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Abstract

One of the central skills that language learn-
ers need to practice is speaking the language.
Currently, students in school do not get enough
speaking opportunities and lack conversational
practice. Recent advances in speech technol-
ogy and natural language processing allow for
the creation of novel tools to practice their
speaking skills. In this work, we tackle the
first component of such a pipeline, namely, the
automated speech recognition module (ASR),
which faces a number of challenges: first, state-
of-the-art ASR models are often trained on
adult read-aloud data by native speakers and do
not transfer well to young language learners’
speech. Second, most ASR systems contain a
powerful language model, which smooths out
errors made by the speakers. To give corrective
feedback, which is a crucial part of language
learning, the ASR systems in our setting need to
preserve the errors made by the language learn-
ers. In this work, we build an ASR system that
satisfies these requirements: it works on spon-
taneous speech by young language learners and
preserves their errors. For this, we collected a
corpus containing around 85 hours of English
audio spoken by learners in Switzerland from
grades 4 to 6 on different language learning
tasks, which we used to train an ASR model.
Our experiments show that our model benefits
from direct fine-tuning on children’s voices and
has a much higher error preservation rate than
other models.

1 Introduction

Speaking is one of the core competencies to be de-
veloped in foreign language classes and the second
most widely used skill in everyday-life commu-
nication (Hedge, 2001). For students to success-
fully acquire speaking competencies, they must
be trained from an early stage in the language
learning process and in a systematic manner. How-
ever, speech production is a highly complex pro-
cess that is often not addressed adequately in class-

rooms. The main issue is that students often do not
get enough speaking opportunities (Kleinschroth
and Oldham, 2014; Grimm et al., 2015), and lack
extended conversational practice (Pfenninger and
Lendl, 2017). The recent advancements in both
speech processing (Malik et al., 2021), and con-
versational dialogue systems (Deriu et al., 2021;
Ni et al., 2023) provide an opportunity to increase
the speaking practice of language learners using
automated tools.

The work presented in this paper is part of a
larger effort to develop an interactive, voice-driven
chatbot with which learners can practice their in-
teractive speaking skills. The bot is designed as a
conversation partner that adjusts to the proficiency
level and interests of the students and provides
corrective feedback to support their language de-
velopment.

One key issue is the automated speech recog-
nition (ASR) module, which transcribes the ut-
terances of the language learners into text to be
processed in downstream tasks (e.g., speaker-error
analysis, dialogue systems, inter alia). The focus
of this work is to adapt the ASR module to handle
children’s speech in a language learning environ-
ment. The core challenge for the ASR system in
this setting is not only to transcribe the speech but
to make sure that the errors made by the language
learners are transcribed faithfully. This is needed to
provide language learners with corrective feedback,
which is a key component of foreign language de-
velopment. It prompts learners to notice errors and
is likely to lead to utterance repair, which, in turn,
facilitates language development (Ellis, 2021). Our
investigations showed that current state-of-the-art
ASR models tend to correct the speakers’ errors,
which renders giving corrective feedback impossi-
ble.

The second challenge for the ASR system is han-
dling spontaneous children’s speech since most of
these systems are trained on adult read-aloud error-
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free corpora recorded by native speakers (Panay-
otov et al., 2015; Ardila et al., 2020). Chil-
dren’s speech, especially spontaneous speech of
language learners, differs significantly from read-
aloud speech of native adult speakers (Shivakumar
and Georgiou, 2020). Children’s’ speech has a dif-
ferent range of sound frequencies (Potamianos and
Narayanan, 2003), a high within-subjects variabil-
ity (Gerosa et al., 2006) and a high inter-speaker
variability in different age groups (Lee et al., 1999).

These challenges yield three research questions,
which we address in this work:

1. How can we measure error preservation, i.e.
the "verbatimness" of an ASR transcript?

2. How well do current pre-trained ASR systems
perform on learners’ spontaneous English pro-
ductions, with respect to error preservation
and in general?

3. Does fine-tuning pre-trained systems with
data from young learners lead to improved
error preservation in the ASR transcripts?

Contributions In order to answer these ques-
tions, we first collected a dataset of young learners
in Swiss public schools speaking English, consist-
ing of 85 hours of recordings corresponding to
45’004 individual utterances by 327 distinct speak-
ers. We subsequently created verbatim transcrip-
tions of these recordings, in which learner errors
are annotated using specific symbols. This dataset
can be accessed on HuggingFace1, but the dataset
files must be downloaded manually as described
in Section 3.4.2 below. We next developed a met-
ric for error preservation, called Word-Based Er-
ror Preservation Rate (WEPR), which takes into
account only those reference words that contain
an error annotation. Using WEPR and standard
ASR metrics, we compared 7 pre-trained ASR sys-
tems with a custom fine-tuned model2. Our results
show that a) there are large differences between
the pre-trained models both in terms of standard
metrics and in terms of WEPR and b) fine-tuning
significantly improves error preservation of learn-
ers’ speech. All related code can be accessed on
GitHub3.

1https://huggingface.co/datasets/mict-zhaw/
chall

2https://huggingface.co/mict-zhaw/chall_
wav2vec2_xlsr_300m

3https://github.com/mict-zhaw/chall_e2e_stt

2 Related Work

Children’s Speech Corpora. Corpora of chil-
dren’s speech can be divided into two types: i)
corpora for native speaking children intended for
building virtual tutors for non-language subjects,
ii) corpora for young language learners that support
building virtual tutors for language learning.

The MyST Children’s Speech Corpus (Pradhan
et al., 2016; Ward et al., 2019) contains 499 hours
of conversational speech (out of which 233 hours
are manually transcribed) for a virtual tutor for
science topics targeted at young English native
speakers. The OGI Kids’ Speech Corpus (Shobaki
et al., 2000) contains spontaneous speech from
1100 American children from kindergarten through
grade 10, mainly consisting of scripted speech in
the form of words and utterances, and a small sam-
ple of spontaneous speech. The AusKidTalk cor-
pus (Ahmed et al., 2021) contains speech from
Australian children ages 3 to 12 consisting of sin-
gle words, utterances, and narrative speech. Other,
smaller, datasets of native speaking children are
available for different purposes such as read-aloud
support (Eskenazi, 1996) or general analysis of
English children’s speech (Lee et al., 1999; Ha-
gen et al., 2003). For German, the KidsTalk cor-
pus (Rumberg et al., 2022) contains 25 hours of
transcribed continuous speech from children aged
3 to 11. All these corpora are devised for settings
with native speakers.

For language learners, there are far fewer
datasets of children’s speech. The TLT-school col-
lection (Gretter et al., 2020) aims at assessing the
proficiency of 9- to 16-year old Italian native speak-
ers in English and German. TLT was recorded with
a pool of 3000 students, resulting in approximately
275h of English and 265h of German data, out of
which 16h for English and 8h for German have
been transcribed. The corpus closest to our dataset
is the CALL corpus (Baur et al., 2018), consisting
of English utterances by Swiss German second and
third year learners, where the task is to label the
correctness of each utterance. In total, the corpus
contains 38k utterances of students interacting with
an online dialogue system, where they receive var-
ious prompts to produce speech. Across a series
of shared tasks, subsets of around 6k annotated
utterances have been released. The setting differs
significantly from ours as we are interested in spon-
taneous speech with transcriptions to train an ASR
system which can automatically transcribe learners’
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speech verbatim. Batliner et al. (2005) introduce
a children’s speech corpus containing 60 hours of
children’s speech aged 4-13 in a variety of lan-
guages, such as English, German, and Swedish,
as well as English speech from German, Italian,
and Swedish children. In general, there is only a
limited amount of work investigating the effects
of fine-tuning models on speech data of language
learners to retain the speakers’ errors. Ma et al.
(2023) fine-tune Whisper to investigate its ability
to retain hesitations, numbers, abbreviations, disflu-
encies, and incomplete words. Instead, we aim to
preserve speaker errors in grammar, lexical choice,
and pronunciation.
ASR for children’s speech and language learn-
ers. The literature on ASR models for children’s
speech, especially for non-native language learners,
is sparse. Most notably, Lu et al. (2022) inves-
tigated the performance of fine-tuning wav2vec
2.0 (Baevski et al., 2020) on children’s speech
(both native MyST and OGI), as well as non-native
speech (TLT) compared to fine-tuning on adult-
only data. The results show that ASR models
trained on children’s speech significantly outper-
form those models trained on adult-speech only,
even in the case of non-native speakers. Similarly,
Shivakumar and Narayanan (2022) investigated
the impact of using children’s data for fine-tuning
ASR models. The conclusion is similar to Lu et al.
(2022): adding children’s data yields better perfor-
mance; however, the performance of an adult ASR
model on adult data is higher than the performance
of an ASR model trained and applied on children’s
data. While both Lu et al. (2022) and Shivakumar
and Narayanan (2022) are interested in the overall
performance in terms of WER, our work focuses
on the preservation of errors made by non-native
children.

3 Dataset: Spontaneous Speech of Young
Learners of English

We now describe the dataset that we collected for
the purpose of this research. It contains 85 hours of
audio recordings of spontaneous speech by young
Swiss learners of English. Each recording is paired
with a verbatim transcript that contains error anno-
tations.

3.1 Audio Recording

The recording setup was designed such that the
collected speech resembled the kind of conversa-

tions intended for the learners to hold with the
chatbot. We used playful and engaging activities
targeted to elicit extended authentic communica-
tion from young learners. Activities included role
plays with problem-solving components (e.g. ‘go-
ing shopping for a school trip’), guessing games
(e.g. riddles), TV interviews with imaginary charac-
ters and asking/answering personal questions (e.g.
‘if you could go into space, what would you take
with you?’). All activities were piloted with a
grade 4 class and maintained, adjusted (to yield
more data) or rejected (e.g. because the task led to
students communicating non-verbally and/or with
much noise) for the main data collection period.
To support learners, each activity further included
visual and language support (e.g. cartoon char-
acters they could choose from, sample dialogues,
language chunks) as well as a preparation phase
during which the students could familiarise them-
selves with the tasks by use of example sentences
and model dialogues.4

Speaker recruitment and consent After receiv-
ing permission to collect audio data with minors
from key government institutions that act as ethics
review boards in Switzerland concerning research
with schools and their learners, we recruited 20
primary school teachers interested in participating
in our project with their classes (via personal and
university networks, newsletters and direct contact
with schools). Participation was entirely voluntary
and could be withdrawn at any time. Participation
further necessitated the approval of the school prin-
cipal and the written consent of each student’s legal
caretaker.5

In the span of 9 months (March-November
2023), 337 primary school students aged 9 to
14 years (4th to 6th graders) enrolled in 8 differ-
ent schools in German-speaking Switzerland per-
formed our activities in pairs, trios or alone (if
necessary) in three different settings: at school
recorded by project members; on the university
campus recorded by project members and student
assistants; and at school recorded by teachers and
sent to us via safe weblinks. For reasons of prac-
ticability/feasibility (i.e., to respect teachers’ tight
schedules, time, and finances), the corpus was
not annotated for CEFR levels, but according to
the Swiss curriculum LP21, it should reflect per-
formance at the A1 and A2 levels (English Ba-

4The descriptions of the speaking activities is provided in
the repository.

5We share the consent forms in our repository.
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sic Users). Some participants, including native-
speaking children, performed beyond these levels.
School principals, teachers, and students were not
remunerated for their participation but received
small tokens of appreciation, such as flowers and
chocolates.
Metadata Each recording is associated with the
following metadata:

• School area code: an integer between 1 and 8
(inclusive)

• School grade of the speakers: 4gr, 5gr, 6gr as
well as combinations (4/5gr, 5/6gr, 4/6gr)

• Recording Device

• Recording Application

• Speaking activities

• Background Noise: a boolean indicating
whether background noise is audible in the
recording (set manually by project members).

3.2 Transcription and Error Annotation

The transcription of our voice data was outsourced
to a transcription agency. Services included both
the transcription of the voice data and the anno-
tation of lexical, grammatical and pronunciation
errors, as well as usage of German words. We de-
veloped a comprehensive data transcription guide-
line for the transcription agency which was first
piloted on a small number of transcripts and then
adjusted where necessary. Transcription guidelines
included information about spelling conventions
(British English), the frequency and nature of times-
tamps (start and end time of each word, in millisec-
onds), error codes (@! for errors of any kind and
@g for German words) and disfluency markers (e.g.
a hyphen "–" for verbatim repetitions, such as ‘he’s
– he’s really tall’). The complete transcription guide-
lines are provided in the supplementary material of
this paper.

3.3 Data Aggregation and Filtering

The recording stage resulted in 1039 audio record-
ings. Of these, 23 were removed due to missing
metadata or missing/retracted consent, so a total of
1016 recordings and their associated metadata and
transcriptions were available for our experiments.

These recordings were split into individual ut-
terances by a single speaker using the word-level
timestamps provided in the transcripts, resulting in
49’608 utterances.We removed utterances shorter

than 0.5 seconds and utterances attributed to adults
(e.g. short interventions by teachers), creating a
final dataset of 45’004 utterances corresponding to
85 hours of audio. Each utterance was paired with
its reference transcription and metadata.

3.4 Final Dataset

The final dataset contains 45’004 utterances by 327
distinct speakers. Figure 1 shows the number of
recordings and audio duration by school grades and
school area codes. Almost half the data in terms of
both utterances and hours comes from 6th graders,
while the other half is split among the other grades.
The dataset contains 485,770 tokens and 10,203
distinct types. There are 14,396 error-annotated
tokens with 2,004 underlying types. Thus, our data
contains a large amount of tokens and a relatively
large amount of token diversity.

The length distribution is shown in Figure 2. It
can be seen that most utterances are between 0.5
and 20 seconds long.

3.4.1 Data Folds
For the experiments in this paper, we split the
dataset into five distinct folds of similar duration
(about 16h each), where each class (and therefore
also each speaker) occurs in only one fold. To
simulate the use case of the ASR system being
confronted with a new class of learners, each fold
contains data from a mix of grades. Figure 3 visu-
alises the duration and grade distribution of each
fold.

3.4.2 Data Availability
The dataset that we collected contains sensitive data
of minors and thus cannot be shared publicly. The
data can, however, be accessed as part of a joint
project with one or several of the original project
partners, subject to a collaboration agreement. Be-
fore sharing, all transcripts will undergo complete
anonymisation so that any names and other per-
sonal information are removed.

4 Error-Preserving Automatic Speech
Recognition

This section presents the metrics used for measur-
ing error preservation and evaluating systems (Sec-
tion 4.1), as well as the approaches to comparing
pre-trained ASR systems (Section 4.2) and to fine-
tuning existing systems using our learner dataset
(Section 4.3). The qualitative results are presented
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Figure 1: Number of utterances (outer ring) and audio hours (inner ring) by school grade (a) and school area code
(b).

Figure 2: Distribution of utterance lengths.

Figure 3: Duration and grade distribution of the data
folds.

and discussed in Section 4.4, and a qualitative eval-
uation is shared in 4.5.

4.1 Metrics
In order to measure error preservation, we use the
error annotations that were manually added to each
utterance (cp. Section 3.2) and a custom phonetic
word-level alignment algorithm. This algorithm
aligns two or more sequences (e.g., a reference and
one or multiple hypotheses), identifying matches,

substitutions (S), insertions (I), and deletions (D)
at the word level. Our metric, WEPR (Word-Based
Error Preservation Rate), considers only those word
pairs where the reference word contains an error
annotation. WEPR is calculated according to equa-
tion 1: A is the set of annotations that are consid-
ered (e.g. A = {@!,@g}), S and D are the number
of substitutions and deletions, respectively, where
the reference word contains an error annotation,
and N is the total number of reference words that
contain an error annotation.

WEPR(A) = (S+D)
N (1)

In addition to WEPR, we also compute the fol-
lowing general ASR metrics using all words in the
utterance: Word Error Rate (WER)6, Character Er-
ror Rate (CER)7, and character n-gram F-Score
(chrF)8 (Popović, 2015).

We evaluate all models on our dataset’s five folds
(cp. Section 3.4.1) and report for each model the
mean and standard deviation across all folds.

For evaluation, all texts are normalised using
the Whisper normalizer for English 9. Normaliz-
ing texts can mitigate the impact of disfluencies
and non-standard linguistic forms, common in non-
native and children’s speech. This allows for a
more accurate comparison between different ASR
models, as it aligns the hypothesis and reference

6https://github.com/huggingface/evaluate/blob/
main/metrics/wer/wer.py

7https://github.com/huggingface/evaluate/blob/
main/metrics/cer/cer.py

8https://www.nltk.org/api/nltk.translate.chrf_
score.html#nltk.translate.chrf_score.corpus_chrf

9https://github.com/openai/whisper/blob/main/
whisper/normalizers/english.py
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texts more closely.
Table 1 demonstrates text normalization and

WEPR calculation using a Whisper Large model
prediction and a modified normalizer. The adjust-
ments to the Whisper normalizer maintain contrac-
tions in references, ensuring the integrity of anno-
tated words (e.g., it’s@!). For error preservation
assessment, phonetic alignment is performed be-
tween the normalized prediction (NP) and a ref-
erence without error annotations (NR2). This re-
moval is essential because the alignment algorithm
would otherwise misidentify annotated words. The
normalized reference with annotations (NR1) is
then used to identify word pairs in the alignment
results that are relevant for WEPR calculation. The
Whisper Normalizer’s tendency to increase the sim-
ilarity between predictiosn and references helps in
building and classifying these word-level pairs.

4.2 Pre-trained ASR Systems
We compare the performance of state-of-the-art
ASR systems trained on datasets of adult En-
glish speakers. For this, we select seven differ-
ent models, four based on a CTC decoding strat-
egy, and three based on an encoder-decoder ar-
chitecture. Our hypothesis is that CTC models
are better at preserving speaker-errors as they do
not rely on a language model, which potentially
corrects such errors. Therefore, we do not use a
n-gram language model during the CTC decod-
ing phase, which is usually added for better WER
performance. For the CTC-based models, we
use the original Wav2VWec 2.0 large and base
models (Baevski et al., 2020) fine-tuned on 960h
of Librispeech (Panayotov et al., 2015) (English
adult read-aloud data). We also use the fine-tuned
Wav2Vec 2.0 models provided by Grosman (2021,
2022), which are based on the XLSR pretrain-
ing (Babu et al., 2021), and were fine-tuned on
the CommonVoice 6.1 data (Ardila et al., 2020)
consisting of approximately 2100 hours of English
adult read-aloud data. For the encoder-decoder ar-
chitecture, we used the Whisper medium, large,
and large-v3 models provided by OpenAI (Radford
et al., 2022).

4.3 Fine-tuning Pre-trained ASR Systems
Using Learner Data

To evaluate the impact of fine-tuning, we fine-tune
the Wav2Vec-XLSR-300M model 10 (Babu et al.,

10Due to the high computational cost, we decided to use the
300M model instead of the 1B model.

2021) on our collected language learner data.
Data Preprocessing. For fine-tuning, we split
longer utterances into chunks of a maximum of
12 seconds and removed trailing pauses. The tran-
scripts were preprocessed as follows:

• Remove error annotations and other transcript
conventions

• Convert to lowercase
• Standardise text (Remove text between brack-

ets and parentheses. Standardise apostrophes
by removing spaces before them. Remove
commas between digits and periods not fol-
lowed by numbers.)

• Clean and standardise whitespace
• Normalise/remove special characters.
• Transform numbers into words using

num2words

Approach. We apply 5-fold cross-validation (cf.
3.4.1), that is, we train on four folds, and evaluate
on the held-out fold. We trained each run on 6
nVidia Tesla V100 GPUs for 4000 steps using a
learning rate of 3e-5, a per-device batch size of
14, and 15 gradient accumulation steps (for a total
batch size of 1260, which corresponds to approx.
2 hours of audio per batch), and we used the 8-bit
AdamW optimizer (Loshchilov and Hutter, 2017;
Dettmers et al., 2021). Our fine-tuned model, called
ChaLL-300M, is available on HuggingFace.2

4.4 Quantitative Results

Performance Metrics. The scores achieved by
the different models are summarised in Table 2.
Among the pre-trained models, Whisper-Large
achieves the best overall WER and chrF scores.
However, the best CERand WEPR scores were
achieved by the XLSR-1B models fine-tuned on
CommonVoice 6.1. This aligns with our expecta-
tions, as Whisper models are currently the most
powerful ASR models, and we expected them to
perform best in terms of WER. However, for our
use-case, we are more interested in error preser-
vation, thus, CTC-based models without language
models are best for preserving the errors. The fine-
tuning step on our dataset consisting of learner
data yielded a significant boost in performance. It
achieves the best WEPR score, which measures
the error retention capability. The most compa-
rable model in terms of number of parameters is
the XLSR-53 model trained on adult read-aloud
data. In comparison to this model, ChaLL-300M
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Category Content
R Reference The beach, because it’s a@! very nice of@! the beach. Tell me about you@! favorite TV-show.
P Prediction the beach because it’s a very nice beach tell me about your favorite TV show
NR1 Normalized Reference (with @!) the beach because it’s a@! very nice of@! the beach tell me about you@! favorite tvshow
NR2 Normalized Reference the beach because it’s a very nice of the beach tell me about you favorite tvshow
NP Normalized Prediction the beach because it’s a very nice beach tell me about your favorite tv show
S Substitutions [(’you@!’, ’your’)]
D Deletions [’of@!’]
I Insertions []
C Correct [’a@!’]

WEPR 0.67

Table 1: WEPR calculation example using Whisper Large model’s prediction with texts normalized by a customized
version of Whisper’s Text Normalizer retaining contractions. Substitutions, insertions, deletions, and correct words
are derived from phonetic alignment between NR2 and NP, but only for words that are annotated in NR1.

System Name #Param. WER CER chrF WEPR
Wav2Vec Base 95M 0.55± 0.02 0.34± 0.02 0.35± 0.02 0.57± 0.02
Wav2Vec Large 317M 0.49± 0.02 0.29± 0.01 0.41± 0.02 0.50± 0.02
XLSR-53 + CommonVoice 6.1 317M 0.38± 0.01 0.26± 0.01 0.59± 0.01 0.50± 0.03
XLSR-1B + CommonVoice 6.1 1B 0.31± 0.01 0.21± 0.01 0.61± 0.01 0.44± 0.03
Whisper Medium 769M 0.26± 0.02 0.20± 0.03 0.70 ± 0.02 0.46± 0.04
Whisper Large 1.5B 0.25 ± 0.02 0.19± 0.01 0.70 ± 0.01 0.47± 0.03
Whisper Large-v3 1.5B 0.30± 0.04 0.23± 0.03 0.70 ± 0.02 0.45± 0.03

ChaLL-300M (ours) 300M 0.30± 0.01 0.16 ± 0.01 0.68± 0.01 0.38 ± 0.03

Table 2: Results of the 5-fold evaluation. We report for each model the mean and standard deviation (mean±std) of
the scores on each of the 5 folds. The bottom row shows the scores of our fine-tuned model.

TARGET PREDICTION CHALL-300M WHISPER-LARGE XLSR-1B
de@! the 0.946 0.869 0.805
a@! _ 0.114 0.327 0.347
a@! an 0.026 0.398 0.257
have@! has 0.015 0.231 0.052
have@! _ 0.034 0.128 0.129
you@! your 0.244 0.306 0.099
it’s@! it 0.068 0.116 0.136
it’s@! _ 0.043 0.119 0.146
is@! _ 0.05 0.125 0.136
it’s@! is 0.055 0.133 0.103
are@! _ 0.072 0.162 0.144
dis@! this 0.854 0.83 0.717
it@! _ 0.094 0.311 0.193
he@! _ 0.175 0.254 0.356
de@! _ 0.029 0.123 0.143
the@! _ 0.046 0.24 0.183
in@! _ 0.027 0.127 0.107
you@! _ 0.077 0.113 0.117
i@! _ 0.133 0.248 0.294
on@! _ 0.019 0.129 0.105

Mean (n=20) 0.156 0.265 0.229

Table 3: System comparison on 20 most frequent incorrectly transcribed speaker-errors. For each system, the
number indicates the fraction of cases in which the system incorrectly transcribes the error TARGET as PREDICTION
(where "_" denotes deletion of TARGET). The lowest value of each row is set in boldface. The final row shows the
mean across the 20 samples.

achieves an improvement of 8 points in WER and a
12-point improvement in WEPR. It is generally the
case that larger models perform better. Thus, the
interpretation of the results needs to factor this in.
As most models are larger than ours, it becomes ev-
ident that fine-tuning on learner data increases the
performance on this data in general, and the CTC

architecture yields a better out-of-the-box preserva-
tion of speaker-errors .

WEPR Analysis. To show in more detail the re-
duction in WEPR, we compare the handling of
specific speaker errors. Table 3 shows the confu-
sion for the 20 most frequent examples, that is,
the cases where the ASR system corrects a error
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TARGET PREDICTION CHALL-300M WHISPER-LARGE XLSR-1B
have@! have 0.875 0.587 0.699
a@! a 0.804 0.215 0.325
is@! is 0.79 0.667 0.769
in@! in 0.897 0.773 0.807
it’s@! it’s 0.703 0.568 0.482
are@! are 0.739 0.688 0.699
on@! on 0.917 0.749 0.79
of@! of 0.922 0.705 0.848
the@! the 0.815 0.632 0.678
you@! you 0.606 0.55 0.735
she@! she 0.867 0.713 0.774
it@! it 0.772 0.579 0.659
has@! has 0.825 0.775 0.774
make@! make 0.95 0.746 0.808
do@! do 0.82 0.744 0.748
much@! much 0.98 0.96 0.96
he@! he 0.679 0.627 0.561
not@! not 0.89 0.75 0.777
at@! at 0.811 0.612 0.759
don’t@! don’t 0.885 0.826 0.811

Mean (n=20) 0.827 0.673 0.723

Table 4: System comparison on 20 most frequent correctly preserved speaker-errors. For each system, the number
indicates the fraction of cases in which the system correctly transcribes the error TARGET as PREDICTION. The
highest value of each row is set in boldface. The final row shows the mean across the 20 samples.

Utterance Err. Type.
TARGET Yeah. Uhm it’s – It have a Lampe. Uhm you can – has/have, German
CHALL300M e uhm it’s it’s have a lampe you can has/have, German
WHISPER-LARGE it has a lamp -
TARGET (...) What you’re rather be a (...)- able for fly or be invisible- invisible? for/to
CHALL300M wuld your reader be be aabble for fly or be invisible invisible for/to
WHISPER-LARGE would your reader be able to fly or be invisible -
TARGET Do you have a enemy? a/an
CHALL300M do you have a enemey a/an
WHISPER-LARGE do you have an enemy -
TARGET What do you favourite food? do/is
CHALL300M what do you favorite food do/is
WHISPER-LARGE what’s your favorite food -

Table 5: Manually selected examples.

it should have preserved. For each type of con-
fusion, we report the rate at which it occurs. For
instance, when the speaker mistakenly said "have"
(denoted "have@!"), ChaLL-300M corrected it to
"has" in 1.5% of cases, Whisper-Large corrected it
in 23.1% of cases, and XLSR-1B in 12.9% of cases.
Thus, ChaLL-300M preserved this particular kind
of error the best. In total, it mistakenly corrected
15% of the 20 most frequent speaker-errors, while
Whisper-Large corrected 26%, and XLSR-1B cor-
rected 22.9%. It is interesting to note that two out
of total three cases where XLSR-1B has the lowest
rate of mis-correction is for pronunciation errors
("de@!" and "dis@!"). We also note that a majority
of the most frequent unwanted error-corrections
are deletions.

On the other hand, Table 4 shows the frequency
at which the ASR systems correctly preserved the

errors made by the speakers. For instance, when
the speaker mistakenly says "have" (denoted as
"have@!"), then ChaLL-300M preserves this error
in 87.5% of cases, while Whisper-Large preserves
it in only 58.7% and XLSR-1B in only 69.9% of
cases. In total, ChaLL-300M is able to preserve
82.7% of the of the 20 most frequent errors made
by speakers, while Whisper-Large only preserved
67.3% of speaker errors and XLSR-1B preserved
72.3%.

Thus, ChaLL-300M displays a strong ability to
preserve the errors made by speakers, which is
crucial for the downstream task of providing auto-
mated corrective feedback.

4.5 Qualitative Results
Table 5 shows four manually selected examples,
highlighting some errors which the best-performing
pre-trained model, Whisper-Large, corrects, and
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our model preserves. In the first example, it shows
the error of using "have" instead of "has", as well
as using the German pronunciation of the word
"lamp" (i.e., "Lampe"). Whisper-Large corrects
these errors, and creates a grammatically correct
English utterance. The ChaLL-300M model pre-
serves these errors as desired. The second error is
a prepositional error, where the learner said "for
fly" instead of "to fly". The Chall-300M model
correctly preserved this error, while the language
model used in Whisper-Large smoothed out the er-
ror. The third example is an error of the indefinite
article: the learner used "a" instead of "an", which
ChaLL-300M correctly preserved while Whisper-
Large corrected the error. The final example con-
tains the usage of the wrong verb "do" instead
of "is", which again is correctly preserved by our
model while Whisper corrects the error.

5 Conclusion and Outlook

Our work shows that state-of-the-art ASR systems
have difficulties handling young learners’ speech;
furthermore, they tend to correct the errors made by
the speakers, which makes the downstream iden-
tification of speaker errors and provision of cor-
rective feedback impossible. Thus, we collected
around 85 hours of children’s language learner
speech data, which we used to fine-tune a custom
model. Our model outperforms all the others (in-
cluding Whisper-Large) in terms of error preserva-
tion (Word-Based Error Preservation Rate, WEPR)
and surpasses the English models of comparable
size (≈ 300M parameters) by a large margin in
terms of Word Error Rate. Thus, our research
shows the necessity of using targeted data (in this
case, children who learn a foreign language) to
fine-tune an ASR module, which is useful in down-
stream tasks. The focus of this work lies in a)
investigating the utility of existing systems and b)
creating an adequate ASR system that can be used
as part of a language learning support tool to in-
crease the students’ speaking opportunities. As
a next step, we will investigate how to enhance
error preservation. For this, training larger mod-
els is the most straightforward approach. How-
ever, we also plan to train the ASR system jointly
with error annotations. For this, we started the
creation of more detailed error annotations. Ini-
tial results have shown that verbal errors are the
largest error category for young learners of En-
glish in Switzerland (with about 22% of all errors)

, and within these, wrong subject-verb agreement
is most frequent. Similarly, investigating how to
handle frequent code-switching to German words
or sentence fragments is an unsolved issue that
needs to be addressed to improve downstream tasks.
Even Whisper-Large, which can handle multiple
languages in principle, did not perform well in de-
tecting code-switching.

Finally, we aim to evaluate ASR models in the
context of integrating them with a conversational
agent and corrective feedback.
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Limitations

While offering a unique tool for error-preserving
ASR of young language learners, this work presents
itself with a few limitations.

Limited Demographic. The dataset stems from
a specific demographic of Swiss school children
learning English in grades 4 to 6. An extension
of the work would include language learners from
other countries/with an academic language other
than German/with a different language of instruc-
tion, or a larger range of ages. Thus, the trans-
ferability of our results must be confirmed with a
different dataset.

Outsourcing Error Annotation. The outsourc-
ing of transcription and error annotations always
poses a risk of yielding erroneous data, since most
transcribers are not trained in error annotation. We
mitigated this risk by providing comprehensive
guidelines and a steady exchange with the tran-
scription agency. However, we plan to enhance the
error annotations with a more detailed label set and
annotators trained in this task.

Small Model. Due to the high computational
cost of fine-tuning a 1B parameter model, we lim-
ited ourselves to fine-tuning the 300M parameter
XLSR model. Most research indicates that the
usage of larger models yields better results; thus,
there is still potential in terms of increasing WER
and WEPR. However, our results showed that even
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a small model can preserve errors better than state-
of-the-art pre-trained models, which was the main
scope of this work.

No Performance Tuning. Since the scope of this
work is to understand if the usage of young learners’
speech data is beneficial for our purposes, we did
not tune the performance of our model. That is, we
did not perform any hyper-parameter tuning or any
other methods to increase performance (e.g., joint
prediction of errors using a language model). Thus,
there is still a large margin of improvement using
our dataset.

Data Availability. Since our data consists of chil-
dren’s spontaneous speech, we must ensure its pro-
tection. Thus, we cannot make it freely available.
While we publicly release the models trained on
the data, access to the transcripts and recordings
can only be granted in the scope of a joint project,
subject to a collaboration agreement.

Ethical Considerations

The main risks in this project have to do with data
protection: all speakers are minors between 9 and
14 years of age, so their personal data must be
very well safeguarded. Therefore, key govern-
ment institutions approved the data collection be-
fore speakers were recruited, and informed consent
was obtained from each speaker’s legal caretaker
(cp. details in Section 3.1). Consent forms entailed
information about the nature of the project and
data collection procedures, as well as a comprehen-
sive description of the legal principles we followed
to collect, use, and store voice data, transcripts,
and annotations. The data protection measures
we implemented for security and confidentiality
were fully disclosed (e.g. password-protected doc-
uments, pseudonymisation, firewalls etc.) and risks
to participants (e.g. potential voice recognition by
project members) were outlined. Voice data and
transcripts were pseudonymised by those project
members who act as data owners before sharing
them with other research partners and third parties.
Third-party access to the collected data will be en-
abled in a closely controlled setting consisting of a
joint project with a collaboration agreement.

Use of AI Assistants

ChatGPT was used to support the creation of some
figures. No AI assistants were used to write the
text of this paper.
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