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Abstract

Despite their remarkable ability to capture lin-
guistic nuances across diverse languages, ques-
tions persist regarding the degree of alignment
between languages in multilingual embeddings.
Drawing inspiration from research on high-
dimensional representations in neural language
models, we employ clustering to uncover la-
tent concepts within multilingual models. Our
analysis focuses on quantifying the alignment
and overlap of these concepts across various
languages within the latent space. To this end,
we introduce two metrics CALIGN and COLAP
aimed at quantifying these aspects, enabling a
deeper exploration of multilingual embeddings.
Our study encompasses three multilingual mod-
els (mT5, mBERT, and XLM-R) and three down-
stream tasks (Machine Translation, Named En-
tity Recognition, and Sentiment Analysis). Key
findings from our analysis include: i) deeper
layers in the network demonstrate increased
cross-lingual alignment due to the presence of
language-agnostic concepts, ii) fine-tuning of
the models enhances alignment within the la-
tent space, and iii) such task-specific calibration
helps in explaining the emergence of zero-shot
capabilities in the models.1

1 Introduction

The emergence of multilingual contextualized em-
beddings has been a ground-breaking advancement,
in the ever-evolving landscape of natural language
processing. Adept at capturing the linguistic nu-
ances across different languages, these embeddings
have spurred a multitude of studies (Pires et al.,
2019; Dufter and Schütze, 2020; Papadimitriou
et al., 2021) seeking to understand the underlying
mechanisms. How these models achieve multilin-
guality without explicit cross-lingual supervision
during training is a particularly interesting question
to answer.

∗Ahmed contributed to the project while he was at QCRI.
1The code is available at https://github.com/

qcri/multilingual-latent-concepts

Cross-lingual embeddings are designed to en-
code linguistic concepts that bridge equivalent se-
mantic meaning across diverse languages. The
question is: how well is this achieved in prac-
tice? When considering two arbitrary languages,
how well aligned are the embeddings of those lan-
guages? and how language agnostic are these mul-
tilingual embeddings in reality? Addressing these
questions necessitates a comprehensive approach.

In high-dimensional spaces, neural language
models exhibit a capability to group words with
shared linguistic associations, as highlighted by
Mikolov et al. (2013). Expanding upon this founda-
tional insight, recent research endeavors (Michael
et al., 2020; Dalvi et al., 2022; Fu and Lapata,
2022) delved into conducting representation analy-
sis within pre-trained models. Our objective, in this
work, is to uncover encoded concepts within mul-
tilingual models and analyze their alignment and
overlap across various languages within the latent
space. We discover latent concepts by applying
clustering to the underlying contextualized repre-
sentations. The premise is that these clusters po-
tentially signify latent concepts, encapsulating the
language knowledge assimilated by the model. We
build our work on top of this foundation to quantify
concept alignment and overlap within multilingual
latent space. We propose two metrics CALIGN and
COLAP to quantify these two aspects and carry out
analysis to study the following questions:

• To what extent do latent spaces across lan-
guages exhibit alignment and overlap in mul-
tilingual models?

• How does this change as the models are tuned
towards any downstream NLP task?

• How do the multilingual latent spaces trans-
form for zero-shot scenarios?

We conducted a study employing three multilin-
gual transformer models: mT5 (Xue et al., 2021),
mBERT (Devlin et al., 2019), and XLM-RoBERTa
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Figure 1: Overview of CALIGN and COLAP metrics in latent spaces of multilingual models, and how the space
re-calibrates after fine-tuning. The top row shows concepts learned in mT5 across different languages: (a) English
(b) German, (c) Spanish, (d) Arabic.

(Conneau et al., 2020). These models were fine-
tuned for three downstream NLP tasks: machine
translation, named-entity recognition and senti-
ment analysis, spanning sequence generation, la-
beling and classification respectively. Our analysis
revealed intriguing insights, including:

• Deeper layers in multilingual models preserve
semantic concepts, contrasting with language-
dependent lexical learning in lower layers, re-
sulting in a higher alignment.

• Fine-tuning calibrates the latent space towards
higher alignment and the task-specific calibra-
tion of the latent space facilitates zero-shot
capabilities.

• Divergent patterns emerge in the encoder and
decoder latent spaces in seq2seq models.
The final layers in the decoder tend to primar-
ily retain language specific concepts.

• Closely related languages demonstrate higher
overlap in latent space.

• The complexity of optimization function af-
fects the extent of overlap in latent spaces

• While many model concepts exhibit multilin-
gual traits, later layers post fine-tuning tend to
retain primarily language-specific characteris-
tics.

2 Methodology

The high-dimensional latent spaces learned within
neural language models have been shown to en-
capsulate concepts formed by common linguistic
attributes (Mikolov et al., 2013; Reif et al., 2019).
Our approach is rooted in this foundational insight
where we discover latent concepts for interpreting
representational spaces in multilingual neural lan-
guage models. More precisely, our study endeavors
to gauge the degree of alignment and overlap of
concepts across the latent spaces acquired through
training models on a diverse array of languages.
To this end, we introduce two metrics to quantify
these phenomena. The first metric CALIGN (Con-
cept Alignment) involves measuring alignment by
identifying concepts that are semantically equiv-
alent. This provides a nuanced understanding of
how concepts in one language align with their coun-
terparts in another, capturing the semantic coher-
ence within the multilingual framework. Our sec-
ond metric COLAP (Concept Overlap) delves into
investigating the existence of overlapping cross-
lingual latent spaces within the model’s representa-
tion. This metric aims to highlight multilingual con-
cepts that maintain multiple languages in a close
latent space. By probing the shared latent spaces,
we gain insights into the intricate relationships be-
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tween concepts across languages, contributing to a
more comprehensive understanding of multilingual
model representations, and how they evolve when
the model is trained for specific tasks. Figure 1
gives an overview of our approach. In the following
sections, we detail each stage of our methodology.

2.1 Concept Discovery
Our investigation builds upon the work on discov-
ering Latent Concepts in contextualized represen-
tations (Dalvi et al., 2022). At a high level, fea-
ture vectors (contextualized representations) are
initially generated by performing a forward pass
on a neural language model. The representations
are then clustered to uncover the encoded concepts
of the model. A concept, in this context, can be
understood as a collection of words from one or
more languages grouped together based on some
linguistic relationship, such as lexical, semantic,
syntactic, and morphological connections. Figure
1 illustrates concepts discovered within the latent
space of the mT5 model, where word representa-
tions are organized according to distinct linguistic
concepts.

Formally, consider a pre-trained model M with
L layers: l1, l2, . . . , lL. Using a dataset of S sen-
tences totaling N tokens, D = [w1, w2, . . . , wN ],

we generate feature vectors: D Ml−−→ zl =
[zl1, . . . , z

l
N ], where zli is the contextualized rep-

resentation for the word wi from its sentence at
layer l. A clustering algorithm is then employed
in the per-layer feature vector space to discover
layer-l encoded concepts.

2.2 Concept Alignment (CALIGN)
Multilingual neural language models are crafted to
encode linguistic concepts that bridge equivalent
semantic meaning across diverse languages. A key
question guiding our exploration is how well this
alignment is actually achieved in practice. Specif-
ically, when considering two arbitrary languages,
we seek to quantify how well the embeddings of
those languages from the same neural model are
aligned. We propose an alignment metric, denoted
as CALIGN to quantify the correspondence of con-
cepts across different languages within the latent
space of multilingual models. Given a concept Cs

(in language s) and a concept Ct (in language t),
the number of aligned tokens ACs in Cs is:

ACs =
∑

ws∈Cs

I

(( ∑

wt∈Ct

T (ws, wt)

)
> 0

)

where function T (ws, wt) = 1 if ws and wt repre-
sent equivalent semantic meaning across the two
languages. We simulate T (ws, wt) using a transla-
tion dictionary of N-best translations. We consider
Cs and Ct to be θA-aligned (ΛθA), if the following
constraint is satisfied:

ΛθA(Cs, Ct) =

{
1, if ACs

|Cs| ≥ θA

0, otherwise

We use a threshold θA to control the extent of align-
ment i.e. the percentage of words within a cluster
required to satisfy the constraint. The alignment
function proves valuable for identifying concepts
that exhibit shared semantic meaning in multilin-
gual latent spaces. Finally, CALIGN is the per-
centage of concepts from language s which are
θA-aligned to some concept in another language.

2.3 Concept Overlap (COLAP)
While the alignment metric CALIGN helps to un-
derstand whether the model preserves encoded con-
cepts (Cs, Ct) that can be aligned to each other, in-
dicating their shared semantic meaning, it does not
explicitly look at overlapping latent spaces across
multiple languages in the same model. To inves-
tigate these overlapping latent spaces, we intro-
duce another metric denoted as COLAP (Concept
Overlap). This metric highlights concepts that
encode words from multiple languages in a close
latent space. Given k languages, and a set of tokens
from language i as Li, We identify a concept as
overlapping if it satisfies the following constraint:

OC =

{
1,

∑k
i=1 I

(
|C∩Li|
|C| ≥ θO

)
≥ 2

0, otherwise

where θO defines the minimum threshold of words
that must be present in the concept from at least
two languages. COLAP is then computed as the
percentage of total concepts that satisfy the above
constraint.

Note that, the multilingual concepts may over-
lap while also being aligned. In such cases, both
the CALIGN and COLAP metrics would identify
these concepts. However, there are instances where
an overlapping concept may contain related words
that are not semantically equivalent, or where the
concepts do not overlap but have semantic corre-
spondence. In these scenarios, the two metrics
capture distinct aspects.
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3 Experimental Setup

3.1 Models and Tasks
We experimented with three multilingual trans-
former architectures namely: mT5, mBERT, and
XLM-RoBERTa using the base versions (13 layers
and 768 dimensions). The former is a state-of-the-
art multilingual variant of the T5 (encoder-decoder
Transformer) model and the latter two are the cross-
lingual variants of the BERT and RoBERTa. To
conduct the analysis, we tuned the mT5 model for
the tasks of machine translation (sequence gener-
ation) using the TED corpus (Ansari et al., 2020).
The mBERT and XLM-R models were tuned for
NER-tagging (sequence labeling) with the Xtreme
dataset (Hu et al., 2020) and Sentiment Analysis
(sequence classification) with the SST-2 dataset
(Socher et al., 2013). We experimented with En-
glish, German, French, Spanish, and Arabic.

3.2 Concept Discovery
We perform a forward pass through the models to
generate contextualized feature vectors.2 Subse-
quently, we apply K-means clustering3 to the fea-
ture vectors, yielding K clusters (also referred to
as encoded concepts) for both base and fine-tuned
models. We set K = 600 and filter out represen-
tations that appear at least 10 times, following the
settings prescribed by Dalvi et al. (2022).4 We uti-
lized the parallel data across languages to obtain
the encoded concepts. This enables us to accu-
rately compare the representational spaces gener-
ated by the same data across multiple languages. It
also allows us to estimate the translation dictionary
T (ws, wt). We computed word alignments using
fast-align (Dyer et al., 2013) and then estimated lex-
ical dictionaries using Moses toolkit (Koehn et al.,
2007). The dictionary contains the N-best target
translations of a source word. We used GPT-3.5
to annotate the latent concepts for our qualitative
analysis (Mousi et al., 2023).

3.3 Thresholds
For CALIGN, we consider Cs (a concept in lan-
guage s) to be aligned to Ct a concept in language
t) if 80% of its types have a semantically equivalent

2We use NeuroX toolkit (Dalvi et al., 2023).
3Hawasly et al. (2024) showed K-means to be a viable al-

ternative to the originally proposed agglomerative hierarchical
clustering in studying latent spaces.

4The range of clusters (K) between 600 and 1400 yields
consistent patterns, as also noted by Sajjad et al. (2022). We
validated this observation in our initial experiments.

word in Ct, i.e. θA = 0.8. We use 10-best transla-
tions5 of a word ws ∈ Cs to define this equivalence.
We only consider concepts that have more than 5
word-types. Finally, we also only align concepts
Cs/Ct if their sizes do not differ by more than 40%,
to avoid aligning very small concepts in one lan-
guage to a single large concept in another language.
We also perform concept discovery independently
across languages before aligning the concepts.

For computing COLAP, we perform concept dis-
covery on multilingual data (mixed sentences from
all languages). We deem a concept C to be multi-
lingual or overlapping if all languages being consid-
ered form at least 30% (θO = 0.3) of the concept.

While the choice of these parameters may seem
arbitrary, we experimented with various configu-
rations, such as using a θA = 0.7–0.9 or using
5–20 best translations. The overall patterns of the
results remained consistent across different config-
urations.6 The selected thresholds were based on a
qualitative examination of the concepts, allowing
for some noise in the concept representations.

4 Results and Analysis

Cross-lingual representations are deemed to cap-
ture unified linguistic concepts across languages
which enables them to generalize and to carry out
the tasks for low resource languages and zero-shot
scenarios. We use latent concept analysis of multi-
lingual models to address the following questions:
i) how latent space aligns and overlaps across lan-
guages in multilingual model? ii) how is the repre-
sentation space calibrated as the model is tuned to-
wards different downstream tasks? and iii) what im-
pact does this re-calibration have on the alignment
and overlap of concepts representing zero-shot lan-
guages? (which were not used for fine-tuning).

4.1 Concept Alignment

In Figure 2, we illustrate CALIGN across latent
spaces in three models: mT5, mBERT, and XLM-
R. Dotted lines represent base models, while solid
lines denote fine-tuned models. Here the mT5
model is fine-tuned for the task of Machine Trans-
lation, mBERT for the NER-tagging and XLM-
R for SST-2. The models are jointly trained us-
ing German and English samples. We discover
latent concepts in both the base and fine-tuned

5A word may have many semantic meaning and transla-
tions based on different contexts.

6Please refer to Figure 30 in Appendix D.
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(a) mT5 – encoder (MT) (b) mT5 – decoder (MT) (c) mBERT (NER) (d) XLM-R (SST-2)

Figure 2: Quantifying Concept Alignment CALIGN (%) in German–English Concepts: Dotted lines depict base
models, while solid lines represent fine-tuned models across different multilingual models.

(a) Words ending with "ly" (b) Words ending with "lich" (c) Colors in German (d) Colors in English

Figure 3: Lower layers capture lexical concepts (a,b), while higher layers focus on semantic concepts (c,d).

models for English and German across different
layers (0, 1, 3, 6, 9, and 12),7 plotting the number
of aligned concepts (please refer to Section 2.2 for
the definition of alignment). Here are some insights
from the results:

Deeper layers in multilingual models reveal in-
creased alignment and preserve semantic con-
cepts, contrasting with language-dependent lex-
ical learning in lower layers. We observed a
significant number of concepts that exhibited align-
ment within the latent spaces of these models. No-
tably, up to 42% of concepts demonstrated align-
ment within the German-English latent space of
the mBERT-NER model. We noted an interest-
ing trend where the number of aligned concepts
increased with the depth of the network, reaching
its peak in the higher layers of the model. In our
qualitative analysis, we found that lower layers of
the models are predominantly engaged in learning
word morphology, including lexical concepts such
as suffixation.8 These aspects are often language-
dependent, resulting in a comparatively lower align-
ment of latent spaces. However, as we go deeper
into the network, we uncover more semantic con-
cepts that are preserved across latent spaces in a
language-agnostic manner. For example, Figures
3a and 3b present concepts in lower layers, depict-

7We aimed to investigate the embedding layer, as well as
the lower, middle, higher middle, and final layers.

8We also verified this quantitatively. See Figure 9 in Ap-
pendix B where we count the number of lexical and semantic
concepts across different layers of the model.

ing the learning of lexical concepts like derivational
morphology. In contrast, Figures 3c and 3d show-
case concepts learned in layer 12, highlighting the
higher layers’ focus on capturing similar semantic
concepts (colors in this case). We found these re-
sults to hold consistently across other languages.
Please refer to Appendix B for additional results.

Fine-tuning calibrates the latent space towards
higher alignment. Comparing base models (dot-
ted lines) to fine-tuned models (solid lines) revealed
a notable increase in aligned concepts, particu-
larly in higher layers. We posit that base mod-
els, trained with a multilingual MLM (mBERT
and XLM-R) and “span-corruption” (mT5) objec-
tives yield generic linguistic concepts that may not
align fully across languages. However, fine-tuning
models for specific tasks such as NER or transla-
tion leads to calibration of the latent space toward
task-specific concepts. This aligns with prior re-
search (Kovaleva et al., 2019; Merchant et al., 2020;
Durrani et al., 2021, 2022), which indicates that
higher layers of generic models become optimized
for the downstream task.

We also observed that task-specific calibra-
tion of the latent space facilitates zero-shot ca-
pabilities. To substantiate this claim quantita-
tively, we extract latent concepts for zero-shot lan-
guages (not used during fine-tuning) and evaluate
their alignment. Figure 4 illustrates concept align-
ment in the mT5 model tuned towards the task of
French–English translation. We extract concepts
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(a) zero-shot de (encoder) (b) zero-shot es (encoder) (c) zero-shot de (decoder) (d) zero-shot es (decoder)

Figure 4: Concept Alignment (%) in mT5. Dotted lines represent base models, solid lines denote fine-tuned
French–English MT models, and dashed lines depict zero-shot alignment for German–English and Spanish–English.

test11 test12 test13 test14

fr-en (ft) 49.0 43.8 40.8 42.7

de-en (ft) 39.9 36.4 36.9 35.5
de-en (zs) 28.2 18.9 23.1 21.7

es-en (ft) 43.3 35.9 44.7 44.5
es-en (zs) 32.0 26.7 24.0 28.2

*-en (bs) 0.01 0.02 0.10 0.20

Table 1: BLEU Scores for IWSLT tests: ft = the model
fine-tuned for fr–en translation, zs = zero-shot perfor-
mance of the pair using the fr–en tuned model and bs =
the scores when using the base mT5 model.

(a) zero-shot fr (b) zero-shot es

Figure 5: Concept Alignment (%) in mBERT. Solid
lines: fine-tuned German–English NER model. Dashed
lines: zero-shot alignment for French and Spanish.

language en de fr es

fine-tuned zero-shot

mbert (NER) 84.6 89.7 77.9 68.0

mbert (base) 3.0 4.9 5.8 4.1

Table 2: F1 scores for mBERT-NER (German,English).
French and Spanish represent the zero-shot scenario.

for French, English, German, and Spanish from
these models on both the encoder and decoder
sides, with the latter two representing zero-shot
scenarios. The dashed lines indicate concept align-
ment for German and Spanish within these mod-
els. Notably, we observe a substantial increase
in the percentage of aligned concepts, despite the

model not being fine-tuned for German– or Span-
ish–English translation. This suggests that the pres-
ence of language-agnostic concepts within the la-
tent space of these models facilitates performance
in zero- and few-shot scenarios. Our findings corre-
late with the BLEU scores (Post, 2018), as shown
in Table 1. Note that while the zero-shot German
and Spanish translations show significantly lower
performance compared to their respective models
after fine-tuning, the model still performs reason-
ably well considering it was never explicitly trained
for German- and Spanish-English translation tasks.
We consistently observed these trends across var-
ious language settings in the mT5 model9 and in
the mBERT model fine-tuned for the NER task for
German and English. Notably the alignment im-
proved in zero-shot French and Spanish languages
(compare dashed lines (zs) to dotted lines (base)
in Figure 5). Again, these findings correlate with
the F1 Scores (see Table 2). We see similar results
for XLM-R model fine-tuned for the SST2 task as
well.

Divergent patterns emerge in the encoder and
decoder latent spaces. Comparing our findings
in mT5, as depicted in Figure 2, we noted dispari-
ties in alignment between the encoder and decoder
spaces: i) while the base model demonstrated rea-
sonable alignment on the encoder side (up to 20%),
indicated by the dotted line in Figure 2a, align-
ment on the decoder side was minimal (< 3%),
as shown in Figure 2b. Decoders in transformer
models are responsible for generating target lan-
guage sequences based on the encoded input. We
speculate that since its primary focus is on generat-
ing fluent and accurate translations, it may priori-
tize language-specific nuances and idiosyncrasies,
leading to lesser aligned concepts across languages.
This also explains a decrease in alignment observed
in the final layers of the fine-tuned decoder.

9Please see Figures 21–23 in the Appendix B for results.
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(a) Shared infix “olog” (de, en) (b) Anatomy & Senses (es, en) (c) Occupations (fr, en) (d) Names (ar, en)

Figure 6: Sample Overlapping Concepts in the mT5 model.

(a) mT5 encoder – Base (b) mT5 encoder – MT-tuned (c) mT5 decoder – Base (d) mT5 decoder – MT-tuned

Figure 7: Quantifying Overlapping Concepts in different languages in mT5 encoder and decoder

We see a similar dip in the last layer of encoder-
only mBERT and XLM-R models for the NER and
SST-2 tasks (refer to Figures 2c and 2d), which
again can be attributed to the layers adapting to
the task at hand instead of maintaining semantic
alignment across languages.

4.2 Concept Overlap

CALIGN serves to assess whether the model cap-
tures concepts that exhibit alignment across lan-
guages, signifying shared semantic space. Our
COLAP metric delves into this aspect further by
exploring the presence of overlapping latent spaces
within the model’s representation. This sheds light
on how the model effectively maintains multiple
languages within a shared latent space. We demon-
strate a selection of concepts demonstrating mul-
tilinguality. Figure 6a illustrates a concept at the
lower layer where German and English intersect,
sharing the common infix “olog”. Various multi-
lingual semantic concepts, including Anatomy &
senses, Occupations and Names are depicted across
different languages. Note that while CALIGN
can identify the concept in Figure 6b because its
constituent words are semantically equivalent, the
cross-lingual words in Figure 6a are grouped based
on lexical, rather than semantic similarity. COLAP
helps us detect such concepts.

In Figures 7–8 we quantify overlap across latent
spaces in various layers of mT5 and mBERTmodels.
We note a significant number of concepts across
layers with a high COLAP score in both mT5 and

mBERT. The overlap typically peaks around 50%
across most settings (refer to Figures 7 and 8). We
draw the following insights from these results:

Closely related languages demonstrate higher
overlap in latent space. We observe a spectrum
of overlap across languages, with the highest de-
gree found in French (peaking around 80%) and the
lowest in Arabic (peaking around 25%) – please see
Figure 7c. English and French showcase substan-
tial overlap in their latent spaces, attributed to their
shared linguistic roots within the Indo-European
language family. Specifically, French stems from
the Romance branch, while English belongs to the
Germanic branch. This common linguistic heritage
manifests in similarities in vocabulary and syntactic
structures between the two languages. In contrast,
Arabic exhibits notable differences in orthography
and morphology when compared to English. As a
Semitic language, Arabic presents unique linguistic
characteristics absent in Indo-European languages
like English and French. Its script diverges signifi-
cantly from the Latin script, while its intricate root-
and-pattern morphology stands in stark contrast to
English morphology. These linguistic disparities
contribute to a reduced degree of overlap in the
latent space between English and Arabic compared
to English and French.

The complexity of optimization function affects
the extent of overlap in latent spaces While
German and English share a closer linguistic re-
lationship, and belong to the Germanic language
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branch within the Indo-European family, it exhibits
a lesser overlap compared to French. The extent
of their overlap in the latent space may be influ-
enced by the differences in syntax, such as word
order and grammatical structure, despite their lin-
guistic closeness. Note that the base mT5 model
employs span correction as its optimization func-
tion, which may primarily requires a focus on short-
range dependencies. In contrast, the translation
task requires the handling of long-range syntac-
tic dependencies. Consequently, as the models are
fine-tuned for machine translation tasks, we also ob-
serve a higher overlap for German in latent spaces
of the fine-tuned models (See Figures 7b and 7d).
We even notice an increase in overlapping concepts
for Arabic-English in the higher layers post fine-
tuning. A comprehensive investigation, however, is
required to examine this further, and we defer this
exploration to future studies.

While most of the concepts in a model ex-
hibit multilingual traits, the later layers,
post fine-tuning, tend to preserve predomi-
nantly language-specific characteristics. Al-
though substantial overlap is evident across lan-
guages in general, the proportion of concepts that
overlap diminishes to less than 20% (See Figure
7d) as the model undergoes fine-tuning for ma-
chine translation, dropping further below 5% in
the final layers. This underscores that while the
bulk of a model’s concepts maintain multilingual
attributes, the final layers within the decoder pre-
dominantly preserve language-specific traits. It’s
worth noting, however, that these concepts may still
be semantically equivalent and satisfy CALIGN, as
demonstrated in Section 4.1 (refer to Figure 4).

We do not observe a similar drop in the mBERT
NER model (Figure 8b), where the consistently
high overlap can be ascribed to concepts specific to
output classes (e.g. location concepts), where
semantic alignment may be less crucial than merely
grouping locations from different languages closely
together for prediction.

5 Related Work

Numerous studies have explored the domain of mul-
tilingual embedding, investigating how deep neural
language models encode knowledge across vari-
ous languages without explicit supervision. Pires
et al. (2019) demonstrated mBERT’s ability to learn
multilingual representations, enabling cross-lingual
transfer even for languages with different scripts,

(a) mBERT Base (b) mBERT (NER)

Figure 8: Quantifying Concept Overlap in mBERT

provided they share topological similarities. Cao
et al. (2020) employ a contextual word retrieval task
where the model is tasked with finding correspond-
ing words and sentences across parallel corpora.
Dufter and Schütze (2020) identified critical archi-
tectural and linguistic properties for multilinguality,
emphasizing the necessity of common positional
embeddings, shared special tokens, and a restricted
parameter space. Papadimitriou et al. (2021) inves-
tigated higher-order grammatical feature represen-
tation across languages using probing classifiers
trained on mBERT embeddings. Their successful
zero-shot cross-lingual transfer demonstrated paral-
lel representation of grammatical features. Wen-Yi
and Mimno (2023) conducted analysis on the em-
bedding layer of mT5 and XLM-R, uncovering the
diverse language encoding patterns within these
models and highlighting the semantic encoding
across languages. Xu et al. (2023) investigated the
conceptual correspondence between structural con-
cepts in linguistically diverse languages, emphasiz-
ing the correlation between conceptual alignment
and cross-lingual transfer. They proposed a meta-
learning approach to align these linguistic spaces,
enabling zero-shot and few-shot generalization.

Our approach diverges from prior research
methodologies by using an unsupervised approach
to unveil multilingual concepts learned within the
latent space of these models. We identify latent con-
cepts across different languages and assess align-
ment across these concepts using our proposed
metrics CALIGN and COLAP. Unlike previous ap-
proaches that focus on individual words and local
alignment, our multilingual concept analysis pro-
vides insight into how different linguistic concepts
align and overlap across multilingual spaces. We
illustrate the alignment and overlap within these
spaces and track their recalibration as the models
undergo fine-tuning for downstream tasks. While
prior research often examines if individual words
have aligned counterparts in target languages, our
work extends this by enforcing whether the latent
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spaces themselves are similarly constructed. This
means that the neighbors of a word in one language
correspond to neighbors of the target word in an-
other language, introducing a stronger evidence of
multilinguality at a fundamental level. Our find-
ings suggest that this calibration of latent space
enhances the model’s performance in zero-shot sce-
narios, presenting a distinct analysis and revealing
results that significantly differ from previous re-
search.

6 Conclusion

The emergence of multilingual contextualized em-
beddings has sparked interest in understanding
their mechanisms. We introduce two metrics,
Concept Alignment (CALIGN) and Concept Over-
lap (COLAP), to quantify alignment and overlap
within multilingual models. Our analysis reveals:
i) deeper layers exhibit increased alignment due
to presence of semantic concepts, ii) fine-tuning
enhances alignment across cross-lingual concepts,
facilitating zero-shot capabilities, iii) divergent pat-
terns in encoder and decoder spaces and higher
overlaps between closely related languages are ob-
served. Our insights shed light on the dynamics
of multilingual embeddings and lay the ground-
work for a more comprehensive understanding of
multilingual NLP models.

7 Limitations

We list below limitations of our work:

• While our approach effectively analyzes how
multilingual models encode concepts across
languages within their learned representations,
it does not shed light on how these concepts
are utilized by the model during prediction.
Our results demonstrate a correlation between
our metrics and the model’s performance (as
measured by BLEU and F1 scores) in the zero-
shot scenarios. However, establishing causa-
tion from this correlation is not straightfor-
ward. In future research, we aim to integrate
our method with ablation and knowledge attri-
bution techniques to establish a direct connec-
tion between the encoded concepts and their
impact on prediction.

• Due to the high dimensionality of contextual
representations, only a restricted amount of
data can be clustered to extract latent concepts.
This limitation affects the goal of concept dis-
covery, providing only a partial view of the

spectrum of concepts that could be learned
within the model. Our experiments were con-
strained by time and memory limitations. It
is possible that with large-scale experimenta-
tion, we could uncover many other intriguing
concepts. Additionally, time and memory con-
straints prevent us from exploring other clus-
tering algorithms that may yield a superior
hierarchy of concepts but are computationally
infeasible.

References
Ebrahim Ansari, Amittai Axelrod, Nguyen Bach,
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Appendix

A Latent Concepts

In Figure 10, we present a selection of concepts
learned within the latent space of the multilingual
mT5 model. These figures showcase a diverse ar-
ray of encoded concepts, encompassing lexical con-
cepts (e.g., Figures 10a and 10d, which depict Ger-
man and English words with affixes “ge” and “able”
respectively), semantic concepts (e.g., Figures 10g
– 10i, highlighting quantities, numbers and units
of measurement in different languages), and more
intricate semantic concepts illustrating fine-grained
taxonomies (e.g., Figures 10b, capturing various
scientific disciplines).

B Concept Alignment

In Section 4.1 we discussed several results. Here
we demonstrate that our findings generalize to other
languages.

Deeper layers in multilingual models reveal in-
creased alignment and preserve semantic con-
cepts, contrasting with language-dependent lexi-
cal learning in lower layers. We made this ob-
servation through qualitative analysis of concepts
across different languages we studied in this pa-
per. In Figures 14–16, we present lexical concepts
learned within the lower layers of the multilingual

Figure 9: Layer-wise alignment of clusters to lexical
and semantic properties in mBERT

models, contrasting with the aligned semantic con-
cepts found in the higher layers. To verify our hy-
pothesis, we quantify the number of lexical (suffix-
based concepts) and semantic concepts in English
within the mBERT model. Please see Figure 9 for
a layer-wise pattern of concepts.

Fine-tuning calibrates the latent space towards
higher alignment We consistently higher align-
ment of concepts as the models were fine-tuned
towards a downstream NLP task. Please refer to
Figures 11–13 for results across different architec-
tures and languages. We display alignment out-
comes in base models (dotted lines) and after they
were fine-tuned (solid lines). Please refer to Fig-
ures 17–20 for additional examples of concepts
aligned across various languages.

The task-specific calibration of the latent space
facilitates zero-shot capabilities. In Figures 21–
23, we display alignment outcomes using mT5 base
models and after tuning them for the machine trans-
lation task. We examine language alignment within
the encoder, decoder, and between the encoder and
decoder. We observe that fine-tuning the models en-
hances the alignment of latent spaces. Interestingly,
this increase in alignment also extends to other
languages, despite the fact that the model was not
specifically tuned for these zero-shot languages.

C Concept Multilinguality

In Section 4.2, we illustrated how both the base
and fine-tuned models manifest concepts with over-
lapping latent spaces. Figure 24 showcases that
these models display similar patterns even in the
zero-shot scenario. Specifically, in this figure, we
present the multilinguality of concepts in the mT5

6336

https://doi.org/10.18653/v1/2023.emnlp-main.71
https://doi.org/10.18653/v1/2023.emnlp-main.71
https://doi.org/10.18653/v1/2023.emnlp-main.71
https://doi.org/10.18653/v1/2023.findings-emnlp.931
https://doi.org/10.18653/v1/2023.findings-emnlp.931
https://doi.org/10.18653/v1/2023.findings-emnlp.931
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41


(a) “ge” infix (b) Chemical Elements (c) Modes of Transportation

(d) Words ending with “tive” (e) Technological Devices and tools (f) Family and Relationships

(g) Qualities and Numbers (h) Units of Measurement (i) Units of Measurment

Figure 10: Sample Concepts learned in the mT5 model

(a) mT5–encoder (b) mT5–encoder-decoder (c) mT5–decoder (d) mBERT

Figure 11: Quantifying Alignment Percentage in Spanish–English Concepts: Dotted lines depict base models, while
solid lines represent fine-tuned models across different multilingual models.

(a) mT5–encoder (b) mT5–encoder-decoder (c) mT5–decoder (d) mBERT

Figure 12: Quantifying Alignment Percentage in French–English Concepts: Dotted lines depict base models, while
solid lines represent fine-tuned models across different multilingual models.
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(a) mT5–encoder (b) mT5 encoder-decoder (c) mT5 decoder (d) mBERT

Figure 13: Quantifying Alignment Percentage in Arabic–English Concepts: Dotted lines depict base models, while
solid lines represent fine-tuned models across different multilingual models.

(a) Words ending with “ing” (b) words ending with “ión” (c) Medical terms in Spanish (d) Medical Terms in English

Figure 14: Spanish-English Concepts learned in the mT5 model: Lower layers (a and b) capture lexical concepts,
while higher layers focus on semantic concepts (c and d).

(a) Words ending with “on” (b) Words ending with “ux” (c) Materials and Substances (d) Materials and Substances

Figure 15: French-English Concepts learned in the mT5 model: Lower layers (a and b) capture lexical concepts,
while higher layers focus on semantic concepts (c and d).

(a) Words ending with “At” (b) Shared infix “er” (c) Time phrases in Arabic (d) Time phrases in English

Figure 16: Arabic-English Concepts learned in the mT5 model: Lower layers (a and b) capture lexical concepts,
while higher layers focus on semantic concepts (c and d).
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(a) Superlatives in German (b) Superlatives in English (c) Math related terms (de) (d) Math related terms (en)

(e) Study related (de) (f) Study related (en) (g) Colors in German (h) Colors in English

Figure 17: Pairs of Concepts in German-English mT5 model

(a) Nationality & Identity (fr) (b) Nationality & Identity (en) (c) Chemical Materials (fr) (d) Chemical Material (en)

(e) Adverbs (fr) (f) Adverbs (en)

Figure 18: Pairs of Concepts in French-English mT5 model

(a) Colors in English (b) Colors in English (c) Medical terms in Spanish (d) Medical terms in English

(e) Assorted Items (es) (f) Assorted Items (en) (g) Temporal terms in Spanish (h) Temporal terms in English

Figure 19: Pairs of Concepts in Spanish-English mT5 model
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(a) Colors in Arabic (b) Colors in English (c) Time spans in Arabic (d) Time spans in English

(e) Geographical entities (ar) (f) Geographical entities (en) (g) Morphological variations (h) Verb transformations

Figure 20: Pairs of Aligned Concepts in Arabic-English mT5 model

(a) zero-shot es on de encoder (b) zero-shot fr on de encoder (c) zero-shot ar on de encoder

(d) zero-shot es on de↔en (e) zero-shot fr on de↔en (f) zero-shot ar on de↔en

(g) zero-shot es on de decoder (h) zero-shot fr on de decoder (i) zero-shot ar on de decoder

Figure 21: Percentage of Aligned Concepts: Dotted lines represent base models, solid lines denote fine-tuned
German–English model, and dashed lines depict zero-shot alignment for spanish (left column), French–English
(Middle column) and Arabic-English (right column); enc: Encoder, dec: Decoder

6340



(a) zero-shot de on es encoder (b) zero-shot fr on es encoder (c) zero-shot ar on es encoder

(d) zero-shot de on es↔en (e) zero-shot fr on es↔en (f) zero-shot ar on es↔en

(g) zero-shot de on es decoder (h) zero-shot fr on es decoder (i) zero-shot ar on es decoder

Figure 22: Percentage of Aligned Concepts: Dotted lines represent base models, solid lines denote fine-tuned Span-
ish–English model, and dashed lines depict zero-shot alignment for German-English (left column), French–English
(Middle column) and Arabic-English (right column); enc: Encoder, dec: Decoder
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(a) zero-shot de on ar encoder (b) zero-shot es on ar encoder (c) zero-shot de on fr encoder

(d) zero-shot de on ar↔en (e) zero-shot es on ar↔en (f) zero-shot fr on ar↔en

(g) zero-shot de on ar decoder (h) zero-shot es on ar decoder (i) zero-shot fr on ar decoder

Figure 23: Percentage of Aligned Concepts: Dotted lines represent base models, solid lines denote fine-tuned Ara-
bic–English model, and dashed lines depict zero-shot alignment for German-English (left column), French–English
(Middle column) and Arabic-English (right column); enc: Encoder, dec: Decoder

(a) 0-shot fr, es, ar on de enc (b) 0-shot de, es, ar on fr enc (c) 0-shot de, fr, ar on es enc (d) 0-shot de, fr, es on ar enc

(e) 0-shot fr, es, ar on de dec (f) 0-shot de, es, ar on fr dec (g) 0-shot de, fr, ar on es dec (h) 0-shot de, fr, es on ar dec

Figure 24: Quantifying Concept Overlap in different languages in mT5 encoder and decoders.
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(a) XLM-R Base (b) XLM-R (NER) (c) XLM-R (SST)

Figure 25: Quantifying Concept Overlap in XLM-R

encoder and decoder models under zero-shot con-
ditions. Notably, we observe that the zero-shot
overlap (depicted by dashed lines) follows a com-
parable pattern to the overlap of latent spaces after
fine-tuning (indicated by solid lines).

D Thresholds

In Section 3.3 we mentioned the threshold we used
for our experiments including the matching thresh-
old, n-best translations to estimate T (ws, wt) and
minimum number of types per concept. The choice
of these parameters is arbitrary. We experimented
with various configurations, such as using a 70–
90% matching types, using 5–20 best translations.
The overall patterns of the results remained consis-
tent across different configurations (please refer to
Figure 30). The selected thresholds were chosen
based on a qualitative examination of the concepts,
allowing for some noise in the concept representa-
tions.

E Data Statistics

In this section, we report the data statistics that
we used for the experiment. Table 3 shows the
number of sentences for the TED data (Birch et al.,
2014) used for the machine translation experiments,
Table 4 shows the statistics for the NER data used,
and Table 5 shows the statistics for the sentiment
analysis data used.

F Computing Budget

The extraction of the representations from a mul-
tilingual model requires 500GB of RAM memory.
The clustering experiments for the extracted rep-
resentations require 30GB of RAM memory each.
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(a) Words ending with “us” (b) Words containing “land” (c) “ge” infix

(d) Conflict and competition (e) Qualities and Numbers (f) Landforms and Natural Features

(g) Furniture and Surfaces (h) Medical and Scientific professions (i) Commercial Establishments

(j) Nationalities and Ethnicities (k) Weather and Tempratures (l) Units of Measurement

Figure 26: Overlapping German-English Concepts in the MT-tuned mT5 model
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(a) Words ending with “able” (b) Words ending with “tive” (c) words ending with “an”

(d) words ending with “ch” (e) Research Terminology (f) Educational terms

(g) Military and Violence (h) Visual representation vocabulary (i) Measurements Vocabulary

(j) Emotional Expression (k) Chemical Elements (l) Modes of Transportation

Figure 27: Overlapping French-English Concepts in the MT-tuned mT5 model
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(a) Words containing “ve” (b) words containing "able" (c) "ch" infix

(d) Literature Writing and Vocabulary (e) Family and Relationships (f) Scientific Terms

(g) Chemical compounds (h) Emotions and States of mind (i) Technological devices and tools

Figure 28: Overlapping Spanish-English Concepts in the MT-tuned mT5 model
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(a) Recreational Sports and Activities (b) Anatomical Terminology (c) Adverbs of Emphasis and Certainty

(d) Geographical and Urban Terms (e) Time periods and Decades (f) Relationships and Connections

(g) Paths and Transportation (h) Nationalities and Ethnicities (i) Units of Measurment

Figure 29: Overlapping Arabic-English Concepts in the MT-tuned mT5 model

(a) N-best translations (b) Matching threshold (c) Minimum types per concept (d) Overlapping threshold

Figure 30: Varying different threshold parameters in CALIGN and COLAP
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de-en es-en fr-en ar-en

train 209330 184724 234033 229194

test11 1433 1435 818 1199
test12 1700 1701 1124 1702
test13 992 1197 1026 1167
test14 1305 1305 1305 1107

Table 3: TED data statistics (number of sentences).

de es fr ar en

train - sentences 20000 20000 20000 20000 20000
train - tokens 195387 129283 136788 129184 160394
validation - sentences 10000 10000 10000 10000 10000
validation - tokens 97805 64329 68220 64291 80536
test - sentences 10000 10000 10000 10000 10000
test - tokens 97646 64727 68754 64347 80326

Table 4: Xtreme NER data statisics

en de

train 67437 67437
validation 872 872
test 1821 1821

Table 5: SST2 data statistics
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