec-
tion. We tested the approach for choosing the better
underlying model as well as the most effective in-
context prompt. Given the generality of the method,
this likely means DiffUse is applicable to a vast
range of model configuration and hyper-parameter
choices.

Moreover, using a dynamic algorithm such as the
one proposed here (§6.2), practitioners can reduce
the number of oracle judgements while maintaining
high evaluation reliability.

Here we examined the problem of selecting be-
tween a pair of candidate models. We leave to
future work the scenario of picking from a larger
set of candidates. This may entail adapting our
method to a multi-model scenario, or combining
our pairwise approach with an efficient method
for limiting the number of pairwise comparisons
(e.g., Mohankumar and Khapra, 2022).

While the current work deals with model selec-
tion, our approach of modeling differences between
outputs can potentially be applicable for other pur-
poses as well. This can include qualitative assess-
ment of model behaviours, collection of preference
data for training reward models, and more. More-
over, the proposed approach can be easily adapted
to domains beyond NLP such as vision and speech.

Limitations

As our approach relies on obtaining representations
of model outputs, it incurs the non-trivial computa-
tional cost of performing inference over the set of
examples to be clustered, in the range of hundreds
of examples. Thus, our method is only suited for
the (very common) scenario where the cost of ap-
plying the oracle is significantly greater than the
cost of performing inference on a somewhat larger
set of examples. This is the case for example when
the oracle is a paid API or a human annotator.

As noted in §6.1, DiffUse is a biased approach
that tends to over-represent subpopulations of the
of examples. Here we show empirically – across
model pairs and across datasets – that this method
provides significant and consistent gains in relation
to random selection. However, as also mentioned in
App. A.3, for a given attempt at model comparison
there is no theoretical or statistical guarantee of the
probability of making the correct choice.

Our study is motivated by the fact that obtaining
a large amount of quality or preference judgments
for a target generation task and candidate models is
prohibitively expensive. Ironically, this also means
it is not trivial to obtain large-scale annotated data
that can be used for evaluating the accuracy of
our oracle minimization approach (existing multi-
model datasets, e.g. for RLHF, often do not have
a well-defined notion of target tasks). Hence, here
we rely on reference-based metrics in HELM to
simulate different types of oracles. This is a limita-
tion of this work as we do not directly demonstrate
our method on real-world preference oracles.
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A Appendix

A.1 Full Results

Results for the 6 text generation scenarios (datasets)
in HELM, with 3 different metrics for each sce-
nario, are presented in Figure 11.

A.2 Computational Budget

Our example selection results (e.g., in Figures 11-
14) consist of ∼ 1.6 million selection runs, for
every selection method: 6 scenarios × 666 model
pairs × 40 annotation budgets (between 5 − 200)
× 10 repetitions (seeds).

The HELM raw data already includes the model
inference outputs as well as the preference judge-
ments (metric scores) of the different models. Thus,
the computational costs of performing these exper-
iments consist mainly of the semantic encoding of
the model outputs, as well as clustering of the rep-
resentation vectors. The semantic encoding, using
S-BERT (1000 examples per scenario × 37 models
in HELM) took a few minutes per scenario on a
single GPU; most of the computational cost con-
sisted of a large number of clustering runs, which
were performed in parallel on 16 CPU cores.

A.3 Iterative Selection Threshold

As described in §6.2 and Algorithm 1, we propose
an iterative algorithm for annotating examples by
the oracle and choosing the winning model.

We opt for a reliability-oriented stopping crite-
rion that is based on the hypergeometric distribu-
tion. This distribution describes the probability of
‘success’ when sampling without replacement, and
is parameterized by a population size N , sample
size n, number of successes in the population K
and number of successes in the sample k.

Specifically, we look at the hypergeometric dis-
tribution survival function, sfhypergeom(k − 1),
which describes the probability of getting k or more
successes by chance. In a model comparison sce-
nario, n corresponds to the number of examples
annotated by the oracle, and k to the number of
votes received by the winning model within this set.
We define the null hypothesis as one where the win-
ning model is the winner in 50% of the instances in
the full test set, i.e., where K = N/2. Using this
value for K, The result sf(k−1) thus reflects how
likely or unlikely it is to get a value of k or higher
given a ground-truth 50% win rate.

For instance, say we select examples out of a
pool of 500 unlabeled examples. The oracle is

given a total of 10 examples to label, and deter-
mines that model A was the winner in 8 of them:

sf(k−1, N,K, n) = sf(7, 500, 250, 10) = 0.0529

Thus, in this example – given the null hypothesis
and assuming a hypergeometric distribution – there
is only a ≈ 5% probability of getting such a high
win rate – or a higher one – by chance. In other
words, a situation where model A is the winner in
just 50% of the full test set, and an 8/10 result was
obtained, is relatively unlikely. A situation where
model A is the winner in under 50% of the test set
is even less likely. This means that the user can be
fairly confident that the correct winner was chosen.

Thus, when applying the iterative algorithm, the
user sets an acceptable risk level – say, 10% – in
advance; at each iteration, sf is calculated using
the current values of n and k; if the value of sf is
lower than the risk level, the result is considered
sufficiently reliable; if not, the sample size n is
increased and additional examples are labeled.

Note that we use this probability-based threshold
merely as a heuristic, or proxy, for the real proba-
bility. In practice, the assumptions of the hypergeo-
metric distribution are violated in our case. Most
importantly, this distribution describes random se-
lection, whereas DiffUse is non-random, and in fact
has a distinct bias towards selecting certain kinds
of examples (§6.1, §7). Moreover, even for random
selection, the approach does not precisely match
the model comparison setting; for instance, if there
is a large number of examples where there is a tie
between the two models, a null hypothesis of a 50%
win-rate is in fact overly conservative. Thus, while
the threshold chosen by the user serves as a good
proxy for the estimated error rate, and is thus suit-
able as a stopping criterion, it does not guarantee
the actual error rate value. In our empirical experi-
ments, for all datasets the error rate was lower than
the chosen risk threshold (cf. Tables 2,3).

When opting for higher risk thresholds, there
is a large impact to the initial number of labeled
examples, because wins that are based on a very
small sample (e.g., 3 out of 3) are avoided, even
though they may meet the risk threshold.

A.4 Clustering Methods and Representative
Selection

We conducted selection experiments employing
various clustering algorithms. We found that the
majority of these algorithms produced results that
exceeded those of random sampling.
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Task Scenario Description

Question Answering
NarrativeQA The NarrativeQA benchmark for reading comprehension

over narratives (Kočiský et al., 2018)
NaturalQuestions
(closed-book)

The NaturalQuestions (Kwiatkowski et al., 2019) bench-
mark for question answering based on naturally-occurring
queries through Google Search. The input does not include
the Wikipedia page with the answer.

NaturalQuestions
(open-book)

The NaturalQuestions (Kwiatkowski et al., 2019) bench-
mark for question answering based on naturally-occurring
queries through Google Search. The input includes the
Wikipedia page with the answer.

QuAC (Ques-
tion Answering
in Context)

The QuAC benchmark for question answering in the context
of dialogues (Choi et al., 2018).

Summarization
XSUM The XSUM benchmark for text summarization of BBC

news articles (Narayan et al., 2018)
CNN/DailyMail The CNN/DailyMail benchmark for text summarization

(Nallapati et al., 2016).

Table 1: The HELM scenarios we used for our experiments, which include short and long text output tasks.

# Annotations ↓ Error (%) ↓ Success (%) ↑ Inconclusive (%) ↓ Average Distance Avg. Dist. Avg. Dist. Avg. Dist.
Dataset Method (Error) ↓ (Success) (Inconcl.) ↓

CNN/DailyMail DiffUse 15.90 11.97 86.50 1.53 0.27 0.06 0.30 0.09
Random 22.47 16.77 80.32 2.91 0.27 0.10 0.31 0.07

NarrativeQA DiffUse 28.77 4.20 89.64 6.16 0.31 0.06 0.34 0.05
Random 118.69 0.72 43.03 56.25 0.31 0.11 0.55 0.13

NaturalQuestions Closed-book DiffUse 189.05 0.20 6.40 93.41 0.15 0.12 0.32 0.13
Random 191.74 0.11 4.37 95.53 0.15 0.10 0.32 0.14

NaturalQuestions Open-book DiffUse 85.25 0.93 62.81 36.26 0.20 0.03 0.28 0.06
Random 160.97 0.17 21.79 78.05 0.20 0.15 0.44 0.13

QuAC DiffUse 86.91 7.75 58.24 34.01 0.15 0.07 0.20 0.08
Random 128.93 4.37 35.93 59.70 0.15 0.09 0.25 0.10

XSum DiffUse 44.25 6.86 79.38 13.75 0.30 0.09 0.35 0.08
Random 59.39 6.05 72.45 21.50 0.30 0.10 0.37 0.09

Table 2: Iterative selection results (p = 0.2). The table depicts the results of applying iterative selection
(Algorithm 1; with p = 0.2, n = 5, and N = 200), comparing DiffUse to random sampling. Results are aggregated
across 666 model pairs. The table details the amount of annotations performed before reaching the stopping criterion,
and the outcomes of the selection experiments (Success/Error/Inconclusive). In addition, it details the average
winning distance (§3) between model pairs, broken down by the experiment outcomes. ↓: Lower is better.
Where the experiment result is inconclusive or the wrong winning model is chosen, the performance gap between
models is quite small; Thus, even where the user is unable to correctly determine the better-performing model, the
cost of this failure is relatively limited.
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Figure 11: Full results. Plots depict success rates of model preference estimation, aggregated over 666 unique
model pairs. Each panel depicts a different combination of dataset and "oracle" (reference-based evaluation metric).
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# Annotations ↓ Error (%) ↓ Success (%) ↑ Inconclusive (%) ↓ Average Distance Avg. Dist. Avg. Dist. Avg. Dist.
Dataset Method (Error) ↓ (Success) (Inconcl.) ↓

CNN/DailyMail DiffUse 34.54 7.13 86.44 6.43 0.27 0.05 0.30 0.07
Random 51.98 8.65 79.32 12.03 0.27 0.07 0.32 0.07

NarrativeQA DiffUse 47.80 1.35 84.53 14.11 0.31 0.05 0.36 0.05
Random 132.75 0.05 37.69 62.27 0.31 0.05 0.59 0.14

NaturalQuestions Closed-book DiffUse 195.37 0.00 3.30 96.70 0.15 NaN 0.37 0.14
Random 197.35 0.00 1.65 98.35 0.15 NaN 0.40 0.14

NaturalQuestions Open-book DiffUse 111.02 0.23 52.87 46.91 0.20 0.02 0.30 0.07
Random 172.34 0.02 16.71 83.27 0.20 0.05 0.49 0.14

QuAC DiffUse 129.20 2.96 43.26 53.78 0.15 0.06 0.23 0.09
Random 158.26 1.14 25.11 73.75 0.15 0.08 0.29 0.11

XSum DiffUse 71.18 2.16 73.21 24.62 0.30 0.07 0.37 0.08
Random 88.84 2.09 63.90 34.01 0.30 0.08 0.41 0.10

Table 3: Iterative selection results (p = 0.1). The table depicts the results of applying iterative selection
(Algorithm 1; with p = 0.1, n = 5, and N = 200), comparing DiffUse to random sampling. Results are aggregated
across 666 model pairs. The table details the amount of annotations performed before reaching the stopping criterion,
and the outcomes of the selection experiments (Success/Error/Inconclusive). In addition, it details the average
winning distance (§3) between model pairs, broken down by the experiment outcomes. ↓: Lower is better.
Where the experiment result is inconclusive or the wrong winning model is chosen, the performance gap between
models is quite small; Thus, even where the user is unable to correctly determine the better-performing model, the
cost of this failure is relatively limited.

Below, we provide details regarding the cluster-
ing methods we explored:

1. Hierarchical Clustering

(a) Euclidean Distance: Hierarchical clus-
tering with Euclidean distance measures
dissimilarity between data points based
on their spatial coordinates. It facilitates
cluster creation by iteratively merging
data points to minimize within-cluster
variance.

(b) Cosine Distance: Hierarchical cluster-
ing using cosine distance measures simi-
larity between data points via the cosine
of the angle between vectors. Cosine dis-
tances were employed during the merg-
ing process.

2. K-Means Clustering: K-Means clustering
partitions data into ’k’ clusters by iteratively
assigning data points to the nearest cluster cen-
ter and updating centers based on the mean of
assigned points. Our approach incorporated
“greedy k-means++” for centroid initialization,
leveraging an empirical probability distribu-
tion of points’ contributions to overall inertia.

The model preference success rates for different
clustering algorithms, selecting a single represen-
tative from each cluster based on distance to the
cluster center, are shown in Figure 12.

We also explored various methods for selecting
a representative from each cluster. These meth-
ods encompassed random selection, choosing the

example nearest to the centroid (employing either
Euclidean or cosine distances), and selecting the
example with the maximum norm. As seen in Fig-
ure 13, the choice of representatives did not signifi-
cantly impact the outcomes.

Here we focus on clustering algorithms as the
approach for sampling from the vector distribution.
However, other selection approaches, such as core-
set (Sener and Savarese, 2018) or IDDS (Tsvigun
et al., 2022), may also prove effective.

A.5 Norm of Difference Vectors

We explored the norm of the difference vectors as
a signal for selecting examples. While we exper-
imented with various binning scenarios, the best
outcomes were obtained by directly selecting the
vectors with the maximal norm. However, even
this approach proved inconsistent across datasets
and tasks, as demonstrated in Fig. 16. This is not
surprising; selecting by norm alone can result in
outliers, and may not be representative of the space
of difference vectors.

A.6 Prompt Selection Results

Results for the prompt choice experiments are pre-
sented in Figure 17. The results span the 6 text
generation scenarios (datasets) in HELM, with 3
different metrics per scenario. The plots in Figure
17 aggregate multiple paired selection experiments,
where in each experiment the choice is between
two prompt variants used with the same underlying
model. For each scenario, and for each of the 37
models in HELM, 3 prompt variants were tested;
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Figure 12: Comparing clustering algorithms. Plots depict success rates of model preference estimation, aggregated
over 666 unique model pairs. Each panel depicts a different dataset. For all clustering methods, a single example –
closest in cosine distance to the cluster center – is selected from each cluster.

0 25 50 75 100 125 150 175 200
Number of annotated examples

75

80

85

90

95

100

Su
cc

es
s 

ra
te

 (%
)

NarrativeQA (f1-score)

H-ward - centers
H-ward - centers-cos
H-ward - max_norm
H-ward - random
random

0 25 50 75 100 125 150 175 200
Number of annotated examples

65

70

75

80

85

90

Su
cc

es
s 

ra
te

 (%
)

QuAC (f1-score)

H-ward - centers
H-ward - centers-cos
H-ward - max_norm
H-ward - random
random

0 25 50 75 100 125 150 175 200
Number of annotated examples

65

70

75

80

85

90

95

Su
cc

es
s 

ra
te

 (%
)

NaturalQuestions - Closed-book (f1-score)

H-ward - centers
H-ward - centers-cos
H-ward - max_norm
H-ward - random
random

0 25 50 75 100 125 150 175 200
Number of annotated examples

70

75

80

85

90

95

Su
cc

es
s 

ra
te

 (%
)

NaturalQuestions - Open-book (f1-score)

H-ward - centers
H-ward - centers-cos
H-ward - max_norm
H-ward - random
random

0 25 50 75 100 125 150 175 200
Number of annotated examples

70

75

80

85

90

Su
cc

es
s 

ra
te

 (%
)

CNN/DailyMail (rouge-2)

H-ward - centers
H-ward - centers-cos
H-ward - max_norm
H-ward - random
random

0 25 50 75 100 125 150 175 200
Number of annotated examples

70

75

80

85

90

95

Su
cc

es
s 

ra
te

 (%
)

XSum (rouge-2)

H-ward - centers
H-ward - centers-cos
H-ward - max_norm
H-ward - random
random

Figure 13: Comparing representative selection methods. Plots depict success rates of model preference estimation,
aggregated over 666 unique model pairs. Each panel depicts a different dataset. For all non-random methods,
hierarchical clustering with Ward linkage was used to partition the difference vectors; the plots compare approaches
for selecting a single representative from each cluster.
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Figure 14: Input-based clustering results. Plots depict success rates of model preference estimation, aggregated
over 666 unique model pairs. Each panel depicts a different dataset.

thus, each panel depicts 111 unique paired compar-
isons.
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Figure 15: Cluster size vs. average vector norm. The plot describes the results of hierarchical clustering of the
difference vectors, for the XSum dataset when partitioning into different numbers of clusters. Each point represents
a single cluster; in total, each panel depicts between 6.7K and 67K points (666 model pairs × the number of clusters
per pair). The x-axis reflects the percentage of all examples that are in the cluster, and the y-axis is the average
vector norm within the cluster. The results are characterized by very large clusters with a small average norm
(bottom right of the plots).
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Figure 16: Max-norm baseline results. Plots depict success rates of model preference estimation, aggregated over
666 unique model pairs. Each panel depicts a different dataset.
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Figure 17: Prompts results. Plots depict success rates of prompt preference estimation, aggregated over 111 unique
pairs. Each panel depicts a different combination of dataset and "oracle" (reference-based evaluation metric).
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