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Abstract

Graph data organizes complex relationships
and interactions between objects, facilitating
advanced analysis and decision-making across
different fields. In this paper, we propose a
new paradigm for interactive and instructional
graph data understanding and reasoning. In-
stead of adopting complex graph neural mod-
els or heuristic graph-to-text instruction de-
sign, we leverage Vision-Language Models
(VLMs) to encode the graph images with vary-
ing structures across different domains. This
paper first evaluates the capabilities of public
VLMs in graph learning from multiple aspects.
Then it introduces a novel instruction-following
dataset for multimodal graph understanding
and reasoning in English and Chinese. Besides,
by fine-tuning MiniGPT-4 and LLaVA on our
dataset, we achieved an accuracy increase of
5%-15% compared to baseline models, with the
best-performing model attaining scores com-
parable to Gemini in GPT-asissted Evaluation.
This research not only showcases the potential
of integrating VLMs with graph data but also
opens new avenues for advancement in graph
data understanding.

1 Introduction

Graph is an important form of structured data,
which is capable of storing and representing the
complex relationships between objects. Down-
stream tasks performed on graph data include node
classification (Xiao et al., 2022), link prediction
(Zhang and Chen, 2018), graph reasoning (Chen
et al., 2020) etc. In early days, graph learning is
commonly modelled using graph networks, with
a wealth of seminal literature supporting this ap-
proach. In recent years, graph neural networks(Li
et al., 2015; Dai et al., 2018; Battaglia et al., 2018;
Fan et al., 2019; Zhang and Chen, 2018) provide a
more flexible and effective means of dealing with
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the diversity and complexity in graph structures.
By propagating and aggregating node information
within the graph structure, GNNs capture complex
graph features.

With the rise of Large Language Models (LLMs),
there has been extensive research in the field of
natural language-guided interactive graph data un-
derstanding, showcasing two main strategies. The
first approach constructs prompts by explicitly rep-
resenting graph structures in a sequential format.
Constructing prompts for LLMs involves innova-
tive techniques such as self-prompting (Guo et al.,
2023), graph-syntax trees (Zhao et al., 2023b), nat-
ural language descriptions of graphs’ structures
and features (Ye et al., 2023b), and graph-structure
prompting in various modalities (Das et al., 2023).
The second strategy transforms GNN-learned fea-
tures into LLM-comprehensible tokens. Models
like GIT-Former (Liu et al., 2024a) GIMLET (Zhao
et al., 2023a) and MolCA (Liu et al., 2024b) con-
sider graph as a mode and integrate all modality
data into a unified latent space.

However, due to the inherent differences be-
tween graph structures and language models, cur-
rent integration methods face significant limitations.
First, sequence-based prompt representations in-
evitably lose crucial graph structural information,
which is vital for complex graph understanding and
reasoning(Ge et al., 2023; Li et al., 2024). Sec-
ond, integrating GNN-learned features into LLMs
presents alignment challenges, as the represen-
tation learning space of GNNs cannot be easily
mapped onto the token space of LLMs through
simple function mappings(Xue et al., 2023).

Considering these limitations, this work intro-
duces a new paradigm for graph data understand-
ing based on VLMs. Our basic idea is to trans-
form graph data into images, either through their
natural representations like maps or visualization
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methods’. This is followed by utilizing an image
encoder to interpret the visual information, thereby
understanding the semantic information of nodes
and relationships within the graph data. The final
step of this process involves the fusion of image
and text encoders, which is inherently supported in
specific VLMs (Kim et al., 2021; Li et al., 2022a;
Liu et al., 2023), offering a novel approach to graph
data comprehension. Figure 1 shows an example of
graph data access based on visual language models.

What is the relationship between Da Vinci and the Mona Lisa?
Response:

[ Instruction:
Da Vinci painted the Mona Lisa.

Figure 1: Graph understanding with the paradigm of
instruction following by vision-language models.

Utilizing visual language models for graph data
comprehension offers friendly and natural inter-
action, reducing manual labor costs, and unifies
diverse graph structures globally, handling vari-
ous graph-related tasks through natural language
instructions. Leveraging state-of-the-art visual lan-
guage models trained on extensive datasets facili-
tates knowledge transfer and promises high perfor-
mance potential in this paradigm of graph under-
standing and reasoning.

This work introduces a novel dataset on various
graph formats for multimodal graph understanding
and reasoning in English and Chinese. Instructions
involve simple queries and complex multi-hop rea-
soning on the graphs, with difficulty levels varying
from simple to medium and difficult. Additionally,
based on this dataset, we conducted a comprehen-
sive evaluation of current open models from vari-
ous perspectives. In conclusion, the current models
exhibit significantly better performance in English
compared to Chinese. Even the most powerful
models like Genimi or GPT-4V achieve accuracy
rates below 30%. Finally, in fine-tuning LLaVA
and MiniGPT-4 on our dataset, experimental re-
sults revealed that the fine-tuned LLaVA model
on English&Chinese datasets outperformed base-

Thttps://www.ownthink.com/

line LLaVA on both English and Chinese dataset
and achieved comparable performance with Gen-
imi in Chinese. To enhance the open-source mod-
els’ ability in recognizing Chinese characters, we
also proposed incorporating OCR data transformed
into instruction data into our Chinese datasets. The
model refined through this approach exhibited sig-
nificant improvements on the Chinese dataset after
fine-tuning.
Our main contributions are as follows:

* We constructed a dataset for multimodal graph
understanding and reasoning, providing in-
structions for graph-related questions and cor-
responding ground truth answers.

* We evaluated the capabilities of public VLMs
in graph learning, analyzing their performance
and limitations across various graph tasks.

* We fine-tuned the open-source models LLaVA
and MiniGPT-4 using the constructed dataset,
resulting in significant improvements on both
Chinese and English datasets.

2 Related Work

2.1 Integrate LLMs with Graph Learning

With the emergence of LLMs, the applications
in graph-related tasks have surpassed traditional
GNN-based methods. Currently, there are three
main ways of integrating large language models
with graph data.

LLMs-as-Enhancers. This research line aims to
enrich the node attribute and relation representa-
tions using the capabilities of LLMs. For example,
TAPE (He et al., 2023) leverages the knowledge
of large language models to generate high-quality
node features, thereby enhancing the quality of
initial node embeddings in GNNs. Knowledge-
Enhanced Augmentation (KEA) (Chen et al., 2024)
enriches text attributes by providing additional in-
formation, stimulating LLMs to generate lists of
knowledge entities and their descriptions and en-
coding them through fine-tuned PLMs and deep
sentence embedding models.

LLMs-as-Predictors. This method represents
graph node attributes and structures in the form
of prompts, using LL.Ms to directly generate pre-
dictive patterns. For instance, InstructGLM (Ye
et al., 2023b)replaces GNN’s predictors with LLMs.
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# Train # Test # English # Chinese Overall
Knowledge Graph 1644 413 986 1071 2057
Route Map 1616 406 1071 951 2022
Flowchart 636 160 714 82 796
Mind Map 950 238 594 594 1188
Gantt Chart 475 138 564 49 613
Overall 5321 1355 3929 2747 6676

Table 1: An overview of our multimodal instruction-following benchmark on graph data. "#" means the

number of instruction-response pairs. dataset-stat.

GPT4Graph (Guo et al., 2023) adopts graph de-
scription language of prompt engineering, improv-
ing collaborative working methods in various situa-
tions. GraphGPT (Tang et al., 2023) aligns LLMs
with graph structural knowledge through a graph-
guided tuning paradigm.

LLM and Graph Collaboration. Aligning the
embedding spaces of graph models and LLMs
achieves the integration of graph and text modal-
ities. Text2Mol (Edwards et al., 2021) proposes
a cross-modal attention mechanism using trans-
former decoder for early fusion of graph and text
embeddings. "Think on Graph" (Sun et al., 2024)
presents the "LLM ® KG" paradigm, a new ap-
proach integrating LLMs and knowledge graphs
(KG). It treats large language models as agents for
interactively exploring entities and relations in KGs.
RLMRec (Ren et al., 2023) suggests aligning the
semantic space of LLMs with the representation
space of collaborative relational signals in recom-
mendation systems through contrastive modeling.

2.2 Multimodal Large Language Models

Recently, with the rapid advancement of large lan-
guage models and their demonstrated powerful in-
teractive capabilities, a new paradigm has been
proposed for the vision-language tasks. Based on
an encoder-decoder framework and utilizing LLMs
as decoders (Liu et al., 2023; Li et al., 2023; Wang
etal., 2023; Su et al., 2023), Multimodal Large Lan-
guage Models (MLLMs) exhibit significant multi-
modal capabilities across various benchmarks. This
approach leverages cross-modal transfer, enabling
the sharing of knowledge between language and
multimodal domains (Zhu et al., 2023).

Visual instruction tuning (Liu et al., 2023)
is employed to develop a MLLM that is adept
at general-purpose visual and language under-
standing. LLaVA (Liu et al., 2023) extends the

self-instruction (Wang et al., 2022) approach to
the multimodal field by translating images into
texts with captions and bounding boxes. Besides
LLaVA, many other powerful MLLMs have also
emerged built upon LLMs (Yin et al., 2023), in-
cluding the open-source ones, e.g., MiniGPT-4
(Zhu et al., 2023), mPLUG-OwI2 (Ye et al., 2023a),
Multimodal-GPT (Gong et al., 2023), and the com-
mercial models, e.g., GPT-4V (OpenAl, 2023) and
Gemini (Team et al., 2023).

3 Dataset

We constructed two multimodal instruction-
following datasets on graphs in English and Chi-
nese respectively. Each dataset includes five types
of graphs: knowledge graph, route map, mind
map, flowchart, and Gantt chart. The images were
crawled from search engines and filtered for rele-
vance and accuracy by humans. The construction
of multimodal instructions involves two steps. The
first step prompts GPT-4V to generate candidate
instructions and responses for each image. The sec-
ond step involves human evaluation and annotation
to ensure the validation of instructions and accu-
racy of responses. For images containing mixed
language content, such as English text in Chinese
images or vice versa, we have already discarded
these during the manual filtering process to ensure
language consistency in our dataset.

3.1 Data Annotation

After manually filtering out unclear and irrelevant
images which don’t belong to any graph typef, We
obtained a total of 2,807 images. Among these,
1,493 are Chinese images, including 517 knowl-
edge graphs, 335 mind maps, 584 route maps, 49
flowcharts, and 8 Gantt charts. The 1,314 English

fImages containing mixed language content, such as En-
glish in Chinese images or vice versa, were discarded.
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Valid rate

GPT-4V Gemini

LLaVA MiniGPT-4

30.6
97.2

Chinese
English

36.0
88.9

20.0 0
88.5 73.0

Table 2: The VLMs’ ability to generate instructions in response to Chinese and English images. The
numbers in the table represent the valid rate for Chinese images or English images in percentage form.
The best results are identified with bold. ins-generation.

images are comprised of 251 flowcharts, 208 Gantt
charts, 257 knowledge graphs, 216 mind maps, and
382 route maps. The proportion of Chinese to En-
glish annotated images is approximately 1.14:1.

Given a valid image, we first annotated it by
GPT-4V under our elaborated prompts as shown in
Figure 14, during which Chinese images were anno-
tated using prompts in Chinese and English images
were annotated with English prompts. For each
image, under our prompt, GPT-4V usually posed
three questions: simple, medium, and complex, as
shown in Figure 19 and Figure 20 in Appendix A.4.

Following this automatic annotation process, we
conducted an evaluation of the relevance of the in-
structions generated by GPT-4V in relation to the
images. This critical analysis aimed to ascertain
the extent to which GPT-4V’s output aligned with
the images. In our in-depth examination, the in-
structions generated by GPT-4V might be invalid
due to either of the following two aspect:

* Instructions are completely unrelated to the
image’s content.

* Instructions are related to the image’s theme
but involving nodes or edges not present in
the image.

For each image with several instruction-response
pairs, we then implemented a manual fine-
annotation strategy. Valid instructions were re-
tained while invalid ones were discarded. Sub-
sequently, we checked the correctness of responses
corresponding to the valid instructions and cor-
rected any incorrect responses. In cases where all
instructions for an image were deemed invalid, we
manually supplemented two instruction-response
pairs: one simple instruction and one complex in-
struction. This approach ensures a high standard of
instruction-response pairs in our benchmarks.

3.2 Data Statistics and Analysis

Table 1 presents the statistical information of
our multimodal instruction-following benchmark
dataset. All dataset construction processes undergo

rigorous manual evaluation to ensure high quality.
To demonstrate this, we asked an unseen annotator
to randomly select a sample of 50 Chinese and En-
glish samples (i.e., image, instruction, response),
respectively. Each image was subjected to a rigor-
ous quality assessment within the selected samples.
Our analysis revealed that out of the 100 samples,
an impressive 97 were classified as qualified, high-
lighting the dataset’s high standard of clarity and
uniqueness.

3.3 Evaluation Protocols

To facilitate the evaluation of model performance
using our graph vision-language dataset, we pro-
vided two evaluation protocols. The first is a man-
ual assessment of model accuracy, where human
evaluators were asked to determine whether the
model response satisfies the instruction conditioned
on an image (Zhu et al., 2023). The second eval-
uation protocol we used is a GPT-assisted visual
instruction assessment. Building on a previous
work (Liu et al., 2023) that employed GPT-4 (text-
only) to score answers by comparing the output of
GPT-4 with that of another model, we have adopted
a similar approach for GPT-4V evaluation and de-
signed an English prompt shown in Figure 16 and
a Chinese prompt in Figure 17 in Appendix A.3.

4 Evaluation on Public Vision-Language
Models

4.1 What Abilities Do We Focus On?

The initial phase of our study involved a manual
evaluation of GPT-4V (OpenAl, 2023), Gemini
(Team et al., 2023), LLaVA (Liu et al., 2023), and
MiniGPT-4 (Zhu et al., 2023)’s capability to gener-
ate and follow instructions in response to images.

Instruction Generation Ability. Given an image
of graph, we first evaluate the capability of VLMs
on generating graph-related instructions. We deter-
mined the validity of each instruction as described
in Section 4.3.
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Model

| Simple Medium Complex | Multi-hop | Information noise | Dense Sparse

Results of response accuracy for Chinese images.

MiniGPT-4 8 0 0 0 0 0 4
LLaVA 32 12 0 0 0 16 20
Gemini 60 24 12 4 4 20 36
GPT-4V 56 40 28 20 8 48 52
Results of response accuracy for English images.

MiniGPT-4 36 24 32 20 28 8 48
LLaVA 52 20 40 52 0 24 52
Gemini 80 64 68 76 28 24 52
GPT-4V 76 80 72 64 56 64 88

Table 3: Results of response accuracy under different types of instructions. Dense and sparse represent the
information density of images. Simple, medium and complex represent the difficulty level of instructions.
The numbers in the table represent the accuracy rate in percentage form. The best results are identified

with bold. instruction-eval.

Various Instruction Following Abilities. Given
a valid instruction of an image, we also evaluated
the correctness of the response generated by exist-
ing VLMs. We assessed various ability dimensions,
including simple and intermediate-level instruction
following ability, complex instruction following
ability, multi-hop reasoning ability, robustness to
noise, performance across different information
densities, and an ablation study on different types
of graphs. These dimensions were explored by pro-
viding corresponding instructions (see Section 4.4,
4.5, 4.6, 4.7, 4.8, 4.9).

4.2 Evaluation Settings

Instruction Validity. We sampled a set of 50 im-
ages for the experiment, encompassing five types
of graphs with a balanced distribution between En-
glish and Chinese. The prompts we used are shown
in Figure 14 in Appendix A.3. As mentioned in
Section 3.1, there may exist two types of invalid
instructions. The distribution of valid rate for dif-
ferent models is detailed in Table 2.

Response to Various Instructions. For each abil-
ity dimension, we randomly sampled 25 instruc-
tions for evaluation from our dataset. To enhance
the quality of responses, we utilized pre-established
prompts as detailed in Figure 15 in Appendix A.3.

The evaluation metric focused on the accuracy
of the VLMs’ responses to the instructions. This
was determined by human evaluators. To provide a
comprehensive understanding, we separately eval-
uated the performance of VLMs on images with
content in Chinese and English . The assessment

tIn cases where images contain both Chinese and English
content, classification as Chinese or English was determined

result is presented in Table 3.

4.3 Instruction Generation Ability

During the Chinese image instruction generation,
we observed low performance for all the models,
with less than 40% valid rate. The main reason
for the low performance was the misrecognition
of node names. Specifically they struggled to cor-
rectly identify the Chinese characters within them.
As aresult, these models tend to generate erroneous
node and relation names based on their internal
knowledge. We illustrate this hallucination by an
example in Figure 21 in Appendix A.4.

4.4 Simple and Medium Instruction Following
Ability

As mentioned in Section 3.1, the instructions of
our dataset were initially generated by GPT-4V,
where each sample was additionally labeled with
simple, medium, or complex. The accuracy results
for simple and medium instructions are shown in
Table 3.

MiniGPT-4 lacked basic cognition in discerning
graph types and was unable to differentiate between
types of graphs. A common challenge faced by all
these models, including GPT-4V, Gemini, LLaVA,
and MiniGPT-4, was their struggle with identifying
the number of nodes in graph-type data.

4.5 Complex Instruction Following Ability

Complex instruction following tasks require un-
derstanding intricate commands but may result in
simple answers. The corresponding evaluation re-
sults are shown in Table 3.

based on the predominant language used in the nodes and
edges of the graph.
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Model Ié;l:;)vl:edge M:;)d lf\z:;e Flowchart gﬁ:ﬁ Overall

Results of response accuracy for Chinese images.

MiniGPT-4 8 0 4 4 0 3.2
LLaVA 20 12 20 20 8 16
Gemini 24 44 24 20 40 29.6
GPT-4V 32 40 32 36 28 32
Results of response accuracy for English images.

MiniGPT-4 64 16 8 40 24 30.4
LLaVA 56 28 16 44 32 35.2
Gemini 76 72 60 80 40 65.6
GPT-4V 96 80 76 72 42 73.2

Table 4: Results of response accuracy under different types of graphs. Knowledge graph, mind map,
route map, flowchant, and Gantt chart represent the type of graph in the image. The numbers in the table
represent the accuracy rate in percentage form. The best results are identified with bold. graph-eval.

When processing images containing English con-
tent, the performance of Gemini, LLaVA, and
MiniGPT-4 in complex instructions surpasses their
accuracy in medium instructions. This improved
performance can be attributed to the nature of com-
plex instructions, which some encompass open-
ended questions relying on coarse-grained visual
information. Such scenarios play to the strengths
of LLMs, leveraging their robust linguistic capa-
bilities to effectively interpret and respond to these
complex instructions.

4.6 Multi-hop Reasoning Ability

As mentioned in Section 4.5, complex instructions
may result in simple answers. In contrast, multi-
hop reasoning instructions involve linking several
logical steps, usually leading to more elaborate
responses. This posed a significant challenge for
VLMSs in providing completely accurate responses
to multi-hop reasoning tasks. The corresponding
evaluation results are shown in Table 3.

4.7 Robustness to Noise

As mentioned in Section 3.1, we have excluded
blurry images from our dataset. In this part, we
have additionally collected a set of noisy images,
comprising 25 instructions each for both Chinese
and English content. The corresponding results are
shown in Table 3.

MiniGPT-4 occasionally struggled with noisy
images, which was evident in instances of lan-
guage confusion, such as responding in English
to prompts and images that are in Chinese, and pro-
ducing meaningless repetitive answers. GPT-4V
tended to offer vague responses or guiding sugges-
tions, stating that due to image quality limitations,

it couldn’t give valid responses.

4.8 Performance across Different Information
Densities

Different images can contain varying content and
details, i.e., different information densities. Infor-
mation density, typically judged by the number of
nodes and edges in a graph, ranged from sparse
to dense and is assessed manually. This section
explores how the VLMs perform with images of
varying information densities. The corresponding
evaluation results are shown in Table 3 and GPT-
4V outperformed other VLMs in processing image
information densities in both English and Chinese
contexts.

4.9 Ablation Study on Different Types of
Graphs

To comprehensively assess how the VLMs perform
across various types of graphs, we randomly sam-
pled 25 instructions for each graph type, with the
related results being displayed in Table 4.

In the analysis of images containing English con-
tent, all four VLMs displayed a relative familiarity
with the structure of knowledge graphs, achieving
their highest accuracy in this category. In route
maps, GPT-4V not only led in accuracy for both
Chinese and English content images but also pro-
vided more precise and standardized responses,
using both absolute directions(north, south, east,
west) and relative directions(up, down, left, right).
In contrast, Gemini used only absolute directions,
while LLaVA and MiniGPT-4 depended entirely
on relative directions.
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Manual Evaluation GPT-assisted Evaluation
Model English Chinese English&Chinese English Chinese English&Chinese

Gemini 82 36 53 6.42 4.12 5.15
GPT-4V 74 44 59 8.66 6.66 7.55
MiniGPT-4 14 1 5 1.92 1.13 1.38
LLaVA 40 13 25 4.20 247 3.59
MiniGPT-4 +English 22(+8) - - 2.17(+0.25) - -
MiniGPT-4 +Chinese - 5(+4) - - 1.42(+0.29) -
MiniGPT-4 +English&Chinese - - 13(+8) - - 2.32(+0.94)
LLaVA +English 55(+15) - - 6.03(+1.83) - -
LLaVA +Chinese - 27(+14) - - 3.34(+0.87) -
LLaVA +English&Chinese - - 40(+15) - - 4.91(+1.32)

Table 5: Fine-tuned model results. The numbers in the table under the "Manual Evaluation" column
represent the accuracy rate in percentage form. In the "GPT-assisted Evaluation" column, the numbers
represent the scores given to each model by GPT-4V. Each model receives an overall score on a scale of 1
to 10, based on a comparison between the responses generated by the model and the ground truth answers,

along with an accompanying explanation. result.

5 Experiment

5.1 Baseline Models and Settings

MiniGPT-4 consists of a vision encoder with a
pretrained ViT (Dosovitskiy et al., 2021) and Q-
Former (Li et al., 2022b), a single linear projection
layer, and an advanced Vicuna (Chiang et al., 2023)
large language model. During the training process,
only the parameters of the Q-Former and linear
projection layers are fine-tuned, while the param-
eters of the language and visual models are kept
unchanged.

LLaVA uses language-only GPT-4 to generate
multimodal language-image instruction-following
data. This approach allows LLaVA to connect a
vision encoder and a language model for general-
purpose applications. The fine-tuning stage in-
volved updating both the pre-trained weights of
the projection layer and LLM in LLaVA, while
keeping the vision encoder fixed.

Both LLaVA and MiniGPT-4 were trained for
10 epochs. Performance was evaluated after all
the intervals, and the model demonstrating the best
performance was then selected for data generation.

Experiment Details We divided the training set
and the test set according to the ratio of 4:1. Spe-
cific data is shown in Table 1. We used the English
training sets, the Chinese training sets and the com-
bination of Chinese and English training sets for
fine tuning, respectively.

5.2 Results
5.2.1 Qualitative Analysis

After fine-tuning, the model demonstrates many
advanced abilities compared to the baseline model.

Here, we will analyze and explain in detail with
specific examples based on the best-performing
model, named LLaVA FT. These cases are shown
in Appendix A.1.

In Figure 2, LLaVA FT effectively utilizes vi-
sual cues to discern pertinent information within
images, enabling accurate interpretation of de-
picted processes. In constrast, the baseline LLaVA
model relies solely on contextual understanding,
thereby neglecting crucial image details in its re-
sponses. The scenario depicted in Figure 3 high-
lights LLaVA FT’s proficiency in accurately arrang-
ing tasks based on their sequence in Gantt charts,
resulting in precise identifications. Conversely, the
baseline LLaVA model struggles to precisely iden-
tify the sequence and frequently misinterprets pre-
sented tasks. And Figure 4 demonstrates LLaVA
FT’s proficiency in identifying and categorizing
relationships within a knowledge graph, while Fig-
ure 5 showcases its enhanced ability to determine
the quantity of nodes within a given graph, provid-
ing specific and relevant responses.

These cases demonstrate the enhanced capa-
bilities of the fine-tuned model in understanding
flowcharts, Gantt charts, knowledge graphs, and
mind maps. The fine-tuned model’s ability to an-
swer questions based on graphical data in both En-
glish and Chinese has been significantly improved.

5.2.2 Quantitative Analysis

We used the evaluation method described in Section
3.3. In Manual Evaluation, we randomly sampled
100 instructions from the test sets. Human evalu-
ators assessed the correctness and reasonableness
of the model-generated responses. In GPT-assisted
Evaluation, we calculated the average value of GPT-
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Manual Evaluation
Model English Chinese English&Chinese
LLaVA+Chinese - 27 -
LLaVA+Chinese w OCR - 30 -
LLaVA+English&Chinese 50 28 40
LLaVA+English&Chinese w OCR 68 24 46
LLaVA+English&Chinese w Multimodal CoT 58 19 41

Table 6: Ablation results. The numbers in the table represent the accuracy rate in percentage form.ablation.

4V scores for each model to measure the effect of
fine-tuning models.The results were compared with
the baseline and are presented in Table 5.

After fine-tuning, MiniGPT-4 improved by 8%,
while LLaVA improved by 15% over the base-
line. Mixed-language fine-tuning in both Chinese
and English showed similar effectiveness to single-
language fine-tuning. The most effective model,
LLaVA+English&Chinese, achieved significant im-
provements, with 28% accuracy on the Chinese test
set, 54% on the English test set, and 39.4% overall.
Particularly noteworthy is its performance on the
Chinese test set, matching that of Gemini.

5.3 Ablation Study

5.3.1 OCR Instructions

In our evaluation in Section 4.4, both MiniGPT-
4 and LLaVA exhibited a significant decrease in
accuracy when providing responses to Chinese im-
ages. To enhance their ability to recognize Chinese
characters in image datasets, we have devised tar-
geted OCR instructions. We utilized the training
set provided in the Chinese Scene Text Recognition
Technology Innovation Competition.! The training
dataset consists of 212,023 images containing tex-
tual information. We tokenized OCR text from im-
ages and selected 2,224 closely aligned images for
fine-tuning. We created the instruction set by using
the prompt "Please recognize the text in the im-
age" and pairing it with the text recognition results
from the training dataset. The prompts we used are
shown in Figure 18 in Appendix A.3. Subsequently,
we combined the OCR instructions with Chinese
fine-tuning instructions, adhering to a data augmen-
tation model, to enhance the OCR capabilities. We
separately added the OCR instruction to the Chi-
nese fine-tuning dataset and the English&Chinese
fine-tuning dataset.

Thttps://aistudio.baidu.com/datasetdetail/8429

5.3.2 CoT Augumented

In our model, we generated a series of interme-
diate reasoning steps, referred to as Chain-of-
Thought(CoT), to enhance the capability for com-
plex reasoning problems. For complex questions,
it is necessary to integrate information from both
text and images for reasoning, so we used Multi-
modal CoT (Zhang et al., 2024), which consists
of two stages: Rationale Generation and Answer
Inference. Initially, caption text and visual features
are utilized to obtain a more accurate Rationale (R).
Subsequently, the final Answer is derived from R,
along with text and visual features.

Our Ablation results are presented in Table 6.
There was a noticeable improvement in both the
Chinese test set and the Chinese-English mixed
test set after incorporating OCR fine-tuning. Par-
ticularly, on the mixed-language test set, the per-
formance increased to 46%, marking a substan-
tial improvement of 21% compared to the baseline
LLaVA model. The multimodal CoT approach re-
suls in some improvement compared to the original
model. However, there is still a need to design a
more suitable multimodal fusion method tailored
for graph-related problems, involving the identifi-
cation of nodes and relationships within the graph.

6 Conclusion and Future Work

This study focuses on natural language-guided in-
teractive graph data understanding, distinguishing
itself from traditional graph network modeling by
utilizing VLMs to enable flexible interactions with
graph data. We constructed a benchmark dataset
to address the lack of available data in this domain,
further supporting the development and evaluation
of models in this field. By fine-tuning LLaVA and
MiniGPT-4 with our dataset, we observed notable
improvements in performance on both Chinese and
English datasets, marking a significant advance-
ment in the field of graph data understanding. In
the future, we will advance this work from the fol-
lowing two directions. (1) Designing dedicated im-
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age encoders to capture the pixels related to nodes
and edges more sensitively. (2) Supporting large
graph (with thousands of nodes or edges) under-
standing by splitting a big image into a sequence
of sub-images. It requires that the VLMs have the
ability to understand the internal content in a sin-
gle image as well as the contents across different
sub-images, for a more accurate understanding of
the original large graph content.
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7 Limitations

7.1 Imbalanced Dataset

While there is an abundance of available graphic
data resources, obtaining them in the form of im-
ages can be particularly challenging. In our con-
structed dataset, the samples for Gantt charts and
flowcharts are notably scarce. This scarcity is pri-
marily due to the limited availability of these spe-
cific types of images on the internet, resulting in
fewer instructions in our dataset compared to the
other three graph types. Despite our efforts to man-
ually filter out noisy images, as highlighted in Sec-
tion 3.2, where we found that out of 100 randomly
sampled images, an impressive 97 were deemed
of high quality, our dataset may still contain im-
ages of duplication and blurriness. Hence, there’s a
necessity to explore more reliable automated data
cleaning pipelines.

7.2 Hallucination

Our model is built upon LLMs and inherits its
limitations. It may suffer from illusions when
faced with non-existent knowledge. When query-
ing nodes and relationships in images, the model
may respond with nodes not present in the image,
relying on its own common sense for answers. As
shown in Figure 21 in Appendix A.4, this example
demonstrates the model’s hallucination in interpret-
ing Chinese instructions, where it incorrectly rec-
ognizes "Apply for a refund" as "Select a product”
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A Appendix
A.1 More Qualitative Results

Here we list some qualitative results. Yellow high-
lights correct but irrelevant information. -
highlights the correct response and - highlights
the wrong response.

Project

Project s Created

Input Image

After creating project documentation, what is the next
step in the flowchart?

Instruction

In the flowchart, the next step after creating project documentation
is to . This involves setting up a timeline
for the project, including milestones, deadlines, and dependencies
between tasks. The project schedule helps ensure that all tasks are
completed on time and that the project stays on track.

LLaVA FT The next step is to _

Figure 2: Flowchart in English

Project Gantt

Input Image

O rutrsse

Instruction What is the first task listed in the Gantt chart?

The first task listed in the Gantt chart is _

LLaVA FT  The first task listed is _

Figure 3: Gantt Chart in English
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e g
( me= \N"
Input Image
5 s o

saxen

e

Instruction [l epr Y5 AL
Translation: What is the rel
and "target node" in the diagram?

.

ationship between "source node 1"

SR I R 2R E] C BARTI AL o RN AR,
HAp R SRR A SRR A, MR Tl ik &
Translation:

The graph is a network diagram, where
each node represents an entity or event, and the connecting lines
represent the relationships between them.

LLaVA FT s s “Ripies” SRRIEHET] “ Hin " o
Translation:

Figure 4: Knowledge Graph in Chinese

Input Image
{23

R

Instruction B A JUAS NIH%E
Translation: How many characters are connected in the picture?

(EET, I AROERIRR 7. X ARSI — A%
e, ABAIBOERAE 2, JF HIEA b AR A
Translation: In the picture, there are several figures that are
connected. These figures include a male and a female who are
connected together and there are other figures connected around
them.

LLaVA FT BEldf -+ ALK T,

Translation:

Figure 5: Mind Map in Chinese

MIND MAP TEMPLATE | FREE VECTOR

@-Iﬁ
/,-" (“’I& 1 N Y "‘\“
ind ' v

v oA T N
Input Image NNV @
i n W : I i
H p 1 9 :
v - v
Instruction What is the central idea represented in this mind map?

The central idea represented in this mind map is _

The image features , which symbolizes creativity,
at the center of the map, surrounded by various text boxes and
arrows.

LLaVA FT The central idea represented in this mind map is "CroativeiMing

"

Figure 6: Mind Map in English




A.2 More Quantitative Results

A2.1
Here we list some quantitative results.

Manual Evaluation
Yellow

highlights correct but irrelevant information.

- highlights the correct response and -
highlights the wrong response.

Input Image

Instruction

Problem Solving Flow Chart

Choose the correct \
method of calulation
ont

What i the first step in the Problem Solving Flow Chart?

The first step in the Problem Solving Flow Chart is to [ EEESHNCIOONESRNISRO
.

LLaVAFT The first step is to \'[REIAMHEGUESHOR. "

MiniGPT-4 learly and concisely define the problem to be solved, including all
relevant information and constraints. This helps ensure that everyone involved in the
problem-solving process has a shared understanding of the probiem.”

MiniGPT-4 FT The first step in the Problem Solving Flow Chart is to FCaditHeqUeston"

Gemini The first :mi in the Problem Solving Flow Chart is to REAAMHEProBIemland

GPT-4V The first step is to \ EAGVRE queStiORand HEHIy MRETMpOHARGInTOrANOH.

Figure 7: Fine-tuned model results on English&Chinese

dataset

Input Image

Instruction

Simple Gantt Chart for PowerPoint
— 2 Weeks

2 Loremipam @ romiam . Qpr——

B 2 Loremmm

How many tasks are scheduled to start on the first Monday of Week 1?

There are [l tasks scheduled to start on the first Monday of Week 1.

LLaVA FT There are [l tasks scheduled to start on the first Monday of Week 1.
MiniGPT-4 [ tasks are scheduled to start on the first Monday of Week 1.

MiniGp4 T [Hltask is scheduled to start on the first Monday of Week 1.
Gemini There are [§ tasks scheduled to start on the first Monday of Week 1.
GPT-4V tasks are scheduled to start on the first Monday of Week 1 (SR

.

Figure 8: Fine-tuned model results on English dataset

A.2.2 GPT-assisted Evaluation

Here, we list some GPT-assisted score results of the
VLMs, including the best-performing fine-tuned

models.

MiniGPT-4

coTav

A G T MRS G R 00 A 8 I R UL R
FRWNAPHERGINNER R T YA AR EREEER.

@, i
“Translation:In tis system, i usercrestes  processvia“new. the processwil b execued on various nodes i the ysem. The xecutionof tne

process canbe achieved through sysiem clls
During the oxecution of e proces,the ystem will locate esources bas6d o the rocess's

andne

6
oeaby

S )5

Al he i e procks ough e sy il sig i PI o s rces a0
sl e, o sy vl e s sy GAGIBGTRGIRR o e e el cn e
) il begin e, Afr theprocss compleesexecston, vl s oun st o et 151

e

17

s < o
- ¥
Transia

LR,
i,

elesing resouces

Figure 9: Fine-tuned model results on Chinese dataset
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Average Scores

Median Values

Average Scores by Model and Dataset (Including Fine-Tuned Models)

= English
W English-Chinese
mmm Chinese
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Figure 10: Average Scores
Median Values by Model and Dataset (Including Fine-Tuned Models)
EEE English

Em English-Chinese
mmm Chinese
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Figure 11: Median Scores
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Maximum Scores by Model and Dataset (Including Fine-Tuned Models)
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Figure 12: Maximum Scores

Minimum Scores by Model and Dataset (Including Fine-Tuned Models)
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Figure 13: Minimum Scores
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A.3 Prompts

The prompt used to generate image-based conver-
sation from GPT-4V is shown in Figure 14. Under
this prompt, GPT-4V usually posed three questions
for each image: simple, medium, or complex.

Prompt Template

English Prompt
You are an expert in the field of knowledge graph. NoUust ensure that the imageis

Please ask
and answer some questions based on this image. The questions should preferably be
based on specific nodes/edges of the image and should range from simple to complex.

Chinese Prompt

AR AR T4 5%, AT P P e B e A
AR P L LI 2 — 6 R, BT PR LA A R AR, I HL

12 6 1] A ] B B S

Figure 14: Example prompt for guiding GPT-4V to cre-
ate image-based instruction-following data, featuring
three levels of complexity: simple, medium, and com-
plex. The bond indicates the type of graph, which can
be replaced by a flowchart, mind map, Gantt chart, or
route map. Yellow highlights the expert identification.

- highlights ensuring correctness and - high-
lights the response form.

The prompt used for prompting VLMs to answes
the instructions based on an given image is showed
in Figure 15.

Prompt For Responding to Images

English Prompt
You are an expert in the field of knowledge graph. NoUust ensure that the imageis

Please answer some questions
based on this image.

Chinese Prompt

R R 7 T 5
R I 5 P

\

Figure 15: English and Chinese prompts for guiding
VLMs to give responses to instructions based on a given
image. The bond indicates the type of graph, which can
be replaced by a flowchart, mind map, Gantt chart, or
route map. Yellow highlights the expert identification.

- highlights ensuring correctness.

The prompt used for a GPT-4V-assisted visual

instruction assessment are shown in Figure 16 and
Figure 17.

GPT-4V-Assisted Prompt

{

"'system_prompt" : "You are a helpful and precise assistant for checking the quality of the
answer.",

"prompt_template" : "[Image Input] [Question]{question}

[Human] : {answer_0}[End of Human]

[Assistant 1] : {answer_1}[End of Assistant 1]

[Assistant 2] : {answer_2}[End of Assistant 2]

[Assistant 6] : {answer_6}[End of Assistant 6]",

"prompt" : "We request your evaluation of six Al assistants' responses to a user question
based on an image. The user question is provided above and a reference image is uploaded.
Additionally, a high-quality and accurate response from a human is given for comparison. Please
rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant
receives an overall score on a scale of 1 to 10, where a higher score indicates better overall
performance.Please first output a single line containing only 6 values indicating the scores for
Assistant 1 to 6, respectively. The six scores are separated by a space.In the subsequent line,

please provide a pret lanation of your ion, avoiding any potential bias and

kensuring that the order in which the responses were presented does not affect your judgment."J

Figure 16: English prompt for guiding GPT-4V to
rate the answers from GPT-4V, Gemini, LLaVA and
MiniGPT-4.

GPT-4V-Assisted Prompt

"'system_prompt" : "{ffE (AR A B RS, AT RE S RN, ",

"prompt_template" : "[Image Input] [ &]{question}

[AZK] : (5% 0 AL ]

[BhF1]: CEE_ BT 1R ZLH]

[B1F2] : (& E 2 BT 2K L]

[BiF6]: (ER_6} BT olTLIR]",

“prompt” : “BATHREME —FKE R, PPAS A ALDFX I B .
B EERUE 17, ASHE T g, thoh, AT, @R T — N ARAHIE
U EAEREI 0 W TE B AR AR I AR, WERRYE. AR BRI,
RO BDFHRLAE 1B 100G AR AN 85, DGR RR SRR IUELT . 8 e
{LAE6N P E AT, S AREBT 1M, WA 8 2= ke . FERES )
A7, RO AT VPR RE, 8 G AR A AR L, R OR ] RIS A R

}
Figure 17: Chinese prompt for guiding GPT-4V to
rate the answers from GPT-4V, Gemini, LLaVA and
MiniGPT-4.

OCR Prompt

"image": "
"conversations": [

"from": "human",

"value": "<image>\niF iR B ep g SC

ocr_image.jpg",

b
{

"from": "gpt",

"value: "F RIS T A R A
}

- J

Figure 18: Chinese OCR prompt.
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A4 Data

Figure 19 presents an example of a knowledge
graph with English content, where the instructions
and responses were generated by GPT-4V follow-
ing the specified English prompt.

User’s Image

User’s Prompt

You are an expert in the field of
You must ensure that the imag
identified, and that the qu

od on this ir he questions should
y be based on specific nodes/edges of the
nd should range from simple to complex

/

@  GpT4v

/ 0f course! The provided knowledge graph appears to\
revolve around Apple Inc., its products, executives,

and related entities. Here are some questions based
on the graph, categorized from simple to complex:

1. Simple:
- Q: Who is the successor of Steve Jobs as CEO of
Apple Inc.?

A: The successor of Steve Jobs as CEO of Apple
Inc. is Tim Cook.

2. Medium:
- Q: Where is Apple Inc. located?
A: Apple Inc. is located in California.

3. Complex:
- @: Based on the information, can you deduce a
possible indirect relationship between Rachel and
Apple Inc.?

A: Yes, Rachel owns an iPhone, which is a product
of Apple Inc. Therefore, Rachel can be deduced as a

\ customer of Apple Inc.

Figure 19: The instructions and answers followed by
the user prompt for a given image in English.

Similarly, Figure 20 illustrates a flowchart with
Chinese content, with instructions and responses
produced by GPT-4V in accordance with the

adapted Chinese prompt.

! User’s Image

=] gprav

1. Simple:

ATHSKAIA 5 b 34

i

iy ?
A

thafem?
RE) T AFLRR BAUEAT (K

WA 55 51 14
Vet 25 401 IHE:

.

3. Complex:

B R A
i

e AR REI e

of

Figure 20: The instructions and answers followed
by the user prompt for a given image in Chinese.

User’s Image ‘?] LLaVvA

Question:iifE 5 — IR 4?
Translation:
What is the first step in this flow chart?

Answer: #5552 < N -
Translation:

The first step is _

Figure 21: This figure is an illustration of the mod-
els’ hallucination when responsing to Chinese in-
structions. - highligthts the hallucination in
the response of the model. The meaning of the
Chinese characters in the first step is "Apply for a
refund" in Chinese while LLaVA recognized it as
"Select a product" in Chinese.
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