
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6766–6805
August 11-16, 2024 ©2024 Association for Computational Linguistics

XCODEEVAL: An Execution-based Large Scale Multilingual Multitask
Benchmark for Code Understanding, Generation, Translation and

Retrieval
Mohammad Abdullah Matin Khan ∗ 1,2 M Saiful Bari ∗ 2,5 Xuan Long Do2

Weishi Wang2 Md Rizwan Parvez3,4 Shafiq Joty2,6

1Islamic University of Technology (IUT) 2Nanyang Technological University (NTU)
3Qatar Computing Research Institute (QCRI) 4Bosch Research
5National Center for AI, Saudi Arabia 6Salesforce Research
Leaderboard: https://xCodeEval.github.io

Abstract

Recently, pre-trained large language models
(LLMs) have shown impressive abilities in
generating codes from natural language de-
scriptions, repairing buggy codes, translating
codes between languages, and retrieving rele-
vant code segments. However, the evaluation
of these models has often been performed in
a scattered way on only one or two specific
tasks, in a few languages, at a partial granularity
(e.g., function) level, and in many cases with-
out proper training data. Even more concerning
is that in most cases the evaluation of generated
codes has been done in terms of mere lexical
overlap with a reference code rather than ac-
tual execution. We introduce XCODEEVAL, the
largest executable multilingual multitask bench-
mark to date consisting of 25M document-level
coding examples (16.5B tokens) from about
7.5K unique problems covering up to 11 pro-
gramming languages with execution-level par-
allelism. It features a total of 7 tasks involv-
ing code understanding, generation, transla-
tion and retrieval. XCODEEVAL adopts an
execution-based evaluation and offers a mul-
tilingual code execution engine, ExecEval
that supports unit test based execution in all
the 11 languages. To address the challenge of
balancing the distributions of text-code sam-
ples over multiple attributes in validation/test
sets, we propose a novel data splitting and a
data selection schema based on the geometric
mean and graph-theoretic principle. Our exper-
iments with OpenAI’s LLMs (zero-shot) and
open-LLMs (zero-shot and fine-tuned) on the
tasks and languages demonstrate XCODEEVAL
to be quite challenging as per the current ad-
vancements in language models.

1 Introduction

Automatically generating computer programs to
solve complex problems has been a long-standing
goal in AI (Manna and Waldinger, 1971). In recent

∗Equal Contribution

years, specifically with the growth of large lan-
guage models (LLMs), we have witnessed tremen-
dous progress in synthesizing code that is not just
relevant but also fully functional with no further
human modification needed (Chen et al., 2021).
The progress made in related tasks such as pro-
gram synthesis (Chowdhery et al., 2022; Li et al.,
2022), program repair (Berabi et al., 2021), code
translation (Roziere et al., 2020, 2021), and code
retrieval (Wan et al., 2019; Parvez et al., 2021) are
having a profound impact on increasing developer
productivity (Ziegler et al., 2022; Tan et al., 2023)
and aiding educators (Finnie-Ansley et al., 2022).

Despite the fact that advancements are expected
to be general with benchmarks, their evaluation
has been performed in a scattered way on a limited
number of languages like Python and Java, on a
partial granularity level such as at the level of a
statement (Huang et al., 2022) or function (Husain
et al., 2019), focusing on only one or two specific
tasks like program synthesis and translation, and in
many cases without fine-tuning data (Austin et al.,
2021) or in terms of lexical n-gram based rele-
vance (Iyer et al., 2018) rather than execution. We
present a summary of the characteristics of existing
program evaluation test-beds in Tables 1 and 6.

To address these limitations, and drive further ad-
vancements in the creation of more general-purpose
LLMs for problem solving, we introduce XCODEE-
VAL, the largest executable multilingual multitask
benchmark to date consisting of 20M coding exam-
ples from about 7.5K unique algorithmic problems.
It covers up to 17 programming languages with
the parallelism of multilingual data. It features a
total of 7 tasks involving code understanding, gen-
eration, translation and retrieval, and wherever ap-
propriate it employs an execution-based evaluation
protocol. A detailed documentation of the dataset
can be found in (Appendix A). Figure 1 shows an
example from XCODEEVAL; it includes a problem
description in natural language, a buggy and bug-

6766

https://xCodeEval.github.io

Input The first (and the only) input line contains integer number w (1 ≤ w ≤ 100) — the weight of the watermelon bought by the boys.

Output Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.

I/O Input: 8 Output: YES

Note For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).

One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in
their opinion. After that the watermelon was weighed, and the scales showed w kilos. They rushed home, dying of thirst,
and decided to divide the berry, however they faced a hard problem.
Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the
two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely
tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the
watermelon in the way they want. For sure, each of them should get a part of positive weight.

1. #include<stdio.h>

2.

3. int main(){

4. int num ;

5. scanf("%d",&num) ;

6. if(num %2 == 0)printf("YES\n");

7. else printf("NO\n") ;

8. return 0 ;

9. }

1. #include<stdio.h>

2. int main(){

3. int num ;

4. scanf("%d",&num) ;

5. if(num == 2) printf("NO\n") ;

6. else if(num %2 == 0)printf("YES\n");

7. else printf("NO\n") ;

8. return 0 ;

9. }

C
or

re
ct

 A
ns

w
er

W
ro

ng
 A

ns
w

er

Code

Failed hidden unit test. Input: 2 Output: Yes, Exp. Output: No Passed all hidden unit tests

brute force, mathTags Diff 800

Figure 1: A sample from XCODEEVAL. It includes a language description of the problem, input/output (i/o)
description, and a few i/o examples. It also includes meta-information such as problem tags (e.g., brute force, math),
language, difficulty level (800 in the figure), and a note (explanation of i/o). Each sample contains a number of
hidden unit tests (not shown in the figure) against which we evaluate the code. Although the code at the left gives
the correct answer to the given input, it is incorrect as it fails in other test cases.

free solution to the problem, and relevant metadata
such as difficulty level, language, problem tags.

2 Design Principles & Contribution

XCODEEVAL is a result of a number of crucial
design principles and contributes to solving many
challenges in programming language evaluation as
highlighted below.

Reasoning. As a genre, problem solving posits
a unique set of challenges that require (a) under-
standing problem description in complex natural
language, (b) expertise in data structures, algo-
rithms, (c) complex reasoning that goes beyond
memorization, and (d) generating programs of po-
tentially hundreds of lines so that they can pass
a comprehensive list of expertly designed tests.
Given the current progress in LLMs and their in-
struction following capability (Ouyang et al., 2022),
competition-level problems that humans find chal-
lenging, provide an interesting benchmark to test
many aspects of intelligence (Li et al., 2022).

Multilinguality. We aim to cover as many pro-
gramming languages as possible regardless of the

Benchmark |La| |Unit Test|

TransCoder (Roziere et al., 2020) 3 14,100
HumanEval (Chen et al., 2021) 1 1,325
HumanEval-x (THUDM, 2022) 9 840
MBPP (Austin et al., 2021) 1 1,500
TransCoder-ST (Roziere et al., 2021) 3 ∞
APPS (Hendrycks et al., 2021) 1 22,711
MBXP (Athiwaratkun et al., 2022) 10 1,500
CodeContests (Li et al., 2022) 3 27,220∗

XCODEEVAL (ours)
– Classification tasks 11 -
– Generation tasks 11 62,798
– Retrieval tasks 17 62,798

Table 1: A comparison of the total number of unit test
cases provided with the benchmark. Here ∞ means
automated unit test generation by EvoSuite. N/A refers
to unit tests not openly available. For our retrieval tasks,
each candidate is pre-evaluated against the test cases.

resource discrepancies. One of the main objectives
of this benchmark is to assess the degree to which
codes in different languages are parallel to one an-
other. In addition to that, we also intend to evaluate
the zero-shot cross-lingual capability of the LLMs.

Evaluation and its granularity. We believe the
current evaluation standards do not fully consider

6767

the idea of the global meaning representation of
a program, which requires models to comprehend
different interpretable code segments and connect
both local and modular knowledge into a global
representation. We propose execution-based eval-
uation with unit tests at the global level. While
there are many benchmarks covering the local un-
derstanding of a code segment, there are only a few
that work at a global level as shown in Table 6. We
consider a pair of codes to be equivalent if they gen-
erate the same output for a given input regardless of
syntax/languages (Sajnani, 2016). To support this,
we have developed ExecEval, a standardized and
distributed execution environment that supports
44 compilers/interpreters in all the languages in
XCODEEVAL . We also provide a large number
of necessary unit tests (average of 50 per problem)
for the relevant tasks (Table 1). In this context, it
is noteworthy that 44 out of 165 problems in the
CodeContest’s test split have no private unit tests.
Additionally, it contains 104 problems without a
complete collection of unit tests (as available in
the source), thus being inadequate in assessing a
solution’s correctness. We identified this issue and
excluded such problems from our evaluation sets.

Task difficulty and trainability. We wish to
focus on problems of different difficulty lev-
els (from 800 to 3500 rating points, following
codeforces.com) such that models with dif-
ferent capabilities can be benchmarked against dif-
ficulty levels. We also aim to provide sufficient
training data for each task so that pre-trained LMs
can be fine-tuned or small-scale models can be
trained from scratch.

Data split. Balancing test distributions of text-
code instances over multiple attributes such as prob-
lems, tags, and execution outcome (e.g., correct vs.
wrong) is challenging. We propose a novel data
split schema based on a geometric mean and a
data selection schema adapting a graph-theoretic
solution to the circulation problem with lower and
upper bounds (Mount, 2017) that can be applied
for other benchmarks as well (Section 3.1).

XCODEEVAL promotes API-friendly minimal
evaluation. We evaluate ChatGPT on our classifi-
cation and generative tasks, and StarEncoder (Li
et al., 2023) on the retrieval tasks. In addition, we
trained Starcoderbase-3B on Program Synthesis
and compared its result with CodeLlama-7b and
CodeLlama-13b instruct models. Our results indi-

cate that XCODEEVAL remains difficult to solve
for the advanced LLMs, even on a simple binary
classification task like Code Compilation (Table 3).
With XCODEEVAL, we can identify and compare
multilingual executability across languages as well
as perform open-ended evaluation on any program-
ming language for the Code Translation and Pro-
gram Synthesis tasks. Moreover, the unique paral-
lelism of unit tests allows for different interpretable
evaluations and analyses on diverse code-related
tasks (Section 4). Our experimental results with
program synthesis tasks demonstrate that our train-
ing data can facilitate a reduction in the size of the
language model while maintaining its executable
capabilities.

3 XCODEEVAL: Data, Execution Engine
& Tasks

We construct our dataset from 25M openly avail-
able samples from codeforces.com for a total
of 7514 distinct problems. Each sample Sk ∈ S
represents a potential solution to a problem Pi ∈ P ,
and a problem Pi can be solved by employing a set
of algorithmic techniques Ti ⊂ T , which we refer
to as problem tags (e.g., 2-sat, binary search); see
Figure 8 for a complete list of tags. We created two
different types of test sets: (i) Compact: This set
is intended to quickly test all languages, aimed at
evaluating LLM APIs with a lower pricing struc-
ture for LLM researchers in academia. (ii) Titan:
This set is designed to perform robust tests on all
languages, especially for use in industry and/or
open-weight LLM setups.

Compact and Titan test sets. To prevent data
leakage, we put aside Nh(= 1354) problems as
held-out set Dho for the Compact and Titan test
split. It ensures that the problems in the Compact
and Titan test sets are not seen in training and
models need to generalize to unseen problems.
We then create Dcompact and Dtitan splits from Dho,
while maintaining a balanced tag distribution and
ensuring that all the tags in these two sets also
exist in the training data, which could be a require-
ment for certain tasks (e.g., Tag Classification).
For this, we iterate over a number of seeds and
create random splits. Let γ be the expected ratio
of the number of samples in Dcompact and Dtitan,
γ = |Dcompact|/|Dtitan|. For each random split, we
calculate a tag-wise ratio γT , the ratio of the num-
ber of samples in Dcompact and Dtitan for each tag
T ∈ T . The geometric mean of {γT }T∈T defines

6768

https://huggingface.co/datasets/deepmind/code_contests
codeforces.com
codeforces.com

Figure 2: Flow network for validation/test dataset cre-
ation. Here s and t represent the source and sink of the
flow network. Also, l(u, v), c(u, v) represents the lower
and upper capacity of the edge connected from u to v.

the ‘tag distribution’ score of a split. We select
the split whose score is closest to γ. Appendix B-
Algorithm 1 describes our method, which also en-
sures that Dcompact and Dtitan test sets contain the
same tag sets as the training set.

3.1 Data Creation
To make the testing computationally feasible, we
aim to control the sample size while maintaining
a balanced distribution across problems and tags;
e.g., C++ initially had about 647K test samples
for tag classification (Appendix D.1). However,
finding an optimal solution to this selection prob-
lem (i.e., how many samples to select per problem
and per tag) is nontrivial. We formulate this as
circulation problem with lower and upper bounds
(Mount, 2017) within a flow network. Let pi and
tk be the number of solutions for a problem Pi and
a tag Tk, respectively. Let G = (V,E) be a flow
network (a directed graph) with the set of vertices
V = {s, P1, ..., PN , T1, ..., TK , t}, where s and t
respectively denote the source and sink nodes of
the network (Figure 2). For each edge e ∈ E, the
lower l(e) and upper capacity c(e) are defined as:

1. Initialize E = ∅.

2. For each problem Pi, add edge (s, Pi) to E and assign
l(s, Pi) = min(mp, pi) and c(s, Pi) = min(xp, pi),
where mp and xp respectively refer to the minimum and
maximum samples to choose per problem if available
with mp ≤ xp, thus 0 ≤ l(s, Pi) ≤ c(s, Pi).

3. For each tag Tk, add edge (Tk, t) to E and assign
l(Tk, t) = min(mt, tk) and c(Tk, t) = min(xt, tk),
where mt and xt respectively refer to minimum and
maximum samples to choose per tag if available with
mt ≤ xt, thus 0 ≤ l(Tk, t) ≤ c(Tk, t).

4. For each Pi and Tk, add (Pi, Tk) to E if Pi has a tag
Tk, and assign l(Pi, Tk) = 0, c(Pi, Tk) =∞.

We then directly adopt the circulation problem
solution to find a flow f : E −→ Z+

1 that sat-
isfies: ∀e ∈ E, l(e) ≤ f(e) ≤ c(e) and
∀u ∈ V,

∑
v∈V f(u, v) = 0. In our case, f de-

notes a feasible flow when the above constraints
are satisfied for some G. For each e ∈ E, f(e)
represents the following:

1. f(s, Pi) denotes the number of samples to be picked
from problem Pi.

2. f(Tk, t) denotes the number of samples to be picked
from tag Tk.

3. f(Pi, Tk) denotes the number of samples to be picked
from Pi that has a tag Tk.

Here,
∑K

k=1 f(Tk, t) =
∑N

i=1 f(s, Pi) is the to-
tal number of samples selected, which can be con-
trolled in a balanced way by setting the control
variables mp, mt, xp, and xt. Appendix C gives
further details about the method and hyperparame-
ters for different tasks, along with a comparison to
a random data selection strategy.

Table 7 shows the effectiveness of our proposed
data splitting method. For all languages data selec-
tion with our proposed solution reduces the skew-
ness and standard deviation of the tag distribution.

3.2 ExecEval: A Multilingual, Distributed
and Secured Evaluation Engine

An essential requirement for execution-based eval-
uation is the availability of a secure and scalable
framework (Chen et al., 2021; Cassano et al., 2022).
With its capacity to support 44 compiler/interpreter
versions in 11 different languages, ExecEval of-
fers a versatile and comprehensive approach to pro-
gram evaluation. The engine is distributed as a
secure Docker image, ensuring safe and efficient
executions. It also supports easy integration of new
compilers/interpreters with custom execution flags
(which can also be changed at run-time). While
running on unit tests, ExecEval produces one of
the six outcomes:

1. COMPILATION ERROR: fails to compile or run
due to a syntax error;

2. RUNTIME ERROR: successfully compiles but
fails during runtime due to native environment
issues (e.g., asserts, division-by-zero);

3. MEMORY LIMIT EXCEEDED: occupies more
memory than the limit;

1Z+ denotes the set of non-negative integers.

6769

4. TIME LIMIT EXCEEDED: requires more time
than the limit;

5. WRONG ANSWER: successfully compiles/in-
terprets, generates an output but fails to pro-
duce a correct answer;

6. PASSED: successfully passes all the unit
tests. The program will be flagged as buggy
(i-v) even when it fails on a single unit
test. Appendix G gives further details about
ExecEval.

3.3 Tasks in XCODEEVAL

XCODEEVAL features two classification, three gen-
erative, and two retrieval tasks. Table 2 gives
a breakdown of the classification and generative
tasks per language. Below we briefly describe the
tasks; detailed descriptions, motivation, main-
tainance, support, and process of task formula-
tion along with visualizations of task distributions
and task creation rationale can be found in Ap-
pendix D.

Classification tasks – Tag Classification and
Code Compilation. The goal of Tag Classifica-
tion is to assign relevant tags to a code and/or natu-
ral descriptions of the corresponding problem. This
task focuses on measuring the impact of code un-
derstanding by incorporating a natural language
description alongside the code. It is the only task
in our benchmark that does not factor in the code’s
executability. On the contrary, the objective of the
Code Compilation task is to determine whether the
given code is compilable or not, thereby constitut-
ing a binary classification problem. All the labels
in both tasks are human annotated and found as
metadata. By addressing these classification tasks,
we aim to explore and evaluate the effectiveness of
program comprehension techniques.

Generative tasks – Program Synthesis, Auto-
matic Program Repair (APR) and Code Trans-
lation. All of our proposed generative tasks
are evaluated with execution-based unit tests by
ExecEval. The Program Synthesis task aims to
generate executable programming language code
that solves a given problem. The problem is de-
fined with a natural language description along
with some sample input-output descriptions (see
Figure 1). In the APR task, along with the prob-
lem, a buggy code is also given. The objective is
to correct or refine the buggy code. Moreover, in

the Code Translation task, a code is provided in
a source language and the goal is to translate it to
a target language. Note that for Code Translation
our benchmark provides the inputs for the source
programming language and for Program Synthesis
we only provide problem description in natural text.
For both Program Synthesis and Code-Translation,
the underlying execution-based unit test enables
evaluation on any target programming language, as
long as it is supported by ExecEval.

Retrieval tasks – Code-Code and NL-Code Re-
trieval. The objective of the Code-Code retrieval
is to retrieve relevant executable code when pro-
vided with a programming language code as input.
On the contrary, the NL-Code retrieval task aims to
retrieve relevant executable code based on a prob-
lem description. These retrieval tasks are novel in
the sense that they consider both the relevance and
executability of the retrieved codes for evaluation.
To the best of our knowledge, these are the first
retrieval-based tasks that incorporate executability
as a crucial factor when performing code retrieval.
We have also included a retrieval corpus specific to
each of the languages for evaluation purposes.

4 Evaluation and Analysis

For all tasks except Code Translation, we evaluate
on the Compact split. For Code Translation from
source languages, we used the Compact small
split (Appendix D.4).

4.1 Benchmark Results

Baselines. We benchmark XCODEEVAL using
ChatGPT (gpt-3.5-turbo-0301). To construct a
query prompt, we adopt the direct zero-shot
prompting method (i.e., no chain-of-thought) that
facilitates easier automated evaluation (no over-
lapping of code and explanations). For the re-
trieval task, following (Karpukhin et al., 2020), we
build a bi-encoder based dense multilingual code
retriever by finetuning the StarEncoder (Li et al.,
2023) model. Our implementation details are in
Appendix F.

Results. We present the results on the classifica-
tion and generative tasks in Table 3. Overall, the
model achieves inspiring yet inadequate results –
marking XCODEEVAL a promising yet challenging
benchmark as per the current progress in LLMs.
Particularly for Tag Classification, we observe de-
cent performance in general, and incorporating a

6770

Split C C# C++ Go Java Javascript Kotlin PHP Python Ruby Rust Total

Tag Classification
Train 178,324 79,128 3,711,550 25,608 703,625 15,716 49,340 6,234 678,576 15,226 30,681 5,494,008
Compact 1,694 2,234 1,983 1,626 1,908 1,610 1,712 891 1,969 2,149 920 18,696
Titan 6,193 6,020 9,720 6,504 8,881 6,431 6,841 3,598 8,195 8,671 3,679 74,733

Code Compilation
Train 503,458 170,407 15,147,814 53,561 2,007,940 36,949 104,970 18,099 1,793,141 26,362 52,449 19,915,150
Compact 1,000 1,000 1,000 212 1,000 454 482 102 1,000 50 94 6,394
Titan 5,000 5,000 5,000 814 5,000 1,676 1,940 392 5,000 242 324 30,388

Program Synthesis
Train 179,508 79,681 3,744,367 25,753 707,603 15,916 51,831 6,334 681,780 15,336 30,732 5,538,841
Compact 106 106 106 106 106 106 106 106 106 106 106 106
Titan 952 952 952 952 952 952 952 952 952 952 952 952

Code Translation (Source Language)
Train 179,508 79,681 3,744,367 25,753 707,603 15,916 51,831 6334 681,780 15,336 30,732 5,538,841
Compact 768 746 1,054 470 960 412 421 374 868 494 467 7,034
Compact small 40 40 40 40 40 40 40 40 40 40 40 440
Titan 1,725 1,760 1,981 1,811 1,849 1,651 1,949 1,734 1,942 1,928 2,026 20,356

Automatic Program Repair or APR
Train 135,307 37,039 3,409,220 13,085 574,448 8,861 16,338 3,595 461,356 5,153 7,668 4,672,070
Compact 733 739 641 294 716 183 313 191 710 343 205 5,068
Titan 1,957 2,002 2,026 1,427 2,032 643 1,978 1,156 2,012 1,561 905 17,699

Table 2: Dataset statistics per language and task (except retrieval). The Compact and Titan test splits for
Program Synthesis are same across all the languages as they solve the same problems. Code Translation data refers
to the source language. Since our setup supports execution-based evaluation, both Program Synthesis and Code
Translation support any number of languages that are supported by the execution framework ExecEval.

problem description enhances the model’s overall
predictive capability. However, in web languages
(e.g., PHP, JavaScript), it exhibits the poorest per-
formance. In Code Compilation, we observe en-
couraging performance for Go, PHP, Python, Ruby,
and C#. However, the performance is close to a
random baseline for Java, Kotlin, and Rust.

For Program Synthesis, we find that in popular
languages, such as C++, C#, Go, Java, and Python
the model performs well, while in rare languages
like Rust it fares poorly. Notably while on other
datasets such as HumanEval (Chen et al., 2021),
ChatGPT achieves much higher scores, 65.8 in
pass@1 (OpenAI, 2023; Chen et al., 2022), it sig-
nificantly falls behind even in pass@5 (∼ 30) in
XCODEEVAL – imposing challenges even for such
a powerful LLM. In Figure 3 (left), we show the
performance for different k. As expected, results
increase with k, and no noticeable differences are
observed between the compiler (e.g., C++, Java)
and interpreter (e.g., Python, Ruby) languages.

In APR, we observe a higher performance scale
than in Program Synthesis indicating that the model
finds the task relatively easier since it does not ne-
cessitate generating a complete code from scratch.
Interestingly, in languages where the model un-
derperformed in program synthesis, it exhibits a
good performance in APR. For Code Translation,
we observe that Kotlin and Go can be successfully
translated to most of the other languages, while

C++ and Python are the best to translate to.
Table 4 reports results on the two retrieval tasks:

Code-Code and NL-Code. For Code-Code retrieval,
we computed the top-k retrieval accuracy for each
of the 17 query languages from all 17 different
retrieval corpora. The summarized results from
a 17 × 17 matrix (Appendix D.6-Figure 12) are
provided in Table 4, where each row represents
a query language and each column represents a
corpus language. The column-wise and row-wise
averages are denoted as (α) and (γ), respectively.
For Code-Code (α), there is a degradation of perfor-
mance for languages with large corpus such as C++,
Python. In the case of Code-Code (γ), languages
with limited training data in XCODEEVAL , such
as D, Ocaml, Rust performed poorly as query lan-
guages. For NL-Code, performance is good across
all languages except for D. We suspect that the
limited availability of resources for D in both The
Stack (Kocetkov et al., 2022) dataset (training cor-
pora of StarEncoder) and our XCODEEVAL dataset
could account for this discrepancy. Also, the pres-
ence of more hard negative candidates (i.e., very
similar to a correct code) makes it a challenging
task to identify similar codes. We provide more
results on the retrieval outcomes in Appendix D.6.

4.2 Analysis

Knowledge cutoff. XCODEEVAL contains prob-
lems that appeared in codeforces.com for the

6771

Tasks metric C C# C++ Go Java Javascript Kotlin PHP Python Ruby Rust AVG

TC-Code2Tag macro-F1 32.37 26.91 40.58 23.06 31.58 19.35 33.95 15.25 29.45 23.64 24.04 27.29
TC-DesCode2Tag macro-F1 36.05 33.18 47.1 31.5 38.26 27.81 39.61 19.36 33.73 30.61 32.35 33.6

Code Compilation accuracy 65.9 54.9 58.0 70.28 53.0 65.64 56.64 76.47 70.9 70.0 54.26 63.27

Program Synthesis (T) pass@5 25.37 30.59 31.36 31.03 29.74 22.74 26.87 30.17 33.98 33.72 10.28 27.8
Program Synthesis (N) pass@5 31.23 30.78 35.44 30.58 31.52 28.63 27.38 32.13 29.77 29.66 28.2 30.48

Automatic Program Repair pass@5 44.32 53.38 28.88 65.95 33.21 86.05 62.49 64.22 37.94 60.38 68.96 55.07

Translation C-{} pass@5 - 41.74 89.44 49.73 57.81 30.94 37.49 44.43 45.67 35.14 51.92 44.03
Translation C#-{} pass@5 62.27 - 72.14 49.27 63.94 25.49 44.39 60.22 62.62 68.84 62.16 51.94
Translation C++-{} pass@5 49.78 48.47 - 49.43 48.98 22.65 33.91 35.41 31.88 39.46 39.1 36.28
Translation Go-{} pass@5 59.72 63.75 79.18 - 69.92 51.46 25.2 36.05 71.05 42.81 51.21 50.03
Translation Java-{} pass@5 46.03 28.13 52.64 46.82 - 32.21 28.5 11.53 44.38 27.07 42.16 32.68
Translation Javascript-{} pass@5 57.64 49.16 68.04 64.49 60.24 - 16.1 31.52 64.12 14.93 52.27 43.5
Translation Kotlin-{} pass@5 74.34 59.39 85.67 51.52 39.2 29.01 - 39.43 64.58 53.33 53.97 50.04
Translation PHP-{} pass@5 64.38 17.5 55.92 62.19 52.11 26.19 2.5 - 59.79 64.33 36.87 40.16
Translation Python-{} pass@5 41.18 19.38 42.58 50.82 40.65 19.93 6.04 48.69 - 68.12 22.23 32.69
Translation Ruby-{} pass@5 30.47 5.63 35.69 67.01 40.07 5.69 3.75 58.87 67.28 - 12.23 29.7
Translation Rust-{} pass@5 39.49 44.72 54.29 44.6 57.5 36.24 20.43 37.91 51.32 51.17 - 39.79

Target lang. Avg pass@5 52.53 37.79 63.56 53.59 53.04 27.98 21.83 40.41 56.27 46.52 42.41 45.08

Table 3: Performance of gpt-3.5-turbo on XCODEEVAL. For Code Translation, X- denotes the case where the
source language is X, and the target languages are represented by the respective columns. For program synthesis,
(T) denotes sampling done at 20 different temperatures ranging from 0.0 to 2.0, while (N) denotes sampling done at
a fixed temperature 0.32 (see Section 4.2).

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
k

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pa
ss

@
k

C
C#
C++
Go
Java
Javascript
Kotlin
PHP
Python
Ruby
Rust

Figure 3: Left: pass@k for different languages at different k. Right: ratio of the number of generated codes that
compiles for different languages. Both evaluations are done at 20 different temperature values.

Figure 4: ChatGPT’s performance on C++ over time.
After the knowledge cutoff (Sep, 2021), the performance
is notably poor.

timeframe: Feb 19, 2010 - Nov 21, 2022
(Appendix B-Figure 7 shows the distribution over
time). Since we have a complete footprint of re-
lease dates for each of the problems, it enables us
to identify data leakage in LLMs that have public
knowledge cutoff dates. Figure 4 (left) presents a
potential data contamination for ChatGPT. Though

OpenAI (2023) (Table 9) reported no data contam-
ination on codeforces.com, datasets like our
XCODEEVAL could empower researchers to con-
duct insightful analysis and perform an investiga-
tion on such serious questions. "It should be noted
that XCODEEVAL can only analyze data contami-
nation if there is a good amount of problems that
appear after the knowledge cut-off date of the evalu-
ated LLM. For a more interpretable evaluation, we
invite LLM builders to disclose their knowledge
cut-off dates.

Impact of temperature parameter. Although
proved to be crucial (Chen et al., 2021; Austin
et al., 2021), previous studies have not extensively
examined the impact of the sampling temperature
parameter on code executability. To address this
gap, we conduct an investigation in which we as-
sessed each sample for Program Synthesis at 20 dif-

6772

C C# C++ Go Java Javascript Kotlin PHP Python Ruby Rust
Programming Language

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f u
ni

t t
es

t

COMPILATION_ERROR
RUNTIME_ERROR
PASSED
WRONG_ANSWER
MEMORY_LIMIT_EXCEEDED
TIME_LIMIT_EXCEEDED

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Temperature

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f P
AS

SE
D

so
lu

tio
ns

C
C#
C++
Go
Java
Javascript
Kotlin
PHP
Python
Ruby
Rust

Figure 5: Left: execution outcome for different languages, the solutions are evaluated with ExecEval against our
unit tests; Middle: passed solutions at different temperatures. Both evaluations are done at 20 different temperature
values. Right: distribution of passed solutions (C++) across different difficulty levels.

Tasks metric C C# C++ D Go Haskell Java Javascript Kotlin Ocaml PHP Pascal Perl Python Ruby Rust Scala AVG.

Code-Code (α) Acc@k 56.43 56.05 39.96 62.82 66.30 56.71 49.30 69.63 63.42 58.44 64.80 52.71 56.38 55.92 61.38 58.10 66.69 58.53
Code-Code (γ) Acc@k 68.66 74.50 70.49 17.35 62.62 60.03 74.71 50.70 52.06 33.72 49.88 65.35 40.50 68.33 61.71 48.58 59.76 56.41

NL-Code Acc@k 82.28 89.99 83.81 68.98 90.26 81.68 84.72 85.33 84.74 85.45 80.71 82.21 81.33 84.57 87.17 82.23 89.71 83.83

Table 4: Summary of the performance of StarEncoder (Li et al., 2023) finetuned on our retrieval tasks for k = 100.
For Code-Code, (α) denotes the average score for codes of any given language as the corpus, similarly (γ) denotes
average score for codes of any fixed language as query. For NL-Code, the scores are reported for corpus of different
languages.

ferent temperatures in the range 0.0−2.0. Figure 5
(left) presents the overall distribution of execution
outcomes for various languages, encompassing all
the samples generated at different temperatures,
while Figure 5 (right) displays a distribution of
PASSED solutions at different temperatures. As
the temperature increases, the likelihood of achiev-
ing code executability decreases. We identify the
most successful PASSED tests at the temperature
of 0.32. Figure 3 (right) presents a comparison
of code executability across different languages.
For each of the unit test cases, we test it with 20
different temperature values and finally select the
temperature with highest PASSED execution. We
implemented this approach exclusively for a pro-
gram synthesis task, utilizing this optimal tempera-
ture as a pseudo signal for the best parameter for
the remaining tasks. While this incurred a signif-
icant budget, it is worth noting that with a larger
budget, employing optimal parameter search for
all tasks and optimal variation would be ideal. In
our evaluation, We see that Rust has overall low
code executability. On the other hand, interpretable
languages like Python, PHP, and Javascript have
high executability.
Difficulty analysis. Figure 5 (right) shows the
distribution of PASSED problems written in C++
for different difficulty levels.2 We see a sharp de-

2Evaluation done at temperature 0.32, generating 10 sam-
ples per problem.

crease in performance as the problems become
harder. Additionally, we refer to a concurrent work,
MapCoder (Islam et al., 2024), which presents a
detailed analysis of the program synthesis strengths
and weaknesses of state-of-the-art LLMs such as
ChatGPT, Mistral, GPT-4, and Gemini Pro. This
analysis is conducted across various prompting
techniques, programming languages, difficulty lev-
els, and algorithms using our dataset.

Reasoning capability. Figure 6 shows a reason-
ing spectrum of ChatGPT on Program Synthesis.
A program can be considered a reasoning path to
produce an output for an input of a unit test. We
define reasoning spectrum as the range or contin-
uum of different reasoning approaches or strategies
that a program can employ to produce an output
for a given input in a test case. The reasoning
spectrum encompasses various levels of execution
outcomes by the program in between different lan-
guages. The same colored vertical line along dif-
ferent languages represents an agreement of exe-
cution outcome for the corresponding languages.
Given any two languages, when the code compiles
successfully for both but one produces PASSED
and the other produces WRONG ANSWER, we can
conclude that there is a gap between reasoning ca-
pability of the two languages. We notice a low
agreement in the reasoning spectrum between lan-
guages suggesting that a further improvement of

6773

Model Trained Metric C C# C++ Go Java Javascript Kotlin PHP Python Ruby Rust Avg

Starcoderbase-3b ✓ pass@5 1.90 1.99 3.45 1.60 2.36 2.73 2.30 2.48 2.52 2.33 1.13 2.25
CodeLlama-7b-Instruct × pass@5 1.12 1.74 2.64 1.65 0.87 0 0.52 1.69 2.14 0.61 0.87 1.26
CodeLlama-13b-Instruct × pass@5 4.57 4.29 6.4 2.69 3.29 2.72 4.01 3.97 4.97 2.88 2.10 3.81

Table 5: Results on Program Synthesis task on Compact split. Starcoderbase-3b is finetuned with program
synthesis train dataset and zero shot evaluation done for the CodeLlama models.

Figure 6: Top: The reasoning spectrum of gpt-3.5-turbo-0301, X-axis represents the unit tests and the color
represents the corresponding test outcomes for different languages in the Y-axis; Bottom: The unit tests are grouped
together from the reasoning spectrum to get an overall idea of the performance of execution outcomes. Evaluations
are done at temperature 0.32 and n = 10.

transfer learning can be applied to the reasoning
capability from high to low resource languages.

Though Figure 6 (top) shows a general compa-
rable structure of reasoning capability of an LLM
for different languages, it does not show the overall
performance within each language. By grouping
the same execution outcomes together, Figure 6
(bottom) shows exceptional code executability on
Python (no compilation error). However, their rea-
soning capability (# of PASSED unit tests) remains
fairly comparable with other languages.

5 Evaluation of Program Synthesis on
Smaller Models

For Program Synthesis tasks, we fine-
tuned starcoderbase-3B model with
our trained data. We also evaluated the
CodeLlama-7b-Instruct-hf and
CodeLlama-13b-Instruct-hf models
with our evaluation data. A 3B fine-tuned model
is better than a 7B instruct model but worse than
a 13B instruct model. We observe that training a
smaller model with the training data performs well
on our task rather than using a general-purpose
instruct/chat model. However, large instruct
models are better than smaller fine-tuned models.

So, the impact of our training dataset varies
between different scales. Comparing the results
between Tables 3 and 5 also provides a general
idea of how challenging our task is.

6 Conclusion & Future Work

We have introduced XCODEEVAL , a large-scale
multilingual multitask benchmark for code-based
large language models. XCODEEVAL features
seven different tasks involving code understanding,
generation, translation and retrieval in up to 17 pro-
gramming languages, and it employs an execution-
based evaluation protocol. We have also presented
ExecEval, a multilingual code execution engine
that supports all the programming languages in
XCODEEVAL . In summary, the combination of
XCODEEVAL and ExecEval presents a novel
framework that offers a fresh perspective for ex-
amining and analyzing large language models, fa-
cilitating comprehensive and to some extent highly
interpretable investigations. We hope that by uti-
lizing the extensive metadata and execution-based
evaluation, there is potential for the discovery of
new scaling laws and emergent capabilities.

6774

Limitations

Though the codes are written by a diverse group of
experts in a diverse number of languages, data is
collected from a single source thus limiting the do-
main diversity. Besides, there is a clear discrepancy
between the resource of different programming lan-
guages (see Appendix D-Figure 9) and most of the
codes in XCODEEVAL are at the document level
and often written in a non-modular way without
a doc-string. In Appendix J, we discuss the pos-
sibilities of evaluation data leakage. The data is
distributes through CC BY-NC 4.0 license.

Ethical Considerations, Potential Risks &
Documentation

Though the data is collected from openly available
sources, it has not been humanly audited. We have
made our best efforts to use automated tools for
identifying and removing codes with sensitive de-
tails, resulting in the removal of approximately 2
million samples from our original collection. How-
ever, it is important to emphasize that despite our
diligent efforts, code can still potentially contain
sensitive information and security vulnerabilities,
although not something that is not openly avail-
able. Additionally, code datasets may reflect biases
present in the original codebase or the developers
who contributed to it.

xCodeEval documentations in Appendix Ap-
pendix G to Appendix K, follow all the neces-
sary guidelines of NeurIPS datasets-track (e.g.,
datasheets (Gebru et al., 2021), nutrition label (Hol-
land et al., 2020), and data card (Hutchinson et al.,
2021)). Our github and huggingface repositories
provide two valuable sources of both data access
and documentation. To mitigate risks and resolve
frequently asked questions, we regularly address
queries or issues there.

References

Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer.
2019. Juice: A large scale distantly supervised
dataset for open domain context-based code genera-
tion. arXiv preprint arXiv:1910.02216.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021a. Unified pre-training for
program understanding and generation. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-

HLT 2021, Online, June 6-11, 2021, pages 2655–
2668. Association for Computational Linguistics.

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat
Chakraborty, and Kai-Wei Chang. 2021b. Avatar: A
parallel corpus for java-python program translation.
arXiv preprint arXiv:2108.11590.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Su-
jan Kumar Gonugondla, Hantian Ding, Varun Ku-
mar, Nathan Fulton, Arash Farahani, Siddhartha Jain,
Robert Giaquinto, Haifeng Qian, Murali Krishna Ra-
manathan, Ramesh Nallapati, Baishakhi Ray, Parmin-
der Bhatia, Sudipta Sengupta, Dan Roth, and Bing
Xiang. 2022. Multi-lingual evaluation of code gener-
ation models. arXiv preprint arXiv:2210.14868.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Berkay Berabi, Jingxuan He, Veselin Raychev, and Mar-
tin T. Vechev. 2021. Tfix: Learning to fix coding
errors with a text-to-text transformer. In Proceed-
ings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 780–791. PMLR.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2022. Multipl-e: A scalable
and extensible approach to benchmarking neural code
generation.

Shubham Chandel, Colin B Clement, Guillermo Serrato,
and Neel Sundaresan. 2022. Training and evaluat-
ing a jupyter notebook data science assistant. arXiv
preprint arXiv:2201.12901.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.

6775

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.48550/ARXIV.2210.14868
https://doi.org/10.48550/ARXIV.2210.14868
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://proceedings.mlr.press/v139/berabi21a.html
http://proceedings.mlr.press/v139/berabi21a.html
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2208.08227

Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

James Finnie-Ansley, Paul Denny, Brett A. Becker, An-
drew Luxton-Reilly, and James Prather. 2022. The
robots are coming: Exploring the implications of ope-
nai codex on introductory programming. In Proceed-
ings of the 24th Australasian Computing Education
Conference, ACE ’22, page 10–19, New York, NY,
USA. Association for Computing Machinery.

Lingyue Fu, Huacan Chai, Shuang Luo, Kounianhua Du,
Weiming Zhang, Longteng Fan, Jiayi Lei, Renting
Rui, Jianghao Lin, Yuchen Fang, Yifan Liu, Jingkuan
Wang, Siyuan Qi, Kangning Zhang, Weinan Zhang,
and Yong Yu. 2023. Codeapex: A bilingual pro-
gramming evaluation benchmark for large language
models. CoRR, abs/2309.01940.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione,
Jennifer Wortman Vaughan, Hanna Wallach, Hal
Daumé III au2, and Kate Crawford. 2021. Datasheets
for datasets.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 7212–7225. Association for Computa-
tional Linguistics.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish
Shevade. 2017. Deepfix: Fixing common c language
errors by deep learning. In Proceedings of the aaai
conference on artificial intelligence, volume 31.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Bench-
marks 2021, December 2021, virtual.

Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua
Joseph, and Kasia Chmielinski. 2018. The dataset
nutrition label: A framework to drive higher data
quality standards. arXiv preprint arXiv:1805.03677.

Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua
Joseph, and Kasia Chmielinski. 2020. The dataset nu-
trition label. Data Protection and Privacy, 12(12):1.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi
Jin. 2018. Summarizing source code with transferred
api knowledge. pages 2269–2275.

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong
Yan, Haotian Cui, Jeevana Priya Inala, Colin Clement,
Nan Duan, and Jianfeng Gao. 2022. Execution-based
evaluation for data science code generation models.
arXiv preprint arXiv:2211.09374.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. CoRR, abs/1909.09436.

Ben Hutchinson, Andrew Smart, Alex Hanna, Emily
Denton, Christina Greer, Oddur Kjartansson, Parker
Barnes, and Margaret Mitchell. 2021. Towards ac-
countability for machine learning datasets: Practices
from software engineering and infrastructure. In Pro-
ceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pages 560–575.

Md Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving.
arXiv preprint arXiv:2405.11403.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1643–1652. Association
for Computational Linguistics.

6776

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.48550/arXiv.2309.01940
https://doi.org/10.48550/arXiv.2309.01940
https://doi.org/10.48550/arXiv.2309.01940
http://arxiv.org/abs/1803.09010
http://arxiv.org/abs/1803.09010
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/d18-1192
https://doi.org/10.18653/v1/d18-1192

Maliheh Izadi, Roberta Gismondi, and Georgios
Gousios. 2022. Codefill: Multi-token code comple-
tion by jointly learning from structure and naming
sequences. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022, pages 401–
412. ACM.

René Just, Darioush Jalali, and Michael D. Ernst. 2014.
Defects4j: A database of existing faults to enable
controlled testing studies for java programs. In Pro-
ceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, page
437–440, New York, NY, USA. Association for Com-
puting Machinery.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, Leandro von Werra, and
Harm de Vries. 2022. The stack: 3 tb of permissively
licensed source code.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation. arXiv preprint arXiv:2211.11501.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you!

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal

Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,
and Yang Liu. 2021. Retrieval-augmented generation
for code summarization via hybrid GNN. In Interna-
tional Conference on Learning Representations.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December
2021, virtual.

Zohar Manna and Richard J. Waldinger. 1971. To-
ward automatic program synthesis. Commun. ACM,
14(3):151–165.

C E Metz. 1978. Basic principles of ROC analysis.
Semin Nucl Med, 8(4):283–298.

Antonio Valerio Miceli Barone and Rico Sennrich. 2017.
A parallel corpus of python functions and documen-
tation strings for automated code documentation and
code generation. In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 314–
319, Taipei, Taiwan. Asian Federation of Natural
Language Processing.

Dave Mount. 2017. Lecture 17 network flow: Exten-
sions.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2023. Octopack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation. In 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 574–584.

6777

https://doi.org/10.1145/3510003.3510172
https://doi.org/10.1145/3510003.3510172
https://doi.org/10.1145/3510003.3510172
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://arxiv.org/abs/2211.15533
http://arxiv.org/abs/2211.15533
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/362566.362568
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect17-flow-circ.pdf
https://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect17-flow-circ.pdf
https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.1109/ASE.2015.36

OpenAI. 2023. Gpt-4 technical report.

Juri Opitz and Sebastian Burst. 2019. Macro F1 and
macro F1. CoRR, abs/1911.03347.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty,
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval
augmented code generation and summarization. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 2719–2734, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Md Rizwan Parvez, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2018. Building language mod-
els for text with named entities. arXiv preprint
arXiv:1805.04836.

Md Rizwan Parvez, Jianfeng Chi, Wasi Ahmad, Yuan
Tian, and Kai-Wei Chang. 2023. Retrieval enhanced
data augmentation for question answering on privacy
policies. In Proceedings of the 17th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 201–210.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
et al. 2021. Codenet: A large-scale ai for code
dataset for learning a diversity of coding tasks. arXiv
preprint arXiv:2105.12655.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. CoRR,
abs/2009.10297.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. Advances in
Neural Information Processing Systems, 33.

Baptiste Roziere, Jie M Zhang, Francois Charton,
Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. 2021. Leveraging automated unit tests
for unsupervised code translation. arXiv preprint
arXiv:2110.06773.

Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton,
Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul M.
Ellingwood, and Marc W. McConley. 2018. Auto-
mated vulnerability detection in source code using
deep representation learning. In 17th IEEE Interna-
tional Conference on Machine Learning and Appli-
cations, ICMLA 2018, Orlando, FL, USA, December
17-20, 2018, pages 757–762. IEEE.

Hitesh Sajnani. 2016. Large-scale code clone detection.
PhD Thesis, University of California, Irvine.

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo,
Chanchal Kumar Roy, and Mohammad Mamun Mia.
2014. Towards a big data curated benchmark of
inter-project code clones. In 30th IEEE International
Conference on Software Maintenance and Evolution,
Victoria, BC, Canada, September 29 - October 3,
2014, pages 476–480. IEEE Computer Society.

Abdel Aziz Taha and Allan Hanbury. 2015. Metrics for
evaluating 3D medical image segmentation: analysis,
selection, and tool. BMC Med Imaging, 15:29.

Chee Wei Tan, Shangxin Guo, Man Fai Wong, and
Ching Nam Hang. 2023. Copilot for xcode: Explor-
ing ai-assisted programming by prompting cloud-
based large language models. arXiv preprint
arXiv:2307.14349.

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen,
Xinyun Chen, and Mark Gerstein. 2023. Biocoder:
A benchmark for bioinformatics code generation
with contextual pragmatic knowledge. CoRR,
abs/2308.16458.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

THUDM. 2022. Codegeex: A multilingual code gener-
ation model. https://github.com/THUDM/
CodeGeeX.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2019. An empirical study on learning bug-
fixing patches in the wild via neural machine transla-
tion. ACM Trans. Softw. Eng. Methodol., 28(4):19:1–
19:29.

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou
Zhao, Jian Wu, and Philip Yu. 2019. Multi-modal
attention network learning for semantic source code
retrieval. In 2019 34th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
pages 13–25. IEEE.

6778

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/1911.03347
http://arxiv.org/abs/1911.03347
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.18653/v1/2021.findings-emnlp.232
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.48550/arXiv.2308.16458
https://doi.org/10.48550/arXiv.2308.16458
https://doi.org/10.48550/arXiv.2308.16458
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://github.com/THUDM/CodeGeeX
https://github.com/THUDM/CodeGeeX
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696–8708. Association for Computa-
tional Linguistics.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F Xu,
and Graham Neubig. 2022a. Mconala: a benchmark
for code generation from multiple natural languages.
arXiv preprint arXiv:2203.08388.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Gra-
ham Neubig. 2022b. Execution-based evaluation
for open-domain code generation. arXiv preprint
arXiv:2212.10481.

M. F. Wong and C. W. Tan. 2023. Aligning crowd-
sourced human feedback for code generation with
bayesian inference. In IEEE Conference on Artificial
Intelligence.

Man-Fai Wong, Shangxin Guo, Ching-Nam Hang, Siu-
Wai Ho, and Chee-Wei Tan. 2023. Natural lan-
guage generation and understanding of big code
for ai-assisted programming: A review. Entropy,
25(6):888.

Chunqiu Steven Xia and Lingming Zhang. 2022. Less
training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceed-
ings of the 30th ACM Joint European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2022,
Singapore, Singapore, November 14-18, 2022, pages
959–971. ACM.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories,
pages 476–486.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek
Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski,
et al. 2022. Natural language to code generation in
interactive data science notebooks. arXiv preprint
arXiv:2212.09248.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Tao Xie, and
Qianxiang Wang. 2023. Codereval: A benchmark
of pragmatic code generation with generative pre-
trained models. arXiv preprint arXiv:2302.00288.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning
Du, and Yang Liu. 2019. Devign: Effective vul-
nerability identification by learning comprehensive
program semantics via graph neural networks. In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 10197–10207.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K. Reddy. 2022.
Xlcost: A benchmark dataset for cross-lingual code
intelligence.

Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang,
Kang Yuan, Yingfei Xiong, and Lu Zhang. 2021.
A syntax-guided edit decoder for neural program
repair. In ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Athens,
Greece, August 23-28, 2021, pages 341–353. ACM.

Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, An-
drew Rice, Devon Rifkin, Shawn Simister, Ganesh
Sittampalam, and Edward Aftandilian. 2022. Pro-
ductivity assessment of neural code completion. In
Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, MAPS 2022,
page 21–29, New York, NY, USA. Association for
Computing Machinery.

A Appendix

A.1 Frequently Asked Questions

How xCodeEval is different in evaluating the
model’s code capabilities? Some unique feature
of xCodeEval are (i) the exact date of the prob-
lem features the analysis of data contamination or
knowledge cutt off performance (ii) evaluation in
so many paired languages for same probem gives us
more insights (specially transfer capability) on the
progress of LLMs (iii) Strengths and weaknesses
study for different algorithms and difficulty lev-
els, (iv) xCodeEval offers a better test suite across
multiple languages. While there have been a few at-
tempts to create competitive level evaluation bench-
marks (i.e., code_contest for Python, CPP, Java), in
our evaluation suite, we make sure all the problems
have sufficient amounts of test cases that cover the
actual proof of the solution. (v) xCodeEval offers
language agnostic testing: While previous eval-
uation benchmarks are language-dependent (i.e.,
apps), xCodeEval is language agnostic for gener-
ative tasks. (vi) xCodeEval emphasizes reasoning
evaluation at the granular level. With additional
extensive metadata, xCodeEval ensures that LLM
and/or systems can be evaluated based on problem
difficulties, categories, and execution failure levels.

6779

https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.3390/e25060888
https://doi.org/10.3390/e25060888
https://doi.org/10.3390/e25060888
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
http://arxiv.org/abs/2206.08474
http://arxiv.org/abs/2206.08474
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3520312.3534864

(vii) With xCodeEval, we also developed an execu-
tion backend, ExecEval, which ensures a secured
and easy-to-use robust API-based evaluation. (viii)
In xCodeEval evaluation, we place a significant em-
phasis on data contamination. We make sure that
there is no training-test overlap within the evalua-
tion dataset. (ix) We also provide a novel sampling
mechanism to perform balanced data selection.

Does xCodeEval requires human auditing?
With careful verifications, we make sure that all
the unit tests used for Compact and Titan test
datasets are human-generated and cover the proof
of the solution. For generative tasks, our authors
manually checked the problem description for the
Compact and Titan test dataset. For executabil-
ity check, we manually calibrated the compiler
flags and internal memory usage for ExecEval to
get a stable performance. In addition to that, be-
cause of our manual quality control, we found some
issues with a couple of languages and their stable
performance on the executability. We decided to re-
move those languages from the evaluation dataset.
For xCodeEval, we wanted to make sure a smooth
and confident execution-based evaluation for LLMs
and coding systems.

Notes on intended usage scenarios. Consider-
ing the recent progress, the primary objective of
creating XCODEEVAL is to challenge LLMs, espe-
cially the frontier models. As such, the tasks pro-
posed could be very challenging for smaller models,
even for the binary code compilation task. The rel-
atively smaller (per-language) Compact splits can
be used to assess multilingual features and to get an
overall picture of multilingual generalization. The
large Titan split is meant to rigorously evaluate
specific programming languages and conduct more
language-specific, in-depth analysis. We have also
included the Training split. The intended use of
the training split is to include it in the large scale
pre-training or SFT mixtures. For both Compact
and Titan evaluation, we recommend using an
Instruct/Chat Model.

Where are the dataset construction recipes?
This paper provides a detailed description of our
dataset construction. However, to adhere to the
page limit, we needed to shorten them in the main
paper (Section 1, Section 3) and move to the sup-
plementary Appendix D for details.

Where are the documentation, maintenance,
and support? XCODEEVAL documentations in
supplementary Appendix G to Appendix L, follow
all the necessary guidelines of datasheets (Gebru
et al., 2021), nutrition label (Holland et al., 2018),
and data card 3. Following the accountability frame-
work proposed by (Hutchinson et al., 2021), we
will release the data construction procedures, data
access, additional documentation, implementation
details as well as opensource the evaluation frame-
work.

Is there any automated process used for cre-
ating the gold labels? Please note that all cur-
rent data (text, code, test-cases, and labels) are
human-written. More specifically for tag classifi-
cation tasks, the tags are already provided in code-
forces.com. The tags are generally updated after
the contest by experienced problem solvers trusted
by the codeforces team. In addition to that, the eval-
uation is done by programming language compilers
& interpreters. We put a huge effort into develop-
ing ExecEval and dockerized it to synchronize the
evaluation process.

On the possibility of data leakage and contam-
ination. We note that, although we completely
separate our Compact and Titan test data from
training, LLMs might have possible data leakage
from pretraining. We find that even identifying
data leakage (test data exists or not in the prertrain-
ing corpora) is challenging using conventional data
search methods due to search cost and complexity
(e.g., exact match or token overlapping methods)
for (i) long sequence search for libraries (ii) boil-
erplate code identifying. Apart from that, hashing
based searches often suffer from not having prop-
erly segmented text.

In this paper, we introduce an approach to ad-
dress the challenge of leakage-free evaluation, em-
ploying a technique rooted in the concept of a
knowledge cut-off Our finding in Section 4.2 in
the main paper shows that the data contamination
significantly impacts the model performance and it
needs to be interpreted with proper analyses. An-
other method toward leakage-less evaluation could
be to have a human-written separate evaluation set
that is hidden or regularly updated which we are
considering in our long-term release plans.

3https://sites.research.google/
datacardsplaybook/

6780

https://sites.research.google/datacardsplaybook/
https://sites.research.google/datacardsplaybook/

Only generative tasks utilize unit tests. How
are classification and retrieval tasks considered
executability? In our proposed tasks, except for
the tag classification task, all tasks consider on-
line or offline unit test executability. We included
a tag classification task since tags were used for
the sampling algorithm that we proposed. Other
than that, our code compilation and retrieval task
takes into account offline code executability, where
compilers are applied before releasing datasets to
obtain labels. Additionally, in retrieval tasks, we
treat passed samples as correctly retrieved samples
and generate hard negatives from incorrect code
from the same problem. Please note that all the
data — including text, code, test cases, and labels
— is human-written.

A.2 Related Work

Following NLP (Devlin et al., 2019; Radford et al.,
2018; Raffel et al., 2020), transformer-based pre-
trained LLMs have shown significant success in
code, both in understanding and generation (Wong
et al., 2023). Table 6 shows a detailed comparison
between different programming language-related
datasets.

Code Understanding. Lu et al. (2021) propose a
benchmark CodeXGLUE, which comprises three
widely-used code understanding tasks, defect detec-
tion, clone detection, and code search. Zhou et al.
(2019) treat defect detection as a binary classifi-
cation task. They propose a model called Devign
which they evaluate on four large open-source C
projects. Additionally, Russell et al. (2018) lever-
age open-source C/CPP repositories to support
function-level vulnerability detection. To further
understand code semantics, Svajlenko et al. (2014)
propose a benchmark BigCloneBench to measure
the similarity between code pairs to predict whether
they have the same functionality (i.e., clone detec-
tion); BigCloneBench was collected from open-
source Java repositories with manual validation.
Arguably, code defect and clone detection might
not be appropriate for fully evaluating models’ abil-
ity in understanding code semantics (Wang et al.,
2021; Guo et al., 2022). Moreover, they only sup-
port a few programming languages. Code search
on the other hand considers semantic relevance
for both code-to-code and text-to-code. They are
formulated to retrieve semantically similar codes
given a query code (Lu et al., 2021) or code de-
scription (Husain et al., 2019). The existing code

search benchmarks like CodeSearchNet (Husain
et al., 2019) only select the first documentation as
the text query to search corresponding functions.
Recently, Fu et al. (2023) introduce CodeApex,
a bilingual benchmark to evaluate the language
models on three different tasks consisting of pro-
gramming comprehension, code generation, code
correction. Among its tasks, programming com-
prehension examines the ability to understand code
from various aspects, such as the syntax’s mas-
tery, code execution flow, and executing algorithms.
Nonetheless, this dataset only covers one program-
ming language, which is in contrast to our work.

Code Generation. Code generation has grown
in popularity as many pre-trained LLMs have
achieved remarkable performances in these tasks
like decoder-only models (Chen et al., 2021;
Izadi et al., 2022; Nijkamp et al., 2022) and
encoder-decoder models (Wang et al., 2021; Guo
et al., 2022; Ahmad et al., 2021a) Notably,
PaLM (Chowdhery et al., 2022) and AlphaCode (Li
et al., 2022) outperform average human participant
in competition-level coding. Thus, researchers at-
tempt to build increasingly difficult and factual
code generation tasks. These tasks can be classi-
fied as code-to-code generation and text-to-code
generation.

As for code-to-code generation tasks like au-
tomatic program repair (APR) (Tufano et al.,
2019) and code translation (Lu et al., 2021), the
metric-based automatic evaluation measures like
BLEU (Papineni et al., 2002), CodeBLEU (Ren
et al., 2020), and exact match scores are sub-
optimal for evaluating the quality of a generated
code. To improve the reliability and feasibility for
code generation evaluation, Berabi et al. (2021)
create a large-scale JavaScript patch repair dataset
from GitHub commits, where 52 error types are
detected by a static analyzer ESLint4. They further
drive efforts in enhancing program repair evalua-
tion by providing an error removal metric to take
various form of error fixes into consideration. To
address the nature of code semantic and syntactic
evaluation, execution-based evaluation with com-
prehensive test suites has a growing demand. A
popular Java APR benchmark Defects4J (Just et al.,
2014) takes the number of correct fixes into ac-
count, where a correct fix should pass all test cases
and provide a desired functionality. Nevertheless,
Defects4J does not possess a cohesive training cor-

4https://eslint.org

6781

https://eslint.org

Dataset |Train| |Test| |La| Task Type Evaluation Level Genre

Django (Oda et al., 2015) 16,000 1,805 1 Program Synthesis Lexical Local N/A
WikiSQL (Zhong et al., 2017) 56,355 15,878 1 SQL Queries Lexical Modular SQL
Miceli Barone and Sennrich (2017) 109,108 2,000 1 Synthesis, Summarization Lexical Local Github
CoNaLa (Yin et al., 2018) 2,379 500 2 Program Synthesis Lexical Local Stackoverflow: QA
CONCODE (Iyer et al., 2018) 100,000 2,000 1 Program Synthesis Lexical Modular Github
Android (Parvez et al., 2018) 26,600 3,546 1 Program Synthesis Lexical Local Map oriented, GitHub
CodeSearchNet (Husain et al., 2019) 6,452,446 99 6 Plain Text, Retrieval NDCG Modular Github
JuICe (Agashe et al., 2019) 1,518,049 1,981 1 Notebook Cell Gen. Lexical Local Prog. assignment
TransCoder (Roziere et al., 2020) 721MB 1,410 3 Program Translation Lexical Modular Github
HumanEval (Chen et al., 2021) - 164 1 Program Synthesis Execution Modular Interview Question
HumanEval-X(THUDM, 2022) - 820 9 Synthesis & Translation Execution Modular Interview Question
MBPP (Austin et al., 2021) - 974 1 Program Synthesis Execution Modular Interview Question
CodeXGLUE (Lu et al., 2021) 2,840,000 759,000 9 10 Tasks Lexical Local N/A
AVATAR (Ahmad et al., 2021b) 5,937 1,693 2 Program Translation Lexical Global Problem Solving
TFix (Berabi et al., 2021) 84,846 10,504 1 Program Repair Lexical Local Github
CCSD (Liu et al., 2021) 84,316 6,533 1 Program Summarization Lexical Modular Linux Kernel
TL-CodeSum (Hu et al., 2018) 55,766 6,971 1 Program Summarization Lexical Modular Github
CodeNet (Puri et al., 2021) 8,906,769 2,783,365 55 Classification, similarity Lexical Global Problem Solving
TransCoder-ST (Roziere et al., 2021) 333,542 103,488 3 Program Translation Execution Modular Github
DSP (Chandel et al., 2022) - 1,119 1 Notebook Cell Gen. Execution Local Math and Data Science
MTPB (Nijkamp et al., 2022) - 115 1 Multi-turn Code Gen. Execution Local Problem Solving
Exe-DS (Huang et al., 2022) 119,266 534 1 Notebook Cell Gen. Execution Local Data Science
DS-1000 (Lai et al., 2022) - 1,000 1 Notebook Cell Gen. Execution Local Data Science
MoCoNaLa (Wang et al., 2022a) - 896 1 Program Synthesis Lexical Local StackOverflow
ARCADE (Yin et al., 2022) - 1,082 1 Notebook Cell Gen. Lexical Local Data Science
ODEX (Wang et al., 2022b) - 945 1 Program Synthesis Execution Local StackOverflow
MBXP (Athiwaratkun et al., 2022) - 13,877 10 Program Synthesis Execution Modular Interview Question
XLCoST(Zhu et al., 2022) 496,333 45,394 7 10 Task Lexical Local, Global GitHub

DeepFix (Gupta et al., 2017) 37,000 7,000 1 Program Repair Ececution Global Compile Error, Students
Defects4J (Just et al., 2014) - 835 1 Program Repair Execution Local, Global N/A
APPS (Hendrycks et al., 2021) 5,000 5,000 1 Program Synthesis Execution Global Interview Question
CodeContests (Li et al., 2022) 4,432,447 32,181 3 Program Synthesis Execution Global Problem Solving
CoderEval (Yu et al., 2023) - 460 2 Program Synthesis Execution Modular, Global GitHub
Humanevalpack (Muennighoff et al., 2023) - 6×164 6 Program Synthesis Execution Modular Interview Question
BioCoder (Tang et al., 2023) - 2,522 2 Program Synthesis Execution Modular, Global Github
CodeApex (Fu et al., 2023) - 706 1 3 tasks Execution Modular Online Judge platform

XCODEEVAL (ours) 19,915,150 159,464 17 7 Tasks, see Table 8 Execution Global Problem Solving

Table 6: Comparison between XCODEEVAL and other benchmarks. For simplicity, we combine NL-code generation and code
completion as Program Synthesis. Compared to others, XCODEEVAL offers the largest suite of training and test data and a more
comprehensive set of test cases. Evaluation levels Global, Modular, and Local refer to document, function, and statements
level evaluation, respectively.

6782

pus. A common strategy to address this limitation
is to construct the training dataset using GitHub’s
publicly available repositories, and relying on bug-
specific commit messages (Zhu et al., 2021). How-
ever, this heuristic-based approach includes bug-
irrelevant commits and unrelated code pairs, which
can significantly affect the the quality of collected
training dataset (Xia and Zhang, 2022).

For text-to-code, the widely used dataset CON-
CODE (Iyer et al., 2018) consists of a large col-
lection of natural language (NL) comments and
Java code snippets. Specifically, this dataset is
constructed by scraping code snippets from open-
domain Java GitHub repositories and utilizing
heuristics to extract NL comments from Javadoc.

By following a similar approach, JuICe (Agashe
et al., 2019) collects publicly available Jupyter
notebooks from GitHub, and CoNaLa (Yin et al.,
2018) collects Python and Java codes with NL com-
ments from StackOverflow posts. Besides, they
attempt to improve the quality with professional
annotators. In addition, MoCoNaLa (Wang et al.,
2022a) extends CoNaLa to support more natural
languages. Despite their coverage, the general
lexical-based evaluation metrics are insufficient to
measure the correctness of generated codes. To al-
leviate this limitation, ODEX (Wang et al., 2022b)
provides execution-based evaluation via human-
written test cases of diversified Python libraries.
This execution-based paradigm has been widely
applied to evaluate benchmarks in Data Science do-
main like DSP (Chandel et al., 2022), DS-1000 (Lai
et al., 2022) and Exe-DS (Huang et al., 2022) as
well as general code generation benchmarks in
single-language settings such as HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), and
APPS (Hendrycks et al., 2021). Apart from Hu-
manEval, CoderEval (Yu et al., 2023) further lever-
ages the contextual information and achieves a full
spectrum of test coverage with additional manu-
ally crafted tests, providing 100% test coverage.
To improve the diversity of code generation tasks,
Fu et al. (2023) propose a bilingual code evalua-
tion benchmark CodeApex to support both English-
to-Code and Chinese-to-Code generation tasks.
Crowd-sourcing human feedback to generate high
quality code generation dataset has been explored
by (Wong and Tan, 2023). As for more particular
multi-turn MTPB (Nijkamp et al., 2022), multi-
language CodeContests (Li et al., 2022), and do-
main specific BioCoder (Tang et al., 2023) bench-

marks, they all leverage test cases, and exploit code
execution for better evaluation.

B Algorithm for initial Compact and
Titan test split creation

To make sure we do not have train and test over-
lap, at first we divide the set of problems into two
sets. In one set we keep all the problems for which
we do not have a complete set of unit tests. In an-
other set, we keep the problems where we have a
complete set of unit tests that ensures the correct-
ness of the solution of the problem. We use the
first set for training and the latter set for the test
data. Figure 7 shows the chronological distribution
of our training, Compact and Titan test data.
After selecting the test problem sets, we have thou-
sands of solutions for each of the problems. But
these problems are not divided into Compact and
Titan test splits. As a heuristic, we can consider
the tag distribution as the domain of the problem.
To ensure that we have proper domain coverage,
we employ Algorithm 1 to make the Compact and
Titan test sets contain the same tag sets as the
training set. In addition to that, it also selects the
best possible splitting point based on the geometric
mean. However Algorithm 1 provides only a split-
ting point for hundreds of thousands of Compact
and Titan test data points. To reduce the redun-
dant data based on different levels of conditions,
we formulate the problem of selecting data points
to a linear programming problem (more on this in
Section 3.1).

6783

Feb 2011

May 2012

Aug 2013

Nov 2014

Feb 2016

May 2017

Aug 2018

Nov 2019

Feb 2021

May 2022

Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Fr

eq
ue

nc
y

Dataset
Train
Test
Validation

Figure 7: The chronological order of the problems’ online appearance for the first time

Algorithm 1 Compact and Titan Test Split Creation

Input: A held-out dataset Dho, a fraction value γ where
0 ≤ γ ≤ 1, an integer N indicating number of seeds.
Output: Dvalid, Dtest spits
Initialize: count = 0, bestScore = γ + 1
while count < N do

seed = getSeed()
Shuffle Dho
Dvalid = Dho[0 : |Dho| × γ]
Tvalid = set of tags in Dvalid
Dtest = Dho[|Dho| × γ : |Dho|]
Ttest = set of tags in Dtest
if Tvalid ̸= Ttest then

continue
end if
for all T in Tvalid do

γT = #samples in Dvalid with tag T
#samples in Dtest with tag T

end for
µ = geoMean({γT }T∈Tvalid)
if |γ − bestScore| > |γ − µ| then

bestScore = µ
save current split {Dvalid, Dtest}
count = count+ 1

end if
end while

C Hyper parameter tuning for circulation
problem

Let M be the number of samples we want to
select for any set of submissions. We call any
(mp,mt, xp, xt) a valid tuple if the flow net-
work has a feasible flow for the circulation prob-
lem defined in eq. from Section 3.1. Let
d = ⌊(∑N

i=1 f(s, Pi)−M)2/∆⌋, representing the
squared difference between samples we want and
the samples selected for the flow and ∆ reduces
the resolution in which we look for differences.
Here d defines a boundary from M where we al-

low choosing an expected solution with mp, mt,
xp, and xt. Finally, the lexicographical ordering
(−d,mt,−xt,−xp,mp) is used to find the largest
element in the collection of valid tuples which al-
ways exist if we limit our search space to a finite
set. The largest element in this ordering depicts
the nearest (close to M) selection of samples that
maximizes the minimum number of samples per
tag mt. When there are many solutions with the
same (−d,mt), we prioritize reducing the maxi-
mum number of samples per tag, xt. Similarly, we
prioritize xp and mp as defined in the lexicographi-
cal ordering.

C.1 Search Techniques
1. It was manually checked that

(mp,mt, xp, xt) = (1, 1, 1000, 1000) is
a valid tuple for any set of submissions that
were processed and ∆ = 1000 was chosen.

2. In Tag classification task (Appendix D.1) and
Code compilation task (Appendix D.2), M is
2000, 10000 for any language for Compact
and Titan test split respectively. For Code
translation (Appendix D.4) M was 400, 2000
for the same.

3. Search largest tuple
(−d1,mt1 ,−xt1 ,−xp1 ,mp1) where
mt1 ∈ {1, 6, 11, · · · , 496}, mp1 ∈
{1, 2, 3, · · · , 19} and xp1 = xt1 = 1000.
Since (mp,mt, xp, xt) = (1, 1, 1000, 1000)
is a valid solution, hence the set of valid tuples
is nonempty. Let f1 be the flow for the flow

6784

network defined for mt1 ,−xt1 ,−xp1 ,mp1 .
Let fP1 = max1≤i≤N f1(s, Pi), fT1 =
max1≤k≤K f1(Tk, t) be the maximum flow
through edges from s to Pi, and same through
edges from Tk to t.

4. Now again search the largest tuple
(−d2,mt2 ,−xt2 ,−xp2 ,mp2) where
mt2 ∈ {mt1 ,mt1 + 1, · · · ,mt1 + 49},
xt2 ∈ {fT1 − 100, fT1 − 80, · · · , fT1},
xp2 ∈ {fP1 − 5, fP1 − 4, · · · , fP1},
mp2 ∈ {mp1 ,mp1 + 1}. Since
mt1 , fT1 ,mp1 , fP1 is included a solu-
tion is found in this step too. Define fP2 , fT2

similar to previous step.

5. Finally search the largest tuple
(−d3,mt3 ,−xt3 ,−xp3 ,mp3) where
mt3 = mt2 , xt3 ∈ {fT2 − 100, fT2 −
99, · · · , fT2}, xp3 = xp2 ,mp3 = mp2 .

While it is not an exhaustive search, we prioritize
minimizing xt −mt over xp −mp.

C.2 Results

We compared the performance of data selection
using circulation problem technique with randomly
selecting equal number of samples for Compact
and Titan test sets of all languages and measured
the skew µ̃3, and standard deviation σ of the dis-
tribution of tags in the selected data. Here lower
value of |µ̃3| means more symmetric distribution.
On the other hand, a lower value of σ represents
that the number of samples in each tag are closer
to the mean.

D Tasks Construction Process

D.1 Tag Classification

We formulate the task as a multi-label classification
problem in two settings: Code-to-Tag (Code2Tag)
and Problem Description-and-Code to Tag (De-
sCode2Tag). In Code2Tag, given a code C in any
language, the task is to predict the corresponding
tag set T. In DesCode2Tag, the natural language
problem description is also given as input in addi-
tion to the code. The performance difference be-
tween Code2Tag and DescCode2Tag settings can
suggest if the problem description can help models
identify the problem tags (i.e., the type of solution
needed)..

For these tasks, the split for Compact and
Titan is done with a ratio of 1 : 5 (i.e., γ = 0.2)

using Algorithm 1. To get the final Dvalid and Dtest
with a feasible number of samples, we use flow
network-based data selection approach with the
details of hyper-parameter settings presented in
Section 3.1.

The distribution of the samples according to the
tags is presented in Figure 8.

We further propose a language-specific tag clas-
sification task, in which each programming lan-
guage has its own Code2Tag and DesCode2Tag
settings.

D.2 Code Compilation
Given a code C in a language L and its compiler
or interpreter version B, the code compilation task
is to decide whether the code compiles or not. The
Compact and Titan test splits are created using
a modified version of Algorithm 1 that balances the
partition based on the compilation outcome of the
code instead of the tags of the problem that the code
belongs to. We use a ratio γ of 1 : 5. Then a sim-
plified version of the circulation problem is used
to prevent too many codes coming from a single
problem, and also to ensure a balanced output dis-
tribution. The details of hyper-parameter settings
of the circulation problem technique are presented
in Section 3.1. In the flow network construction,
tags {Tk} = {true, false} as true if the code com-
piles or not. Furthermore true and false examples
are present in equal numbers in both Compact
and Titan test dataset.

We propose three generative tasks which require
a global understanding of programming languages.
For the evaluation of generative tasks, we follow
execution-based evaluation instead of lexical simi-
larity. All the generative tasks are evaluated using
ExecEval execution engine. We provide com-
plete unit tests for all problems in the Compact
and Titan test dataset which also satisfy the con-
ditions of the input-output description of the prob-
lem.

D.3 Program Synthesis
Given a problem described in natural language,
program synthesis task is to write a program that
solves the problem. We can express each sample in
the dataset as a tuple (C,P, l, L), where C denotes
a solution code written in a programming language
L for the problem P , and l denotes the compiler/in-
terpreter version of the code. All code samples
in our dataset are unique and marked as a correct
solution (PASSED outcome) to the problem. The

6785

Language
Skew, µ̃3 Std. deviation, σ

Compact Titan Compact Titan
Random Circ. Random Circ. Random Circ. Random Circ.

Tag Classification

C 2.778 2.499 2.848 2.440 249.161 213.849 880.881 772.549

C++ 2.405 1.873 2.315 1.655 233.530 157.889 1154.538 751.023

Python 2.731 2.365 2.689 2.173 265.193 240.248 1125.133 992.904

Java 2.652 1.990 2.545 2.050 258.587 207.881 1175.790 972.703

C# 3.066 2.598 2.971 2.506 314.219 291.813 846.426 760.069

Code Translation

C 2.744 2.455 2.941 2.332 117.298 99.261 267.214 215.881

C++ 2.424 2.112 2.287 1.565 131.632 120.979 243.100 150.498

Python 2.533 2.379 2.635 2.294 123.710 110.076 271.219 237.179

Java 2.558 2.208 2.605 1.827 134.314 114.840 259.510 193.211

C# 3.147 2.532 2.943 2.395 103.838 96.747 250.049 220.615

PHP 2.506 2.744 2.520 2.730 59.321 59.877 270.582 278.530

Rust 2.520 2.393 2.534 2.311 59.269 60.253 269.352 264.507

Go 2.807 2.359 2.676 2.424 72.415 66.666 266.565 254.986

Javascript 2.611 2.611 2.473 2.473 64.090 64.090 246.483 246.483

Ruby 2.875 2.686 2.968 2.762 74.153 70.760 280.000 271.539

Kotlin 2.865 2.576 3.108 2.534 59.765 56.114 266.430 257.155

Table 7: Comparison of skew and standard deviation of tags using circulation problem technique and random data
selection (lower value is better).

Compact and Titan test splits are created from
the heldout problems using Algorithm 1 with a ra-
tio (γ) of 1 : 9. The generated code is judged based
on executions on the unit tests.

D.4 Code Translation
Each sample in the code translation data can be
expressed as a tuple (C, P, l, L), where C denotes a
set of solution codes in a programming language L
for the problem P , and l denotes the compiler/in-
terpreter version of the code. All codes in set C are
unique and guaranteed to be marked as a correct
(PASSED outcome) solution to the problem by the
compiler/interpreter.

The Compact and Titan test splits are created
from the held-out problems using Algorithm 1 with
a ratio (γ) of 1 : 5, and employ the data selection

method with flow network (Section 3.1) to have
a practical evaluation setup while ensuring a bal-
anced distribution over problems and tags. Figure 9
shows the distribution of the machine translation
tasks. Since code translation considers all possi-
ble directions of translation between languages, in
addition, to train, Compact and Titan test split,
we also provide a small Compact split.

D.5 Automatic Program Repair (APR)
We consider APR as a task to synthesize a fix for
a detected program bug. We create a bug-fix pair
by matching a buggy code (1-5 execution outcome
in Section 3.2) with a PASSED solution. Given a
bug-specific defect, the objective of this task is to
generate a correct fix that passes all the unit tests.

Let C = {C1, . . . , Cm} be the set of programs

6786

Task Type Task |Lang| |Train| |Compact| |Titan| Metric

Classification
Tag Classification 11 5,494,008 18,696 74,733 macro-f1
Code Compilation 11 19,915,150 6,394 30,388 accuracy

Generative
Program Synthesis 11 5,538,841 106 952 pass@k
Code Translation 11 5,538,841 7,034 20,356 pass@k
Automatic Program Repair 11 4,672,070 5,068 17,699 pass@k

Retrieval
Code-Code Retrieval 17 45,270 2,335 9,508

Acc@k
NL-Code Retrieval 17 55,924 2,780 11,157

Table 8: Size of the datasets for each task and the evaluation metrics. For Program Synthesis train data {problem
description, solution} comes from 7514 problems of 11-17 languages where the input for Compact and Titan test
data is only natural language text (problem description) independent of programming languages. For all other tasks, Compact
and Titan test samples are reported for a total number of languages.

2-
sa

t
bi

na
ry

 se
ar

ch
bi

tm
as

ks
br

ut
e

fo
rc

e
co

m
bi

na
to

ric
s

co
ns

tru
ct

iv
e

al
go

rit
hm

s
da

ta
 st

ru
ct

ur
es

df
s a

nd
 si

m
ila

r
di

vi
de

 a
nd

 c
on

qu
er dp ds
u

ex
pr

es
sio

n
pa

rs
in

g fft

flo
ws

ga
m

es
ge

om
et

ry
gr

ap
h

m
at

ch
in

gs
gr

ap
hs

gr
ee

dy
im

pl
em

en
ta

tio
n

in
te

ra
ct

iv
e

m
at

h
m

at
ric

es
m

ee
t-i

n-
th

e-
m

id
dl

e
nu

m
be

r t
he

or
y

pr
ob

ab
ilit

ie
s

sh
or

te
st

 p
at

hs
so

rti
ng

s
st

rin
gs

tre
es

tw
o

po
in

te
rs

tags

0

2

4

6

8

10

12

14

N
um

be
r

of
 s

am
pl

es
 in

 lo
g 1

0

4

4

5

2

3

12

5

2

3

11

5

3

4

13

5

3

3

12

5

3

3

13

6

2

3

11

5

2

3

11

5

2

3

10

6

3

4

13

5

2

2

10

4

2

2

9

4

2

2

9

4

2

3

10

4

2

3

10

5

2

3

11

4

2

3

10

5

2

3

11

6

3

4

13

6

4

4

14

4

1

2

9

6

3

4

14

4

2

2

9

4

2

2

9

5

3

3

12

4

2

3

10

5

2

3

10

5

2

3

12

5

3

3

12

5

2

3

11

5

2

3

10

Train
Compact
Titan

Figure 8: Tag distribution in XCODEEVAL. In XCODEEVAL, often multiple tags are assigned to the same problem
as there are usually many different ways to solve a problem or it may require a combination of different approaches.

submitted by a participant in chronological order to
solve a specific problem P . Some of these submis-
sions can be ‘buggy’, while some can be PASSED.
We create the ‘bug-fix’ pairs from C as follows.

1. We iterate over C and mark the PASSED ones
as ‘fixed’. Let C∗

j is one such case.

2. For each buggy submission that was made
before C∗

j , we measure its lexical similarity
with C∗

j and select the one (say Ck where
k < j) with the highest similarity score to pair
it with C∗

j and form a bug-fix pair (Ck, C
∗
j).

We use difflib5 to measure the similarity.

3. With each bug-fix pair (Ck, C
∗
j), we also in-

clude the corresponding problem description
P and execution outcome Vk (Section 3.2) of
Ck.

5https://docs.python.org/3/library/difflib.html

4. The tuple (Ck, C
∗
j , P, Vk) represents a sample

in our APR task.

We repeat this process for each participant and
problem to create the final APR dataset. As re-
ported in Table 8, it comprises more than 5M prac-
tical bug-fix pairs and supports 11 programming
languages. For data selection in APR, we consid-
ered execution outcome (Section 3.2) as tags in the
network flow construction (Section 3.1).

Due to the large input specification of the APR
task, sometimes the input sequence length becomes
too large. However, we have not compromised
the benchmarks by selecting only small sequence
length samples but rather keep them as challenging
tasks for the language models. Figure 10 shows the
length distribution of Compact and Titan test
input sequence.

6787

https://docs.python.org/3/library/difflib.html

0 20 40 60 80 100 120 140

Problem id
0

5

10

15

20

25

30

35

N
um

be
r

of
 s

am
pl

es
 in

 lo
g 1

0

Train Compact/Titan
|

C++
Java
C
Python
C#
Kotlin
Go
Rust
Ruby
Javascript
PHP

Figure 9: Distribution of samples across all problems in the train, Compact and Titan test splits for all languages
in the machine translation task.

D.6 Code Retrieval

Code retrieval tasks typically aim to measure the
mere semantic relatedness between a natural lan-
guage (NL) query and a programming language
(PL) code. However, a code that is relevant, can
still be buggy and thus be misleading (see an ex-
ample in Figure 11). In view of this, we propose
two new and more challenging retrieval tasks in
our benchmark, which require a deeper understand-
ing of the NL query and code. In particular, we
propose NL-Code and Code-Code retrieval tasks
that involve identifying a correct code from a large
pool of candidates containing similar codes. In
both tasks, for each programming language, we ag-
gregate all the submitted codes and their test cases
to create a retrieval corpus and a testbed for eval-
uating their correctness against test cases. Table 9
gives a detailed statistics of our retrieval tasks. The
datasets for the subtasks and the evaluation schema
are discussed below.

NL-Code retrieval. This task involves matching
an NL problem description to the most relevant and
correct code from a pool of candidates. An example
of an NL description and its corresponding codes
are shown in Figure 1. To gather data for this task,
we only use instances where the NL description is
valid and there is at least one correct solution code
(i.e., with execution outcome PASSED). For an NL
problem description, we consider all the correct
solutions as positive examples and all the wrong
(or buggy) solutions as negative examples.

Code-Code retrieval. Given an input code (as a
query), this task involves finding similar and logi-
cally equivalent code (i.e., passes the same set of
test cases) from a collection of candidates. We en-
sure that the query code solves a specific problem
(i.e., a correct solution without any detected bugs)
and evaluate whether the retrieved candidate also
solves the same problem or not. To collect data for
this task, we only consider the programming prob-
lems which have at least two correct code solutions
that pass all the corresponding test cases (i.e., with
execution outcome PASSED).

From each of these problems, we randomly
choose one correct solution as a (PL code) query
and pair it with the other correct solutions as
positive examples and the corresponding wrong
solutions (i.e., with execution outcome WRONG
ANSWER) as negative examples.

Retrieval corpus metadata and evaluation pro-
tocol. We preserve the problem specifications
and execution outcomes (e.g., PASSED, WRONG
ANSWER) for each candidate code in our retrieval
database. For both the NL-code and code-code re-
trieval tasks, we use this information to determine
the correctness of a retrieved code, checking if that
solves the same programming problem as the input
query by passing all its unit tests or not.

Evaluation metrics. We evaluate the retrieval
performance in terms of retrieval accuracy@k:
computed as the proportion of queries for which a
correct code retrieved within top-k.

Our retrieval benchmark has 17 programming

6788

0 500 1000 1500 2000 2500 3000 3500
Token length

0

50

100

150

200

250

Nu
m

be
r o

f s
am

pl
es

1-percentile/median
5-percentile/median
50-percentile/median
average
95-percentile
99-percentile

Figure 10: Distribution of sequence length of tokenized (bigscience/bloom) samples in the Compact and
Titan test splits for all languages in the APR task (Appendix D.5). Each sample contains a buggy code with it’s
problem description.

1. def find_median(uns):

2. sorted_nums = sorted(uns)

3. mid = len(uns)//2

4. return mid

5.

6. find_median([4,2,3,1,5])

Problem

1. def find_median(uns):

2. sorted_nums = sorted(uns)

3. mid = len(uns)//2

4. return sorted_nums[mid]

5.

6. find_median([4,2,3,1,5])

Code

W
ro

ng
 A

ns
w

er

C
or

re
ct

 A
ns

w
er

find median of an unsorted list of odd length

Figure 11: A code retrieval example. The candidate code on the left has a bug highlighted in red and that on the right
has a fix highlighted in green. Both our proposed NL-Code and Code-Code retrieval tasks ensure differentiating
between them and pose a more challenging task that aims to comprehend both semantic and logical relatedness.

languages and our training dataset is the largest that
provides annotations of similar codes that are found
logically equivalent or correct based on the passing
of test cases. For evaluation purposes (i.e., for test
sets), we release the input problem description (in
NL-Code) or the input code (in Code-Code) only
and keep all other metadata confidential. Covered
programming languages and their data statistics in
both tasks are summarized in Table 9.

Retrieval evaluation. Figure 12 reports one re-
trieval task (code-code) performance. As antici-
pated, the retrieval capability for the same language
pair (a.k.a., monolingual retrieval) of our baseline
model performances are relatively stronger and we
observe performance degradation when performing
cross-lingual retrieval between different languages.
However, surprisingly, mono-lingual retrieval ac-
curacies for popular languages like C, C++, C#,

Python, and Java are lower than others such as Go,
Haskell, Javascript, Kotlin, Ruby, Scala etc., possi-
bly due to their large retrieval corpus size and pres-
ence of more hard negative candidates (very similar
to the correct code). Furthermore it is suspected
that the lack of enough resource on D programming
language in both The Stack (Kocetkov et al., 2022)
and XCODEEVAL is the primary reason for its poor
scores. In this paper, we develop an unified sin-
gle retriever model and leave the development of
multiple different ones using different base encoder
models as future works (Parvez et al., 2023).

E Evaluation Metrics

Tag Classification. Since it is a multi-class multi-
label classification problem, we use f1 score with
macro averaging over the classes (in this case the
tags) to measure the performance as macro aver-

6789

Lang Subtask
Train Dev Test Retrieval

|Size| |Pos| |Neg| |Size| |Pos| |Neg| |Size| Corpus |Size|

C
NL-Code 5,196 149,000 146,852 209 11,282 11,293 853

787,516
Code-Code 4,391 122,758 145,849 193 9,162 11,282 798

C#
NL-Code 4,878 75,386 55,579 207 6,574 4,757 828

251,147
Code-Code 4,397 69,016 54,886 194 5,854 4,742 785

C++
NL-Code 6,181 612,647 608,088 269 25,752 25,516 1,098

18,212,508
Code-Code 6,181 554,465 608,088 269 23,503 25,516 1,098

D
NL-Code 3,359 7,624 3,655 133 351 142 521

15,984
Code-Code 1,968 4,265 2,722 80 218 119 293

Go
NL-Code 3,764 25,656 18,957 165 1,466 750 662

68,237
Code-Code 3,090 21,787 18,079 148 1,242 727 563

Haskell
NL-Code 3,173 15,138 7,084 173 2,172 936 687

44,682
Code-Code 2,305 11,863 6,373 160 1,871 922 596

Java
NL-Code 5,930 393,891 375,416 250 17,623 16,008 1,021

2,523,044
Code-Code 5,792 320,738 375,176 245 14,022 15,981 991

Javascript
NL-Code 2,609 15,605 13,706 134 1,322 1,345 534

56,917
Code-Code 1,986 12,821 12,678 116 1,144 1,306 436

Kotlin
NL-Code 4,017 46,487 25,600 158 1,859 1,036 654

121,569
Code-Code 3,237 39,813 24,948 127 1,600 1,009 518

Ocaml
NL-Code 1,424 2,327 1,382 97 219 114 381

7,012
Code-Code 485 903 746 50 122 82 170

PHP
NL-Code 1,965 6,301 8,870 136 896 834 547

29,179
Code-Code 1,180 4,303 6,689 99 723 745 389

Pascal
NL-Code 4,432 113,222 105,127 216 10,113 8,568 853

494,473
Code-Code 3,949 97,179 104,320 208 8,496 8,564 816

Perl
NL-Code 1,276 3,903 1,957 102 559 338 412

11,035
Code-Code 678 2,627 1,531 64 457 305 309

Python
NL-Code 4,930 317,013 284,975 213 17,131 15,194 859

2,290,854
Code-Code 4,736 266,459 284,657 210 14,144 15,192 837

Ruby
NL-Code 2,349 15,230 7,278 157 2,371 866 649

44,934
Code-Code 1,742 12,714 6,683 145 2,113 854 569

Rust
NL-Code 3,860 30,673 14,923 137 742 303 551

59,829
Code-Code 3,062 26,779 14,290 104 605 288 428

Scala
NL-Code 2,555 7,858 5,210 144 867 459 591

24,780
Code-Code 1,527 5,268 4,078 123 723 442 448

Table 9: Retrieval subtasks statistics. |Size| denotes the number of instances. For each train/dev instance, we provide
multiple positive and negative examples, and |Pos| and |Neg| refer to the total number of positive and negative
annotations.

aging is class population size independent. This is
done by first calculating the f1 score for each class
(tag) T ∈ T (the set of all tags) with the following
formula (Taha and Hanbury, 2015):

f1T =
2 ∗ PrecisionT ∗ RecallT

PrecisionT + RecallT

=
2 ∗ TPT

2 ∗ TPT + FPT + FNT

(1)

And then the macro average is calculated as the

6790

C C
#

C
+

+

D G
o

H
askell

Java
Javascript
K

otlin
O

cam
l

P
H

P
P

ascal
P

erl
P

ython
R

uby

R
ust

Scala

Corpus/Context Language

C

C#

C++

D

Go

Haskell

Java

Javascript

Kotlin

Ocaml

PHP

Pascal

Perl

Python

Ruby

Rust

Scala

Q
u

es
ti

on
/Q

u
er

y
L

an
gu

ag
e

91.1 68.8 48.3 70.0 79.6 63.1 62.8 81.4 74.7 52.9 70.2 67.2 56.5 70.7 70.8 66.8 75.9

72.6 87.8 55.8 79.9 84.4 74.8 68.6 87.4 82.4 67.6 80.5 69.5 67.4 73.2 77.3 73.4 86.8

78.6 73.2 83.8 70.6 79.6 58.6 71.7 74.5 74.1 53.5 65.6 64.8 45.8 70.5 67.1 59.8 64.7

16.4 19.2 13.0 36.9 19.7 15.3 18.4 16.7 23.4 13.5 13.4 15.1 12.6 16.7 14.1 22.2 17.6

64.2 59.5 45.4 71.7 89.2 60.4 52.9 76.8 71.8 61.2 70.2 56.7 59.4 60.3 66.1 66.1 71.9

58.9 56.1 41.6 64.5 68.9 86.7 47.2 71.1 62.4 61.8 72.5 55.0 63.9 58.6 67.3 56.1 71.7

79.6 80.4 66.2 78.8 82.8 71.3 83.9 79.4 77.6 59.4 69.2 71.8 53.5 77.0 72.9 64.3 78.8

46.9 45.4 34.4 58.7 57.5 49.8 39.9 86.7 58.1 52.4 65.3 44.6 54.2 47.6 56.8 54.7 64.1

46.4 52.7 25.0 62.1 64.1 48.2 44.6 70.2 86.9 53.5 59.1 46.2 49.4 52.3 54.5 61.7 62.3

30.7 29.4 22.5 39.6 41.0 35.4 25.2 46.6 34.4 81.8 44.2 29.3 43.5 29.2 35.5 33.9 44.6

45.9 45.1 35.2 53.2 56.3 49.5 38.5 71.8 52.9 61.8 90.2 44.0 57.4 44.1 56.8 50.9 58.9

65.7 67.0 44.4 63.8 73.7 66.4 56.4 75.0 64.3 65.9 73.3 82.7 64.8 64.2 70.8 58.6 77.2

35.1 36.8 25.8 45.1 44.9 43.1 28.9 52.1 46.5 54.7 51.9 33.0 86.1 35.9 46.0 42.1 54.9

69.0 73.8 18.0 76.1 82.2 72.7 63.3 82.8 79.2 59.4 73.8 66.1 63.5 90.1 81.2 72.0 82.6

56.9 58.0 42.8 65.2 71.4 65.4 47.8 76.8 65.1 73.5 75.6 55.0 67.4 59.1 92.8 62.4 72.5

46.4 44.6 35.9 62.5 58.8 42.1 40.2 61.2 60.2 45.9 54.0 40.0 46.5 46.3 49.6 81.1 55.6

55.1 55.2 41.3 69.3 73.0 61.2 47.9 73.2 64.3 74.7 72.8 55.1 66.5 54.9 63.8 61.7 93.5

20

30

40

50

60

70

80

90

Figure 12: 17× 17 matrix of top-100 accuracy scores of StarEncoder finetuned on retrieval Code-Code dataset.
Here a cell (x, y) denotes the top-100 accuracy score for code queries from language x and the retrieval corpus of
language y. The average mono lingual retrieval accuracy is 84.19, and average cross lingual score is 56.93.

mean of f1T for all T ∈ T (Opitz and Burst, 2019).

f1macro =
1

|T |
∑

T∈T
f1T .

Code Compilation. Since it is a binary classifi-
cation problem, we use accuracy which is defined
as the proportion of correct prediction among all
predictions (Metz, 1978). That is

Accuracy =
TP + TN

TP + TN + FP + FN
.

Generative tasks. The generative tasks in
XCODEEVAL(i.e. Automatic Program Repair,

Code Translation, Program Synthesis) are all eval-
uated using pass@k used in Chen et al. (2021).

Code Retrieval. The Code-Code, and NL-Code
retrieval tasks in XCODEEVALis evaluated using
top-k accuracy (Thakur et al., 2021).

F Implementation Details

Classification tasks. OpenAI chat completion
API with gpt-3.5-turbo-0301 model was used at
temperature 0.325 and n = 1. List prompts for
Code2Tag, DescCode2Tag, Code Compilation as
figure or inline styling, with example api response.

6791

Then evaluate each through corresponding metric
as mentioned in Appendix E.

Generative tasks. OpenAI chat completion API
with gpt-3.5-turbo-0301 model was used at tem-
perature np.linspace(0, 2, 20) and n = 1 for Pro-
gram Synthesis. Then upon identifying best tem-
perature at 0.325, another batch of codes were gen-
erated at temperature 0.325 and n = 20. For APR,
Code Translation temperature of 0.325 and n = 10
was used. The generated codes were executed with
ExecEval with default parameters (follow Ap-
pendix G for a list of different parameters and their
default values) to determine its functional correct-
ness and then evaluated using pass@k. Figure 13
shows the compiler versions used to execute the
generated codes.

Retrieval tasks. We finetuned a DPR6 model
with starencoder for both query and corpus en-
coder. Both NL-Code, and Code-Code were trained
with maximum sequence length of 1024, and ef-
fective batch size 48 for 37 epochs. The model
is trained with a multilingual manner. For Code-
Code we used XCODEEVAL as it is, and for NL-
Code we made the following template: ‘Descrip-
tion: {{description}} Input specification: {{in-
put_spec}} Output specification: {{output_spec}}’
for the query string. For evaluation we used corpus
provided by XCODEEVAL to generate the dense
vectors and then perform queries with test split for
both Code-Code, and NL-Code. Finally the top-k
accuracies were measured.

G ExecEval Details

ExecEval is an automated code execution and
evaluation engine distributed through docker for
security and portability. It supports 44 com-
piler versions for 11 programming languages as
shown in Table 10. It exposed NUM_WORKERS
CLI argument to spawn multiple workers that
can execute the codes. It is highly scalable in
the sense of adding support for more languages
or one can just change NUM_WORKERS to exe-
cute more codes in parallel. At the top level
of ExecEval, there is a HTTP server that ex-
poses 2 API endpoints /api/execute_code,
/api/all_runtimes. Figure 15 shows a sim-
ple usage of execute_code API. By default the exe-
cution of a code is stopped when the code doesn’t
pass a unit test as pass@k depends on whether

6https://github.com/facebookresearch/DPR

all the unit tests passed or not. This can be dis-
abled by adding ‘"stop_at_first_fail": false’, in
which case all unit tests for a given code will be
executed irrespective of the outcomes for other
unit tests. Figure 6 is generated with disabling
‘stop_at_first_fail’. It is worth noting that, disabling
this setting can increase the evaluation time signif-
icantly (e.g. in Table 3 for program synthesis (N)
where 23,320 codes were executed the difference
was of approximately 12 minutes and 2 hours 12
minutes where ExecEval was running with 61
workers).

Security measures. ExecEval uses
prlimit7, and seccomp8 to limit system
resources allocated for any instance of code
executed through the API endpoint in addition to
using unique unprivileged users for each worker
spawned with NUM_WORKERS. Table 11 shows the
default values provided to prlimit, furthermore
nofile, and nproc are customized for each of the
supported languages. The seccomp is used to block
socket system call, which disables network access
(this is default). One can enable network access
by adding ‘"block_network": false’ in the request
body as shown in Figure 15. Similarly, adding a
‘limits’ object in the request body allows one to
change the limits for executing an individual code.
The execution of code via an unprivileged user
disables the read, write, or execute permissions
of any sensitive files. Figure 16, Figure 17, and
Figure 18 shows an example of a fork bomb
written in C, a network request in Python, and an
escalated access in Python which are all blocked
by ExecEval, respectively.

H Definition of Data Attributes

For each of the tasks, we have two data files that
are required for multiple tasks.

1. problem_descriptions.jsonl

2. unittest_db.json

To avoid data redundancy we didn’t include
these data with the relevant tasks, rather we added
a unique id src_uid to retrieve these data. We
include a data loader using datasets9 package
that defines the tasks.

7https://man7.org/linux/man-pages/man1/prlimit.1.html
8https://man7.org/linux/man-

pages/man2/seccomp.2.html
9https://github.com/huggingface/datasets

6792

https://github.com/facebookresearch/DPR
https://man7.org/linux/man-pages/man1/prlimit.1.html
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://github.com/huggingface/datasets

{
"C": "GNU C11",
"C#": "Mono C#",
"C++": "GNU C++17",
"Go": "Go",
"Java": "Java 17",
"Javascript": "Node.js",
"Kotlin": "Kotlin 1.4",
"PHP": "PHP",
"Python": "PyPy 3",
"Ruby": "Ruby 3",
"Rust": "Rust 2018",

}

Figure 13: List of ExecEval compiler versions used to evaluate the generated codes.

{
"compile_cmd": "node",
"compile_flags": "--check",
"execute_cmd": "node",
"execute_flags": "",
"has_sanitizer": false,
"is_compiled": true,
"runtime_name": "JavaScript",
"timelimit_factor": 3

}

Figure 14: An example runtime object the response from /api/all_runtimes contains list of such objects.

{
"language": "Python 3",
"source_code": "a, b = map(int, ←↩

↪→ input().strip().split())\←↩
↪→ nprint(a+b)",

"unittests": [
{"input": "1 1", "output": ["2"←↩

↪→]},
{"input": "1 10", "output": ["←↩

↪→ 11"]}
]

}

{
"data": [

{
"exec_outcome": "PASSED",
"input": "1 1",
"output": [
"2"

],
"result": "2"

},
{

"exec_outcome": "PASSED",
"input": "1 10",
"output": [
"11"

],
"result": "11"

}
]

}

Figure 15: On left: An example request body for /api/execute_code The Python code takes 2 numbers as input and
prints their sum. On right: The response by ExecEval in response to the request shown in left.

6793

Language Versions

Ruby Ruby 3, Ruby

Javascript Node.js, JavaScript

Go Go 1.19

C++ GNU C++17, GNU C++17 (64), GNU C++20 (64), GNU C++11, Clang++17 Diagnostics,
GNU C++, GNU C++14, GNU C++17 Diagnostics, Clang++20 Diagnostics, MS C++,
GNU C++0x, MS C++ 2017

C GNU C11, GNU C

Java Java 6, Java 7, Java 17, Java 11, Java 8

Python PyPy 3, PyPy 3-64, Python 3 + libs, Python 2, PyPy 2, Python 3

C# MS C#, C# 8, Mono C#, .NET Core C#, C# 10

PHP PHP 8.1

Rust Rust, Rust 2021

Kotlin Kotlin, Kotlin 1.4, Kotlin 1.5, Kotlin 1.7, Kotlin 1.6

Table 10: Supported languages and their compiler/interpreter versions of our dataset in ExecEval.

We define each of the data attributes of XCODEE-
VAL in the following sections.

H.1 Problem Description
(problem_description)

The problem descriptions are in the
problem_descriptions.jsonl file.
This data source is linked to the proposed tasks by
matching the src_uid column for each sample
in the relevant tasks. The columns copied from
the problem_descriptions.jsonl file are
prefixed with prob_desc_.

1. description: Problem description in tex-
tual format, math operations are written in
latex.

2. input_from: How the program should take
the unit test.

3. output_to: Where the program should out-
put the result of the unit test.

4. time_limit: Time limit to solve the prob-
lem.

5. memory_limit: Memory limit to solve the
problem.

6. input_spec: How and in what order the
input will be given to the program? It also
includes the date range, types, and sizes.

7. output_spec: How the outputs should be
printed. Most of the time the unit test results
are matched with an exact string match or
floating point comparison with a precision
boundary.

8. sample_inputs: A sample input for the
code that is expected to solve the problem
described in description.

9. sample_outputs: The expected out-
put for the sample_input that is ex-
pected to solve the problem described in
description.

10. notes: Explanation of sample_inputs
& sample_outputs.

11. tags: The problem categories.

12. src_uid: The unique id of the problem.
This ID is referred to in the task data sam-
ples instead of putting all this information.

13. difficulty: How difficult is it to solve the
problem for a human (annotated by an expert
human).

14. created_at: The Unix timestamp when
the problem was released. Use datetime
lib in Python to parse it to a human-readable
format.

6794

Resource Value Comment

core 0 RLIMIT_CORE
data -1 RLIMIT_DATA
fsize 0 RLIMIT_FSIZE
sigpending 0 RLIMIT_SIGPENDING
rss -1 RLIMIT_RSS
nofile 4 RLIMIT_NOFILE
msgqueue 0 RLIMIT_MSGQUEUE
rtprio 0 RLIMIT_RTPRIO
stack -1 RLIMIT_STACK
cpu 2 RLIMIT_CPU, CPU time, in seconds
nproc 1 RLIMIT_NPROC
as 2× 10243 RLIMIT_AS set to 2GB by default
locks 0 RLIMIT_LOCKS

Table 11: Default resource limits values for prlimit used by ExecEval. The comment column shows the
variable names as defined in sys/resource.h with some additional information.

#include <stdio.h>
#include <sys/types.h>

int main()
{

while(1)
fork();

return 0;
}

{
"data": [

{
"exec_outcome": "←↩

↪→ TIME_LIMIT_EXCEEDED",
"input": "",
"output": [
""

],
"result": null

}
]

}

Figure 16: Left: An fork bomb written in C. Right: ExecEval ran the code with allowing only 1 process and thus the infinite
loop resulted in TIME_LIMIT_EXCEEDED.

6795

import urllib.request

url = ’http://icanhazip.com’

with urllib.request.urlopen(url) as←↩
↪→ response:
if response.getcode() == 200:

print(response.read().←↩
↪→ decode(’utf-8’).←↩
↪→ strip())

else:
print(f’Request failed with←↩

↪→ status code: {←↩
↪→ response.getcode()}’←↩
↪→)

{
"data": [

{
"exec_outcome": "←↩

↪→ RUNTIME_ERROR",
"input": "",
"output": [
""

],
"result": "Traceback (most ←↩

↪→ recent call last):\n ←↩
↪→ File \"/usr/lib/python←↩
↪→ 3.11/urllib/request.py←↩
↪→ \", line 1348, in ←↩
↪→ do_open\n h.request←↩
↪→ (req.get_method(), req←↩
↪→ .selector, req.data, ←↩
↪→ headers,\n File \"/←↩
↪→ usr/lib/python3.11/←↩
↪→ http/client.py\", line←↩
↪→ 1282, in request\n ←↩
↪→ self._send_request(←↩
↪→ method, url, body, ←↩
↪→ headers, ←↩
↪→ encode_chunked)\n **←↩
↪→ Truncated**

line 941, in connect\n ←↩
↪→ self.sock = self.←↩
↪→ _create_connection(\n ←↩
↪→ ←↩
↪→ ^^^^^^^^^^^^^^^^^^^^^^^^\←↩
↪→ n File \"/usr/lib/←↩
↪→ python3.11/socket.py\"←↩
↪→ , line 826, in ←↩
↪→ create_connection\n ←↩
↪→ for res in ←↩
↪→ getaddrinfo(host, port←↩
↪→ , 0, SOCK_STREAM):\←↩
↪→ nFile \"/usr/lib/←↩
↪→ python3.11/socket.py\"←↩
↪→ , line 961, in ←↩
↪→ getaddrinfo\n for ←↩
↪→ res in _socket.←↩
↪→ getaddrinfo(host, port←↩
↪→ , family, type, proto,←↩
↪→ flags):\nsocket.←↩
↪→ gaierror: [Errno -3] ←↩
↪→ Temporary failure in ←↩
↪→ name resolution"

}
]

}

Figure 17: Left: A Python code performing a network request. Right: ExecEval responded with RUNTIME_ERROR as the
socket system call is blocked.

H.2 Unit Tests (hidden_unit_test)

The unit tests needed for execution based evalua-
tion are in the unittest_db.json file. This
data source is linked to the proposed tasks by
matching the src_uid column for each sample
in the relevant tasks. The columns copied from the
unittest_db.json file are under the attribute
hidden_unit_test.

1. unittest_db.json dict keys i.e.,
db884d679d9cfb1dc4bc511f83beedda
are the src_uid from
problem_descriptions.jsonl.

2. input: Input of the unit test.

3. output: List of expected outputs for the unit
test.

6796

import subprocess

Run ’ps -ef’ command
command = [’ps’, ’-ef’]
process = subprocess.Popen(command,←↩

↪→ stdout=subprocess.PIPE, ←↩
↪→ stderr=subprocess.PIPE)

output, error = process.communicate←↩
↪→ ()

Decode and print the output
if output:

print(output.decode(’utf-8’))
else:

print(f’Error: {error.decode("←↩
↪→ utf-8")}’)

{
"data": [

{
"exec_outcome": "←↩

↪→ RUNTIME_ERROR",
"input": "",
"output": [
""

],
"result": "Traceback (most ←↩

↪→ recent call last):\n ←↩
↪→ File \"/code_store/6cd←↩
↪→ 9b5215a524abab3712bc89←↩
↪→ 7de2be5/test.py\", ←↩
↪→ line 5, in <module>\n ←↩
↪→ process = ←↩
↪→ subprocess.Popen(←↩
↪→ command, stdout=←↩
↪→ subprocess.PIPE, ←↩
↪→ stderr=subprocess.PIPE←↩
↪→)\n ←↩
↪→ ^^^^^^^^^^\n File \"/←↩
↪→ usr/lib/python3.11/←↩
↪→ subprocess.py\", line ←↩
↪→ 890, in __init__\n ←↩
↪→ errread, errwrite) = ←↩
↪→ self._get_handles(←↩
↪→ stdin, stdout, stderr)←↩
↪→ \n ←↩
↪→ ←↩
↪→ ^^^^^^^^^^^^^^^\n ←↩
↪→ File \"/usr/lib/python←↩
↪→ 3.11/subprocess.py\", ←↩
↪→ line 1664, in ←↩
↪→ _get_handles\n ←↩
↪→ c2pread, c2pwrite = os←↩
↪→ .pipe()\n ←↩
↪→ ←↩
↪→ ^^^^^^^^^\nOSError: [←↩
↪→ Errno 24] Too many ←↩
↪→ open files\n"

}
]

}

Figure 18: Left: A python code performing a subprocess call to run ‘ps -ef’. Right: ExecEval responded with
RUNTIME_ERROR as nofile (Table 11) is limiting the execution of such codes.

H.3 Tag Classification
(tag_classification)

Given a source_code the objective is to classify
the code into multi-label tags (label:tags).

1. lang: Runtime/compiler version of the
source_code.

2. source_code: A program.

3. tags: List of potential algorithmic tech-
niques required to write the program.

4. lang_cluster: A generic programming
language name the value of lang belongs to.

5. code_uid: A unique ID for the sample. It is
not important for model training. If you find
any issue with the sample, you can report it to
us by mentioning the code_uid.

6. src_uid: A specific identifier that shows
which problem the code is associated with.
This identifier is important for the training
of the model. The problem referred to by the
src_uid provides a natural description of
the problem that the code successfully solved.

7. difficulty: Difficulty rating of the prob-
lem indicated by src_uid. The higher the
harder.

6797

H.4 Code Compilation
(code_compilation)

Given a source_code the objective is to
classify if the code compiles or not (la-
bel:compilation_error).

1. lang: Runtime/Compiler version of the
source_code.

2. source_code: A program.

3. lang_cluster: A generic programming
language name the value of lang belongs to.

4. compilation_error: True/False, Indi-
cates if the code generates a compilation error
or not.

5. code_uid: A unique ID for the sample. It is
not important for model training. If you find
any issue with the sample, you can report it to
us by mentioning the code_uid.

6. src_uid: A specific identifier that shows
which problem the code is associated with.
This identifier is important for the training
of the model. The problem referred to by the
src_uid provides a natural description of
the problem that the code successfully solved.

7. difficulty: Difficulty rating of the prob-
lem indicated by src_uid. The higher the
harder.

8. file_name: Name of the source JSON file
from where data is loaded.

H.5 Automatic Program Repair (apr)
Given a bug_source_code the objective is to
generate a fixed version of the code that passes
all the unit tests. Use fix_source_code for
training.

1. similarity_score: A similarity
score between bug_source_code and
fix_source_code given by difflib.

2. equal_cnt: A metric com-
paring bug_source_code and
fix_source_code. Recommended
by difflib.

3. replace_cnt: A metric com-
paring bug_source_code and
fix_source_code. Recommended
by difflib.

4. delete_cnt: A metric com-
paring bug_source_code and
fix_source_code. Recommended
by difflib.

5. insert_cnt: A metric com-
paring bug_source_code and
fix_source_code. Recommended
by difflib.

6. fix_ops_cnt: A metric com-
paring bug_source_code and
fix_source_code. Recommended
by difflib.

7. bug_source_code: Buggy code.

8. fix_source_code: A potential fix of the
buggy code that passed all the unit tests.

9. lang: Runtime/Compiler version of the
source_code.

10. fix_code_uid: A unique ID for the fix
code. It is not important for model training. If
you find any issue with the sample, you can re-
port it to us mentioning the fix_code_uid.

11. bug_code_uid: A unique ID for the buggy
code. It is not important for model training. If
you find any issue with the sample, you can re-
port it to us mentioning the bug_code_uid.

12. src_uid: A specific identifier that shows
which problem the code is associated with.
This identifier is important for the train-
ing of the model. The problem referred
to by the src_uid provides a natural de-
scription of the problem that the code suc-
cessfully solved. Refer to Structure of
problem_descriptions.jsonl.

13. apr_id: A unique ID for the apr sample. It
is not important for model training. If you
find any issue with the sample, you can report
it to us mentioning the apr_id.

14. difficulty: Difficulty rating of the prob-
lem indicated by src_uid. The higher the
harder.

15. tags: List of potential algorithmic tech-
niques required to write the program.

16. bug_exec_outcome: A pre-run execution
outcome of bug_source_code. Follow

6798

Section 3.2 to know the potential list of out-
comes. The exec_outcome flags in the
training data comes from a pre-run environ-
ment from the source website and they are
not verified in ExecEval. However, training
data doesn’t include unit-test to avoid poten-
tial hacks and confusion. We provide unit test
for only Compact and Titan test data.

17. fix_exec_outcome: A pre-run execution
outcome of fix_source_code. Follow
Section 3.2 to know the potential list of out-
comes. The exec_outcome flags in the
training data comes from a pre-run environ-
mentfrom the source website and they are not
verified in ExecEval. However, training
data doesn’t include unit-test to avoid poten-
tial hacks and confusion. We provide unit test
for only Compact and Titan test data.

18. potential_dominant_fix_op: A po-
tential fix op recommended by difflib.

19. lang_cluster: A generic programming
language name the value of lang belongs to.

20. prob_desc_description: Problem de-
scription in textual format, math operations
are written in latex.

21. prob_desc_input_from: How the pro-
gram should take the unit test.

22. prob_desc_output_to: Where the pro-
gram should output the result of the unit test.

23. prob_desc_time_limit: Time limit to
solve the problem.

24. prob_desc_memory_limit: Memory
limit to solve the problem.

25. prob_desc_input_spec: How and in
what order the input will be given to the pro-
gram? It also includes the date range, types,
and sizes.

26. prob_desc_output_spec: How the
outputs should be printed. Most of the time
the unit test results are matched with an ex-
act string match or floating point comparison
with a precision boundary.

27. prob_desc_sample_inputs: A sam-
ple input for the code that is expected to solve
the problem described in description.

28. prob_desc_sample_outputs: The ex-
pected output for the sample_input that
is expected to solve the problem described in
description.

29. prob_desc_notes: Explanation of
sample_inputs & sample_outputs.

30. prob_desc_created_at: The Unix
timestamp when the problem was released.
Use datetime lib in Python to parse it to a
human-readable format.

31. file_name: Name of the source jsonl file
from where data is loaded.

32. hidden_unit_tests: a list of
unit tests returned as string. use
json.loads(hidden_unit_tests)
to load the data.

H.6 Code Translation
(code_translation)

Given a source code (source_code) in
lang_cluster, generate a code in target pro-
gramming language.

1. lang: Runtime/Compiler version of the
source_code.

2. source_code: A program.

3. code_uid: A unique ID for the sample. It is
not important for model training. If you find
any issue with the sample, you can report it to
us by mentioning the code_uid.

4. src_uid: A specific identifier that shows
which problem the code is associated with.
This identifier is important for the training
of the model. The problem referred to by the
src_uid provides a natural description of
the problem that the code successfully solved.

5. difficulty: Difficulty rating of the prob-
lem indicated by src_uid. The higher the
harder.

6. exec_outcome: Execution outcome status.
Follow Section 3.2 to know the potential list
of outcomes. The exec_outcome flags in
the training data comes from a pre-run envi-
ronment from the source website and they are
not verified in ExecEval. However, training

6799

data doesn’t include unit-test to avoid poten-
tial hacks and confusion. We provide unit test
for only Compact and Titan test data.

7. lang_cluster: A generic programming
language name the value of lang belongs to.

8. prob_desc_description: Problem de-
scription in textual format, math operations
are written in latex.

9. prob_desc_input_from: How the pro-
gram should take the unit test.

10. prob_desc_output_to: Where the pro-
gram should output the result of the unit test.

11. prob_desc_time_limit: Time limit to
solve the problem.

12. prob_desc_memory_limit: Memory
limit to solve the problem.

13. prob_desc_input_spec: How and in
what order the input will be given to the pro-
gram? It also includes the date range, types,
and sizes.

14. prob_desc_output_spec: How the
outputs should be printed. Most of the time
the unit test results are matched with an ex-
act string match or floating point comparison
with a precision boundary.

15. prob_desc_sample_inputs: A sam-
ple input for the code that is expected to solve
the problem described in description.

16. prob_desc_sample_outputs: The ex-
pected output for the sample_input that
is expected to solve the problem described in
description.

17. prob_desc_notes: Explanation of
sample_inputs & sample_outputs.

18. prob_desc_created_at: The Unix
timestamp when the problem was released.
Use datetime lib in Python to parse it to a
human-readable format.

19. file_name: Name of the source jsonl file
from where data is loaded.

20. hidden_unit_tests: a list of
unit tests returned as string. use
json.loads(hidden_unit_tests)
to load the data.

H.7 Program Synthesis
(program_synthesis)

Given a src_uid read problem description from
problem_descriptions.jsonl and gener-
ate a solution for problem description.

1. lang: Runtime/Compiler version of the
source_code.

2. source_code: A program.

3. code_uid: A unique ID for the sample. It is
not important for model training. If you find
any issue with the sample, you can report it to
us by mentioning the code_uid.

4. src_uid: A specific identifier that shows
which problem the code is associated with.
This identifier is important for the training
of the model. The problem referred to by the
src_uid provides a natural description of
the problem that the code successfully solved.

5. difficulty: Difficulty rating of the prob-
lem indicated by src_uid. The higher the
harder.

6. exec_outcome: Execution outcome status.
Follow Section 3.2 to know the potential list of
outcomes. The exec_outcome flags in the
training data comes from a pre-run environ-
ment. However, training data doesn’t include
unit-test to avoid potential hacks. We provide
unit tests for only dev and test data.

7. lang_cluster: A generic programming
language name the value of lang belongs to.

8. prob_desc_description: Problem de-
scription in textual format, math operations
are written in latex.

9. prob_desc_input_from: How the pro-
gram should take the unit test.

10. prob_desc_output_to: Where the pro-
gram should output the result of the unit test.

11. prob_desc_time_limit: Time limit to
solve the problem.

12. prob_desc_memory_limit: Memory
limit to solve the problem.

6800

13. prob_desc_input_spec: How and in
what order the input will be given to the pro-
gram? It also includes the date range, types,
and sizes.

14. prob_desc_output_spec: How the
outputs should be printed. Most of the time
the unit test results are matched with an ex-
act string match or floating point comparison
with a precision boundary.

15. prob_desc_sample_inputs: A sam-
ple input for the code that is expected to solve
the problem described in description.

16. prob_desc_sample_outputs: The ex-
pected output for the sample_input that
is expected to solve the problem described in
description.

17. prob_desc_notes: Explanation of
sample_inputs & sample_outputs.

18. prob_desc_created_at: The Unix
timestamp when the problem was released.
Use datetime lib in Python to parse it to a
human-readable format.

19. file_name: Name of the source jsonl file
from where data is loaded.

20. hidden_unit_tests: a list of
unit tests returned as a string. use
json.loads(hidden_unit_tests)
to load the data.

H.8 Retrieval Corpus
(retrieval_corpus)

Use the retrieval_corpus to perform query
for retrieval_nl_code (Appendix H.9) and
retrieval_code_code (Appendix H.10).

1. idx: An integer index to identify the code. It
is unique within the codes of each language.

2. source_code: A program.

3. file_name: Name of the source jsonl file
from where data is loaded.

H.9 Retrieval NL-Code
(retrieval_nl_code)

Given a NL (problem description) retrieve simi-
lar source code from retrieval_corpus (Ap-
pendix H.8).

1. nl : Problem description in textual format,
math operations are written in latex. Given as
input query.

2. positive_code : list of positive codes for
nl.

3. negative_code : list of negative codes for
nl.

4. src_uid : A specific identifier that shows
which problem the code is associated with.
This identifier is important for the training
of the model. The problem referred to by the
src_uid provides a natural description of
the problem that the code successfully solved.

5. file_name: Name of the source jsonl file
from where data is loaded.

H.10 Retrieval Code-Code
(retrieval_code_code)

Given a source_code, retrieve similar
source code from retrieval_corpus
(Appendix H.8).

1. positive_code : list of positive codes for
nl.

2. negative_code : list of negative codes for
nl.

3. src_uid : A specific identifier that shows
which problem the code is associated with.
This identifier is important for the train-
ing of the model. The problem referred
to by the src_uid provides a natural de-
scription of the problem that the code suc-
cessfully solved. Refer to Structure of
problem_descriptions.jsonl.

4. source_code: A source code given as in-
put query.

5. file_name: Name of the source jsonl file
from where data is loaded.

I Datasheets for Datasets

We follow the questionnaires from Gebru et al.
(2021) as the datasheet for XCODEEVAL .

6801

I.1 Motivation
For what purpose was the dataset created?
XCODEEVAL dataset was specifically created to ad-
dress three main aspects: (i) Reasoning, (ii) Multi-
linguality in terms of programming languages, and
(iii) Executability of the programming languages.
These aspects were thoroughly discussed in Sec-
tion 1 of the main paper, providing detailed insights
into the motivation behind the dataset creation.

I.2 Composition
What do the instances that comprise the dataset
represent (e.g., documents, photos, people, coun-
tries)? Please follow the Appendix H for details.

How many instances are there in total (of each
type, if appropriate)? Please follow the Tables 2,
8 and 9 for the details statistics of the dataset.

Does the dataset contain all possible instances
or is it a sample (not necessarily random) of
instances from a larger set? Dataset contains
all possible instances.

What data does each instance consist of?
Please follow the Appendix H for details.

Is there a label or target associated with each
instance? Please follow the Appendix H for de-
tails.

Is any information missing from individ-
ual instances? For a few problem description,
difficulty is assigned as None due to data
unavailability.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social
network links)? Please follow the Appendix H
for details.

Are there recommended data splits (e.g., train-
ing, development/validation, testing)? We ex-
plicitly defined the training, Compact and Titan
test split for XCODEEVAL . Please follow the Sec-
tion 3.1 for more details.

Are there any errors, sources of noise, or re-
dundancies in the dataset? To the best of our
knowledge there are no errors, sources of noise, or
redundancies in XCODEEVAL .

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., web-
sites, tweets, other datasets)? The dataset is self-
contained.

Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected
by legal privilege or by doctor– patient confiden-
tiality, data that includes the content of individu-
als’ non-public communications)? The dataset
is collected from open sourced sources. There
are no confidentiality or non-public entity in the
dataset.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? To the best
of our knowledge there are no offensive, insulting,
threatening content in the dataset.

Does the dataset identify any subpopulations
(e.g., by age, gender)? No.

Is it possible to identify individuals (i.e., one or
more natural persons), either directly or indi-
rectly (i.e., in combination with other data) from
the dataset? There are no attributes in the dataset
that allow to identify individuals.

Does the dataset contain data that might be
considered sensitive in any way (e.g., data that
reveals race or ethnic origins, sexual orien-
tations, religious beliefs, political opinions or
union memberships, or locations; financial or
health data; biometric or genetic data; forms of
government identification, such as social secu-
rity numbers; criminal history)? There are no
attributes in the dataset that allow this.

I.3 Collection Process

How was the data associated with each instance
acquired? Following Li et al. (2022), the data
was collected from codeforces.com and then
associated with different tasks. Please follow Ap-
pendix D for more details.

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., determin-
istic, probabilistic with specific sampling prob-
abilities)? Dataset wasn’t sampled from a large
dataset. We proposed the dataset for the first time.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much
were crowdworkers paid)? Dataset was col-
lected by the author of this paper.

6802

codeforces.com

Over what timeframe was the data collected?
The data was downloaded in between Feb, 2022
to January, 2023.

Were any ethical review processes conducted
(e.g., by an institutional review board)? No.

Did you collect the data from the individuals in
question directly, or obtain it via third parties
or other sources (e.g., websites)? The data is
downloaded by an author. No third parties or other
sources are involved.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted?
Potential impact of the dataset is discussed after
Section 6.

I.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the
data done (e.g., discretization or bucketing, tok-
enization, part-of-speech tagging, SIFT feature
extraction, removal of instances, processing of
missing values)? We de-anonymized the data
and remove data with sensitive information (i.e.,
email, large infograph, toxic keywords). The labels
come as a metadata from the sources.

Was the “raw” data saved in addition to the pre-
processed/cleaned/labeled data (e.g., to support
unanticipated future uses)? No.

Is the software that was used to preprocess/-
clean/label the data available? No software was
used for labeling the data.

Has the dataset been used for any tasks already?
Yes. We evaluated ChatGPT and trained StarEn-
coder using the dataset.

What (other) tasks could the dataset be used
for? We proposed 7 different tasks for XCODEE-
VAL . Please follow Table 8 for details.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses? No.

I.5 Distribution

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances? No.

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual
instances? No.

I.6 Maintenance
How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?
Email.

Is there an erratum? None at this point. The
dataset is hosted through git lfs. The future erratum
can be tracked easily.

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)?
To the best of our knowledge there are no errors in
the dataset. The authors do not intend to add new
instances at this point. But the authors remain open
to remove/correct instances given that any labeling
errors found.

If the dataset relates to people, are there applica-
ble limits on the retention of the data associated
with the instances (e.g., were the individuals in
question told that their data would be retained
for a fixed period of time and then deleted)?
The dataset doesn’t relate to people.

Will older versions of the dataset continue to be
supported/hosted/maintained? Yes. The older
version should be accessed via git LFS.

If others want to extend/augment/build on/con-
tribute to the dataset, is there a mechanism for
them to do so? Since the dataset is fixed, there
is currently no way to contribute to it. Please note
that any extensions or augmentations of the dataset
are subject to the same license as this dataset.

J Discussion on the possibility of data
leakage and contamination

Although we completely separate our Compact
and Titan test data, LLMs might have possible
data leakage from pretraining. We find that even
identifying data leakage (test data exists or not in
the prertraining corpora) is challenging using con-
ventional data search methods due to search cost &
complexity (e.g., exact match or token overlapping
methods) while hashing based searches suffer from
not having properly segmented text. For leakage-
free evaluation, we approach employs "knowledge
cut-off" which show that the data contamination
significantly impacts the model performance and it
needs to be interpreted with proper analyses. We

6803

plan to evaluate on seperate human written testset
in future.

K The Dataset Nutrition Label

We follow the framework proposed by Holland
et al. (2018). Table 12 gives an overview of dataset
facts. The variable description can be found in Ap-
pendix H. We discuss provenance in Appendices I.3
and I.6.

L Data Card

6804

Table 12: Dataset facts for XCODEEVAL . It covers the metadata related to the whole dataset.

Metadata

Filename File names for each of the tasks.

Format jsonl, json, arrow dataset loader.

Domain Programming Language, Competitive Programming

Keywords programming-language, code, program-synthesis, automatic-code-
repair, code-retrieval, code-translation, code-classification, execu-
tion, benchmark, multilingual, multitask, unit-test

Type columnar

Rows Follow Tables 2, 8 and 9

Columns Follow Appendix H

Missing 0%

License CC BY-NC 4.0

Released MARCH 2023

Range From Feb 19, 2010 to Nov 21, 2022

Description We introduce xCodeEval, the largest executable multilingual multi-
task benchmark to date consisting of 25 M document-level coding
examples from about 7.5 K unique problems covering up to 17 pro-
gramming languages with execution-level parallelism. It features
a total of seven tasks involving code understanding, generation,
translation and retrieval, and it employs an execution-based evalu-
ation. We develop a test-case based multilingual code execution
engine, ExecEval that supports all the programming languages
in xCodeEval. We also propose a novel data splitting and a data
selection schema for balancing data distributions over multiple
attributes based on geometric mean and graph-theoretic principle.

6805

https://creativecommons.org/licenses/by-nc/4.0/

