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Abstract

Multi-change captioning aims to describe com-
plex and coupled changes within an image pair
in natural language. Compared with single-
change captioning, this task requires the model
to have higher-level cognition ability to reason
an arbitrary number of changes. In this paper,
we propose a novel context-aware difference
distilling (CARD) network to capture all gen-
uine changes for yielding sentences. Given
an image pair, CARD first decouples context
features that aggregate all similar/dissimilar
semantics, termed common/difference context
features. Then, the consistency and indepen-
dence constraints are designed to guarantee the
alignment/discrepancy of common/difference
context features. Further, the common context
features guide the model to mine locally un-
changed features, which are subtracted from
the pair to distill locally difference features.
Next, the difference context features augment
the locally difference features to ensure that
all changes are distilled. In this way, we
obtain an omni-representation of all changes,
which is translated into linguistic sentences
by a transformer decoder. Extensive experi-
ments on three public datasets show CARD
performs favourably against state-of-the-art
methods. The code is available at https:
//github.com/tuyunbin/CARD.

1 Introduction

Change captioning aims to describe differences
between a pair of similar images, which enables
many important applications, such as automatic re-
port generation about change conditions of surveil-
lance areas (Hoxha et al., 2022) and pathological
changes between medical images (Liu et al., 2021).
On the other hand, this task is more challenging
than image captioning (Yang et al., 2023; Rotstein
et al., 2024; Zhao and Xiong, 2024). This is be-
cause machines need to understand the contents of
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a car is approaching the parking lot from the right

the blue truck is gone

(a)

house and bushes are removed and

a road is built with villas built along on both sides

(b)

someone changed location of the small gray metal cylinder

someone added a large yellow rubber sphere

someone removed the large gray metal cube

the small blue rubber sphere changed its location

(c)

Figure 1: Three examples about multi-change caption-
ing. (a) includes certain object changes; (b) consists
of object and background changes; (c) shows both ob-
ject changes and irrelevant viewpoint change. These
changes are shown in colored boxes.

two images simultaneously, and further reason and
caption all genuine changes between them, while
resisting irrelevant viewpoint/illumination changes.

Recently, single-change captioning has made
remarkable progress (Tu et al., 2021b; Hossein-
zadeh and Wang, 2021; Yao et al., 2022; Yue et al.,
2023; Tu et al., 2024). In a dynamic environment,
however, the changes are usually the many-in-one,
where multiple changes exist in an image pair.
For instance, there are multiple object/background
changes (Figure 1 (a) (b)). In other cases, object
and viewpoint changes simultaneously appear (Fig-
ure 1 (c)). In above cases, unchanged objects com-
monly mingle with changed ones and even appear
position misalignment under viewpoint changes.
Such distractors pose a great challenge to identify
and caption the genuine changes.

There are a few attempts to address multi-change
captioning. The pioneer work (Jhamtani and Berg-
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Kirkpatrick, 2018) computed pixel differences of
two images, which is sensitive to noise. Latest
works tried to capture differences at representation
space: some of them (Hoxha et al., 2022; Liu et al.,
2022, 2023a) computed difference features by sub-
traction, while the others (Qiu et al., 2021; Chang
and Ghamisi, 2023) built the correlations between
the patches of two images to model the change
features for caption generation.

Despite progress, the above endeavors in multi-
change captioning have several limitations. (1)
Direct subtraction between two images generalizes
poorly to unaligned image pairs under viewpoint
changes (Figure 1 (c)). (2) Directly correlating two
images fails to sufficiently mine locally unchanged
features as multiple objects change, because such
features might mingle with the features of changed
objects. (3) These methods focus on modeling lo-
cally difference features, which are useful to catch
conspicuous changes. Nevertheless, certain local
changes with weak features might be overlooked,
e.g., the car occluded by its shadows in Figure 1 (a).
These limitations would result in obtaining unreli-
able difference features for the language decoder.

We notice that the above methods capture dif-
ferences between two images only based on local
features, while neglecting the use of more compre-
hensive features. We argue that, to learn locally
unchanged/changed features of two images, the
model should first encapsulate their context fea-
tures of commonality and difference. Such context
features aggregate all similar/dissimilar semantics,
termed common/difference context features. The
former can help correlate and mine locally common
features for deducing locally difference features,
while the latter can augment the locally difference
features to ensure all changes are distilled.

In this paper, we propose a Context-Aware
DiffeRence Distilling (CARD) network to learn
the robust difference features under multi-change
scenes. Specifically, given the featuers of two
images, we first build intra-image interaction to
help the model understand each image content of
the pair. Then, we use CARD to decouple the
common/difference context features from the im-
age pair. Herein, the common context features
of two images summarize joint semantics in be-
tween; the difference context feature in each image
provides an independent space to preserve its all
changed semantics. Besides, the consistency and
independence constraints are designed to enforce

the alignment and discrepancy of common and dif-
ference context features, respectively. Next, guided
by the common context features, CARD models
inter-image interaction to mine locally common
features, which are removed from the pair to distill
locally difference features. Subsequently, CARD
augments the locally difference features via the
difference context features, so as to construct an
omni-representation of all changes, for generating
descriptions by a transformer decoder.

Our key contributions are: (1) We propose
CARD to first decouple common and difference
context features, and then use them to facilitate
modeling an omni-representation of all changes for
multi-change captioning. (2) The consistency and
independence constraints are customized to guar-
antee the alignment and discrepancy of decoupled
common and difference context features. (3) Ex-
tensive experiments show our method achieves the
state-of-the-art results on three public datasets.

2 Related Work

Change captioning is an emerging task in the com-
munity of multi-modal learning (Cong et al., 2022,
2023; Tu et al., 2022). In the following, we intro-
duce the relevant works about single-change cap-
tioning and multi-change captioning, respectively.

Single-change Captioning has been widely
studied by most existing methods. The prior work
(Park et al., 2019) collects a dataset about geomet-
ric objects under viewpoint changes. This work
computes the difference representation by direct
subtraction, which generalizes poorly between two
unaligned images. To remedy this limitation, M-
VAM (Shi et al., 2020), VACC (Kim et al., 2021)
and R3Net (Tu et al., 2021a) match local features
to predict difference features, which has been a
classic paradigm. The latest work SCORER+CBR
(Tu et al., 2023c) further improves this paradigm
by maximizing cross-view contrastive alignment
between two images, so as to learn a more stable
difference representation. In addition, these works
(Hosseinzadeh and Wang, 2021; Kim et al., 2021;
Tu et al., 2023c; Yue et al., 2024) introduce the idea
of cross-modal consistency constraint to improve
captioning quality. Besides improving architecture,
recent works (Yao et al., 2022; Guo et al., 2022)
propose the strategy of pre-training to fine-tuning
for facilitating change location and caption. How-
ever, it is seldom that only one change appears in a
dynamic environment, so a powerful model should
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has the capability to describe multiple changes.
Multi-change Captioning has been explored

by a few attempts. The pioneer work (Jhamtani
and Berg-Kirkpatrick, 2018) proposes to describe
multiple changes between the image pairs from the
surveillance cameras, where it captures changes at
pixel level. Recent works (Hoxha et al., 2022; Liu
et al., 2022, 2023a; Chang and Ghamisi, 2023) pro-
pose to caption changes between remote sensing
images, where they first compute the difference fea-
tures and then use them for change detection and
description. Nevertheless, the above methods only
describe differences between two well-aligned im-
ages, while ignoring the cases of unaligned image
pairs under varied viewpoints. To this end, Qiu et
al. (Qiu et al., 2021) collect a dataset to caption
multiple changes under viewpoint changes, where
they adopt the classic paradigm of local feature
matching to detect changes for caption generation.
However, such a matching paradigm may fail to
mine the fine-grained common features and thus
learn error-prone difference features. Meanwhile,
the current methods focus on modeling local dif-
ference features, which risks ignoring certain local
changes with weak features. On the other hand, Qiu
et al. (Qiu et al., 2023) develop a new synthetic
dataset to describe the multiple changes and their
orders. However, recording the order of changed
objects is laborious in the real world, making it
hard to test such a capability in a real-world scene.

In short, different from previous methods com-
puting difference features only based on local fea-
tures, CARD first decouples common and differ-
ence context features from an image pair. The
common context features guide the model to fully
extract locally unchanged features for computing
the features of local differences, while the differ-
ence context features augment the locally differ-
ence features to construct an omni-representation
of all changes, for generating accurate sentences.

3 Methodology

The overall architecture of our method is shown
in Figure 2. Given a pair of images, our method
is to generate linguistic sentences that detail all of
the changes. Architecture-wise, our method con-
tains three components: (a) image pair encoding;
(b) context-aware difference distilling; (c) caption
generation. We provide an overview of two basic
components (a) and (c) in Sec. 3.1 and Sec. 3.3,
while elaborating our key ingredient (b) in Sec. 3.2.

3.1 Image Pair Encoding

Formally, given a pair of “before” Ibef and “af-
ter” Iaft images, we first leverage an off-the-shell
encoder (e.g., ResNet-101 (He et al., 2016)) to
extract n local features for each of them, and
then introduce a trainable [CLS] feature to rep-
resent the global content of each image: Xo =
{xocls, x1, x2, ..., xn}, where o ∈ (bef, aft) and
xi ∈ Rd. Besides, the trainable position encodings
are added into the features of each image to help the
model perceive the relative position changes of ob-
jects. Next, we exploit a multi-head self-attention
layer (Vaswani et al., 2017) to capture the relation-
ships among the features of each image, which
helps the model sufficiently understand the image
content of the pair. Through the above manner, we
can obtain the relation-embedded features for each
image, denoted as X̃o = {x̃ocls, x̃1, x̃2, ..., x̃n}.

3.2 Context-Aware Difference Distilling

3.2.1 Context Feature Decoupling
To obtain common and difference context features,
we first devise a common encoder CE (·; θC) and
two difference encoders DEo (·; θo), where three
encoders are based on the linear projection and
o ∈ (bef, aft). The common encoder CE (·; θC)
shares the parameters θC between two images,
while the difference encoders DEo (·; θo) learn the
parameters θo for each image. Then, we feed x̃ocls
into these encoders to decouple the common and
difference context features, respectively:

Co = CE (x̃ocls; θC) ,

Do = DEo (x̃
o
cls; θo) ,

(1)

where Cbef , Caft, Dbef , and Daft ∈ Rd.
Consistency Constraint. To make two com-

mon context features Cbef and Caft embedded in
a shared space, we tailor the consistency constraint
based on contrastive learning. Given a training
batch, we sample B pairs of common context fea-
tures. For the common context feature in the k-th
“before” image Cbef

k , the common context feature

in the r-th “after” image Caft+

r(r=k) is its positive,
while common context features in the other “after”
images Caft−

r(r ̸=k) will be the negatives in this batch.
Then, we project these positive/negative pairs into
a shared embedding space, normalize them by L2-
normalization, and compute their similarity. Next,
we introduce the InfoNCE loss (Oord et al., 2018)
to optimize their contrastive alignment, i.e., pulling
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Figure 2: The overall architecture of our method, which consists of (a) Image Pair Encoding (Sec. 3.1), (b)
Context-Aware DiffeRence Distilling (CARD) (Sec. 3.2), and (c) Caption Generation (Sec. 3.3). Herein, CARD
is the major component to learn the robust difference features by context features decoupling and context-aware
difference distilling. S∗ stands for ground-truth sentences.
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(2)
where “sim” is the dot-product function to measure
the similarity between two context features. τ is the
temperature hyper-parameter. Through this consis-
tency constraint, we enforce the common context
features of two images to be projected into a shared
semantic space with aligned distributions.

Independence Constraint. Each decoupled dif-
ference context feature can learn the unique char-
acteristics of its corresponding image within the
image pair. These unique characteristics repre-
sent the semantic differences between the two im-
ages, so each difference context feature should be
distinct from the other. To this end, we design
an independence constraint, which ensures that
the two difference context features are projected
into separate feature spaces. Here, we opt for the
Hilbert-Schmidt Independence Criterion (HSIC)
(Song et al., 2007), a proven method for testing

feature independence, to design the loss of the in-
dependence constraint. A lower HSIC score be-
tween the two difference context features indicates
a higher independence between them: each differ-
ence context feature adequately encapsulates the
semantic changes in each image.

Concretely, we first project the difference con-
text feature of each image into a separate space,
normalize each by L2-normalization, and define
the independence (HSIC) constraint between Dbef

and Daft as:

HSIC (Dbef , Daft) = (B−1)−2 tr (PKbefPKaft) ,
(3)

where Kbef , Kaft ∈ RB×B are the Gaussian ker-

nel matrices with kbef,ij = kbef

(
Di

bef , D
j
bef

)
and

kaft,ij = kaft

(
Di

aft, D
j
aft

)
. B is batch size.

Di
bef refers to the difference context feature in

the i-th “befor” image. P = I − 1
B eeT , where

P ∈ RB×B , I is an identity matrix and e is an
all-one column vector. If the HSIC score between
Dbef and Daft is lower, their disparity is more
significant. We define the independence loss as:

Lind = HSIC (Dbef , Daft) . (4)

3.2.2 Difference Distilling
With the local features of each image L̃o =
{x̃1, x̃2, ..., x̃n}, where o ∈ (bef, aft), we first
broadcast the common context feature of each im-
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age Co ∈ Rd to Co ∈ Rn×d. Then, we concate-
nate it with L̃o on the channel dimension to obtain
X̃ ′

o ∈ Rn×2d, where Co can guide inter-image in-
teraction to mine locally unchanged features. Next,
we transform X̃ ′

o ∈ Rn×2d to X̃ ′
o ∈ Rn×d by a

non-linear function with ReLU activation. Further,
we compute the locally common features on each
image by the multi-head cross-attention (MHCA)
mechanism (Vaswani et al., 2017):

X̃c
bef = MHCA

(
X̃ ′

bef , X̃ ′
aft, X̃ ′

aft

)
,

X̃c
aft = MHCA

(
X̃ ′

aft, X̃ ′
bef , X̃ ′

bef

)
.

(5)

Subsequently, we respectively subtract each X̃c
o

from L̃o to compute the locally difference features
of each image. These locally difference features
are further augmented by difference context feature
of each image, so as to distill all of the genuine
changes in each image:

X̃d
bef = [L̃bef − X̃c

bef ;Dbef ],

X̃d
aft = [L̃aft − X̃c

aft;Daft],
(6)

where [;] is a concatenation operation. Both
X̃d

bef and X̃d
aft are then concatenated as an omni-

representation of all changes between two images,
which is implemented by a non-linear transforma-
tion with the ReLU function:

X̃d = ReLU
([

X̃d
bef ; X̃

d
aft

]
Wc + bc

)
. (7)

3.3 Caption Generation
After obtaining the omni-representation X̃d ∈
Rhw×d, we use a transformer decoder (Vaswani
et al., 2017) to decode it into sentences. First, we
obtain the embedding features of all m words of
these sentences, where each sentence is separated
by a special token [SEP]. Then, we use the masked
self-attention to model relationships among these
word features. Next, we model the interaction be-
tween the word features and omni-representation
by cross-attention, so as to locate the most related
difference features during word generation. Subse-
quently, we feed the selected features into a feed-
forward network to obtain the enhanced difference
representation, denoted as Ĥ ∈ Rm×d. Finally,
the probability distributions of words in these sen-
tences are calculated via a single hidden layer:

S = Softmax
(
ĤWs + bs

)
, (8)

where Ws ∈ Rd×u and bs ∈ Ru are the learnable
parameters. u is the dimension of vocabulary size.

3.4 Joint Training
Our method is trained in an end-to-end man-
ner by maximizing the likelihood of the ob-
served word sequence. Given the ground-truth
words (s∗1, . . . , s

∗
m), we minimize the negative log-

likelihood loss:

Lcap(θ) = −
m∑

t=1

log pθ (s
∗
t | s∗<t) , (9)

where pθ (s
∗
t | s∗<t) is computed by Eq. (8), and θ

are all the learnable parameters. Our method is
also self-supervised by the losses of consistency
and independence constraints. Hence, the total loss
is optimized as follows:

L = Lcap + λc(Lcon + Lind), (10)

where λc is a trade-off parameter to balance the
contribution between the caption generator and con-
straints, which is discussed in the appendix.

4 Experiments

4.1 Datasets
CLEVR-Multi-Change Dataset (Qiu et al., 2021)
is about basic object scene with multiple changes.
Since original dataset has not been released, we
regenerate this dataset based on the authors’ re-
leased code. The regenerated dataset has 45,044
valid image pairs/captions with viewpoint changes.
Based on the official split, we split it into training,
validation, and testing with a ratio of 4:1:1.

LEVIR-CC Dataset (Liu et al., 2022) is about
remote sensing scene, which contains 10,077 pairs
of bi-temporal images and 50,385 ground-truth cap-
tions. We use the official split with 6,815 image
pairs for training, 1,333 for validation, and 1,929
for testing, respectively.

Spot-the-Diff Dataset (Jhamtani and Berg-
Kirkpatrick, 2018) has 13,192 image pairs from
surveillance cameras, and on an average there are
1.86 ground-truth sentences per image pair. Ac-
cording to the official split, we split it into training,
validation, and testing with a ratio of 8:1:1.

4.2 Evaluation Metrics
We follow the existing methods of multi-change
captioning to use the five metrics for evaluating the
generated sentences: BLEU-4 (B) (Papineni et al.,
2002), METEOR (M) (Banerjee and Lavie, 2005),
ROUGE-L (R) (Lin, 2004), CIDEr (C) (Vedantam
et al., 2015) and SPICE (S) (Anderson et al., 2016).
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We compute all the results by the Microsoft COCO
evaluation server (Chen et al., 2015).

4.3 Implementation Details

For fair-comparison, we follow previous multi-
change captioning methods to use a pre-trained
ResNet-101 (He et al., 2016) to extract the local
features of a pair of images, with the dimension
of 1024 × 14 × 14. We project them into a lower
dimension of 512, while the dimension of train-
able [CLS] features is also set to 512. The hidden
size of the model and word embedding size are
set to 512 and 300. Temperature τ in Eq. (2) is
set to 0.07. We train the model to converge with
10K iterations in total. We use Adam optimizer
(Kingma and Ba, 2014) to minimize the negative
log-likelihood loss of Eq. (10). More details are
shown in the appendix.

4.4 Performance Comparison

Results on CLEVR-Multi-Change. We com-
pare CARD with the following SOTA methods:
DUDA (Park et al., 2019), M-VAM (Shi et al.,
2020), MCCFormers-S / MCCFormers-D (Qiu
et al., 2021), VARD-Trans (Tu et al., 2023a), and
SCORER+CBR (Tu et al., 2023c). On this regener-
ated dataset, we re-implement the above methods
based on their papers and released codes.

The results are shown in Table 1. Our CARD
performs favourably against these SOTA methods
on all metrics, showing that CARD can better de-
scribe multiple changes under viewpoint changes.
In addition, our CARD outperforms MCCFormers-
D and MCCFormers-S by a large margin, which
are classic match-based methods to directly cap-
ture inner/inter-patch correlations between two im-
age representations. On the caption-specific metric
CIDEr, CARD significantly surpasses both meth-
ods, in particular with increases of 2.2% and 3.4%.

Table 1: Comparison with the SOTA methods on
CLEVR-Multi-Change. The main metric CIDEr on
this dataset is highlighted.

Method B M R S C

DUDA 41.8 36.2 53.9 64.7 283.5
M-VAM 37.1 34.0 51.5 62.2 242.9

MCCFormers-S 55.9 44.8 56.8 76.6 378.6
MCCFormers-D 56.2 44.8 57.3 76.6 383.2

VARD-Trans 48.1 41.8 55.5 72.1 344.2
SCORER+CBR 56.4 44.9 57.1 76.7 388.0

CARD (Ours) 56.7 45.2 57.4 76.9 391.6

Table 2: Comparison with the SOTA methods on
LEVIR-CC.

Method B M R C

DUDA 57.8 37.2 71.0 124.3
MCCFormers-S 56.7 36.2 69.5 120.4
MCCFormers-D 56.4 37.3 70.3 124.4
RSICCFormer 62.8 39.6 74.1 134.1

PSNet 62.1 38.8 73.6 132.6
Prompt-CC (soft) 62.4 38.6 73.4 135.3
Prompt-CC (hard) 63.5 38.8 73.7 136.4

Chg2Cap 64.4 40.0 75.1 136.6

CARD (Ours) 65.4 40.0 74.6 137.9

Table 3: Comparison with the SOTA methods on Spot-
the-Diff.

Method B M R S C

DDLA 6.2 10.8 26.0 - 29.7
DUDA 5.4 10.6 - 12.9 24.8

MCCFormers-S 5.8 10.5 - 10.1 18.2
MCCFormers-D 6.2 10.2 - 17.8 28.8

VARD-Trans 4.1 11.4 22.2 11.5 13.4
SCORER+CBR 5.1 9.3 23.0 11.9 20.9

CARD (Ours) 6.6 10.8 26.9 17.8 32.4

Results on LEVIR-CC. We compare CARD
with the SOTA methods: DUDA (Park et al.,
2019), MCCFormers-S/D (Qiu et al., 2021), RS-
ICCFormer (Liu et al., 2022), PSNet (Liu et al.,
2023a), Prompt-CC (soft/hard) (Liu et al., 2023b),
and Chg2Cap (Chang and Ghamisi, 2023).

The experimental results are shown in Table 2.
Our CARD achieves the best results on all metrics.
This indicates that it can detect whether there are
semantic changes and what have changed between
two remote sensing images. Besides, we notice
that the match-based methods (MCCFormers-D
/ MCCFormers-S) cannot generalize well in this
remote sensing scenario. Our conjecture is that
there are usually most changed areas (e.g., Figure
1 (b)), so directly matching two images might fail
to extract fine-grained unchanged objects and thus
capture the difference features with noise.

Results on the Spot-the-Diff Dataset. Most
previous works (Hosseinzadeh and Wang, 2021;
Huang et al., 2022; Tu et al., 2023b; Yue et al.,
2023) tested the models based on single-change
setup, where the models are only required to ran-
domly describe one of the changes. Different from
them, we require the model to caption all changes.

Under this setting, the compared SOTA meth-
ods are: DDLA (Jhamtani and Berg-Kirkpatrick,
2018), DUDA (Park et al., 2019), MCCFormers-S

7946



Table 4: Ablation of common/difference context features (CCF/DCF) on CLEVR-Multi-Change and LEVIR-CC.

CLEVR-Multi-Change LEVIR-CC

Ablative Variants CCF DCF B M R S C B M R C

Baseline × × 54.7 43.6 56.7 75.6 362.3 60.7 36.3 69.7 120.0
Baseline ✓ × 56.5 45.1 57.1 76.8 385.8 63.5 38.5 72.3 130.4
Baseline × ✓ 56.5 45.0 57.1 77.0 385.7 60.6 37.6 71.0 125.9
Baseline ✓ ✓ 56.7 45.2 57.4 76.9 391.6 65.4 40.0 74.6 137.9

Table 5: Ablation of consistency/independence constraint (CC/IC) on CLEVR-Multi-Change and LEVIR-CC.

CLEVR-Multi-Change LEVIR-CC

Ablative Variants CC IC B M R S C B M R C

CARD × × 54.6 44.1 57.2 75.8 363.7 55.9 35.6 72.3 132.2
CARD ✓ × 56.2 44.8 57.1 76.8 384.2 56.2 35.8 72.6 137.6
CARD × ✓ 56.5 45.1 57.2 77.0 389.9 60.6 37.7 72.5 133.0
CARD ✓ ✓ 56.7 45.2 57.4 76.9 391.6 65.4 40.0 74.6 137.9

/ MCCFormers-D (Qiu et al., 2021), VARD-Trans
(Tu et al., 2023a), and SCORER+CBR (Tu et al.,
2023c). The experimental results are shown in Ta-
ble 3. Our method achieves the best results on most
metrics, particularly with an increase of 9.1% on
CIDEr. As shown in Figure 1 (a), the changed ob-
jects are not well captured by surveillance cameras
and are even occluded by shadows. Our method
still achieves encouraging performance, which vali-
dates its good generalization in surveillance scenes.

Performance Analysis. On the three datasets,
our CARD outperforms the existing methods by a
large margin, which shows its good generalization.
This superiority benefits from that decoupled con-
text features facilitate learning difference features.
Instead, the compared methods only compute the
differences based on the local features, which fails
to mine fine-grained common objects and thus dis-
regards inconspicuous changes.

4.5 Ablation Study and Analysis

To figure out the contribution of each component,
we conduct ablation studies on two large-scale
datasets: CLEVR-Multi-Change and LEVIR-CC.
The image pairs on CLEVR-Multi-Change contain
basic geometric objects and are unaligned due to
viewpoint changes, while the pairs on LEVIR-CC
are well-aligned and from the real world.

4.5.1 Ablation Study for Context Features
We study the effectiveness of decoupled common
and difference context features, denoted as CCF
and DCF, respectively. The results are shown in
Table 4. Baseline directly matches two image fea-
tures to extract the locally common features and

difference features for caption generation.
We find that on the both datasets, 1) the model’s

performance is enhanced when it is augmented
by either CCF or DCF; 2) when we augment the
model with both context features, the model’s per-
formance is significantly boosted, especially the
CIDEr score is enhanced from 362.3 to 391.6.
These show that 1) CCF guides the model to suffi-
ciently interact and mine locally common features
for computing locally difference features, while
DCF augments the locally difference features to
ensure all changes are distilled; 2) each kind of
context feature not only plays its unique role, but
also supplements each other for better reasoning
genuine changes.

4.5.2 Ablation Study for Constrains
To study the effect of the consistency constraint
(CC) and independence constraint (IC), we make
the ablation study in Table 5. First, we enforce CC
or IC respectively on CARD, and find that each of
them improves the performance of CARD. Then,
we impose both constraints and observe that the
results are enhanced significantly on two datasets.
The increased results indicate that both constraint
losses are essential to learn the context features.

We further visualize the common/difference
context features decoupled without/with the con-
straints, which are shown in Figure 3. Without
constraints, the common/difference context fea-
tures cannot be well learned on two datasets. With
both constraints, the common context features are
blended on CLEVR-Multi-Change, while the differ-
ence context features are learned better on LEVIR-
CC. The results show that consistency constraint
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(a) CLEVR-Multi-Change

CARD w/o Constraints CARD w/ Constraints

(b) LEVIR-CC

CARD w/o Constraints CARD w/ Constraints

𝐶𝑏𝑒𝑓 𝐶𝑎𝑓𝑡 𝐷𝑏𝑒𝑓 𝐷𝑎𝑓𝑡

Figure 3: Visualization of context features on CLEVR-
Multi-Change and LEVIR-CC. The red and green colors
indicate common context features in “before” and “after”
images, while blue and purple colors denote difference
context features in “before” and “after” images.

helps align distributions of shared properties, while
independence constraint makes difference context
features of two images more separable.

4.5.3 Generalization to unaligned image pairs
To verify the generalization to unaligned image
pairs under viewpoint changes, we compare CARD
with two ablative variants on the CLEVR-Multi-
Change dataset. (1) Direct Subtraction first per-
forms direct subtraction between the features of
two images to compute the locally difference fea-
tures, which are then fed into a transformer decoder
for multi-change captioning. (2) Feature Matching
directly matches two image features to extract the
locally common features and difference features for
multi-change captioning. The experimental results
are shown in Table 6.

Table 6: Verifying generalization to unaligned image
pairs on CLEVR-Multi-Change.

Model B M R C S

Direct Subtraction 53.3 42.5 56.3 350.0 74.6
Feature Matching 54.7 43.6 56.7 362.3 75.6

CARD 56.7 45.2 57.4 391.6 76.9

It is noted that the performance of Feature Match-
ing is better than that of Direct Subtraction on ev-
ery metric, which validates the generalization of
feature matching paradigm to the unaligned im-
age pairs under viewpoint changes. Our proposed
CARD outperforms both models by a large margin.

This not only indicates a better generalization of
our method to unaligned image pairs, but also ver-
ifies the effectiveness of context-aware difference
distilling to help capture genuine changes.

4.6 Qualitative Analysis

To obtain an overall evaluation of our method, we
conduct qualitative analysis on the three datasets.
The compared method MCCFormers-D (Qiu et al.,
2021) performs well on the three datasets, which
directly correlates two images to predict locally
common and difference features. In Figure 5, we
visualize the alignment of common properties be-
tween two images, to validate whether context fea-
tures help mine locally common information. We
find that MCCFormers-D fails to align the common
properties and even misjudges changed objects as
unchanged objects. Instead, our CARD can better
match the joint objects. For instance, in Figure 5
(a), the unchanged object is only the brown object.
MCCFormers-D wrongly identifies some changed
objects as unchanged ones. By contrast, our CARD
can pinpoint the unchanged brown object. This su-
periority benefits from the guidance of decoupled
common context features, during the matching of
two image features.

In Figure 4, we further visualize the captions
yielded by MCCFormers-D and CARD, as well as
the change localization results from CARD. In the
first three cases, MCCFormers-D either only de-
scribes one of the changes or misidentifies changed
objects. Contrarily, our CARD can accurately lo-
cate and describe all changed objects. Particularly,
we notice that our method performs better in de-
tecting subtle changes. For instance, in Figure 4
(c) that is from surveillance scene, the moved car
and disappeared person are very tiny, and the car
is occluded by the shadow of building. In this
hard case, MCCFormers-D fails to recognize the
moved car in the “after” image, thus generating a
wrong sentence. By contrary, our CARD can lo-
cate and describe this tiny change. For the failure
reason of MCCFormers-D, our conjecture is that
it directly interacts two images, which cannot suf-
ficiently identify locally unchanged features and
compute the locally difference features. Besides,
MCCFormers-D captures differences between two
images only based on local features, which risks
overlooking certain tiny changes with weak fea-
tures. Compared with MCCFormers-D, the supe-
riority of our method is mainly attributed to the
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GT: the small cyan rubber cube gave up its 

position to a small cyan rubber sphere <SEP>

 the large green metal sphere moved

(a) CLEVR-Multi-Change

CARD: the small cyan rubber sphere replaced 

a small cyan rubber cube <SEP>

the large green metal sphere has moved

MCCFormers-D: the large green metal 

sphere changed its location

<before> <after>

Change Localization of CARD

GT: the plants are replaced by massive 

buildings

(b) LEVIR-CC

CARD: trees are removed and  many houses 

are built along the road

MCCFormers-D: many houses are built 

along the road

<before> <after>

Change Localization of CARD

GT: there is a black exiting towards far left 

of the parking lot <SEP> the person on the 

side is no longer

(c) Spot-the-Diff

CARD: the black car has moved forward 

<SEP> the person in the white shirt is no 

longer in the after

MCCFormers-D: the blue truck is not there 

<SEP> the person walking is not there

<before> <after>

Change Localization of CARD

GT: trees and bareland are replaced by 

cross roads and residential buildings

LEVIR-CC

CARD: trees are removed and a cross road 

with villas built along

MCCFormers-D: a road with many 

houses are built along the road

<before> <after>

Change Localization of CARD

Figure 4: Qualitative examples on the three datasets. For each example, we visualize the captions generated by the
SOTA method MCCFormers-D (Qiu et al., 2021) and our CARD, as well as the change localization of CARD. The
successful cases of CARD are shown in the green box, while the sub-optimal case is shown in the red box.

<before> <after>

MCCFormers-D

CARD

(a) CLEVR-Multi-Change

MCCFormer-D

CARD

<before> <after>

MCCFormers-D

CARD

(b) LEVIR-CC

<before> <after>

(c) Spot-the-Diff

Figure 5: Visualization of alignment of common objects
(shown in yellow boxes) on the three datasets, where the
results are obtained by MCCFormers-D and our CARD.

guiding and augmenting of common and difference
context features. Guided by the common context
features, CARD models inter-image interaction to
sufficiently mine locally common features and com-
pute locally difference features. Further, the dif-
ference context features augment the locally differ-
ence features to ensure that all changes are distilled.
Through this manner, the model can learn genuine
changes for caption generation. More qualitative
examples are shown in the appendix.

5 Conclusion

In this paper, we propose the CARD to reason
and describe genuine changes under various multi-
change scenarios. CARD first decouples the com-
mon and difference context features from the im-
age pair. Then, two kinds of constraints are de-
signed to ensure the alignment and discrepancy of
the common and difference context features, re-
spectively. Further, we use the common context
features to guide the mining of locally common

features for deducing locally difference features.
In addition, we leverage the difference context fea-
tures to augment the locally difference features,
thereby constructing an omni-representation of all
changes for multi-change captioning. Extensive
experiments conducted on the three datasets show
that the proposed CARD outperforms the current
state-of-the-art methods by a large margin.

Limitations

The last case in Figure 4 shows that the trees are
replaced by a cross road with villas. Our CARD
successfully locates the changed objects, which val-
idates the effectiveness of context-aware difference
distilling. However, it yields a sub-optimal sen-
tence that does not well express the change process:
trees are removed and a cross road with villas built
along. A more proper sentence should be: trees are
removed and a cross road with villas are built. In
the future work, we will try to introduce linguistic
knowledge (e.g., syntactic dependencies between
words) that regularizes the process of sentence gen-
eration, in order to generate the optimal sentences
well elaborating the change process.
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A Appendix

In this appendix, we provide more details about the
caption generation and more experimental results,
as well as the qualitative analyses.

A.1 Caption Generation
After obtaining the representation of all changes
X̃d ∈ Rhw×d, we use a transformer decoder to
decode it into target sentences. First, we obtain
the embedding features of all m words of these
sentence E[S] ∈ Rm×d, where each sentence is
separated by a special token [SEP]. Then, we use
the masked self-attention (Vaswani et al., 2017)
to model relationships among these word features,
which is defined as:

Ê[S] = LN (E[S]+ MHSA (E[S], E[S], E[S])),
(11)

where LN is short for layer normalization (Ba
et al., 2016). Next, we model the interaction be-
tween these word features and difference represen-
tation X̃d by multi-head cross-attention (MHCA)
(Vaswani et al., 2017), so as to locate the most
related difference features H̃:

H̃ = LN (E[Ŝ] + MHCA (E[Ŝ], X̃d, X̃d)).
(12)

Subsequently, we feed the selected features H̃ into
a feed-forward network to obtain the enhanced dif-
ference representation, denoted as Ĥ ∈ Rm×d.

Ĥ = LN((H̃ + FFN(H̃)). (13)
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Finally, the probability distributions of words in
these sentences are calculated via a single hidden
layer:

S = Softmax
(
ĤWs + bs

)
, (14)

where Ws ∈ Rd×u and bs ∈ Ru are the learnable
parameters. u is the dimension of vocabulary size.

A.2 Experiments

A.2.1 Implementation Details
For fair-comparison, we follow the previous multi-
change captioning methods (Jhamtani and Berg-
Kirkpatrick, 2018; Qiu et al., 2021; Liu et al., 2022)
to use a pre-trained ResNet-101 (He et al., 2016) to
extract the local features of a pair of images, with
the dimension of 1024 × 14 × 14. We project them
into a lower dimension of 512, while the dimension
of trainable [CLS] features is also set to 512. The
hidden size of overall model and word embedding
size are set to 512 and 300, respectively. Tempera-
ture τ in Eq. (2) of main paper is set to 0.07. The
attention layers in CARD is set to 1 on the CLEVR-
Multi-Change and Spot-the-Diff datasets; and 3 on
the LEVIR-CC dataset. We train the model with
PyTorch (Paszke et al., 2019) on a single RTX 3090
GPU, and use Adam optimizer (Kingma and Ba,
2014) to minimize the negative log-likelihood loss
of Eq. (10) in the main paper. The training details
about batch size and learning rate are shown in Ta-
ble 7. The used training resources about time and
GPU memory are shown in Table 8. We find that
training CARD does not require much more time
and GPU memory. Hence, it would be easily re-
implemented by other researchers and be a strong
baseline for the future works.

Table 7: The training details of CARD on the three
datasets.

batch size learning rate
CLEVR-Multi-Change 128 2 × 10−4

LEVIR-CC 64 1 × 10−4

Spot-the-Diff 32 2 × 10−4

Table 8: The used training resources of CARD on the
three datasets.

Training Time GPU Memory
CLEVR-Multi-Change 71 minutes 9.2 GB

LEVIR-CC 120 minutes 8 GB
Spot-the-Diff 20 minutes 3.9 GB

Table 9: Effects of λc on CLEVR-Multi-Change.

Model λc B M R S C

CARD 0 56.2 45.3 57.3 76.9 387.8
CARD 0.1 56.6 45.2 57.4 77.0 391.2
CARD 0.2 56.6 45.3 57.3 77.0 390.7
CARD 0.3 56.7 45.2 57.4 76.9 391.6
CARD 0.4 56.5 45.2 57.0 76.8 388.8
CARD 0.5 56.6 45.3 57.4 76.9 390.7

Table 10: Effects of λc on the LEVIR-CC dataset.

Model λc B M R C

CARD 0 55.9 35.6 72.3 132.2
CARD 0.1 65.4 40.0 74.6 137.9
CARD 0.2 63.7 39.3 73.3 132.9
CARD 0.3 54.8 34.4 72.7 137.5
CARD 0.4 63.2 38.3 73.6 137.5
CARD 0.5 59.5 36.9 72.9 135.1

A.3 Study on the Trade-off Parameter λc

We discuss the influence of trade-off parameter λc

in Eq. (10). The results under varied values are
shown in Table 9-11. Note that λc=0 means there
are no constraints upon the decoupled results. We
observe that imposing the constraint losses does
improve the model’s performance. Besides, there
is a trade-off between the captioning loss and con-
straint losses, because too large λc may lead to
deterioration in caption performance. Based on
the results, we choose the value as 0.3 on CLEVR-
Multi-Change, 0.1 and 0.001 on the LEVIR-CC
and Spot-the-Diff, respectively.

A.4 Qualitative Analysis

In this appendix, we will show more qualitative
examples on the CLEVR-Multi-Change, LEVIR-
CC, and Spot-the-Diff datasets, which are shown
in Figure 6-9. To intuitively understand whether
the common context features help mine reliable
common properties, we visualize the alignment of
common properties between two images on the
three datasets, which are shown in Figure 6-7. The
compared method is MCCFormers-D (Qiu et al.,

Table 11: Effects of λc on the Spot-the-Diff dataset.

Model λc B M R S C

CARD 0 4.3 10.6 23.3 13.0 15.8
CARD 0.001 6.6 10.8 26.9 17.8 32.4
CARD 0.002 4.3 9.8 23.9 15.1 23.0
CARD 0.003 6.2 9.5 25.7 15.7 28.4
CARD 0.004 5.0 11.0 24.4 15.2 20.5
CARD 0.005 5.1 11.4 24.0 15.6 18.3
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Figure 6: Visualization of common objects matching on the CLEVR-Multi-Change dataset under one-to-four
changes. For each example, we visualize the matching results by the state-of-the-art method MCCFormers-D (Qiu
et al., 2021) and our CARD. The common objects are shown in the yellow boxes.

2021), which has the stable performance on the
three datasets. From these examples, we can ob-
serve that MCCFormers-D is unable to align the
common properties properly and even misjudges
changed objects as unchanged objects. Compared
with it, the proposed CARD can better match the
common objects, so as to validate the effectiveness
of the decoupled common context features.

Further, in Figure 8-9, we visualize the captions
yielded by MCCFormers-D and CARD, as well
as the change localization results from CARD on
the three datasets. In Figure 8, on the CLEVR-
Multi-Change dataset under one-to-four changes,
we find that MCCFormers-D either only describes
partial changes or misidentifies changed objects.
Instead, the proposed CARD is able to accurately
locate and describe all changed objects. In Figure
9, on the LEVIR-CC and Spot-the-Diff datasets, it
is noted that MCCFormers-D fails to describe all
the changes within each image pair that is from the
real-word environment. Different it, our CARD is
capable of locating and describing all changed ob-
jects, which show a good generalization and robust-
ness of our method. The superiority benefits from
that the proposed CARD can provide the model
with a overview of potential changed/unchanged
semantics within an image pair, which helps learn
genuine changes for caption generation.
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(a) LEVIR-CC: Add

<before> <after>

(b) LEVIR-CC: Drop, Add
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CARD

<before> <after>

(c) Spot-the-Diff: Drop

MCCFormer-D

CARD

<before> <after>

(d) Spot-the-Diff: Move, Add

Figure 7: Visualization of common objects matching on the LEVIR-CC and Spot-the-Diff datasets under varied
changes. For each example, we visualize the matching results by the state-of-the-art method MCCFormers-D (Qiu
et al., 2021) and our CARD. The common objects are shown in the yellow boxes.
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GT: a large red metal sphere is in the original 

position of small yellow rubber cube

(a) CLEVR-Multi-Change: Replace

CARD: the small yellow rubber cube was 

replaced by a large red metal sphere

MCCFormers-D: the small blue rubber sphere 

was replaced by a large red metal sphere

<before> <after>

Change Localization of CARD

GT: a small purple metal sphere shows up 

<SEP> someone changed location of the 

small cyan rubber cube

(b) CLEVR-Multi-Change: Add, Move

CARD: a small purple metal sphere has 

been added <SEP> the small cyan rubber 

cube changed its location

MCCFormers-D: a small purple metal 

sphere has been added

<before> <after>

Change Localization of CARD

GT: the small green rubber sphere is no longer there 

<SEP> someone added a mall cyan metal cylinder 

<SEP> some one removed the large brown rubber cube

(c) CLEVR-Multi-Change: Drop, Add, Drop

CARD: the small green rubber sphere is no longer 

there <SEP> a small cyan metal cylinder has been 

added <SEP> the large brown rubber cube is missing

MCCFormers-D: the small cyan metal cylinder has been 

moved <SEP> the large brown rubber cube is missing

<before> <after>

Change Localization of CARD

GT: someone added a small yellow metal cylinder <SEP> the small 

cyan rubber sphere is missing <SEP> the small brown rubber cylinder 

has disappeared <SEP> the large blue rubber sphere is no longer there

(d) CLEVR-Multi-Change: Drop, Add, Drop

CARD: a small yellow metal cylinder has been added <SEP> the small 

cyan rubber sphere is no longer <SEP> there the small brown rubber 

cylinder is missing <SEP> the large blue rubber sphere is missing 

MCCFormers-D: the small cyan rubber sphere is missing 

<SEP> the small brown rubber cylinder is in a different location 

<SEP> the large blue rubber sphere is missing

<before> <after>

Change Localization of CARD

Figure 8: Qualitative examples on the CLEVR-Multi-Change dataset under one-to-four changes. For each example,
we visualize the captions generated by the state-of-the-art method MCCFormers-D (Qiu et al., 2021) and our CARD,
as well as the change localization of CARD. The changed objects are shown in the colored boxes.
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GT: several houses appear on the left of the 

forest clearing

(a) LEVIR-CC: Add

CARD: some houses are built on the left side 

of the scene

MCCFormers-D: some houses are built 

at the bottom corner of the scene

<before> <after>

Change Localization of CARD

GT: a row of villas replace the open space 

and woods 

(b) LEVIR-CC: Drop, Add

CARD: some trees are removed and  some 

houses are built along the road

MCCFormers-D: a road with a road is 

built in the forest

<before> <after>

Change Localization of CARD

GT: more pedestrians

(c) Spot-the-Diff: Add

CARD: there are more people in the after

MCCFormers-D: there are two people 

walking in the after

<before> <after>

Change Localization of CARD

GT: two people in the first picture 

disappeared <SEP> a person is walking 

toward the parking plot in the second picture

(d) Spot-the-Diff: Add, Drop

CARD: the people in the parking lot are 

gone <SEP> there is a person in the 

parking lot walking

MCCFormers-D: the person in the 

white shirt is no longer there

<before> <after>

Change Localization of CARD

Figure 9: Qualitative examples on the LEVIR-CC and Spot-the-Diff datasets under varied changes. For each
example, we visualize the captions generated by the state-of-the-art method MCCFormers-D (Qiu et al., 2021) and
our CARD, as well as the change localization of CARD. The changed objects are shown in the colored boxes.
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