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Abstract

Large Language Models (LLMs) have become
integral components in various autonomous
agent systems. In this study, we present an
exploration-based trajectory optimization ap-
proach, referred to as ETO. This learning
method is designed to enhance the performance
of open LLM agents. Contrary to previous stud-
ies that exclusively train on successful expert
trajectories, our method allows agents to learn
from their exploration failures. This leads to
improved performance through an iterative op-
timization framework. During the exploration
phase, the agent interacts with the environment
while completing given tasks, gathering failure
trajectories to create contrastive trajectory pairs.
In the subsequent training phase, the agent uti-
lizes these trajectory preference pairs to update
its policy using contrastive learning methods
like DPO (Rafailov et al., 2023). This itera-
tive cycle of exploration and training fosters
continued improvement in the agents. Our ex-
periments on three complex tasks demonstrate
that ETO consistently surpasses baseline per-
formance by a large margin. Furthermore, an
examination of task-solving efficiency and po-
tential in scenarios lacking expert trajectory
underscores the effectiveness of our approach.1

1 Introduction

Large language models (LLMs) have demonstrated
impressive capabilities in addressing complex inter-
active tasks through action planning for interactions
with environments and tools (Wang et al., 2023a;
Xi et al., 2023). Systems using ChatGPT (OpenAI,
2022) and GPT-4 (OpenAI, 2023) as principal con-
trollers have been developed for a range of appli-
cations. These include web browsing (Deng et al.,
2023; Zhou et al., 2023), embodied tasks (Yao
et al., 2022b; Lin et al., 2023), multi-modal rea-
soning (Lu et al., 2023), and complex question

*Corresponding Authors.
1Code & Data: https://github.com/Yifan-Song793/ETO.
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Figure 1: Exploration-based Trajectory Optimization
(ETO) allows an LLM agent to iteratively collect fail-
ure trajectories and update its policy by learning from
contrastive failure-success trajectory pairs.

answering. However, recent research suggests that
open-source LLMs are considerably less effective
than GPT-4 in constructing agents (Liu et al., 2023;
Wang et al., 2023d; Mialon et al., 2023).

The standard approach for constructing open
LLM agents involves imitation learning, which fine-
tunes LLMs based on expert trajectories. Behav-
ioral cloning (BC) (Pomerleau, 1991) is a simple
yet effective imitation learning technique that de-
rives a policy through supervised learning from
observation-action pairs. Recent efforts (Chen
et al., 2023; Zeng et al., 2023), including Agent
LUMOS (Yin et al., 2023), have explored the use of
BC to develop open LLM agents by implementing
supervised fine-tuning (SFT) on expert trajecto-
ries. These methods employ the teacher-forcing
algorithm to train LLMs, enabling them to learn a
policy for generating subsequent actions based on
observations and past actions. However, these SFT
methods, which rely entirely on expert demonstra-
tions, may yield sub-optimal policies due to inade-
quate exploration of target environments, thereby
limiting their generalizability.

The process of human learning not only in-
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volves observing successful demonstrations but
also includes experiencing and exploring failures
through trial-and-error interactions with the envi-
ronment. Drawing inspiration from this, we pro-
pose a novel learning approach for LLM agents,
which we call Exploration-based Trajectory Op-
timization (ETO). Unlike previous methods that
solely rely on successful trajectories, our approach
capitalizes on the exploration failures of the current
policy to enhance the learning process of an agent.

In particular, we first use SFT-based behavioral
cloning to construct a base agent, as depicted in
Figure 1. During the exploration phase, this base
agent interacts with the target environment to un-
dertake a set of given tasks and receive feedback
from the environment. We gather failed trajectories
from the base agents and pair them with expert
trajectories previously collected for those tasks.
In the subsequent training phase, we apply the
DPO loss (Rafailov et al., 2023) to fine-tune the
LLM policy with these contrastive trajectory pairs,
thereby further improving the agent. The ETO can
be expanded to multiple rounds by collecting fail-
ure cases from previously ETO-tuned agents.

We assessed our approach using three repre-
sentative datasets: WebShop (Yao et al., 2022a)
for web navigation, ScienceWorld (Wang et al.,
2022) for simulated science experiments, and ALF-
World (Shridhar et al., 2021) for embodied house-
hold tasks. Across these datasets, our ETO consis-
tently exceeded the performance of SFT behavioral
cloning and other robust baselines by a significant
margin, thereby demonstrating the effectiveness of
learning from exploration failures. Furthermore,
our approach demonstrated an impressive perfor-
mance improvement of 22% over SFT on the chal-
lenging out-of-distribution test set in ScienceWorld,
indicating its strong generalization capability. Our
analysis also highlighted the task-solving efficiency
of our method, as it achieves higher rewards with
fewer action steps. In extreme scenarios where ex-
pert trajectories are not available, our ETO still de-
livers impressive performance in a self-play mode,
further emphasizing the potential of our approach.

In this paper, our contributions are as follows:
• Method. We introduce exploration-based tra-

jectory optimization, ETO, a learning algorithm
which iteratively collects failure trajectories and
refines the agent policy via contrastive learning.

• Evaluation. Extensive experiments on three
complex interactive tasks show that our method

outperforms SFT behavioral cloning and other
strong baselines by a large margin.

• Analysis. We conduct in-depth analysis to care-
fully validate the effectiveness of ETO in mul-
tiple aspects, including out-of-distribution gen-
eralization, action efficiency, and its feasibility
without the need for expert trajectories.

2 Task Formulation

The agent task with environment feedback can be
formalized as a partially observable Markov deci-
sion process (POMDP) (U ,S,A,O, T ,R) with in-
struction space U , state space S , action space A, ob-
servation space O, transition function T : S×A →
S, and reward function R : S ×A → [0, 1]. Note
that in our LLM-based agent scenario, U ,A,O are
subsets of natural language space.

Given a task instruction u ∈ U , the LLM
agent with parameter θ generates the action a1 ∼
πθ(·|u) ∈ A according to its policy πθ. The action
incurs a change in the latent state space st ∈ S , and
an execution feedback as observation ot ∈ O. Then
the agent generates the corresponding action in the
t+ 1 step at+1 ∼ πθ(·|u, a1, o1, ..., ot−1, at) ∈ A.
The interaction loop repeats until the task com-
pletes or exceeds the maximum steps, and the tra-
jectory is denoted as:

e = (u, a1, o1, ..., on−1, an) ∼ πθ(e|u), (1)

πθ(e|u) =
n∏

j=1

πθ(aj |u, a1, o1, ..., oj−1), (2)

where n is the trajectory length. Finally, the final
reward r(u, e) ∈ [0, 1] is computed, with 1 repre-
senting successful task completion.

3 Method

Our method, ETO, starts by training a base agent
through behavioral cloning. Based on the base
agent, our framework continually enhances the pol-
icy from trial and error in an iterative manner.

3.1 Behavioral Cloning
Behavioral cloning (BC) has demonstrated promis-
ing results through supervised fine-tuning on the
expert interaction trajectory data, serving as a solid
starting point for building a powerful agent. In this
work, we employ ReAct-style (Yao et al., 2022b)
trajectory to conduct BC, which additionally gener-
ates Chain-of-Thought (CoT) rationales (Wei et al.,
2022) before each action. Considering that the
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Figure 2: An illustrative overview of Exploration-based Trajectory Optimization (ETO). Starting from a base
LLM agent trained through behavioral cloning, our method allows the agent to iteratively collect failure trajectories
and update its policy by continually learning from contrastive failure-success trajectory pairs.

CoT and action are generated together in the ReAct
framework, we use a to represent the action with
CoT for simplicity.

Given an expert trajectory dataset D ={
(u, e)(i)

}|D|

i=1
, where |D| is the number of trajec-

tories, we fine-tune an LLM on auto-regressive loss
to get the base agent πbase:

LSFT(πθ) = −Ee∼D [πθ(e|u)] , (3)

where e = (u, a1, o1, ...on−1, an) ∼ D is an expert
interaction trajectory.

Since πθ(e|u) =
∏n

j=1 πθ(aj |u, ..., oj−1), in
practice, we first concatenate the instruction,
actions and observations in trajectory e as a text
sequence t:

t = concat(u, a1, o1, ..., on−1, an)

= (t1, t2, ..., tl) ,
(4)

where tk is the k-th token in the result sequence.
Then the probability of the trajectory in Eq. (3) can
be obtained by directly computing the probability
of actions with tokens in task description and
observations masked:

πθ(e|u) = −
∑

k

log πθ(tk|t<k)× 1(tk ∈ A),

(5)
where 1(tk ∈ A) is an indicator function about
whether tk is a token belonging to actions produced
by the agent.

3.2 Learning From Exploration Failures
Behavioral cloning exclusively depends on expert
trajectories and lacks the ability to explore the envi-
ronment, leading to sub-optimal policies. To train a
more powerful agent, it is important for the model
to also explore failure trajectories. To achieve this,
a viable approach is reinforcement learning, which
empowers agents to actively explore the environ-
ment to get rewards and refine the policy through
trial and error (Ouyang et al., 2022):

max
πθ

Eu∼D,e∼πθ(e|u) [r(u, e)]−

βDKL [πθ(e|u) || πref(e|u)] ,
(6)

where the KL term with weighting parameter β
controls the deviation from the base reference pol-
icy πref , i.e., the base agent πbase. In practice, the
agent to be trained πθ is also initialized to πbase.
Then the optimization problem in Eq. (6) can be
solved via RL methods such as PPO (Schulman
et al., 2017; Ouyang et al., 2022).

However, directly applying online RL on LLM
agents will present practical challenges such as
instability and low efficiency (Shen et al., 2023;
Rafailov et al., 2023). Therefore, we instead design
an iterative offline learning framework and train the
agent with contrastive trajectory data. As shown
in Figure 2, the training process can be formulated
in an iterative exploration-training loop. In the
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Algorithm 1: ETO: Exploration-based Trajectory Optimization for LLM Agents

Input: D =
{
(u, a1, o1, ...on−1, an)

(i)
}

: expert trajectory dataset for behavioral cloning, T1:
number of behavioral cloning steps, I: number of iterations for ETO, T2: number of steps
in training phase, πθ: initial LLM policy.

Output: Final policy πθ
// Behavioral cloning

for i = 1 to T1 do
Optimize θ on BC objective: LSFT(πθ) = −Ee∼D [πθ(e|u)]

// Iteratively learning from exploration failures
for i = 1 to I do

πbase = πθ; πref = πθ
Get base agent trajectories on D: ê = (u, â1, ô1, ..., ôm−1, âm) ∼ πbase(e|u)
Compare rewards of ê with expert trajectory e to get the failure-success pair: ew ≻ el | u
Construct contrastive trajectory dataset: Dp =

{
(u, ew, el)

(i)
}

for j = 1 to T2 do
Optimize θ on trajectory contrastive objective:

LDPO(πθ;πref) = −E(u,ew,el)∼Dp

[
log σ

(
β log πθ(ew|u)

πθ(el|u) − β log πref(ew|u)
πref(el|u)

)]

return πθ

exploration phase of ETO, the agent explores the
environment to collect failure trajectories. During
the training phase, the agent learns the contrastive
information from the “failure-success” trajectory
pairs to update the policy.

Exploration Phase In this phase, the base agent
πbase explores the environment to get the trajecto-
ries on the instructions of training data for BC:

ê = (u, â1, ô1, ..., ôm−1, âm) ∼ πbase(e|u). (7)

The environments then return a reward r̂ corre-
sponding to the trajectory ê.

Then we construct failure-success trajectory
pairs, denote as ew ≻ el | u, based on the final
rewards. Here, ew and el represent the trajectories
with higher and lower rewards, chosen from the
expert trajectory e and agent-generated trajectory ê
respectively. Note that we only collect pairs where
two trajectories have different rewards. If both ê
and e successfully complete the task, we simply
discard the pair. Finally, we get the contrastive

trajectory dataset Dp =
{
(u, ew, el)

(i)
}|Dp|

i=1
.

Training Phase In this phase, the agent policy is
updated by modeling the contrastive failure-success
information in the trajectory pair data.

Given trajectory pair ew ≻ el | u, the failure-
success relation can be modeled via Bradley-Terry

(BT) (Bradley and Terry, 1952) model:

p(ew ≻ el|u) =
exp (r(u, ew))

exp (r(u, ew)) + exp (r(u, el))
.

(8)
Under the optimal policy πr(e|u) of Eq. (6), the
reward function in the environment can be written
as (Peng et al., 2019; Rafailov et al., 2023):

r(u, e) = β log
πr(e|u)
πref(e|u)

+ β logZ(x), (9)

where Z(u) =
∑

e πref(e|u) exp
(

1
β r(u, e)

)
is the

partition function. Substitute Eq. (9) into Eq. (8) to
get the BT model over policy:

p(ew ≻ el|u) =

σ

(
β log

πθ(ew|u)
πθ(el|u)

− β log
πref(ew|u)
πref(el|u)

)
,

(10)

where σ is the sigmoid function. Then the optimal
policy πθ can be achieved by applying maximum
likelihood:
LDPO(πθ;πref) =

− E(u,ew,el)∼Dp

[
log σ

(
β log

πθ(ew|u)
πθ(el|u)

− β log
πref(ew|u)
πref(el|u)

)]
.

(11)
This optimization objective aims to increase the

likelihood of the success trajectories ew and de-
crease the likelihood of failure trajectories el, with
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a constraint term to maintain the basic agent ca-
pabilities. Moreover, as a reformulation of RL
objective Eq. (6), Eq. (11) is directly maximizing
the final reward while avoiding the need to perform
RL optimization.

Iteration To further improve the agent’s per-
formance, ETO adopts an iterative exploration-
training manner. After the training phase, the agent
policy can be used to gather new failure cases and
create contrastive trajectory pairs. These new data
are then used to further enhance the agent through
trajectory contrastive learning. The complete learn-
ing process of ETO is shown in Algorithm 1.

4 Experiments

In this section, we conduct extensive experiments
to validate the effectiveness of ETO. Our method
demonstrates superior performance compared to
baselines across three datasets, and it exhibits
enhanced advantages when dealing with out-of-
domain unseen tasks. The analysis further show-
cases the efficiency of our method. Furthermore,
our method also holds promise in scenarios where
expert trajectories are unavailable.

4.1 Experimental Settings

Datasets We conduct experiments on three rep-
resentative agent datasets, WebShop (Yao et al.,
2022a) for web navigation, ScienceWorld (Wang
et al., 2022) for embodied science experiments, and
ALFWorld (Shridhar et al., 2021) for embodied
house holding tasks. Both WebShop and Science-
World environments provide dense final rewards
ranging from 0 to 1, while ALFWorld only pro-
vides binary rewards indicating whether the task is
completed. All three environments can be formally
described as partially observable Markov decision
processes. For details of the datasets and the ex-
pert trajectory collection process, please refer to
Appendix A.

The statistical information of our datasets is pre-
sented in Table 1. It is important to mention that,
in addition to the in-distribution test sets, both Sci-
enceWorld and ALFWorld contain test sets that in-
clude out-of-distribution unseen variations. These
additional test sets allow us to assess the general-
ization capabilities of different agents.

Training Setup We mainly use Llama-2-7B-
Chat (Touvron et al., 2023) as the base model for
building LLM agents. To provide more comprehen-

Dataset #Train #Test-Seen #Test-Unseen #Turns

WebShop 1938 200 - 4.9
ScienceWorld 1483 194 241 14.4
ALFWorld 3321 140 134 10.1

Table 1: Statistics of datasets. “Test-Seen” and “Test-
Unseen” are test set with seen and unseen scenarios
respectively. “#Turns” denotes the average number of
interaction turns for the expert trajectories.

sive results, we also conduct experiments on Llama-
2-13B-Chat and Mistral-7B (Jiang et al., 2023). We
utilize the AdamW optimizer (Loshchilov and Hut-
ter, 2017). For the SFT phase, the batch size is 64
and the learning rate is set to 1e-5 with 3% warm
up and a cosine scheduler. Then the base agent will
explore once for each instance in the training set to
collect failure trajectories. For the training phase
of ETO, the batch size is 32 and the learning rate is
set to 1e-6. The β in DPO loss is set to 0.1 for Web-
Shop and ScienceWorld, 0.5 for ALFWorld. The
learning epochs of SFT phase and training phase
in ETO are set to 3. The number of iterations of
ETO is set to 2 for WebShop and ScienceWorld, 1
for ALFWorld. All experiments are conducted on
8 NVIDIA A100 80G GPUs.

Baselines We compare ETO with SFT behavioral
cloning and other post-imitation baseline meth-
ods. 1) SFT (Chen et al., 2023; Zeng et al., 2023)
conducts behavioral cloning on expert trajectories,
which is the base agent for ETO and other base-
lines. 2) Best-of-N sampling employs SFT base
agent and selects the trajectory with the best re-
ward within N samplings. Here we set N to 10.
3) RFT (Rejection sampling Fine-Tuning) (Yuan
et al., 2023) is a strong baseline which adds the
success trajectories to the expert trajectory dataset
and trains the agent on new augmented trajectories.
4) PPO (Proximal Policy Optimization) (Schulman
et al., 2017) is an RL method directly optimizing
the SFT agents to maximize the final task reward.
We also include GPT-3.5-Turbo (OpenAI, 2022),
GPT-4 (OpenAI, 2023), and untuned Llama-2-7B-
Chat for comparison.

Evaluation All methods are evaluated using the
ReAct-style interaction format (Yao et al., 2022b),
with CoT rationale generated before the action. See
Appendix E for the detailed prompts. We add 1-
shot in-context example in the instruction prompt
for each task. The decoding temperature of the
LLMs is set to be 0.0 for deterministic generation,
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Method WebShop ScienceWorld ALFWorld

Seen Unseen Seen Unseen

GPT-4 63.2 64.8 64.4 42.9 38.1
GPT-3.5-Turbo 62.4 16.5 13.0 7.9 10.5

Llama-2-7B-Chat 17.9 3.8 3.1 0.0 0.0
Llama-2-7B-Chat + SFT 63.1 67.4 53.0 60.0 67.2
Llama-2-7B-Chat + Best-of-N 63.8 70.2 57.6 62.1 69.4
Llama-2-7B-Chat + RFT 63.6 71.6 54.3 62.9 66.4
Llama-2-7B-Chat + PPO 64.2 59.4 51.7 22.1 29.1

Llama-2-7B-Chat + ETO (ours) 67.4 73.8 65.0 68.6 72.4

Table 2: The average reward of different methods on three agent datasets. “Seen” denotes the held-out test set with
task types seen during training, while “Unseen” refers to the test set with critical unseen task variations.

except for Best-of-N method. We mainly employ
Average Reward as the metric, which represents
the average reward of all task instances in the test
set. We also report Success Rate in Appendix B
for reference.

4.2 Results

Table 2 presents the performance comparison of
ETO and baselines on three agent datasets. As
shown, ETO demonstrates a significant improve-
ment over SFT imitation learning, leading to an
average reward increase of 8% and 9.5% for Web-
Shop and ScienceWorld. Our method also out-
performs all other baselines on all datasets. On
WebShop dataset, ETO even outperforms GPT-4
on the average reward, showing the extraordinary
performance of our method. Although the RFT
method also exhibits improvement compared to
SFT, its performance remains constrained as it is
an augmented version of behavioral cloning and
solely learns from success trajectories. This com-
parison indicates the comparison between failure
and expert trajectories is essential to improve the
performance of the agent. Meanwhile, though PPO
gains improved performance on WebShop, it strug-
gles to achieve satisfactory results on the other two
datasets due to the inherent instability in RL op-
timization procedures, particularly on ALFWorld
dataset which only provides binary final rewards.
In Appendix D, we present case studies to show
the task-solving trajectories of our method.

Notably, our approach showcases enhanced
advantages in out-of-domain unseen scenarios,
achieving an impressive performance boost of 20%
on ScienceWorld-Unseen. Moreover, ETO ex-
hibits strong effectiveness on the unseen scenarios

Base LLM Method WebShop ScienceWorld

Seen Unseen

Llama-2-13B
SFT 66.3 68.1 57.6
ETO 70.7 71.4 68.6

Mistral-7B
SFT 60.1 63.8 52.2
ETO 66.2 68.5 62.5

Table 3: The average reward of different base LLMs on
WebShop and ScienceWorld.

in ALFWorld and outperforms the RFT and PPO
baselines, both of which suffer from performance
degradation. These results underscore that learning
by trial and error can further enhance the agent’s
generalization capabilities, particularly in out-of-
distribution unseen scenarios.

Results on Different LLMs To further demon-
strate the effectiveness of our method, we present
the results based on other base LLMs, including
Llama-2-13B-Chat and Mistral-7B. Table 3 show-
cases the consistent improvement in agent perfor-
mance achieved by ETO across different LLMs.
Notably, when compared to Llama-2-7B, the 13B
model displays a relatively smaller performance
gain on both datasets, suggesting that our method
can provide greater benefits to weaker agents. De-
spite Mistral-7B is a more powerful LLM than
Llama-2-13B, it falls short of Llama-2-7B after ei-
ther SFT or ETO. This finding indicates that there
is not a strong correlation between the basic LLM
capabilities and the agent capabilities.

Analysis on Efficiency We evaluate the task-
solving efficiency of agents in ScienceWorld en-
vironment, which provides fine-grained subgoals
for each task. The reward of a task is updated

7589



1-20 2-20 3-16

4-292 7-12 9-474

15-90 19-23 21-78

Figure 3: Cases of ScienceWorld reward trajectory for
ETO, SFT Base Agent and Oracle. X: time steps (0 →
T ); Y : scores (0 → 100). Task IDs are shown at the
bottom-right. Best viewed in color.

upon the accomplishment of a subgoal. By assess-
ing the agent’s ability to achieve higher rewards
within fewer action steps, we can determine its
efficiency. Figure 3 showcases the score trajecto-
ries of ScienceWorld-Seen test set, comparing ETO
with the SFT base agent, and the oracle agent. As
depicted, ETO can reach higher rewards in fewer
action steps than the SFT base agent. Interestingly,
in certain cases like 15-90 and 19-23, our method
outperforms even the oracle agent, reaching a score
of 100 earlier. These results demonstrate that by
learning from failure trajectories, our method also
acquires a more powerful task-solving efficiency.

4.3 Ablation of Iterations

In this section, we present a study on the impact of
iteration numbers in ETO. The results are shown
in Figure 4. As depicted, ETO demonstrates the
ability to enhance the performance of agents in the
first two iterations on both the WebShop and Sci-
enceWorld datasets. However, further increasing
the iterations does not lead to continuous improve-
ment. Instead, the performance starts to decline
after the third iteration. Regarding the ALFWorld
dataset, only the first iteration of ETO shows an
improvement. Surprisingly, the performance on the
second and third iterations even falls behind that of
the SFT base agent.

To explain this, it is important to note that the
learning process of ETO relies on a fixed expert tra-
jectory set, and the exploration phase of the agent is
performed on the same training set. Consequently,
the diversity and quantity of failure-success con-
trastive trajectory data are constrained. Initially,
the policy can be improved by learning from past
mistakes. However, the model gets overfitting on

WebShop SciWorld
(Seen)

SciWorld
(Unseen)

ALFWorld
(Unseen)

50

60

70

80

Av
g.

 R
ew

ar
d

SFT ETO Iter-1 ETO Iter-2 ETO Iter-3

Figure 4: ETO performance on multiple iterations.

Method Level lr β Avg. Reward

SFT - - - 63.1

ETO

Trajectory 1e-6 0.1 67.4
Step 1e-6 0.1 8.3
Step 1e-7 0.5 62.8
Mixture 1e-6 0.1 64.3

Table 4: The average reward on WebShop of agents
trained on different level contrastive data.

the contrastive information in subsequent iterations,
resulting in a decline in performance. In the case
of ALFWorld, the coarse-grained binary rewards
further hinder the agent from getting improvement
from iterative training. As a potential solution, fu-
ture work could explore the incorporation of GPT-4
to dynamically construct more diverse contrastive
trajectory data.

4.4 Strategy of Contrastive Data Construction

In this section, we delve deeper into the contrastive
trajectory pair construction strategy used in our
method. In Section 3.2, we directly learn from
failure-success trajectory pairs (Eq. (11)), referred
to trajectory-wise contrastive. Alternatively, in-
spired by previous work (Lightman et al., 2023),
we introduce a fine-grained variation of ETO that
captures step-wise contrastive information by com-
paring “good-bad” action pairs. To achieve this, we
use the expert trajectory to conduct teacher forc-
ing for first t − 1 steps, and then have the agent
predict the action of t-th step. Then the quality of
t-th action is determined by the final rewards. We
also implement a mixture variation by combining
the above two strategies. For further details regard-
ing the step-wise variation of ETO, please refer to
Appendix C.

The comparison of different methods is pre-
sented in Table 4. As the results demonstrate,
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trajectory-wise contrastive yields the best perfor-
mance. On the other hand, we observed that step-
wise contrastive modeling tends to be less stable,
necessitating a lower learning rate and a higher
constraint parameter β to maintain the basic ca-
pabilities of the agent. This instability may be
attributed to the inaccurate estimation of the action
quality, as we simply utilize the final rewards to
construct step-wise contrastive pairs. Moreover,
the performance of mixture strategy also falls short
compared to trajectory-level contrastive.

4.5 Self-Play w/o Expert Trajectory

In this section, we explore a challenging scenario
where no expert trajectory is available. In such
cases, the agent is compelled to explore the envi-
ronment and depend on self-play to enhance its
capabilities. To achieve this, we eliminate the be-
havioral cloning phase of ETO and allow the LLM
agent to explore the environments using a decoding
temperature of 1.0. Subsequently, we compare dif-
ferent trajectories associated with the same instruc-
tion based on their final rewards, creating trajectory
preference data. Finally, the agent is trained exclu-
sively on the preference data generated by itself.

On WebShop, the untuned Llama-2-7B-Chat
achieves relatively high rewards. Thus, we use this
dataset to conduct the experiment. We also employ
rejection sampling fine-tuning (RFT) as a baseline.
The results in Table 5 show that ETO alone does not
improve performance without behavioral cloning.
In contrast, RFT shows promising ability to en-
hance the agent’s capabilities without relying on
expert trajectories. However, when combining RFT
with ETO, we observe a further enhancement in
the agent’s performance. These findings suggest
that in scenarios without expert trajectories, it may
be beneficial to first employ RFT and then allow
the agent to learn from exploration failures. These
results further highlight the potential of our method
when expert trajectories are unavailable.

5 Related Work

Imitation Learning Imitation learning is a learn-
ing paradigm where an agent learns a policy
by mimicking expert demonstrations (Hussein
et al., 2017; Fang et al., 2019). A prevalent ap-
proach in imitation learning is behavioral cloning
(BC) (Pomerleau, 1991), which utilizes expert tra-
jectories to learn a direct mapping from states to
actions. There are various methods to mitigate

Method w/ BC? Avg. Reward

SFT ✓ 63.1
RFT ✓ 63.6
ETO ✓ 67.4

Llama-2-7B-Chat† ✗ 17.9
RFT ✗ 48.4
ETO ✗ 12.5
RFT+ETO ✗ 51.2

Table 5: Performance of self-play without behavioral
cloning from expert trajectories. Methods in the upper
part are implemented upon a BC base agent, while the
methods in the lower part directly use the untuned Llama
as the starting point. † means directly prompting an
untuned Llama-2-7B-Chat.

the limitations of BC (Ross et al., 2011; Ross and
Bagnell, 2014). Our method, ETO, shares a sim-
ilar spirit with DAgger (Ross et al., 2011), an ap-
proach used to enhance the agent’s performance
by learning from failure cases. However, unlike
DAgger which gathers additional expert trajecto-
ries on agent-failed cases, ETO improves the policy
through learning from contrastive trajectory pairs.

LLM Agents With the various emergent abili-
ties of LLMs, researchers have explored building
agent systems based on LLMs (Xi et al., 2023). Re-
cent projects such as AutoGPT (Richards, 2023),
BabyAGI (Nakajima, 2023), and RestGPT (Song
et al., 2023) have employed LLMs as core con-
trollers, building powerful agent frameworks ca-
pable of solving realistic tasks. While GPTs
have shown strong agent intelligence, open-source
LLMs still lag far behind (Liu et al., 2023; Wang
et al., 2023d). To bridge this gap, recent studies,
including FireAct (Chen et al., 2023), AgentTun-
ing (Zeng et al., 2023), and Lumos (Yin et al.,
2023), construct expert trajectory data from teacher
agents (e.g., GPT-4) and perform BC on open-
source LLMs. Taking a step further, Aksitov et al.
(2023) refine the agent through iterative BC on suc-
cess trajectories generated by the previous policy.
Concurrently with our work, Yang et al. (2023)
use the DAgger framework (Ross et al., 2011) and
also employ DPO loss to develop embodied multi-
modal agents.

LLM Policy Learning Learning from preference
has shown promise for learning an enhanced LLM
policy, particularly in LLM alignment research.
Reinforcement Learning from Human Feedback
(RLHF) is a method that learns a reward model
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Method Exploration Reward Efficiency Robustness

SFT ✗ ✗ ✓ ✓

RFT ✓ ✗ ✓ ✓

Online RL ✓ ✓ ✗ ✗

Offline RL ✗ ✓ ✓ ✗

ETO ✓ ✓ ✓ ✓

Table 6: ETO vs alternatives: ETO can leverage explo-
ration failures to optimize the policy with high compu-
tational efficiency and robustness.

and then utilizes proximal policy optimization to
update the policy model (Christiano et al., 2017;
Ouyang et al., 2022). Despite its attractive advan-
tages, RLHF presents limitations regarding training
efficiency and instability. To address these issues,
Rafailov et al. (2023) reformulate the optimization
objective of RLHF, introducing the DPO loss to
directly model preferences. Similar to our work,
ReST (Gulcehre et al., 2023) iteratively generates
new samples from the current policy and refines the
policy using offline RL methods. Recent studies
have explored the application of LLM policy learn-
ing in other domains (Lightman et al., 2023; Wang
et al., 2023b). For example, Wang et al. (2023c)
train a step-wise reward model to improve the per-
formance of LLMs in mathematical reasoning. The
comparison of ETO with several alternatives in Ta-
ble 6 highlights the strength of our method in LLM
agent policy learning.

6 Conclusion

In this work, we present ETO, a method aimed at
enhancing the capabilities of LLM agents. Our
approach allows the agent to learn by trial and er-
ror, thereby improving the performance of the base
agent acquired through behavioral cloning. ETO
uses an exploration-training iteration framework.
During the exploration phase, the agent explores
the environment, gathering failure trajectories and
constructing trajectory preference pairs. Subse-
quently, in the training phase, the agent learns
from the preference information using DPO loss.
This iterative process of exploration and training
enables further improvement in the agent’s per-
formance. Extensive experiments on three agent
datasets demonstrate our method outperforms be-
havioral cloning and strong baselines by a large
margin. Moreover, our method exhibits remarkable
efficiency and shows great potential in scenarios
where expert trajectories are unavailable.

Limitations

Our method, ETO, demonstrates effective learning
of powerful LLM agents through trial and error.
However, it is important to acknowledge several
limitations of this work. 1) ETO simplifies the
comparison of failure-success trajectories by as-
suming that the agent generates wrong actions right
from the beginning. However, in realistic cases, the
agent may start executing incorrect actions from
some intermediate step. If we can identify when
the agent makes a bad action (e.g., â3 at 3-th step),
we should then collect the expert trajectory for the
remaining actions at>3. Unfortunately, most cur-
rent environments do not contain such information,
making it challenging to conduct action-wise or
process-level reward modeling. A potential solu-
tion is to employ GPT-4 to identify the bad action
and construct fine-grained contrastive trajectory
data. 2) This work primarily focuses on developing
specialized LLM agents for a specific agent task,
with limited exploration into the construction of
strong generalized agents. For future work, we will
investigate the transferability of the policies trained
by ETO and try to apply our method in a multi-task
training scenario.
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A Datasets

WebShop WebShop (Yao et al., 2022a) is an online shopping website environment where agents
navigate the platform to make purchases based on user instructions. Once the agent selects the "buy"
action, the environment provides a final reward, which is calculated based on the matching heuristics of
the product’s attributes and price.

ScienceWorld ScienceWorld (Wang et al., 2022) is a text-based virtual environment centered around
accomplishing elementary science experiments, including 10 different task types such as thermodynamics
and electrical circuits. The agents need to be grounded in embodied interactive environments to engage
with and comprehend scientific concepts through practical experience. Each task in ScienceWorld includes
several optional subgoals, and the overall final reward is computed based on the achievement of these
subgoals.

The original test set in ScienceWorld consists of critical unseen task variations. For instance, in
the training set, the task may involve boiling water, whereas in the test set, the task is to boil lead.
Consequently, we employ the original test set to evaluate our model’s generalization performance on
unseen scenarios. We utilize the original development set as our test set with seen scenarios. We exclude
Task-9 and Task-10 due to their excessively long task-solving trajectories. Following Lin et al. (2023),
we use the first 10 instances for task types with more than 10 test variations for fair and cost-effective
comparisons.

ALFWorld ALFWorld (Shridhar et al., 2021) consists of interactive TextWorld environments that
parallel embodied worlds in the ALFRED (Shridhar et al., 2020) dataset. In this environment, agents
are required to explore and complete high-level house-holding instructions. The original ALFWorld
dataset comprises both seen and unseen evaluation sets. The seen set is designed to assess in-distribution
generalization, whereas the unseen set with new task instances measures out-of-distribution generalization
of the agents.

CoT Annotation Webshop and ALFWorld provide a few human-annotated trajectories for imitation
learning. We also employ GPT-4 as the teacher agent to explore in the WebShop environment and select
trajectories which have a reward greater than 0.7. ScienceWorld environment provides heuristic searching
algorithms to generate golden trajectories for each sub-task. Since the original trajectories do not contain
CoT information for each action step, we use GPT-4 to generate the corresponding rationales.

B Success Rate

We report the success rate of our experiments in Table 7. Note the definition of success rates of three tasks
are different. For WebShop, success rate is defined as the portion of instances where final reward is 1.0.
For ScienceWorld, the original paper does not provide the definition of success rate. However, according
to its official environment, a trajectory is considered success if the environment reaches a pre-defined
latent state where the reward may not be exactly 1.0. For ALFWorld, since it only provides binary final
rewards, success rate is equal to average final reward.

C Details for Step-Wise Contrastive

We implement a variation of ETO which learns from contrastive good-bad action pairs. Specifically, for a
task instruction u with expert trajectory e = (u, a1, ..., on−1, an), we utilize teacher forcing for the first
t− 1 steps (a1, o1, ...at−1, ot−1), and let the agent predict the actions from t-th step to get the trajectory:

ê = (u, a1, o1, ..., ot−1, ât, ôt, ..., ôm−1, âm) (12)

The environments return a reward r̂ for the trajectory ê. If we denote the golden trajectory for the first
t− 1 steps as e(t−1), then the good-bad action pairs aw ≻ al | u, e(t−1) is constructed based on the final
rewards. Here, aw and al represent the actions with higher and lower final rewards, chosen from (at, ât)
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Method WebShop ScienceWorld ALFWorld

Seen Unseen Seen Unseen

GPT-4 34.0 58.3 59.7 42.9 38.1
GPT-3.5-Turbo 33.0 7.2 4.7 7.9 10.5

Llama-2-7B-Chat 7.5 0.0 0.0 0.0 0.0
Llama-2-7B-Chat + SFT 33.0 70.6 73.5 60.0 67.2
Llama-2-7B-Chat + Best-of-N 35.0 70.6 73.5 62.1 69.4
Llama-2-7B-Chat + RFT 34.5 73.2 71.1 62.9 66.4
Llama-2-7B-Chat + PPO 33.5 68.5 70.5 22.1 29.1

Llama-2-7B-Chat + ETO (ours) 37.5 80.3 78.2 68.6 72.4

Table 7: The success rate of different methods on three agent datasets. For ALFWorld, success rate is equal to the
average final reward.

respectively. Then the contrastive relation of the action pair can also be utilized in DPO loss to improve
the policy:

LDPO(πθ;πref) = −E

[
log σ

(
β log

πθ(aw|u, e(t−1))

πθ(al|u, e(t−1))
− β log

πref(aw|u, e(t−1))

πref(al|u, e(t−1))

)]
. (13)

D Case Study

Here, we present case studies to compare ETO agents with SFT behavioral cloning agents. We illustrate
examples of WebShop and ScienceWorld in Figure 5 and 6, respectively.

In the WebShop scenario, the SFT agent failed to select the “3pc” color option, resulting in a sub-
optimal trajectory. Conversely, ETO demonstrated the ability to learn from past failures and adeptly chose
the appropriate attribute option.

In the ScienceWorld example, the task is to find a(n) animal. The SFT agent, however, persisted in
performing the incorrect action, focusing on a non-living object instead. Additionally, despite generating
a correct CoT, the SFT agent’s action selection was inconsistent with the CoT rationale. In contrast, ETO
successfully accomplished the task, showcasing the effectiveness of trial and error.
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Case Study of WebShop

SFT Agent
Task Instruction: I am looking for a hair
growth treatment in the color 3pc, and price
lower than 40.00 dollars
Thought 1: I should search for "hair growth
treatment 3pc" first.
Action 1: search[hair growth treatment 3pc]
Observation 1: <searching results>
Thought 2: There are several options, but I
need to find one that’s within my budget. The
first option, B09S12LVLZ, is a 3-piece ginger
hair growth cream set priced at $15.99, which
is under $50. This fits my criteria, so I’ll take a
closer look at this product.
Action 2: click[B09S12LVLZ]
Observation 2: <product details>
Thought 3: The product details confirm it’s
a 3-piece set and the price is still within my
budget. I don’t need to check the size options
since it’s already the 3-piece set I’m looking
for. The price is good, and although there’s no
rating, I’m willing to try it out. I’ll go ahead
and make the purchase.
Action 3: click[buy now]
Reward: 0.5

# Did not select the color option.

ETO Agent
Task Instruction: I am looking for a hair
growth treatment in the color 3pc, and price
lower than 40.00 dollars
Thought 1: I should search for "hair growth
treatment 3pc" first.
Action 1: search[hair growth treatment 3pc]
Observation 1: <searching results>
Thought 2: B09S12LVLZ and B09QMJY2ZC
are hair growth treatments in a 3pc set
and priced lower than $50. I can check
B09S12LVLZ first.
Action 2: click[B09S12LVLZ]
Observation 2: <product details>
Thought 3: For a hair growth treatment in a
3pc set, the item has options for different sizes.
I should click on the ’3pcs’ option.
Action 3: click[3pcs]
Observation 3: You have clicked [3pcs] op-
tion.
Thought 4: Now that I have selected the 3pc
option, I should proceed to purchase the item.
Action 4: click[buy now]
Reward: 1.0

Figure 5: Case study for WebShop.
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Case Study of ScienceWorld

SFT Agent
Task Instruction: Your task is to find a(n)
animal. First, focus on the thing. Then, move it
to the yellow box in the bedroom.
Thought 1: I need to find an animal as per
the task description. I should start by looking
around the current room to identify if there’s
an animal here.
Action 1: look around
Observation 1: This room is called the living
room. In it, you see: the agent, a substance
called air, a chair. On the chair is: nothing. a
couch. On the couch is: a white pillow. a desk.
On the desk is: a drawer. a finger painting. You
also see: A door to the hallway (that is open).
Thought 2: There are no animals in the living
room, but I see a finger painting that could be
considered an animal-related item. I should
look around again to ensure I didn’t miss any-
thing before deciding on my next step.
Action 2: look around # Repeat wrong action
Observation 2: This room is called the living
room. In it, you see: the agent, a substance
called air, a chair. On the chair is: nothing. a
couch. On the couch is: a white pillow. a desk.
On the desk is: a drawer. a finger painting. You
also see: A door to the hallway (that is open).
Thought 3: The finger painting is a potential
animal-related item, but it’s not the target of
the task. I should focus on finding an actual
animal.
Action 3: focus on finger painting
# Not a(n) animal, contradict with the CoT
Reward: 0.0

ETO Agent
Task Instruction: Your task is to find a(n) ani-
mal. First, focus on the thing. Then, move it to
the yellow box in the bedroom.
Thought 1: I need to find an animal as per
the task description. I should start by looking
around the current location to identify any po-
tential animals or related items.
Action 1: look around
Observation 1: This room is called the living
room. In it, you see: ...
Thought 2: The living room doesn’t seem to
have any animals, but I might have missed
something. I should check another area.
Action 2: teleport to outside
Observation 2: You teleport to the outside.
Thought 3: Now that I’m outside, I should
look around to see if there are any animals or
indications of animals here.
Action 3: look around
Observation 3: This outside location is called
the outside. Here you see: the agent, an axe, a
frog egg, a baby wolf ...
Thought 4: I see a frog egg here, which is a
developmental stage of an animal. This fits the
task description of finding an animal.
Action 4: focus on frog egg
Observation 4: You focus on the frog egg.
Thought 5: The frog egg is the early stage of
a common toad, which is an animal. I should
pick it up to move it to the specified location.
Action 5: pick up frog egg
Observation 5: You move the common toad to
the inventory.
Thought 6: With the common toad (frog egg)
in my inventory, I need to go to the bedroom to
place it in the yellow box as instructed.
Action 6: teleport to bedroom
Observation 6: You teleport to the bedroom.
Thought 7: Now that I’m in the bedroom, I
should complete the task by moving the com-
mon toad from my inventory to the yellow box.
Action 7: move common toad to yellow box
Reward: 1.0

Figure 6: Case study for ScienceWorld.
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E Prompt for Evaluation

We show the instruction prompts for WebShop, ScienceWorld, ALFWorld in Figure 7, 8, 9, respectively.

Instruction Prompt for WebShop

You are doing a web shopping task. I will give you instructions about what to do. You have to
follow the instructions. Every round I will give you an observation and a list of available actions,
you have to respond to an action based on the state and instruction. You can use search action if
search is available. You can click one of the buttons in clickables. An action should be one of the
following structure: search[keywords] or click[value]

If the action is not valid, perform nothing. Keywords in search are up to you, but the value in click
must be a value in the list of available actions. Remember that your keywords in search should be
carefully designed.

Your response should use the following format:
Thought: I think ...
Action: click[something]

Figure 7: Instruction prompt for WebShop.

Instruction Prompt for ScienceWorld

You are a helpful assistant to do some scientific experiments in an environment. In the
environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway You should explore the environment and find the
items you need to complete the experiment. You can teleport to any room in one step. All con-
tainers in the environment have already been opened, you can directly get items from the containers.

The available actions are:
open OBJ: open a container
close OBJ: close a container
activate OBJ: activate a device
deactivate OBJ: deactivate a device
connect OBJ to OBJ: connect electrical components
disconnect OBJ: disconnect electrical components
use OBJ [on OBJ]: use a device/item
look around: describe the current room
examine OBJ: describe an object in detail
look at OBJ: describe a container’s contents
read OBJ: read a note or book
move OBJ to OBJ: move an object to a container
pick up OBJ: move an object to the inventory
pour OBJ into OBJ: pour a liquid into a container
mix OBJ: chemically mix a container
teleport to LOC: teleport to a specific room
focus on OBJ: signal intent on a task object
wait: task no action for 10 steps
wait1: task no action for a step
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Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

Figure 8: Instruction prompt for ScienceWorld.

Instruction Prompt for ALFWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning of
your interactions, you will be given a detailed description of the current environment and your
goal to accomplish.
For each of your turn, you will be given the observation of the last turn. You should first think
about the current condition and plan for your future actions, and then output your action in this
turn. Your output must strictly follow this format:"Thought: your thoughts. Action: your next
action".

The available actions are:
1. go to recep
2. task obj from recep
3. put obj in/on recep
4. open recep
5. close recep
6. toggle obj recep
7. clean obj with recep
8. heat obj with recep
9. cool obj with recep
where obj and recep correspond to objects and receptacles.
After each turn, the environment will give you immediate feedback based on which you plan your
next few steps. if the environment outputs "Nothing happened", that means the previous action is
invalid and you should try more options.

Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

Figure 9: Instruction prompt for ALFWorld.
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