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Abstract

Brain-inspired Spiking Neural Network (SNN)
has demonstrated its effectiveness and effi-
ciency in vision, natural language, and speech
understanding tasks, indicating their capacity to
"see", "listen", and "read". In this paper, we de-
sign SpikeVoice, which performs high-quality
Text-To-Speech (TTS) via SNN, to explore the
potential of SNN to “speak”. A major obsta-
cle to using SNN for such generative tasks lies
in the demand for models to grasp long-term
dependencies. The serial nature of spiking neu-
rons, however, leads to the invisibility of in-
formation at future spiking time steps, limiting
SNN models to capture sequence dependen-
cies solely within the same time step. We term
this phenomenon "partial-time dependency".
To address this issue, we introduce Spiking
Temporal-Sequential Attention (STSA) in the
SpikeVoice. To the best of our knowledge,
SpikeVoice is the first TTS work in the SNN
field. We perform experiments using four well-
established datasets that cover both Chinese
and English languages, encompassing scenar-
ios with both single-speaker and multi-speaker
configurations. The results demonstrate that
SpikeVoice can achieve results comparable to
Artificial Neural Networks (ANN) with only
10.5% energy consumption of ANN. Both our
demo and code are available as supplementary
material.

1 Introduction

Since the advent of Artificial Neural Networks
(ANN), remarkable achievements have been made
in the field of image (Radford et al., 2021; Carion
et al., 2020; Liu et al., 2021; Yao et al., 2024b), nat-
ural language (Vaswani et al., 2017; Devlin et al.,
2019; Brown et al., 2020), and speech (Baevski
et al., 2020; Hsu et al., 2021). In recent years,
with the success of large language models (OpenAI,
2023; Anil et al., 2023; Touvron et al., 2023; Li
et al., 2023a; Sun et al., 2023; Radford et al., 2023),
there has been a notable upward trend in energy

consumption. At the same time, Spiking Neural
Network (SNN), inspired by the biological nervous
system and recognized as the third generation of
neural networks (Maass, 1997), employs spiking
neurons (Hodgkin and Huxley, 1952; Abbott, 1999;
Fang et al., 2023b) with charge-fire-reset temporal
dynamic. The temporal dynamic makes SNN to
exhibit the event-driven feature of sparse firing and
the binary spike communication feature between
neurons using 0s and 1s, providing a distinct ad-
vantage in energy efficiency (Cao et al., 2015).

Recently, SNN has achieved remarkable
progress on several tasks, such as object detec-
tion and image classification (Zhao et al., 2021;
Rajagopal et al., 2023; Yao et al., 2023a,b, 2024a),
speech recognition (Wu et al., 2020; Wang et al.,
2023), and text classification tasks (Lv et al., 2023,
2022). It is the success of these tasks that have led
us to believe that SNN has preliminarily acquired
the abilities of "seeing", "listening", and "reading".
However, applying SNN to generative tasks en-
counters some obstacles, particularly in addressing
the challenge of SNN capturing long-term depen-
dencies. As mentioned above, spiking neurons
have a temporal dynamic of charge-fire-reset. Such
a serial process hinders the capture of information
from future time steps in the spiking temporal di-
mension. Existing SNN models performing atten-
tion operations in the spiking sequential dimension
can only establish sequence dependencies within
the same time step or, in other words, among partial
binary embedding (Lv et al., 2023; Li et al., 2023b),
hindering the establishment of long-term dependen-
cies. We term this phenomenon as "partial-time
dependency".

In this paper, we introduce SpikeVoice, a
high-quality Text-To-Speech (TTS) model with
a Transformer-based SNN framework (Vaswani
et al., 2017) solving the "partial-time dependency"
problem, and successfully explore the potential of
SNN to "speak". To address the issue of "partial-
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time dependency", we propose Spiking Temporal-
Sequential Attention (STSA) in SpikeVoice. STSA
performs temporal-mixing in the spiking temporal
dimension to capture information from future time
steps, enabling access to the global information of
binary embedding at each spiking time step. After
time-mixing, STSA performs sequential-mixing
in the spiking sequential dimension to integrate
contextual information. Furthermore, we imple-
ment SpikeVoice in a spike-driven manner with the
Leaky Integrate-and-Fire (LIF) (Maass, 1997) neu-
rons, fully harnessing the energy efficiency of SNN.
Spike-driven denotes the concurrent existence of
both the binary spike communication feature and
the event-driven feature. To the best of our knowl-
edge, SpikeVoice is the first TTS model within
the SNN framework, which not only promotes the
development of SNN in generative tasks but also
expands the scope of the SNN model in practical
applications.

The main contributions are summarized as fol-
lows:

• To the best of our knowledge, SpikeVoice is
the first TTS model within the SNN frame-
work that endows SNN with the "speaking"
capability, enabling high-quality speech syn-
thesis and filling the blank of speech synthesis
in the SNN field.

• In SpikeVoice, we introduce STSA, where the
temporal-mixing in the spiking temporal di-
mension enables the access to the global infor-
mation of binary embedding at each spiking
time step, resolving the issue of "partial-time
dependency" caused by the serial spiking neu-
rons.

• The results reveal that SpikeVoice achieves
synthesis performance close to ANN in both
English and Chinese scenarios with both
single-speaker and multi-speaker configura-
tions. Remarkably, the energy consumption
of SpikeVoice is merely 10.5% of ANN, al-
leviating the high energy consumption issue
associated with ANN.

2 Related work

Transformers in SNN: Training in SNN is primar-
ily categorized into two methods: ANN-to-SNN
conversion (ANN2SNN) (Bu et al., 2021; Deng

and Gu, 2020; Han et al., 2020) and surrogate train-
ing (Wu et al., 2018a; Shrestha and Orchard, 2018;
Wu et al., 2018b; Duan et al., 2022). Leveraging
ANN2SNN, (Mueller et al., 2021) integrates the
Transformer architecture into SNN. Nevertheless,
this approach demands dozens or even hundreds
of time steps to attain satisfactory performance.
Spikeformer (Zhou et al., 2022) conducts direct
training of the Transformer within the SNN frame-
work and achieves state-of-the-art performance on
ImageNet with just four time steps. However, it
doesn’t fully harness the energy-efficient advan-
tages of SNN due to the presence of Multiply-
and-Accumulate (MAC) operations. Spike-driven
Transformer (Yao et al., 2023a) incorporates the
spike-driven paradigm into Transformer architec-
ture and introduces the Spike-Driven Self-Attenton
(SDSA) (Yao et al., 2023a). SDSA utilizes sparse
additive operations as a replacement for multipli-
cation operations in attention mechanisms, effec-
tively addressing the issues present in Spikeformer
related to MAC operations. SpikeGPT (Zhu et al.,
2023) is the first to introduce text generation tasks
into the SNN framework. However, it still does
not make full of the energy-efficient capabilities of
SNN.

Transformers in TTS: Tactron2 (Shen et al.,
2018) employs RNN (Hochreiter and Schmidhu-
ber, 1997) for speech synthesis which results in
low training efficiency and struggles to establish
long-term dependencies. To address these issues,
Transformer-TTS (Li et al., 2019) introduces an
autoregressive TTS model that combines Tactron2
with the Transformer, enhancing training efficiency
while capturing long-term dependencies. However,
autoregressive TTS models often suffer from slow
synthesis speed and less robust speech synthesis.
FastSpeech (Ren et al., 2019), on the other hand,
utilizes knowledge distillation during training to
build a non-autoregressive TTS model, yet the train-
ing process can be complicated. FastSpeech2 (Ren
et al., 2020) simplifies the training process by re-
moving knowledge distillation from the FastSpeech
training pipeline and adopting the end-to-end train-
ing approach, effectively addressing the issue of
the extended training duration associated with Fast-
Speech.

3 Method

In this study, we propose SpikeVoice, the first spike-
driven TTS model. The overall model architecture
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Figure 1: The overview model structure of SpikeVoice. In the figure, the left part represents the Spiking Temporal-
Sequential Attention (STSA). In the middle part, from bottom to top, are the Spiking Phoneme Encoder (SPE),
Spiking Variance Adapter (SVA), and Spiking Mel Decoder (SMD) with the topmost part represents the output
Mel-Spectrogram. On the right part, the green module represents the predictor within the Spiking Variance Adapter,
the blue module represents Spiking FeedForward, and the orange module indicating Spiking PostNet.

is illustrated in Fig.1. The Spiking Phoneme En-
coder (SPE) performs binary embedding on the
input phoneme embedding sequence and gener-
ates high-level spiking phoneme representations.
The Spiking Variance Adaptor (SVA) enhances the
spiking phoneme representations by incorporating
variance information related to duration, pitch, and
energy. Finally, the Spiking Mel Decoder (SMD)
and Spiking PostNet generate Mel-Spectrograms
in a non-autoregressive manner. In the following
sections, we will first introduce the LIF neurons,
and then introduce the components of SpikeVoice.

3.1 Leaky Integrate-and-Fire Neuron

The LIF neuron is a biologically inspired spiking
neuron having the charge-fire-reset biological neu-

ronal dynamics as shown in Fig.2. The working
process of LIF neuron can be described as:

Ht = Vt−1 +
1

τ
(Xt − (Vt−1 − V re)) (1)

St = Θ(Ht − V th) (2)

Vt = V reSt +Ht(1− St) (3)

Eq.(1) to (3) respectively represent the charging,
firing, and membrane potential resetting of LIF. Xt

denotes the input current at time t, Ht signifies the
membrane potential after charging, St represents
the spike tensor at time t, Θ represents the step
function, V th denotes the firing threshold, V re is
the reset membrane potential, and Vt signifies the
membrane potential after resetting.
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SpikeVoice FastSpeech2

STSA/Attention

Q,K, V TR̄t/s ∗ Eadd ∗ 3ND2 Emac ∗ 3ND2

F (Q,K, V ) TR̂t/s ∗ Eadd ∗ND Emac ∗ND2

Linear0 TRmlp1 ∗ Eadd ∗ FLPmlp0 Emac ∗ FLPmlp0

Scale - Em ∗N2

Softmax - Emac ∗ 2N2

Spiking Feedforward Conv_Layer0/1 TRc0/c1 ∗ Eadd ∗ FLPc0/c1 Emac ∗ FLPc0/c1

Predictors
Conv_Layer2/3 TRc2/c3 ∗ Eadd ∗ FLPc2/c3 Emac ∗ FLPc2/c3

Linear1 TRmlp1 ∗ Eadd ∗ FLPmlp1 Emac ∗ FLPmlp1

Spiking PostNet
Linear2 TRmlp2 ∗ Eadd ∗ FLPmlp2 Emac ∗ FLPmlp2

Conv_Layer4−9 TRc4−c9 ∗ Eadd ∗ FLPc4−c9 Emac ∗ FLPc4−c9

Table 1: The energy consumption estimation of the main components. T is the total time steps, and R denotes
the firing rates of spike tensors. Eadd = 0.9pJ and Emac = 4.6pJ are the energy consumption of add and MAC
operations at 45nm process nodes for full precision (FP32) SynOps. N is the length of sequences, and D represents
the number of channels. FLPc and FLPmlp are FLOPs of Conv layers and MLP layers.

Figure 2: The LIF neuron layer.

3.2 SpikeVoice
Temporal-Sequential Embedding: At spiking
temporal wise, we first expand the phoneme em-
bedding sequence z to T time steps. In order to in-
corporate the position information with STSA, we
then apply position embedding in both the spiking
temporal dimension and the phoneme sequential
dimension.

x0(t,l) = z(t,l) + etem(t,) + eseq(,l) (4)

where x0 ∈ RT×L×D will be taken as the input
to Spiking Phoneme Encoder. L represents the
length of the phoneme sequence, D denotes the
size of embedding dimension, t ∈ {1, . . . , T} and
l ∈ {1, . . . , L}. etem(t,) and eseq(,l) are the position
embedding of time step t at temporal wise and
position l at sequence wise.

Spiking Phoneme Encoder: Spiking Phoneme
Encoders are composed of a stack of N identi-
cal layers, each of which consists of an STSA
module and a Spiking FeedForward module. As
shown on the right side of Fig.1, each Spiking
FeedForward module consists of two stacked 1D-
Convolution layers. To ensure the energy efficiency

of SpikeVoice, we introduce a LIF neuron layer
before each 1D-Convolution layer, to convert con-
tinuous inputs into sparse spiking tensors. Then the
high-level spiking phoneme representations xn of
layer n can be obtained as:

un = STSA(xn−1) (5)

xn = LN(un + f(un)) (6)

f(·) = [Conv(SN (·))]2 (7)

where LN is layer nomalization, SN refers to
the LIF neuron layer depicted in Eq.(1)-(3). f(·)
represents the stacked 1D-Convolution and LIF
neuron layers, un is the membrane potential output
of STSA.

Spiking Temporal-Sequential Attention: As
illustrated in the left block of Fig.1, STSA is com-
posed of a Spiking Temporal Attention and a Spik-
ing Sequential Attention. Due to the serial nature
of LIF neurons, it results in the inability to cap-
ture information from future time steps along the
spiking temporal dimension and leads to the issue
of "partial-time dependency". Therefore, we pro-
pose the Spiking Temporal Attention to perform
temporal-mixing over the spiking temporal dimen-
sion obtaining the global information of binary em-
bedding.

Taking STSA in layer n of Spiking Phoneme
Encoder as an example, initially, we perform bi-
nary embedding on the output of layer n − 1 to
obtain the sparse spiking hidden representation
sn = SN (xn−1), sn ∈ RT×L×D. Along the spik-
ing temporal dimension T the binary embedding of
each token can be obtained. The Spiking Temporal
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Attention can be depicted as:

µn = SN (BN(Wn,tem
µ sn)) (8)

sn(t,:) = SN (Σc(q
n
(t,:) ⊙ kn(t,:)))⊙ vn(t,:) (9)

σn = LN(xn−1 + Linear(sn)) (10)

where µ ∈ {q, k, v}, BN represents Batch Nor-
malization, and Wn,tem

µ is a learnable matrix for
Spiking Temporal Attention. For vanilla attention
can introduce MAC operations to the SpikeVoice,
we utilize the SDSA (Yao et al., 2023a) in Eq.(9) as
a substitute for vanilla attention. ⊙ is the Hadamard
product and Σc means sum up in column-wise.
sn(t,:) denotes the spiking tensor at time step t,
which is the output of attention computing on spik-
ing temporal wise. σn represents the membrane
potential output of Spiking Temporal Attention.

Then sn = SN (σn) will serve as the sparse
input to Spiking Sequential Attention:

µn = SN (BN(Wn,seq
µ sn)) (11)

sn(:,l) = SN (Σc(q
n
(:,l) ⊙ kn(:,l)))⊙ vn(:,l) (12)

un = LN(un + Linear(sn)) (13)

where sn(:,l) is the spiking tensor at position l in the
sequence wise. The computation process above
can be easily extended to Spiking Mel Decoder.

Spiking Variance Adaptor: The Spiking Vari-
ance Adaptor takes the high-level spiking phoneme
representations xN as its input. And then the Dura-
tion Predictor Pd, Energy Predictor Pe, and Pitch
Predictor Pp impart variance information to xN .
The predictors in Spiking Variance Adaptor all take
an identical structure, shown in the green block
on the right side of Fig.1. Besides, We employ a
residual connection around the Energy Predictor
and Pitch Predictor. Finally, the Length Regulator
LR aligns the hidden sequence to the length of the
Mel-Spectrogram:

d = Pd(x
N ) (14)

u = Pe(Pp(x
N )) (15)

{y0(t,l′)}l′=1,...,L′ = LR
(
u(t,l), d(l,)

)
l=1,...,L

(16)

where d ∈ RL comprises the length of mel frames
corresponding to each phoneme. u represents the
membrane potential incorporated the pitch and en-
ergy variance information. {y0(t,l′)} signifies the
mel representations corresponding to u(t,l) after be-
ing extended by d(l,) times. L′ represents the total
length of the target Mel-Spectrogram.

Spiking Mel Decoder and PostNet: Spiking
Phoneme Encoders are composed of a stack of
M identical layers, each of which also comprises
an STSA and a Spiking FeedForward. The Spik-
ing PostNet is designed to enhance the fine details
of Mel-Spectrograms. LIF neuron layers are also
added before each linear layer and 1D-convolution
layer in the Spiking PostNet to ensure sparse inputs.
Then the Mel-Spectrogram can be obtained as:

ym = SFF (STSA(ym−1)) (17)

O = PostNet(yM ) (18)

Oc
(l′,) = ȳM(:,l′), Of

(l′,) = Ō(:,l′) (19)

where ym is the output of the mth layer of Spik-
ing Mel Decoder. To calculate the supervised
loss with ground truth, we average the output at
spiking temporal dimension as the predicted Mel-
Spectrograms, and ·̄ represents the average opera-
tion. We denote the Mel-Spectrograms obtained
before the Spiking PostNet as Oc and the output
obtained from the Spiking PostNet as Of .

The loss function encompasses supervised losses
using Mean Squared Error (MSE) for pitch, en-
ergy, and duration, as well as Mean Absolute
Error (MAE) losses for both the coarse Mel-
Spectrograms Oc and the fine Mel-Spectrograms
Of .

4 Experiments

We conducted experiments with SpikeVoice on
single-speaker and multi-speaker datasets, encom-
passing both English and Chinese. The single-
speaker datasets include LJSpeech (Ito and John-
son, 2017) and Baker1, while the multi-speaker
datasets comprise LibriTTS (Zen et al., 2019) and
AISHELL3 (Yao Shi, 2015). In the following sub-
sections, we present results on subjective and objec-
tive metrics for ground truth denoted as ’GT’, ANN
baseline denoted as ’FastSpeech2’, SpikeVoice sig-
nified as ’SpikeVoice-STSA’, and SNN baselines:
SpikeVoice with attention in Spikeformer replacing
the STSA, which is denoted as ’SpikeVoice-ATTN’
and SpikeVoice with only Spiking Sequential Atten-
tion, which denoted as ’SpikeVoice-SDSA’. Addi-
tionally, In Section 4.5, we perform visual analysis,
and in Section 4.6, we discuss the balance between
SpikeVoice’s energy consumption and the quality
of synthesized speech.

1https://www.data-baker.com/data/index/TNtts/
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Single-Speaker
LJSpeech Baker

Methods WER↓NISQA-V2↑ MOS↑ CER↓NISQA-V2↑ MOS↑
GT 6.39 4.42 4.75± .037 12.25 4.06 4.30± .052

FastSpeech2 (Ren et al., 2020) 7.98 4.13 4.10± .057 13.18 3.80 3.82± .089

SpikeVoice-ATTN (Zhou et al., 2022) 8.39 4.08 3.69± .053 13.16 3.78 3.52± .093
SpikeVoice-SDSA (Yao et al., 2023a) 8.70 4.10 3.63± .059 12.96 3.79 3.46± .088

SpikeVoice-STSA (ours) 7.93 4.11 4.06± .05212.89 3.80 3.86± .076

Table 2: Results on LJSpeech and Baker for experiments for single-speaker. GT stands for ground truth, FastSpeech2
is the work of (Ren et al., 2020). WER/CER and NISQA-V2 are the objective metric and MOS is the subjective
metric. The best results of the SNN-based models are highlighted with bold font, and the underlined font indicates
that the performance of the ANN-based model is superior to the optimal performance of the SNN-based model.

4.1 Datasets

For each of the datasets, we have randomly split
the dataset into three sets: the training set, the
validation, and the testing sets, both comprising
256 samples.

LJSpeech is a female single-speaker English
monolingual dataset. It comprises a collection of
13100 utterances, each lasting between 1 to 10
seconds, amounting to roughly 24 hours of speech
material.

Baker is a female single-speaker Chinese
dataset. It encompasses a wide range of content
domains, including news, novels, technology, and
so on. In total, Baker comprises 10000 speech
recordings, with approximately a total of 12 hours
of speech material.

LibriTTS comprises approximately 191 hours
of speech with 1,160 speakers. We utilized the
train-clean-360 set from LibriTTS. Within this sub-
set, there are 430 female speakers and 474 male
speakers.

AISHELL3 is a multi-speaker Chinese dataset,
containing a total of approximately 85 hours of
speech, recorded by 218 speakers.

4.2 Experiments settings

Training Settings SpikeVoice is stacked by N = 4
Spiking Phoneme Encoders, a Spiking Variance
Adaptor, and M = 6 Spiking Mel Decoders. We
transformed the raw speech in all the datasets into
mel-spectrograms with a frame length of 1024
and a hop length of 256. The synthesized mel-
spectrograms were uniformly converted into speech
using the vocoder HiFiGAN (Kong et al., 2020).
We performed the training on four Tesla V100-
SXM2-32G GPUs with batch size 48. The opti-
mization settings were in line with those defined

in (Ren et al., 2020). The implementation of the
SNN framework in SpikeVoice is based on Spik-
ingJelly (Fang et al., 2023a).

Evaluation Settings We employed Word Er-
ror Rate (WER) for English and Character Er-
ror Rate (CER) for Chinese, along with NISQA-
V2 (Mittag et al., 2021), as objective metrics to
evaluate the quality of single-speaker speech syn-
thesis. For multi-speaker synthesis, we addition-
ally utilized Speaker Embedding Cosine Similarity
(SECS) to gauge the similarity between the syn-
thesized speech and the target speech in terms of
the speaker’s voice. Specifically, for WER, we uti-
lized Hubert (Hsu et al., 2021) for English ASR
transcription and Wav2Vec2 (Baevski et al., 2020)
for Chinese ASR transcription. As for SECS, we
employed the speaker encoder from the Resem-
blyzer2 toolkit to extract speaker embeddings and
calculate cosine similarity. In assessing both single
and multi-speaker synthesis, we relied on 5-scale
Mean Opinion Scores (MOS) with 95% confidence
intervals as our subjective metric. To obtain these
scores, we randomly selected 80 samples from each
test set, and a total of 12 participants were asked to
provide ratings for the synthesized speech.

4.3 Performance on Single-Speaker

As shown in Tab.2, we conducted experiments on
the LJSpeech and Baker datasets, reflecting the
synthesis quality of English and Chinese single-
speaker respectively.

For the objective metrics, SpikeVoice surpasses
all the SNN and ANN baselines on the WER/CER
metric and is the best-performing SNN-based
model on NISQA. These results demonstrate that
the global information of temporal spike sequence

2https://github.com/resemble-ai/Resemblyzer
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Multi-Speaker
AISHELL3 LibriTTS

Methods WER↓ NISQA
-V2

↑ SECS↑ MOS↑ CER↓ NISQA
-V2

↑ SECS↑ MOS↑
GT 5.36 3.37 - 4.48± .057 5.07 4.14 - 4.46± .047

FastSpeech2 6.36 3.09 0.849 3.92± .059 5.72 3.47 0.822 3.43± .074

SpikeVoice-ATTN 7.13 3.12 0.841 3.55± .061 6.63 3.42 0.794 2.72± .089
SpikeVoice-SDSA 7.42 3.12 0.849 3.63± .058 6.45 3.40 0.794 2.88± .066
SpikeVoice-STSA 6.32 3.13 0.850 3.79± .056 6.06 3.43 0.795 3.32± .052

Table 3: Results on AISHELL3 and LibriTTS for experiments of multi-speaker. CER, NISQA-V2, and SCER are
the objective metric and MOS is the subjective metric. The best results of the SNN-based models are highlighted
with bold font, and the underlined font indicates that the performance of the ANN-based model is superior to the
optimal performance of the SNN-based model.

in STSA contributes to the synthesis of higher-
quality and clearer speech.

For the subjective evaluation, SpikeVoice out-
performs both SpikeVoice-ATTN and SpikeVoice-
SDSA. The difference in MOS scores between
SpikeVoice and ANN is merely 0.04 on LJSpeech
and SpikeVoice even surpasses the ANN-based
model on the Baker dataset, indicating that
SpikeVoice’s synthesis quality closely approaches
that of ANN in terms of human perception. The
results compared to SpikeVoice-SDSA also confirm
the effectiveness of temporal-mixing.

4.4 Model Performance on Multi-Speaker
In Tab.3, we respectively present the performance
on the AISHELL3 and LibriTTS. In the multi-
speaker experiments, we have additionally incorpo-
rated the SCER metric to assess the speaker similar-
ity between synthesized speech and target speech.

Compared to single-speaker, multi-speaker
datasets present more challenges for SNN-based
models. SpikeVoice with STSA remains the best-
performing SNN-based model, however, the sparse
nature of the spike tensor contributes to energy
efficiency at the expense of information loss, lead-
ing to a performance gap of MOS scores between
the SNN-based models and ANN-based models
in multi-speaker datasets, which encompass richer
information. Investigating strategies to minimize
information loss in the context of spike tensors with
low firing rates is worthwhile for future research.

4.5 Visualized Analysis
Visualization of Mel-Spectrograms: Speech syn-
thesized by SpikeVoice exhibits less noise and
is clearer compared to the SNN-based baselines,
which is evident in Fig.3. As shown in Fig. 3(b)

and 3(c), Mel-Spectrograms synthesized by the
SNN baselines become blurry towards the end, los-
ing fine details. In contrast, the Mel-Spectrograms
in Fig.3(d) synthesized by SpikeVoice with STSA
exhibit minimal sacrifice of details as to ANN in
3(a) and remain notably clearer than those pro-
duced by SNN baselines.

(a) FastSpeech2 (b) SpikeVoice-ATTN

(c) SpikeVoice-SDSA (d) SpikeVoice-STSA

Figure 3: Mel-Spectrograms visualization analysis on
English single-speaker dataset LJSpeech.

Visualization of Spike Patterns: By visualizing
spike tensors, more details of SpikeVoice can be ob-
served. As the spike patterns of STSA depicted in
Fig.4(a) and Fig.4(b), each dot represents an event,
the spike events in the lower layers are sparser, and
as the network deepens, more information is incor-
porated, leading to denser spike events. Spike ten-
sors that convey similar information exhibit similar
spike patterns, while others reveal markedly dif-
ferent spike patterns. Spike patterns of the energy
and pitch predictors are displayed in Fig.4(c) and
Fig.4(d), different from the distribution of spike
pattern in 4(a) and 4(b), noticeable channel cluster-
ing phenomena can be observed in 4(c) and 4(d).
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Methods Spike-Driven Complexity Param Time Step E(pJ) MOS
FastSpeech2 % O(N2D) 35.4 1 2.14e11 4.10± .057

SpikeVoice-ATTN ! O(TN2D) 35.4 4 2.55e10 3.69± .053

SpikeVoice-SDSA ! O(TND) 35.4 4 2.06e10 3.63± .059

SpikeVoice-STSA ! O(2TND) 37.8 1 8.84e09 3.61± .053

SpikeVoice-STSA ! O(2TND) 37.8 4 2.26e10 4.06± .052

Table 4: Balance between consumption and synthesized quality of models. Spike-Driven denotes the existence of
solely AC operations. Param represents the amount of parameters of models, Time Step is total spike sequence time
steps, and E(pJ) represents the energy consumption calculated according to Table 1. MOS represents the results of
the LJSpeech.

(a) STSA-layer1 (b) STSA-layer4

(c) Pitch Predictor (d) Energy Predictor

Figure 4: Visualization of spike tensor. Fig.4(a) and
Fig.4(b) are the spike patterns of STSA in the first layer
and the fourth layer. 4(c) and 4(d) denote spike pattern
for speech energy and speech pitch. Each dot depicts a
fired event.

4.6 Analysis of Balance between Consumption
and Synthesized Speech Quality

Apart from its notable biological interpretability,
one of the most prominent advantages of SNN lies
in its energy efficiency. However, SNN’s binary em-
bedding within a finite time step results in some de-
gree of performance decay. In Tab.4, we present the
number of model parameters, time steps of binary
embedding, and energy consumption. The term
"Spike-Driven" refers to the existence of solely AC
operations, and "MOS" here refers to the results on
LJSpeech.

While SpikeVoice-STSA comes with a slight in-

crease in the parameter, it takes only 10.5% energy
consuming of ANN with 4 time steps and achieves
a better performance than SNN baselines. In con-
trast, SpikeVoice-SDSA exhibits noticeable perfor-
mance degradation, while the energy consumption
is 9.6% of ANN with an equivalent amount of pa-
rameters. Similarly, SpikeVoice-ATTN also results
in an 88.1% reduction in energy consumption. It
is worth to noting that when set time step to 1,
the energy consumption of SpikeVoice-STSA can
be merely 4.11% of ANN. Hence, when consid-
ering both the quality of speech synthesis and en-
ergy consumption, SpikeVoice is a superior choice,
offering significant energy savings with minimal
performance sacrifice.

5 Conclusion

In this paper, we introduce SpikeVoice. To the
best of our knowledge, it is the first TTS model
that achieves high-quality speech synthesis within
the SNN framework and for the first time endows
SNN with the ability to "speak". Additionally,
SpikeVoice is a spike-driven model with highly
energy-efficient. In SpikeVoice, we propose STSA,
which performs temporal-mixing in the spiking
temporal dimension to address the issue of informa-
tion invisibility at future time steps on the spiking
temporal dimension caused by the serial nature of
spiking neurons and thereby address the issue of
"partial-time dependency".

We conducted experiments on both single-
speaker and multi-speaker datasets in both Chi-
nese and English. The results demonstrate that
SpikeVoice achieves performance comparable to
ANN models while consuming only 10.5% of the
energy required by ANN. Our successful practice
proves the feasibility of TTS tasks within the SNN
framework and offers an energy-saving solution for
TTS tasks.
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6 Limitation

The SpikeVoice within the SNN framework still
has several limitations. Primarily, the binary em-
bedding results in inevitably information lost from
the input data, leading to a decline in performance.
Secondly, due to the inherent sequential mechanism
of LIF neurons, the training speed of SpikeVoice is
slower than ANN. Finally, as analyzed in section
4.5 with the layers deepen, the firing rate becomes
progressively higher, which implies the potential
for further reductions in energy consumption. In
light of this, we present several prospective ex-
ploration directions that reduce information loss
during the binary embedding process in SNN, low-
ering the firing rate in deep neural networks, and
parallelization of spike neurons.
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A Firing Rate of SpikeVoice

In Tab.5, Tab.6, and Tab.7, we respectively present
the spike firing rates of Spiking Phoneme Encoder,
Spiking Variance Adapter, and Spiking Mel De-
coder.

B Examples of Spike Patterns

In Fig.5 we present the spike patterns of STSA
and also the spike patterns of Pitch Predictor and
Energy Predictor.

C Examples of Mel-Spectrograms

In Fig.6 we present Mel-Spectrograms of
LJSpeech, Baker, LibriTTS, and AISHELL3, and
we have magnified the tail of the Mel-Spectrogram
for a clearer observation.
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Spiking Phoneme Encoder
Layer1 Layer2 Layer3 Layer4 AVG

Spiking Sequential Attention

Q 0.19 0.18 0.19 0.2 0.19
K 0.04 0.04 0.05 0.07 0.05
V 0.04 0.04 0.05 0.07 0.05

Linear 0.05 0.05 0.06 0.09 0.06

Spiking Temporal Attention

Q 0.04 0.02 0.02 0.03 0.03
K 0.05 0.02 0.03 0.04 0.04
V 0.05 0.03 0.03 0.04 0.04

Linear 0.01 0.01 0.01 0.02 0.01

Spiking FeedForward
Conv1 0.07 0.10 0.13 0.15 0.11
Conv2 0.12 0.10 0.12 0.17 0.13

Table 5: Spike Firing Rates in Spiking Phoneme Encoder of SpikeVoice on LJSpeech dataset. The spike firing rate
refers to the proportion of elements in the spike tensor that have an activation value of 1, with the value of other
elements being 0.

Spiking Variance Adapter
FR_Conv1 FR_Conv2 FR_Conv3 AVG

Duration Predictor 0.23 0.29 0.24 0.25
Energy Predictor 0.27 0.31 0.32 0.30
Pitch Predictor 0.23 0.38 0.30 0.30

Table 6: Spike Firing Rates in Spiking Variance Adapter of SpikeVoice on LJSpeech dataset. "FR_Conv1",
"FR_Conv2" and "FR_Conv3" in the SpikeVoice refer to the firing rate in Conv1, Conv2, and Conv3 of the
Predictors respectively.

Spiking Mel Decoder
Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 AVG

Spiking Sequential Attention

Q 0.16 0.17 0.18 0.21 0.24 0.31 0.21
K 0.03 0.04 0.04 0.05 0.05 0.04 0.04
V 0.03 0.04 0.04 0.04 0.05 0.05 0.04

Linear 0.03 0.05 0.06 0.07 0.8 0.11 0.07

Spiking Temporal Attention

Q 0.14 0.13 0.14 0.13 0.13 0.13 0.13
K 0.24 0.20 0.18 0.18 0.19 0.22 0.20
V 0.24 0.20 0.18 0.18 0.19 0.21 0.20

Linear 0.02 0.02 0.03 0.03 0.03 0.04 0.03

Spiking FeedForward
Conv1 0.12 0.13 0.13 0.13 0.12 0.19 0.14
Conv2 0.10 0.13 0.14 0.15 0.16 0.22 0.15

Table 7: Spike Firing Rates in Spiking Mel Decoder of SpikeVoice on LJSpeech dataset. The spike firing rate refers
to the proportion of elements in the spike tensor that have an activation value of 1, with the value of other elements
being 0.
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(a) STSA-encoder1 (b) STSA-encoder2 (c) STSA-encoder3

(d) STSA-encoder4 (e) Energy Predictor (f) Pitch Predictor

(g) STSA-decoder1 (h) STSA-decoder2 (i) STSA-decoder3

(j) STSA-decoder4 (k) STSA-decoder5 (l) STSA-decoder6

Figure 5: Visualization of spike tensor in the SpikeVoice. Figures in 5(a),5(b),5(c),5(d) are the spike pattern of
STSA in Spiking Phoneme Encoder. 5(e) and 5(f) denote spike pattern for speech energy and speech pitch. Fig.5(g)
to 5(l) are the spike pattern of STSA in Spiking Mel Decoder.
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(a) Mel-Spectrograms of LJSpeech

(b) Mel-Spectrograms of Baker

(c) Mel-Spectrograms of LibriTTS

(d) Mel-Spectrograms of AIshell3

Figure 6: Mel Spectrograms on LJSpeech, Baker, LibriTTS and Aishell3. Each row from left to right is the Mel
spectrograms of the model ANN, SpikeVoice-ATTN, SpikeVoice-SDSA and SpikeVoice-STSA.
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