
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7047–7065
August 11-16, 2024 ©2024 Association for Computational Linguistics

MIDGARD: Self-Consistency Using Minimum Description Length
for Structured Commonsense Reasoning

Inderjeet Nair and Lu Wang
University of Michigan, Ann Arbor, MI

{inair, wangluxy}@umich.edu

Abstract

We study the task of conducting structured rea-
soning as generating a reasoning graph from
natural language input using large language
models (LLMs). Previous approaches have ex-
plored various prompting schemes, yet they
suffer from error propagation due to the au-
toregressive nature and single-pass-based de-
coding, which lack error correction capability.
Additionally, relying solely on a single sam-
ple may result in the omission of true nodes
and edges. To counter this, we draw inspira-
tion from self-consistency (SC), which involves
sampling a diverse set of reasoning chains
and taking the majority vote as the final an-
swer. To tackle the substantial challenge of
applying SC on generated graphs, we propose
MIDGARD (MInimum Description length
Guided Aggregation of Reasoning in Directed
acyclic graph) that leverages Minimum De-
scription Length (MDL)-based formulation to
identify consistent properties among the dif-
ferent graph samples generated by an LLM.
This formulation helps reject properties that ap-
pear in only a few samples, which are likely to
be erroneous, while enabling the inclusion of
missing elements without compromising preci-
sion. Our method demonstrates superior perfor-
mance than comparisons across various struc-
tured reasoning tasks, including argument struc-
ture extraction, explanation graph generation,
inferring dependency relations among actions
for everyday tasks, and semantic graph genera-
tion from natural texts.

1 Introduction

While large language models (LLMs) have
showcased impressive performance in few-
shot/zero-shot scenarios across diverse reasoning
tasks (Brown et al., 2020; Chen et al., 2021; Rae
et al., 2022; Hoffmann et al., 2022; Chowdhery
et al., 2022), it is still challenging to apply these
models for structured commonsense reasoning

which involves generating task-specific reasoning
as a graph, such as extracting argument structures
from argumentative text (Stab and Gurevych, 2017;
Hua et al., 2019; Mayer et al., 2020; Hua and Wang,
2022; Qiao et al., 2022), generating structured
explanations that lay out commonsense knowledge
to connect an argument to a belief (Saha et al.,
2021), and inferring dependencies among events
for everyday activities (Sakaguchi et al., 2021).

There are two main challenges for struc-
tured reasoning tasks. (1) Style discrepancy:
Conventional approaches for structured response
generation represent the graphs as flattened
strings (Madaan and Yang, 2021; Madaan et al.,
2021; Sakaguchi et al., 2021; Saha et al., 2021),
leading to subpar performance due to output style
mismatch (Madaan et al., 2022). (2) Error prop-
agation: Any incorrect decisions made earlier in
the autoregressive decoding process can influence
later generation steps (Yao et al., 2023). Recently,
Madaan et al. (2022) propose COCOGEN to ad-
dress the issue of style mismatch in structured
reasoning tasks, by using programming scripts as
prompts for LLMs. It still suffers from error propa-
gation, since it generates variable declarations and
function calls in order to describe the nodes and
edges within the graph. Any error in these declara-
tions/calls can affect the subsequent generations.

To address these issues, we take inspiration from
the self-consistency (SC) (Wang et al., 2023b) strat-
egy that samples diverse reasoning paths and then
takes a majority vote as the final answer. The intu-
ition behind SC is that sampling distinct reasoning
chains leads to higher confidence in the correctness
of a consistent answer. Therefore, we hypothesize
that sampling diverse graphs from an LLM can
construct a more accurate aggregate graph and al-
leviate error propagation for structured reasoning
tasks as any errors made in one sample are less
likely to persist across all the generated graphs.

A crucial distinction between SC and our desider-
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Objective: run errands during a break in 
the rain

Action List:

0. Get into car and start.
1. Drive to errand location and complete.
2. Think of first errand needed to complete.
3. Leave house when rain stops.
4. Watch out window for rain to stop.
5. decided to run errands during a break in the rain
6. Run errands during a break in the rain

LLM (CoCoGen Prompting)

…

Greedy

Temperature Sampling

Figure 1: Comparison of MIDGARD with COCOGEN. In this example, our objective is to infer dependency
relations among items in the "Action List" to achieve the specified "Objective". COCOGEN uses greedy decoding
and exhibits errors in the output, e.g., "decided to run errands during a break in the rain" is not connected with
"Drive to errand location and complete". In contrast, our approach MIDGARD (within the orange rectangle)
aggregates relevant information across different samples, resulting in more accurate inference. For this example, our
algorithm improved the performance of greedy decoding from 66.7 to 85.7 in edge F1-score.

atum is that SC focuses exclusively on common-
sense reasoning tasks (Ling et al., 2017; Clark et al.,
2018; Cobbe et al., 2021; Patel et al., 2021; Geva
et al., 2021) with scalar answer spaces. In con-
trast, we aim to merge multiple graphs, each rep-
resenting a collection of unordered sets (nodes and
edges). It is unclear how to apply majority vote to
aggregate distinct sets of nodes and edges. In par-
ticular, it would be critical to filter out inaccurate
nodes and edges in our setup.

To achieve this, we propose MIDGARD1,
based on MInimum Description length Guided
Aggregation of Reasoning in Directed acyclic
graph. We employ the principle of minimum de-
scription length (MDL) (Rissanen, 1978) which
seeks to find the hypothesis with shortest descrip-
tion length of the observations. While MDL has
been implemented for model selection (Grünwald,
2005), causal structure learning (Lam and Bacchus,
1993, 1994), data clustering (Rissanen, 2000), and
dimensionality reduction (Bruni et al., 2022), to
the best of our knowledge, its use in automatically
merging graph samples has never been explored
before. Assuming that graph properties consistent
across multiple generated samples are more likely
to be accurate, we define the description length of
a graph sample as the weighted sum of the trans-
formations required to convert a hypothesis into
the given sample. By constructing a hypothesis
that minimizes the description length across all the

1Our code is publicly available at https://github.com/
launchnlp/MIDGARD.

generated samples, our solution encourages the in-
clusion of graph properties that were present in
many samples, while rejecting properties that were
only present in a few samples which are likely to
be erroneous. Figure 1 shows an example of how
our approach reduces errors compared to relying
solely on a single greedy generation. Empirical
results on four different structured reasoning tasks,
including argument structure extraction, structured
explanation construction, and goal-oriented script
generation and semantic graph generation, on eight
benchmarks show that MIDGARD can outperform
competitive baseline and model variants, demon-
strating its strong generalizability.

2 Background and Notations

In structured reasoning, a labeled data point is de-
noted as (T ,G), where T represents the input and
G is the task-specific graph output that captures the
necessary reasoning knowledge. For example, in
the task of argumentative structure extraction (Stab
and Gurevych, 2017), T can be an essay, and G
represents the associated argumentative structure.

To solve this task, we employ LLM in the
few-shot prompting mode where N labelled data-
points {Ti,Gi}Ni=1 are fed as in-context prompt
to the model to infer the output for a test input
T . In accordance with the COCOGEN approach,
we construct the in-context prompt as follows:
p = T1 ⊕ Gc

1 · T2 ⊕ Gc
2 · . . . · TN ⊕ Gc

N where
Gc
i is a semantically equivalent representation of

Gi written in a generally purpose programming
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language like Python and · (⊕) represents inter
(intra)-instance separator. Pc (·, T ) represents the
generative distribution of the LLM for the prompt
p and T . While COCOGEN relies on a single
generation obtained from Pc (·, T ), our approach
utilizes this to generate multiple graph samples
{G′

i}Ti=1 ∼ Pc (·, T ) and then aggregates them
into a single output G. Our novelty lies in the
development of a novel and generic aggregation
algorithm for the task of reasoning graph genera-
tion. This algorithm leads to significantly improved
performance across multiple tasks.

3 The MIDGARD Method

MIDGARD is based on the principle of minimum
description length (MDL), which succinctly cap-
tures the regularities in the given data by finding
the hypothesis with the shortest description length.
In graph aggregation, MDL can be used as a self-
consistency strategy to merge multiple reasoning
graph samples into a single aggregate graph. The
core idea is to define a description length for each
graph sample, which is proportional to the number
of transformations required to convert a hypothesis
into the given sample. By minimizing the descrip-
tion length for samples {G′

i}Ti=1, MDL encourages
the inclusion of graph properties that are common
across different samples. This means that proper-
ties that appear frequently in the generated samples
are more likely to be accurate and reflect the un-
derlying structure. Conversely, properties that are
only present in a few samples tend to be wrong.

In many structured reasoning tasks, the graphs
typically do not have singleton nodes. For exam-
ple, in argumentative structures of essays (Stab and
Gurevych, 2017), nodes are either supported or at-
tacked by other nodes, or they themselves support
or attack other nodes. We begin by defining the de-
scription length of a graph G′ based on the hypoth-
esis G when the graphs do not contain singleton
nodes in §3.1. Next, we derive the expression for
the expected description length in §3.2 assuming
that G′ is sampled from an LLM. Based on this, we
formulate an objective that aims to minimize the
expected description length of the sampled graphs
{G′

i}Ti=1 ∼ Pc (·, T ) in §3.3. We conclude this
section by proposing modifications to the objective
to address the scenario where the graph can have
singleton nodes in §3.4.

3.1 Defining Description Length
We define description length of G′ w.r.t. hypothe-
sis graph G as follows:

∆E(G′,G, λ) = λ · a+ (1− λ) · d (1)

where a represents the number of new edges to
be added to G, and d is the number of edges to be
deleted from G to convert it to G’. We introduce the
hyperparameter λ, which can be interpreted as the
number of bits needed to describe a single addition,
when (1− λ) bits are needed to describe a single
deletion. The subscript E in Eq. 1 indicates that
only edge transformations are considered when cal-
culating the description length. Since these graphs
do not have isolated nodes and each node is associ-
ated with at least one edge, the description length
of G′ can be precisely captured using edge transfor-
mations alone.

The definition in Eq. 1 is inspired by the for-
mulation proposed by Lam and Bacchus (1994) ,
who applied it for refining causal graphs based on
new data but not for the task of graph aggregation.
While Lam and Bacchus (1994) assigned equal bit
requirements for describing a single addition and
deletion, our empirical results demonstrate the sig-
nificance of assuming different bit requirements to
achieve enhanced performance.

3.2 Expected Description Length
We denote the set of nodes and edges associated
with G as N(G) and E(G) respectively. Similarly,
we define N and E as the sets of all possible nodes
and edges, such that each edge (node) in G′ and G
belongs to E (N). Taking the expectation of Eq. 1
w.r.t. G′ ∼ Pc(,̇T )

EG′
[
∆E(G′,G, λ)

]
= λEG′ [a] + (1− λ)EG′ [d] (2)

EG′ [a] = EG′

[∑

e∈E

1{e∈E(G′)} · (1− 1{e∈E(G)})

]
(3)

EG′ [d] = EG′

[∑

e∈E

1{e/∈E(G′)} · 1{e∈E(G)}

]
(4)

(5)

After simplifying the above set of equations and
representing 1{e∈E(G)} by the binary variable xe,
we arrive at:

EG′
[
∆E(G′,G, λ)

]
=
∑

e∈E

((1− λ)− PG′(e)) ·xe+β (6)

where PG′(e) represents the probability of observ-
ing e ∈ E(G′) when G′ ∼ Pc (·, T ) and β is a
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constant that is independent from the hypothesis G.
For each edge e ∈ E, the desirability of adding e
to the hypothesis G is proportional to the difference
between PG′(e) and (1 − λ). As the probability
of e exceeds (1 − λ) by a larger extent, its desir-
ability to be included in the hypothesis increases as
higher probability suggests that the edge e would
be present in a significant number of samples, sug-
gesting it is a consistent property. Conversely, the
presence of (1 − λ) in each coefficient prevents
the inclusion of edges with probabilities lower than
(1− λ) in the aggregated graph.

3.3 Hypothesis Selection
We seek to find G that minimizes the expected
description length in Eq. 6. To estimate PG′(e),
we compute the fraction of graph samples from
Pc(·, T ) that contains e as one of its edges. For-
mally, we wish to find the following:

argmin
G

∑

e∈E

(
(1− λ)−

∑T
i=1 1e∈E(G′

i)

T

)
· xe (7)

In the absence of any additional constraints, identi-
fying the structure becomes trivial—one can sim-
ply set xe to 1 if its coefficient is negative, and 0
otherwise. However, in various tasks (Stab and
Gurevych, 2017; Saha et al., 2021; Sakaguchi et al.,
2021), the graphs need to be directed acyclic graphs
(DAG). Appendix B explains how to restrict the
search space to DAGs when optimizing Eq. 7.

3.4 Objective for Generic Graphs
Next, we propose suitable modifications to the ob-
jective to accommodate generic graphs that may
contain singleton nodes. While Eq. 1 defines the
description only in terms of edge transformations,
we define the description length for generic graphs
as follows:

∆(G′,G, {λ1, λ2}) = ∆E(G′,G, λ1)+∆N(G′,G, λ2) (8)

where ∆N uses the same form as Eq. 1 but cal-
culates the description length associated with the
addition and removal of nodes in order to transform
N(G) into N(G′). Redoing the steps described in
§3.2 and §3.3 yields the following objective:

argmin
G

∑

e∈E

(
(1− λ1)−

∑T
i=1 1e∈E(G′

i)

T

)
· xe

+
∑

n∈N

(
(1− λ2)−

∑T
i=1 1n∈N(G′

i)

T

)
· yn

(9)
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Figure 2: Pictorial representation of Graph Aggrega-
tion. In the figure above, the probabilities of node/edge
existence in a randomly generated sample from an LLM
are estimated by the normalized frequency of their oc-
currence in the samples. The weight of an edge or
node on the right-hand side is determined by subtracting
(1− λ1) or (1− λ2) from this probability, respectively.
The optimization in Eq. 9 is equivalent to the selection
of the properties in the aggregated graph such that the
sum of weights is maximized. The bolded elements are
selected according to this maximization.

where yn is a binary variable denoting the presence
of n in N(G). Note that, an edge (n1, n2) can only
exist if both n1 and n2 are present in the graph. To
enforce this, we have the constraint: ∀n1, n2 ∈ N :
yn1 + yn2 − 2x(n1,n2) ≥ 0.

Refer Figure 2 for pictorial representation of
aggregation using the objective in Eq. 9.

4 Experiments and Analysis

We evaluate on three major tasks for reasoning
graph generation: Task 1-argument structure ex-
traction on ESSAYS (Stab and Gurevych, 2017),
ABSTRCT (Mayer et al., 2020), and CDCP (Park
and Cardie, 2018); Task 2-generating struc-
tured explanations on EXPLAGRAPHS (Saha
et al., 2021); Task 3-script planning on PRO-
SCRIPT (Sakaguchi et al., 2021); and Task 4-
semantic graph generation on KELM (Agarwal
et al., 2021), WEBNLG (Gardent et al., 2017), and
GENWIKI (Jin et al., 2020). Thereafter, we evalu-
ate how the performance of our approach changes
when using different numbers of samples generated
from the LLM. Additionally, we examine the ca-
pability of our approach in handling graphs with
varied complexities. Finally, we assess the influ-
ence of varying the number of few-shot examples
and examine how close our automatically chosen
hyperparameters are in comparison with the best
possible ones. We also analyze the influence of
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varying the number of few-shot examples. Unless
stated otherwise, we generate T = 10 samples for
approaches utilizing multiple samples.

Base LLMs. We evaluate our approach with (a)
gpt-3.5-turbo2, a general purpose instruction-
tuned LLM and (b) CODE-LLAMA (Roziere et al.,
2023), a code-LLM pretrained over general pur-
pose programming languages. The 16K context
length associated with these LLMs allows us to em-
ploy few-shot prompting for long sequence input-
output tasks such as argument structure extraction.

Comparisons. We first consider a GREEDY base-
line that represents each graph as a semantically
equivalent programming script and samples only
one generation from the LLM, which is decoded
greedily as done in COCOGEN.

Our main model, MIDGARD applies the ob-
jective described in §3.4. As the graphs in all the
considered tasks are directed acyclic in nature ex-
cept semantic graph generation, we additionally
incorporate the DAG constraints discussed in §3.3.
For semantic graph generation, we analyse the per-
formance of different variants without DAG con-
straints. We further compare with three variants of
MIDGARD: (a) MIDGARD W/O NODE TRNS:
We use the objective described in §3.3 along with
the DAG constraints. By excluding the term that
incorporates node transformations in this formu-
lation, we can evaluate its impact on the overall
performance. Specifically, this approach is im-
plemented by retaining only those edges that oc-
cur more than 1 − λ1 fraction of times while en-
suring there are no cycles. Thereafter, only the
nodes present in the retained edges are kept. (b)
MIDGARD (λ = 0.5): We apply the objective
proposed by Lam and Bacchus (1994) by assuming
equal description length of addition and deletion.
(c) MIDGARD W/O DAG constraints.

4.1 Task 1: Argument Structure Extraction

In this task, our goal is to analyze the argumen-
tative discourse structure of an input text. This
involves detecting and categorizing all argumenta-
tive components within the text and identifying the
relationships between them. An example of this
task is shown in Appendix D.1.

We assess the performance of our method on
the following datasets: (1) ESSAYS (Stab and
Gurevych, 2017), (2) ABSTRCT (Mayer et al.,
2020), (3) CDCP (Park and Cardie, 2018). For

2https://openai.com/chatgpt (Version 0613)

more details on these details, please refer the ap-
pendix D.1.

To compute the performance of component iden-
tification, we use BIO scheme to label the token
sequences. Thereafter, we compute component
identification F1 score (C) by tallying the num-
ber of true positives (TP), false negatives (FN), and
false positives (FP) in the assigned token sequences
as specified by (Mayer et al., 2020). To assess the
performance of relation prediction, we compute
metrics denoted by R100 and R50. The R100 metric
computes the F1-score by considering a prediction
as true positive only if the head and tail components
(and the relation type) overlap exactly with that of
a ground truth edge. On the other hand, R50 con-
siders a predicted relation as correct if there is at
least a 50% token overlap between the head and tail
components of the prediction and a ground-truth
relation.

We observe from Table 1 that MIDGARD
achieves a consistent performance improvement
across component identification and relation pre-
diction for most of the datasets and LLM choices.
With just 10 samples, the component identification
performance of ESSAYS is elevated by ≈ 5% and
≈ 4%, using gpt-3.5-turbo and CODE-LLAMA

respectively. Our approach boosts the performance
for ABSTRCT for relation prediction by over 10%
when CODE-LLAMA is used.

MIDGARD consistently outperforms other ag-
gregation strategies, with MIDGARD W/O DAG
being only slightly inferior. This indicates that
MIDGARD W/O DAG can be used for argument
mining tasks without a significant decline in per-
formance, even without incorporating DAG con-
straints for graph combination. However, when it
comes to component identification, MIDGARD
W/O NODE TRNS yields poor results due to the
absence of the term describing node transforma-
tions. Table 1 also justifies why it is important to
have unequal description lengths for addition and
deletion.

In our analysis of the models’ errors, we ob-
served that LLMs excel in accurately identifying
specific components. However, they tend to miss
capturing all the components present in the data.
On the other hand, MIDGARD effectively assimi-
lates relevant components from multiple samples,
resulting in improved recall without compromis-
ing precision (refer Appendix E.1 for quantitative
results).

Furthermore, as shown in Table 2, our approach
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Approach ESSAYS ABSTRCT CDCP Macro Average
C R100 R50 C R100 R50 C R100 R50 C R100 R50

LLM: gpt-3.5-turbo

GREEDY 67.4 21.5 32.6 84.4 38.5 55.2 53.8 11.2 16.2 68.5 23.7 34.7
MIDGARD W/O NODE TRNS 65.8 23.5 35.4 83.4 41.1 58.0 48.5 12.4 18.2 65.9 25.7 37.2

MIDGARD (λ = 0.5) 65.8 21.8 31.3 83.6 40.5 55.9 54.4 10.7 14.9 57.9 24.3 34.0
MIDGARD W/O DAG 72.3 23.5 35.4 84.0 41.1 57.9 54.8 12.3 17.9 70.4 25.6 37.1

MIDGARD 72.3 23.5 35.4 84.0 41.1 58.0 54.8 12.4 18.2 70.4 25.7 37.2

LLM: CODE-LLAMA

GREEDY 56.3 9.1 21.4 64.2 18.3 25.5 41.9 7.0 9.4 54.1 11.5 18.8
MIDGARD W/O NODE TRNS 56.6 11.0 24.5 57 30.7 39.5 34.5 7.8 10.7 49.4 16.5 24.9

MIDGARD (λ = 0.5) 49.7 3.4 5.6 62.9 24.9 31.7 36.6 3.3 4.1 49.7 10.5 13.8
MIDGARD W/O DAG 60.3 10.9 24.4 63.4 30.8 39.7 42.5 7.2 9.7 55.6 16.3 24.6

MIDGARD 60.3 11.0 24.5 63.4 30.7 39.5 42.5 7.8 10.7 55.6 16.5 24.9

Table 1: Results for the argument structure extraction tasks. The results were averaged across 5 random seeds.
Green and Blue indicates best and second-best performance respectively.

Type of error ESSAYS ABSTRCT CDCP
Grdy Ours Grdy Ours Grdy Ours

# spurious edges included 528.2 469.0 200.2 182.0 441.6 411.2
# true edges omitted 777.8 768.0 126.8 120.2 255.6 238.8

# reversed edges 30.4 21.8 1.4 0.8 15.8 14.4

Table 2: Segregation of relation prediction errors
into distinct categories and assessing how effective
MIDGARD (Ours) is reducing various types of errors
more than GREEDY (Grdy) decoding. Performance av-
eraged over 5 random seeds.

is effective in reducing various types of errors
found in the inferred edges. We categorize errors
associated with relation prediction and calculate
the total count of distinct edge errors in the inferred
samples as compared to the ground truth data.

4.2 Task 2: Explanation Graph Generation
We use EXPLAGRAPHS (Saha et al., 2021) for this
task, where the goal is to predict whether a certain
argument supports or counters a belief while gener-
ating a commonsense explanation graph that explic-
itly conveys the reasoning behind the stance predic-
tion. We request the reader to refer Appendix D.2
for more details on prompt design and dataset.

We employ the following metrics recommended
by the authors of this task (Saha et al., 2021): (1)
Structural Accuracy (StCA) computes fraction of
graphs that are DAG and has 2 concepts from
the argument and belief. (2) Semantic Correct-
ness (SeCA) employs a learnt model to measure
the semantic correctness of the edges by checking
whether the implied stance from the graph matches
the ground truth. (3) G-BERTScore (G-BS) mea-
sures the BERTScore (Zhang et al., 2019) between

Approach EXPLAGRAPH
StCA (↑) SeCA (↑) G-BS (↑) GED (↓)

LLM: gpt-3.5-turbo

GREEDY 23.7 7.6 18.6 84.0
MIDGARD W/O DAG 12.9 2.5 10.3 91.1
MIDGARD (λ = 0.5) 4.3 1.6 3.3 97.0

MIDGARD 30.3 17.7 22.4 82.1

LLM: CODE-LLAMA

GREEDY 36.6 12.4 28.4 75.6
MIDGARD W/O DAG 21.2 12.6 16.1 87.3
MIDGARD (λ = 0.5) 0.0 0.0 0.0 100.0

MIDGARD 39.4 20.2 29.7 76.4

Table 3: Results on EXPLAGRAPH. MIDGARD (λ =
0.5) resulted in none of the edges being included in the
final graph, as the estimated probabilities of all edges in
the samples are below 0.5.

the inferred and ground truth edges. (4) Graph Edit
Distance (GED) computes graph edits required to
transform the hypothesis to the ground truth. As
these evaluation metrics measure the accuracy of
the graph as a collection of edges, we do not ex-
periment with MIDGARD W/O NODE TRNS as
there would be no performance difference from
MIDGARD.

We observe from Table 3 that MIDGARD im-
proves the performance of single generation based
technique by a significant margin for both LLMs.
Unlike the argument structure extraction task, the
performance is significantly worse when not using
the DAG constraints.

4.3 Task 3: Script Planning

Unlike the previous two tasks which emphasize on
constructing the complete graph from scratch, we
investigate whether our approach can be used for
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Figure 3: Results for script planning on PROSCRIPT.

inferring relations between nodes that are already
known. To examine this, we use PROSCRIPT (Sak-
aguchi et al., 2021), which involves generating a
graph for achieving a high-level goal, with each
node representing an action and edges indicating
dependency relations among actions. In our setup,
we provide the set of actions and the goal to the
LLM as input and prompt it to generate the se-
quence of edges that capture the dependencies
among the input actions. More details about this
task is presented in Appendix D.3.

To compare the performance between different
approaches, we use F1-score (F1) between the in-
ferred edge set and the ground truth. From Figure 3,
we can see that MIDGARD significantly improves
the performance over the greedy single-generation
based approach. The figure also demonstrates the
importance of having DAG constraints.

4.4 Task 4: Semantic Graph Generation

The goal of this task is to extract the semantic graph
from an input natural language text as a list of
edges. Each edge in the graph consists of a subject,
a property, and the type of property (Han et al.,
2023). An example of this task is shown in Ap-
pendix D.4.

To gauge the efficacy of our model for such
a task, we consider following datasets: (1)
KELM (Agarwal et al., 2021), (2) WEBNLG (Gar-
dent et al., 2017) and (3) GENWIKI (Jin et al.,
2020). For more details on these datasets, we re-
quest the reader to refer Appendix D.4

We use the following metrics to assess the quan-
titative performance as suggested by Han et al.
(2023): (1) Triple-Match F1 (T-F1) finds the macro-
averaged F1 between the edge triples present in the
inference and the ground truth graph edge triples.
(2) Graph Match F1 (G-F1) measures the perfor-
mance as the number of graphs which exactly
matches the ground truth graph in terms of F1 score.
Finally, as defined in the §4.2, we also use (3) G-
BERTScore (G-BS) (Zhang et al., 2019) and (4)

Graph Edit Distance (GED).
From the Table 7, we can observe that while

our approach outperforms or achieves competi-
tive performance compared to the baseline, the
performance improvement is not significant for
gpt-3.5-turbo. Upon closer examination of the
outputs generated using temperature sampling, we
have noticed a lack of variability when compared to
the structured commonsense reasoning tasks men-
tioned in the main script. This limited variabil-
ity hinders the opportunity to improve upon each
sample, resulting in a less significant performance
boost than expected.

4.5 Further Analyses

Impact of increasing sample size. To analyze the
impact of varying the number of samples gener-
ated from the LLM, we evaluate the performance
of MIDGARD on the argument structure extrac-
tion task as it would allow us to examine the trend
on both node identification and edge prediction.
We only show the analysis for the ESSAYS dataset
from the argument structure extraction task due
to limited space. Please refer to the appendix for
additional plots and similar analysis.

(a) Component Identification (b) Relation Prediction

Figure 4: Performance of MIDGARD in comparison
with GREEDY on ESSAYS when the number of samples
from the LLM is varied. Results averaged over 5 differ-
ent random seeds.

From Fig. 4a and Fig. 4b, we see that the perfor-
mance increases only marginally emphasizing that
returns diminish with increasing the number of sam-
ples. Similar trend is observed for other datasets
belonging to the same task (refer Appendix E.2).
However, for EXPLAGRAPHS, we observe that the
performance steadily increases with the number of
samples indicating that having more and diverse
explanation graphs is helpful towards improving
the final aggregated structure as shown in Figure 5.
Efficacy of MIDGARD for different graph com-
plexities. We compare the performance between
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Approach KELM WEBNLG GENWIKI
T-F1(↑) G-F1(↑) G-BS(↑) GED(↓) T-F1(↑) G-F1(↑) G-BS(↑) GED(↓) T-F1(↑) G-F1(↑) G-BS(↑) GED(↓)

LLM: gpt-3.5-turbo

GREEDY 46.9 22.8 84.0 8.7 29.1 15.0 83.6 10.4 23.7 6.5 82.5 11.9
MIDGARD (λ = 0.5) 47.0 22.0 83.2 8.9 27.8 13.2 82.4 10.7 24.0 7.0 82.4 11.6

MIDGARD 47.4 22.8 83.5 8.8 29.3 15.0 83.7 10.4 24.3 7.2 83.4 11.5

LLM: CODE-LLAMA

GREEDY 37.9 20.0 63.2 14.1 24.8 6.0 66.4 14.2 12.1 2.0 53.6 17.6
MIDGARD (λ = 0.5) 8.8 4.0 45.0 19.8 23.0 6.0 67.3 14.6 7.1 2.0 54.9 18.2

MIDGARD 37.9 12.0 67.7 13.5 26.5 6.0 77.7 12.2 9.7 4.0 58.7 17.3

Table 4: Results for Semantic Graph Generation. In each of our method variants, we did not apply DAG constraints,
as they are not necessary for this task unlike the previous experiments.

Bin # Samples Avg. # Nodes Avg. # Edges Avg. Degree GREEDY MIDGARD
C R50 C R50

ESSAYS

[5, 10) 3 8.0 7.0 0.88 64.7 23.8 64.7 36.2
[10, 15) 28 11.2 10.2 0.91 66.2 33.5 70.2 34.8
[15, 20) 33 15.6 14.6 0.94 68.5 32.5 73.0 36.4
[20, 25) 14 20.6 19.6 0.95 65.7 32.0 75.5 35.5
[25, 30) 2 26.0 25.0 0.96 58.3 36.1 70.0 31.2

ABSTRCT

[2, 4) 5 2.8 1.4 0.47 79.4 58.2 77.6 59.6
[4, 6) 41 4.6 2.7 0.58 83.4 59.8 83.5 63.1
[6, 8) 36 6.5 3.6 0.56 88.6 57.9 87.6 59.9
[8, 10) 14 8.4 4.0 0.47 83.8 47.0 84.5 48.3
[10, 12) 3 10.3 7.0 0.68 70.1 39.6 68.5 50.5

CDCP

[2, 7) 96 3.9 1.2 0.26 52.1 20.2 52.4 22.3
[7, 12) 33 8.3 3.2 0.39 56.0 21.7 56.9 23.8
[12, 17) 13 13.9 3.9 0.27 55.7 8.1 54.9 11.5
[17, 22) 3 19.0 7.7 0.40 59.7 10.4 64.4 7.7
[22, 27) 2 23.0 4.5 0.20 52.6 1.1 55.8 1.0

Table 5: Component and Relation identification performance for GREEDY and MIDGARD for different graph
complexities when gpt-3.5-turbo is used. The results are averaged for 5 seeds.

Figure 5: Performance of MIDGARD in comparison
with GREEDY on EXPLAGRAPHS.

MIDGARD and the GREEDY approach on argu-
ment structure extraction across various graph com-
plexities. We specifically select argument structure
extraction for this analysis because it enables us to

evaluate the influence of graph complexity on both
node and edge identification performance.

In this analysis, we bin the graphs based on the
number of nodes and compute the average com-
plexity metrics such as number of nodes and edges
and degree for the graphs belonging to each bin.
The higher these metrics are, the more complex the
corresponding graph is. For each method, we em-
ploy gpt-3.5-turbo for generating samples. We
observe that our approach provided consistent im-
provements across different complexities as shown
in Table 5.
Additional analysis. The impact of varying
the number of few-shot examples on argument
structure extraction performance for GREEDY

and MIDGARD is provided in Appendix E.3.
MIDGARD consistently improves the perfor-
mance across different number of few-shot ex-
amples. We compare our method and GREEDY
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against a popular decoding technique called NU-
CLEUS Sampling (Holtzman et al., 2020) in the Ap-
pendix E.4 and find that it results in poorer perfor-
mance. We demonstrate that our approach works
with gpt-4 for the ESSAYS dataset in Appendix
E.5. In Appendix E.6, we assess the impact of
varying the hyperparameters {λ1, λ2} on the final
performance and compare it with that of automati-
cally estimated hyperparameters (refer Appendix
C.3). Figure 15 shows that while our automatic
hyperparameter search reaches near optimal per-
formance for component identification, there is a
scope for improvement in relation prediction.

5 Related Works

Sampling based approaches using LLMs. A
common strategy to address many NLP and com-
monsense reasoning tasks involves sampling mul-
tiple solution trajectories LLMs and employing
either a post-hoc strategy (Fu et al., 2023; Liu et al.,
2023; Wang et al., 2023a) or a trained reranker for
sample selection (Cobbe et al., 2021; Li et al., 2023;
Ni et al., 2023). However, post-hoc approaches re-
lying on LLM evaluation can be prone to position
bias (Wang et al., 2023a; Zheng et al., 2023) and
difficulty in judging response correctness (Huang
et al., 2023; Gou et al., 2023). Training-based
sampling requires additional labeled data for task-
specific reranking models. The self-consistency
framework is limited to problems with scalar an-
swer spaces due to its reliance on majority vot-
ing (Ling et al., 2017; Clark et al., 2018; Cobbe
et al., 2021; Patel et al., 2021; Geva et al., 2021).
Moreover, existing approaches lack integration of
information from different samples, potentially
leading to suboptimal solutions. In contrast, our
MDL-based formulation assimilates relevant infor-
mation from diverse structured responses without
fine-tuning. By examining consistent properties
across samples, we construct an aggregate graph
that leverages the strengths of each sample.

LLMs for commonsense reasoning. LLMs have
been applied to various domains, including arith-
metic reasoning (He-Yueya et al., 2023), genera-
tion of mathematical proofs (Welleck et al., 2022),
symbolic reasoning (Wei et al., 2022), and logical
reasoning (Srivastava et al., 2022). While prompt-
ing strategies (Wei et al., 2022; Zhou et al., 2022;
Yao et al., 2022; Wang et al., 2023b; Yao et al.,
2023; Madaan et al., 2023) have been proposed
to improve performance across these tasks, adapt-

ing them to structured commonsense reasoning,
which involves generating complex graph struc-
tures, presents unique challenges (Madaan et al.,
2022). Additionally, tasks within structured com-
monsense reasoning often require adherence to
specific constraints (Saha et al., 2021; Sakaguchi
et al., 2021), such as directed acyclicity, which
are difficult to ensure solely through existing strate-
gies. Our approach is independent of the prompting
methodology and allows for flexible incorporation
of task-specific constraints during inference.

6 Conclusion

We proposed a novel approach for enhancing
the performance of structured reasoning problems
which involve generating task-specific graphs. Tak-
ing inspiration from self-consistency, we sample
multiple graphs from the LLM and devise a mech-
anism to construct aggregated graph. Through rig-
orous experimentation, we have demonstrated the
effectiveness of our approach across various struc-
tured commonsense reasoning tasks.

Limitations

• Due to our approach’s reliance on generat-
ing multiple samples, it can be computation-
ally demanding and may require a significant
amount of time, particularly without batched
inference. As a result, practitioners using en-
terprise LLMs may incur substantially higher
costs compared to methods that involve single
generation. This factor makes our approach
less desirable in situations where there are
constraints on compute budget or limited ma-
chinery resources.

• For datasets consisting of graphs with a small
number of nodes and edges, applying ILP
does not result in significant computational
overhead. However, it is important to ac-
knowledge that the time complexity of ILP
solvers grows exponentially with the complex-
ity of the problem. Therefore, modifications
are necessary when applying our approach
to settings with a large number of edges and
nodes. Additionally, as the graph size in-
creases, it becomes increasingly challenging
to utilize LLMs effectively in generating the
graph structure. The limited context length
of the LLMs poses a challenge for applying
them to commonsense reasoning tasks involv-
ing larger graphs. This limitation arises from
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the difficulty of accommodating multiple in-
context learning examples within the given
context length.

Ethics Statement

While our methodology attempts to derive struc-
tured representations from the input data only, due
to the issue of hallucination, the LLMs are not
immune to generating biased, insensitive or un-
truthful content. Hence, we urge practitioners and
researchers to exercise caution when applying our
framework, especially for sensitive applications
like politics, finance, and healthcare.
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A Minimum Description Length Principle

The principle of Minimum Description Length
(MDL) aims to find a model that can efficiently
represent a dataset using the fewest bits, while also
minimizing model complexity. In simpler terms, it
seeks to find the least complex model that can effec-
tively capture the regularities in a given dataset us-
ing the least amount of bits. Let’s denote the dataset
that needs to be represented as D, and the model
as H ∈ H. We represent the description length of
D when using H as L(D|H), which quantifies the
number of bits required to describe D using H . Ad-
ditionally, let’s define L(H) as the complexity of
the model. Formally, MDL aims to find the optimal
solution for:

H∗ = arg min
H∈H

L(D|H) + L(H) (10)

To explain what each of these terms corresponds
to in our approach, let’s consider the objective for
graphs that do not have singleton nodes in §3.3,
while adhering to the constraint that the sought-
after graph is a Directed Acyclic Graph (DAG). In
this scenario, the hypothesis family H encompasses
all graphs with nodes and edges in N and E, respec-
tively. The dataset in our case consists of samples
derived from the LLM, which can be denoted as
D = {G′}Ti=1. The formulation of L(D|H) takes
the form of Equation 1. Lastly, we define the com-
plexity of the model L(H) as 0 if H is a DAG, and
∞ otherwise.

B Restricting hypothesis selection to
DAGs

To describe the strategy to restrict hypothesis se-
lection to DAGs, we can express E as the set

{(n1, n2) |n1 ∈ N, n2 ∈ N} where n1(n2) rep-
resents the head (tail) of the edge (n1, n2). We
formulate objective 7 as an Integer Linear Program-
ming (ILP) problem by introducing one more bi-
nary variable be for each edge e ∈ E. be is set as 1
if there exists a path from the head of e to its tail.
Under ILP, we optimize 7 subject to the following
constraints:

∀e ∈ E : xe − be ≤ 0
(11)

∀n1, n2, n3 ∈ N : b(n1,n3) − b(n1,n2)

− b(n2,n3) ≥ −1 (12)

∀n ∈ N : b(n,n) = 0
(13)

The constraint represented by 11 ensures that
there is a path between two nodes if they are di-
rectly connected by an edge. 12 enforces the re-
quirement that a path must exist between two nodes
if there is a path from the first node to a third node,
and this third node is connected to the second node.
Lastly, 13 prevents any cycles from occurring in
the graph.

C Implementation Details

In this section, we begin by explaining the construc-
tion of N and E based on the samples {G′

i}Ti=1 ∼
Pc (·, T ). Thereafter, we describe how the hyper-
parameters λ1 and λ2 are set.

C.1 Constructing N and E

To build N, we iterate through the samples {G′
i}Ti=1.

It is important to note that each node in G′
i consists

of two primary properties: content and type. For
example, in argument structure extraction (Stab
and Gurevych, 2017), a node represents an argu-
mentative component with content indicating its
value and type indicating its category, such as
premise/claim.

When we are iterating over the nodes in⋃T
i=1N(G′

i), we have two choices: append it as
a new node or merge it with some other node
present in N. To keep track of the historical merg-
ing of nodes with n ∈ N, we maintain two lists:
content_list and type_list. These lists store
the content and type properties of the nodes that
have been merged with n over time, respectively.
Moreover, content_list property can also be
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used to decide whether a new node has to merged.
If the Jaccard similarity between the set of tokens
in the content of the new node and the set of to-
kens in an element of content_list for n exceeds
a pre-defined threshold, we add the content and
type properties of the new node to the respective
lists associated with n. Finally, the sentence from
the content_list with the highest Jaccard simi-
larity to the rest of the elements, and the mode of
the type_list of n, are chosen as its content and
type, respectively. The number of samples con-
taining n is simply the length of its content_list
which can be used to estimate PG′(n).

Similarly, we initialize E = {(n1, n2) |n1, n2 ∈
N}. Just like before, each edge in any sample is
linked to a specific type property that character-
izes the attribute associated with it. For example, in
argument structure extraction, the type of an edge
can be defined as attack or support, indicating the
relationship between the head and the tail of the
edge. As before, we associate type_list property
to each e ∈ E, which records the observed type
property for that edge across all the samples it ap-
pears in. Finally, the type of each edge is the mode
of its type_list property.

C.2 Constructing Optimal Aggregate Graph

After constructing N and E, we apply an appro-
priate formulation of the objective in §3 to get the
optimal values of xe(∀e ∈ E) and yn(∀n ∈ N).
Thereafter, we return the hypothesis G where
N(G) = {n | yn = 1, n ∈ N} and E(G) =
{e |xe = 1, e ∈ E}. If singleton nodes are ab-
sent, we only retain nodes that are present as a
head or tail in E(G).

C.3 Hyperparameter selection

To automatically select appropriate values for the
hyperparameters {λ1, λ2}, we utilize k-fold cross
validation using the few-shot examples. In each
fold, the held-out set comprises a single data point,
while the training set consists of k − 1 data points.

C.4 Generating graphs from LLMs

For each dataset, the graph structure is encoded as
a programming script following the guidelines of
COCOGEN (refer appendix D.1). Multiple samples
are generated from the LLM using a temperature
of 0.9. To address the randomness in sampling few-
shot examples and temperature sampling, we use 5
different random seeds.

Figure 6: Relations between the argumentative compo-
nents of the example introduced in §D.1

.

Once the LLM generates the graph as a program-
ming script, we obtain the corresponding graph G′,
a parser is needed to process this output. During
sampling from the LLM, we assume that the tex-
tual response can be parsed into the corresponding
graph using a task-specific rule-based parser.

D Additional information on considered
tasks

D.1 Task 1: Argument Structure Extraction -
Additional Information on task, prompt
design and datasets

In this section, we show an example of this task and
describe the prompt used for our experiments. The
example for demonstrating this task is taken from
one of the paragraphs in a datapoint belonging to
the ESSAYS dataset.

First, [cloning will be beneficial for
many people who are in need of organ
transplants]Claim 1. [

::::::
Cloned

:::::::
organs

::::
will

:::::
match

:::::::::
perfectly

::
to

::::
the

:::::
blood

::::::
group

::::
and

:::::
tissue

:::
of

::::::::
patients]Premise 1 since [

::::
they

:::
can

:::
be

::::::
raised

::::::
from

:::::::
cloned

:::::
stem

:::::
cells

::
of

::::
the

::::::::
patients]Premise 2. In addition,

[
:
it

::::::::
shortens

:::
the

:::::::
healing

::::::::
process]Premise 3.

Usually [
:
it
:::

is
::::::

very
::::
rare

::::
to

:::::
find

:::
an

::::::::::
appropriate

:::::
organ

::::::
donor]Premise 4 and [

::
by

:::::
using

:::::::
cloning

::
in

::::::
order

::
to

:::::
raise

::::::::
required

::::::
organs

:::
the

:::::::
waiting

::::
time

::::
can

::
be

:::::::::
shortened

::::::::::::
tremendously]Premise 5.

Table 6: An example text with annotated argumentative
components.

The example in Table 6 shows the different argu-
mentative components in a text along with their cat-
egories. The objective of argument structure extrac-
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Figure 7: Programming script prompt used for argument
structure extraction

tion entails not only the identification of different
argumentative components but also the prediction
of support or attack relations between them. The
argumentative relations between the components is
shown in Figure 6. The equivalent programming
script representation of the aforementioned struc-
ture is shown in Figure 7.

Now, we provide some information on the
datasets used to evaluate various approaches. We
considered the following 3 datasets. (1) ES-
SAYS (Stab and Gurevych, 2017) that consists of
essays obtained from essaysforum.com. Each ar-
gumentative component within the essays is labeled
at a sub-sentence level as either a premise, claim,
or major claim. The relationships between these
components are labeled as either attack or support.
Test split consisting of 80 datapoints is used for
evaluation. We randomly select 7 data points from
the training split in the few-shot prompt. (2) AB-
STRCT (Mayer et al., 2020) is constructed by an-
notating the argumentative structure in the abstracts
of PubMed articles on Randomized Controlled
Trial of diseases. For our few-shot set, we ran-
domly choose 11 data points from the training split.
The dataset includes three test splits: two from ho-
mogeneous data sources and one constructed by
collecting data points from various sources, includ-
ing the homogeneous ones. We focus on evaluating
the performance of our model on the test split cu-
rated from various sources, which consists of 100
data points. (3) CDCP (Park and Cardie, 2018) is
obtained from a public forum where argumentative
texts regarding proposed rules on Consumer Debt
Collection Practices (CDCP) are annotated with
argumentative components and the corresponding
support relations. From the training set, we ran-
domly select 7 data points as our few-shot prompt.
We then assess the performance of our model on
the test split, which consists of 150 data points.

D.2 Task 2: Explanation Graph Generation:
Additional information on prompt design
and datasets

As we are focusing on the task of generating the
commonsense structure, we assume that the stance
is provided and prompt the model to generate the
structure only as done in Madaan et al. (2022).
We use the same prompt scheme as employed by
COCOGEN in representing a graph as a program-
ming script by directly adopting their implementa-
tion3.

In this implementation, 30 few-shot instances
were used to prompt the LLM and the approach
was evaluated over the development split consisting
of 396 datapoints. An example explanation task
for this task is shown in Figure 8 for the following
belief, argument and stance:

Belief: Factory farming should not be
banned.
Argument: Factory farming feeds mil-
lions.
Stance: Support

Factory 
Farming Millions

Necessary Food

Banned

causes
desiresHas context

Not desires

Has context

Figure 8: Explanation graph for the example shown in
the Appendix D.2.

D.3 Task 3: Script Planning: Additional
information on task, prompt design and
datasets

The input in PROSCRIPT (Sakaguchi et al., 2021)
specifies the high-level goal to be achieved and
the intermediate steps required to achieve the goal.
The task involves inferring a sequence of depen-
dency relationships among these steps, where each
directed arrow indicates that the step at the arrow’s
head must be executed before the step at the tail.

3github.com/reasoning-machines/CoCoGen
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Figure 9: Script Planning for the goal "bake a cake".
The steps shown in the figure are also provided as part
of the input. The model has to predict directed relations
between the steps that captures the temporal relations
among them.

We utilize this dataset to evaluate the ability of vari-
ous algorithms to automatically determine the order
of operations needed to achieve the specified goal.
We used 15 few-shot instances for prompting and
assessed the performance of various approaches
over 100 samples from the development dataset.
An example of this datapoint is shown in Figure 9.

D.4 Task 4: Semantic Graph Generation:
Additional information on task, prompt
design and datasets

Input Text: While pop rock can trace its
stylistic roots back to rock music, Reg-
gae music evolved out of different musical
genre, known as ska. Interestingly, the Train
song, Mermaid, belongs to the genre of pop
rock, but is also considered to be of the reg-
gae genre as well

Semantic Structure: ("MERMAID TRAIN

SONG", "GENRE", "POP ROCK"), ("MER-
MAID TRAIN SONG", "GENRE", "REG-
GAE"), ("POP ROCK", "STYLISTIC ORI-
GIN", "ROCK MUSIC"), ("REGGAE",
"STYLISTIC ORIGIN", "SKA")

Table 7: An example for Semantic Graph Generation.

The goal of this task is to extract the semantic
graph from an input graph, which is represented as
a list of edges. Each edge in the graph consists of a
subject, a property, and the type of property. (Han

et al., 2023). An example of this task is shown in
7.

To gauge the efficacy of our model for such
a task, we consider following datasets: (1)
KELM (Agarwal et al., 2021): This is a large scale
synthetic dataset where each datapoint consists of a
sentence in natural language and the corresponding
semantic structure in the form of linearized Knowl-
edge Graph (KG). Most of the graphs in this dataset
contains at most 6 edges. (2) WEBNLG (Gardent
et al., 2017): The datapoints in this dataset were cu-
rated by sampling triples from the DBpedia (Auer
et al., 2007). The sentences describing their re-
spective graphs were crafted using a wide range of
lexicalization patterns. (3) GENWIKI (Jin et al.,
2020): Unlike previous datasets, this one does not
provide paired datapoints that map a natural lan-
guage sentence to its corresponding semantic graph
representation. However, a technique formulated
by Han et al. (2023) allows for the synthesis of
pairwise annotated datasets, which we utilize in
our assessments.

E Additional Analysis

E.1 Precision / Recall analysis for Argument
structure extraction

In order to empirically demonstrate the effective-
ness of our algorithm in reducing errors, we com-
pute the precision and recall in component and
relation identification for argument structure ex-
traction. This analysis not only allows us to assess
the efficacy of our approach in filtering out false
properties, but also in capturing genuine properties
from multiple samples that would have otherwise
been overlooked if only a single sample was relied
upon. Instead of using the F1-scores of the met-
rics C and R50 defined in §4.1, we compute the
precision and recall of these metrics under same
definition. Specifically, the precision and recall
along component identification is denoted by C(P)
and C(R). A consistent notation is used for relation
identification as well.

From the Table 8, MIDGARD consistently im-
proves the recall for component and relation identi-
fication across all datasets as it relies on multiple
samples to formulate the final hypothesis, effec-
tively addressing the issue of omitting true prop-
erties that would arise if relied on a single sample
alone. Moreover, utilizing the consistencies among
the samples leads to improved precision for relation
identification, thereby helping reduce the number

7062



Approach
ESSAYS ABSTRCT CDCP

C(P) C(R) R50(P) R50(R) C(P) C(R) R50(P) R50(R) C(P) C(R) R50(P) R50(R)

GREEDY 77.7 59.6 37.4 28.9 86.9 81.9 50.1 61.4 55.0 52.6 13.4 21.0
MIDGARD 74.0 70.7 40.5 31.9 86.0 82.1 53.7 63.3 55.9 53.7 14.4 25.9

Table 8: Component and Relation Identification precision and recall for MIDGARD and GREEDY. P and R within
the parentheses represent precision and recall respectively.

of spurious samples. While the precision for com-
ponent identification is slightly impacted, adjusting
the value of λ1 allows us to achieve higher preci-
sion at the cost of slightly reduced recall.

E.2 Impact of increasing the number of
samples for other argument structure
extraction tasks

(a) Component Identification (b) Relation Prediction

Figure 10: Performance of MIDGARD in compari-
son with GREEDY for the ABSTRCT Dataset when the
number of samples from the LLM is varied. Results
averaged over 5 different random seeds.

(a) Component Identification (b) Relation Prediction

Figure 11: Performance of MIDGARD in comparison
with GREEDY for the CDCP Dataset when the number
of samples from the LLM is varied. Results averaged
over 5 different random seeds.

E.3 Impact of changing the number of
few-shot examples for argument structure
extraction

We assess the effectiveness of our approach for
different numbers of few-shot instances (N ∈

(a) Component Identification (b) Relation Prediction

Figure 12: Performance of MIDGARD in comparison
with GREEDY for the ESSAYS Dataset when the number
of few shot examples (N ) is varied. Results averaged
over 5 different random seeds.

{3, 5, 7, 9}) in the context of argument structure ex-
traction when 10 samples are used from the LLM.
As shown in Figure 12, MIDGARD consistently
enhances the performance of GREEDY approach
across different numbers of few shot examples. The
plots for ABSTRCT and CDCP are shown in Fig-
ure 13 and Figure 14 respectively.

(a) Component Identification (b) Relation Prediction

Figure 13: Performance of MIDGARD in compari-
son with GREEDY for the ABSTRCT Dataset when the
number of few shot examples (N ) is varied. Results
averaged over 5 different random seeds.
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(a) Component Identification (b) Relation Prediction

Figure 14: Performance of MIDGARD in comparison
with GREEDY for the CDCP Dataset when the number
of few shot examples (N ) is varied. Results averaged
over 5 different random seeds.

E.4 Comparison with Nucleus Sampling

While our evaluations considered GREEDY decod-
ing, we also compare against the NUCLEUS decod-
ing (Holtzman et al., 2020), a popular technique
to combat neural text degeneration, for the task
of argument structure extraction in ESSAYS. As
shown in the Table 9, the application of NUCLEUS

decoding degrades the performance significantly
for both the considered LLMs.

Approach C R100 R50

LLM: gpt-35-turbo

GREEDY 67.4 21.5 32.6
NUCLEUS 64.1 19.2 31.2

MIDGARD 72.3 23.5 35.4

LLM: CODE-LLAMA

GREEDY 56.3 9.3 21.4
NUCLEUS 48.0 6.7 16.7

MIDGARD 60.3 11.0 24.5

Table 9: Comparison of different approaches on gpt-35-
turbo and Code-LLAMA models.

E.5 Performance for gpt-4

Due to the prohibitive expense associated with
gpt-4, we were limited in assessing its perfor-
mance across all tasks. However, we have success-
fully evaluated its capabilities on the Argument
Structure Extraction task using a selective subset
of 20 data points from the Essays Dataset. This
specific evaluation thoroughly addresses both the
identification of components (node evaluation) and
the prediction of relations (edge evaluation), of-
fering a more comprehensive analysis compared
to other tasks. For the Essays dataset, which in-

(a) Component Identification (b) Relation Prediction

Figure 15: Assessing the performance of our algorithm
for different values of {λ1, λ2} and comparing it with
that of automatically estimated hyperparameters. Re-
sults averaged over 5 different random seeds.

cludes 80 test data points, the estimated cost for
GPT-4 analysis across 5 random instances of few-
shot training examples could exceed $1000. Given
that other argument structure extraction datasets
comprise over 80 test points, the expected infer-
ence costs would significantly increase. The results
for the ESSAYS dataset are tabulated in Table 10.

Approach C R100 R50

LLM: gpt-4

GREEDY 77.1 30.7 40.9
MIDGARD 78.1 32.9 42.8

Table 10: Comparison of different approaches imple-
mented on gpt-4 for ESSAYS Dataset

E.6 Hyperparameters

In this experiment, we vary λ1, λ2 ∈
{0.0, 0.1, 0.2, . . . , 1.0} and compute the per-
formance of component identification and relation
prediction on ESSAYS, and compare with that
of hyperparameters automatically estimated (see
Appendix C.3 for more details). Specifically,
when varying λ1, we set λ2 to 1 in order to
include all nodes in the hypothesis and focus
solely on studying the influence of λ1 on relation
prediction. An analogous step is repeated to study
the influence of λ2 on component identification.

In Figure 15, we observe that the automatically
estimated hyperparameter (λ2) for component iden-
tification is near optimal performance. However,
there is room for improvement in selecting λ1. Ad-
ditionally, we find that the optimal values for both
hyperparameters are above 0.5, suggesting that the
description length of insertion is greater than that
of deletion, as discussed in Section 3.2.
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F Intuitive explanation for having
unequal description lengths with
addition versus deletion

To define a single deletion, it requires ∝
log2(|E(G)|) to specify the edge to be deleted from
G. On the other hand, to describe the edge to be
added one needs to spend ∝ log2(|E|) bits. Clearly,
log2(|E|) ≥ log2(|E(G)|) as E ⊇ E(G).
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