FastFiD: Improve Inference Efficiency of Open Domain Question
Answering via Sentence Selection

Yufei Huang'?

Xu Han!»?

Maosong Sun'»231

'Dept. of Comp. Sci. & Tech., Institute for AI, Tsinghua University, Beijing, China
2Beijing National Research Center for Information Science and Technology
3Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou, China
huang-yf20@mails.tsinghua.edu.cn {hanxu2022,sms}@tsinghua.edu.cn

Abstract

Open Domain Question Answering (ODQA)
has been advancing rapidly in recent times,
driven by significant developments in dense
passage retrieval and pretrained language mod-
els. Current models typically incorporate the
FiD framework, which is composed by a neu-
ral retriever alongside an encoder-decoder neu-
ral reader. In the answer generation process,
the retriever will retrieve numerous passages
(around 100 for instance), each of which is
then individually encoded by the encoder. Sub-
sequently, the decoder makes predictions based
on these encoded passages. Nevertheless, this
framework can be relatively time-consuming,
particularly due to the extensive length of the
gathered passages. To address this, we intro-
duce FastFiD in this paper, a novel approach
that executes sentence selection on the encoded
passages. This aids in retaining valuable sen-
tences while reducing the context length re-
quired for generating answers. Experiments on
three commonly used datasets (Natural Ques-
tions, TriviaQA and ASQA) demonstrate that
our method can enhance the inference speed
by 2.3X-5.7X, while simultaneously maintain-
ing the model’s performance. Moreover, an
in-depth analysis of the model’s attention re-
veals that the selected sentences indeed hold
a substantial contribution towards the final
answer. The codes are publicly available at
https://github.com/thunlp/FastFiD.

1 Introduction

Open Domain Question Answering(ODQA) is a
longstanding task in Natural Language Processing
that involves generating an answer solely based on
a given question. Recent advancements in this field
have typically adopted the Retriever-Reader frame-
work (Chen et al., 2017; Karpukhin et al., 2020;
Lewis et al., 2020; Izacard and Grave, 2021b),
which breaks down the task into two distinct stages.
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Figure 1: Inference Time for FiD (base) and FastFiD
(base) with varying numbers of retrieved passages. As
the number of retrieved passages increases, FiD encoun-
ters increasingly severe efficiency issues. Our FastFiD
significantly accelerates the process by greatly reducing
decoding time.

Initially, a retriever retrieves a set of relevant pas-
sages from a high-quality collection of open do-
main documents, such as Wikipedia. Subsequently,
a reader model generates an answer by considering
the question and the retrieved passages. Thanks
to advancements in neural models, the retriever
has transitioned from traditional search methods
like TF-IDF (Chen et al., 2017) to dense passage
retrieval (Karpukhin et al., 2020), resulting in im-
proved retrieval performance. Furthermore, driven
by the progress of Pretrained Language Models
(PLMs) (Devlin et al., 2019; Raffel et al., 2020;
Brown et al., 2020), the reader has evolved from
extracting answers from a single passage to gener-
ating answers from multiple passages (Izacard and
Grave, 2021b). This approach enables the model to
leverage information from various passages more
effectively, thereby producing more accurate an-
SWers.

A recently successful model is Fuse-in-Decoder
(FiD) (Izacard and Grave, 2021b), which utilizes
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Dense Passage Retrieval and a generative reader
based on TS5 (Raffel et al., 2020), an encoder-
decoder model. FiD is capable of encoding each
retrieved passage independently and subsequently
concatenating these encoded passages to form an
extensive context. The concatenated context is then
used by the decoder to generate a response. Owing
to its straightforward and extensible architecture,
numerous subsequent works have introduced mod-
ifications based on this framework (Sachan et al.,
2021b; Yu et al., 2022; Wen et al., 2022). However,
as the decoder must generate a response based on
all retrieved passages, it can be time-consuming to
enhance performance through the retrieval of addi-
tional passages. Moreover, in real-world scenarios,
the latency in generating an answer is a significant
factor. As larger language models continue to be
developed and demonstrate superior performance,
this issue may become more pronounced.

To address this issue, we introduce FastFiD, a
novel approach that performs sentence selection
post the encoder’s output and maintains only the
essential sentences as references for the decoder,
thereby significantly reducing the inference time
for each query.

To demonstrate the effectiveness of our ap-
proach, we first carry out experiments to ascer-
tain that the multi-task training, which involves
sentence selection and answer generation, does
not conflict with one another during the model’s
learning process. This is achieved by seamlessly
incorporating a selection loss on the encoder out-
puts with a language modelling loss on answer
generation, enabling the model to simultaneously
handle both sentence selection and answer gener-
ation tasks. An in-depth analysis of the decoder’s
cross-attention reveals that tokens from the chosen
sentences yield a higher average attention score
compared to those unchosen. This finding provides
compelling evidence that the selected sentences
significantly contribute more to the model’s pre-
dictions. Guided by this insight, we execute a
secondary training phase, obliging the model to
solely anchor to the selected encoder outputs when
making the final prediction.

The experimental results obtained from two
widely used ODQA datasets, namely Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017), along with a long-form
QA dataset called ASQA (Hofstiitter et al., 2023),
demonstrate that FastFiD can achieve performance
metrics comparable to the original FiD. Notably,

it can reduce the context length by up to 38X and
accelerate the inference time by 2.3X-5.7X on dif-
ferent datasets. To validate the effectiveness of
sentence selection, we also compare its perfor-
mance with passage reranking after the encoder
outputs. The results show that sentence selection
yields better performance while maintaining a sim-
ilar context length. This comparison indicates that
sentence selection is a more effective strategy for
compressing information across multiple passages.

In summary, our contributions can be encapsu-
lated within the following three key points:

* We implement a multi-task training approach,
demonstrating that a singular reader model
can concurrently perform sentence selection
and answer generation.

* We introduce a novel technique to enhance the
inference efficiency of FiD while preserving
its question-answering capabilities.

* We carry out plenty of experiments to validate
and analyze the effectiveness of our method.

2 Related Work

Open Domain Question Answering serves a
crucial role in natural language processing, with
its primary function being to respond to factoid
questions. Followed by Chen et al. (2017), cur-
rent ODQA systems usually use a large collec-
tion of documents like Wikipedia as the knowl-
edge source to answer questions. Since the docu-
ment collection usually contains millions of doc-
uments, the system always adds a retriever to re-
trieve some most relevant passages for the reader
to make predictions. To get better retriever perfor-
mance, Karpukhin et al. (2020) proposed a shift
from sparse retrieval systems like TF-IDF to dense
retrieval to enhance the efficiency of the retriever.
Subsequent research (Lewis et al., 2020; Sachan
et al.,2021b; Jiang et al., 2022; Lee et al., 2022) has
investigated the use of end-to-end training method-
ologies to further boost the performance of the
retriever, bypassing the need for pair-wise question-
document data. Izacard and Grave (2021a) demon-
strated an improvement in performance through
the distillation of knowledge from the reader to
the retriever. The idea of pretraining both the re-
triever and the reader on a vast, unlabeled corpus
has been explored by Guu et al. (2020) and Sachan
et al. (2021a). A different research trajectory has
aimed to augment the reader’s capacity to better
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Figure 2: An overview of our FastFiD training pipeline. The pipeline undergoes two stages of training to empower
the model with the capacity to generate answers based on the selected sentences, thereby minimizing inference time.

utilize retrieved passages. With the advancement
of PLMs, the reader has evolved from RNN-based
models (Chen et al., 2017) to BERT-based extrac-
tive readers (Karpukhin et al., 2020) and T5 or
BART-based generative readers (Lewis et al., 2020;
Izacard and Grave, 2021b). Recent studies (Cheng
et al., 2021; Fajcik et al., 2021; Wen et al., 2022)
have pivoted towards a hybrid approach, exploring
the integration of both generative and extractive
readers to further enhance system performance.

Efficient ODQA The majority of contemporary
Open-Domain Question Answering (ODQA) sys-
tems face efficiency challenges, primarily due to
the large-scale document processing and the use
of sizable pre-trained language models. These effi-
ciency challenges arise in two stages.

The first stage is retrieval efficiency. Given the
potentially massive number of passages, dense re-
trieval can be extremely slow. Instead of relying
solely on brute force search methods, alternative
algorithms such as Approximate Nearest Neigh-
bor (ANN) (Johnson et al., 2021) and Hierarchi-
cal Navigable Small World (HNSW) (Malkov and
Yashunin, 2020) can be employed to expedite the
retrieval process.

The second efficiency challenge lies in the read-
ing process, which involves handling multiple pas-
sages for each query. To address this, Hofstétter
et al. (2023) propose FiD-Light, which limits the
decoder’s attention to the first k tokens of each pas-
sage to reduce the context length. FiDO (de Jong
et al., 2023) explores reducing the number of cross
attention layers in FiD’s decoder to increase effi-
ciency, but this comes at the cost of re-pretraining
the base model. Other complementary strategies
explore to identify and stop processing less relevant
passages early on by utilizing adaptive computa-
tion (Wu et al., 2020, 2021) or knowledge graph

with GNN network (Yu et al., 2022). Addition-
ally, some research has focused on directly retriev-
ing answers to questions without the need for pas-
sage processing (Seo et al., 2019; Lee et al., 2021;
Lewis et al., 2021), or using language models to
generate answers directly by finetuning and few-
shot prompting (Roberts et al., 2020; Brown et al.,
2020).

Answer Sentence Selection Answer Sentence
Selection (AS2) is a long-standing task that has
been extensively explored. Dense Neural Net-
works (DNNs) have been widely employed in this
task (Severyn and Moschitti, 2015; Shen et al.,
2017). Garg et al. (2020) further advanced the
field by utilizing transformer-based pre-trained lan-
guage models (PLMs) to achieve better results. Re-
cent studies have investigated methods such as gen-
erating answer sentences (Hsu et al., 2021) and
implementing complex ranking pipelines (Matsub-
ara et al.,, 2020). Unlike these approaches, our
work aims to predict the exact answer span from
retrieved passages, using answer sentence selection
only for enhancing inference speed.

3 Methods

In this section, we propose FastFiD, which is based
on FiD (Izacard and Grave, 2021b) to reduce its
inference time and make it more efficient. FastFiD
contains a two-stage training procedure. Initially,
in the first stage, we introduce a multi-task train-
ing objective that allows for simultaneous training
of sentence selection and answer generation (Sec-
tion 3.1). Then, in the second stage, we use the
model trained in the first stage as the base model
and perform continuous training on generating an-
swers with reference to the selected tokens. (Sec-
tion 3.2). Finally, in the inference stage, the en-
coder transcodes each passage into context embed-
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dings and curates a selection of valuable sentences,
which are then employed in the decoder generation
process to expedite inference time (Section 3.3).
The overall framework is shown in Figure 2.

3.1 Multi-Task Training

In this section, we present our multi-task train-
ing approach. Following FiD, we utilize TS5, an
encoder-decoder based PLM, as our base model.
Given a question-answer pair (g, a), we initially
retrieve K relevant passages p',p?, ..., pX, with
their respective titles 1,42, ..., tX from an exten-
sive knowledge base, predicated on the question
q. Subsequently, the question ¢ and each corre-
sponding passage p* are combined to generate a
comprehensive input in the following structure:

= Question: ¢ Title: t* Context: p* (1)

After this, the model’s encoder transcodes each
input I* into context embeddings h’f, hé, e h’fv €
R?, where N represents the max sequence length
of the input text. Our multi-task training objective,
which encompasses sentence selection and answer
generation, is built upon these encoded context
embeddings.

3.1.1 Sentence Selection

In the context of a given retrieved passage p*,
there exist M), key sentences, represented as S* =
s’f, 312‘3, ey sﬁ/[k, that are crucial for answering the
question. As established in prior extractive reader
works (Chen et al., 2017; Kwiatkowski et al., 2019;
Min et al., 2019; Cheng et al., 2021), we implement
a classification head to anticipate the begin and end
positions of each key sentence. Taking into account
the conclusions of Cheng et al. (2020) and Cheng
etal. (2021), we employ a multi-objective approach
to enhance sentence selection performance.

In formal terms, the probability of a span (¥, j*)
being a selected sentence can be broken down into
the product of the probabilities of the i*-th token
being the start token and the j*-th token being the
end token. We integrate some learned parameters,
namely wyp, We, by, be, to calculate the start and end
score:

Sb(i ) = Wy hk + bb,

Se(5*) = wlny + be

By calculating the probability based on differ-
ent normalizing factors, we can derive the lo-

cal passage-level probability and the global multi-
passage-level probability. With local probability,

2

the probability of each token in different retrieved
passages will not affect one another. By normaliz-
ing the start and end probabilities by the total scores
of all tokens in input I*, we derive the probability
as follows:

L _ eXp(Sb(ik)) ;
PE( )—Znexp(sb(n’“))’ 3)
P(j*) = =8

e Enexp(se(nk))

In the case of global probability, we calculate
the probability taking into account all the tokens in
the top-K passages from the retriever. Therefore,
the probability of each token being the start or end
of the selected sentence will be jointly optimized
across different passages:

exp(St)
A VS =TT
oo ep(S.")

P = 5 5 (8. )

We then obtain the local and global probabilities
of a span being the supported sentence as follows:

PGk, by = PEROH (k) x PIEGYH(GR) (5)

Following the methodology of Cheng et al.
(2021), we utilize a multi-objective formulation
to merge the HardEM (Min et al., 2019) and
MML (Karpukhin et al., 2020) objectives for more
efficient training. In the multi-objective formu-
lation, we calculate the HardEM loss on global
probability and the MML loss on local probability.
The final sentence selection loss is calculated as
follows:

Ls = —log max PZ(i,5)—
(i.5)€S

IS

(ik jk)eSk

(6)

PE(i, )

where S = S' U S?2 U ... U 8K is the set of
all crucial sentences in the top-K retrieved pas-
sages. Since ODQA datasets usually only contain
question-answer pairs without annotated valuable
sentences, we consider the sentences that include
the short span answer in each retrieved passage as
the crucial sentences.

6265



3.1.2 Answer Generation

As the pipeline in FiD, we employ the decoder to
fuse the information of retrieved passages and make
a prediction. More specifically, we first concatenate
the context embeddings of all inputs:

H=(HYH? . ,HY) (7)

where H* represents the context embeddings for
input I, therefore H have an overall length of
N x K. Subsequently, the decoder conducts cross-
attention over the concatenated context embed-
dings to make generation.

For the training objective, it optimizes the lan-
guage modelling loss of generating the golden
answer a, a sequence of tokens represented as

{a1,a9,...,an, }:

N
Lo = —log Z Py, (ailH,a1:;1) 8)

)

where 6, is parameters of the decoder.

Finally, in the first-stage multi-task training, we
integrate the sentence selection objective and an-
swer generation objective in the following manner
to simultaneously equip the model with these two
capabilities. The variable )\ is a hyper-parameter
that balances these two objectives:

L= Lo+ \s )

3.2 Select Generation Training

After completing the initial stage of training as out-
lined in Section 3.1, our preliminary experiments
reveal that while the model possesses the capacity
to select valuable sentences and make predictions
at the same time, directly requiring the decoder to
form predictions solely based on these selected sen-
tences significantly hampers the performance of the
model. We hypothesise that this is because of the
gap in context length for decoder between training
and inference. Therefore, we introduce a second
stage of continuous training aimed at minimizing
this discrepancy linked with context length.

More specifically, we initially obtain the context
embeddings of the selected sentences, and this is
done by the global multi-passage-level selection
probability.

Hs = Uhl’k:jk;

.k -k G/ - (10)
(i%,5"%) € TopK(P (i, 4))

The resultant loss for answer generation can then
be expressed as follows:

Na
L& =—log ) Py,(ai|Hs,a1:1)

1

(11

Throughout the second stage of training, we
maintain the use of a multi-task training objective
to keep both the sentence selection ability and an-
swer generation ability, thereby facilitating better
performance.

L% =L+ M\Ls (12)

3.3 Select Generation Inference

Following the two-stage training process, we ac-
quire a model that is capable of dynamically select-
ing valuable sentences for the decoder to make
generation. The inference process closely mir-
rors the second stage of training described in Sec-
tion 3.2. Initially, valuable context embeddings are
selected based on global selection probability. Sub-
sequently, a greedy decoding strategy is employed
to generate the answer based on the selected con-
text embeddings denoted as H.

4 Experiments

4.1 Experimental Setup

Same as FiD (Izacard and Grave, 2021b), we uti-
lize TS5 (Raffel et al., 2020) as our base model. For
passage retrieval, we utilize the retriever demon-
strated by Izacard and Grave (2021a) which has
superior retrieval performance. Following previous
work (Lee et al., 2019; Karpukhin et al., 2020), we
use the preprocessed English Wikipedia Snapshot
on 12-30-2018 as our knowledge source. And we
use average time per question (TPQ) to measure
model’s inference efficiency. We conduct exper-
iments on two commonly used ODQA datasets
and one long-form QA dataset. Their statistics are
shown in Table 1. We use the original train/dev/test
split to conduct our experiments.

Natural Questions (Kwiatkowski et al., 2019)
is a large ODQA dataset where all questions are
mined from Google Search real queries. The anno-
tated answers are all created by human annotators
based on Wikipedia documents. Lee et al. (2019)
further filter out questions with short answers to
construct the open domain version of NQ, which
we used in our experiment. We evaluate the perfor-
mance of our model on NQ using the Exact Match
(EM) metric.
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| #Train  #Dev ~ #Test  #Sent.

NQ 79,168 8,757 3,610 14.84
TriviaQA | 76,423 8,837 11,313  30.58
ASQA 4,353 968 1,015 22.32

Table 1: Statistics of two ODQA datasets.

#Train/#Dev/#Test imply the number of train/dev/test
samples. #Sent. means the average number of valuable
sentences recognized in top-100 retrived passages.

TriviaQA (Joshi et al., 2017) is collected from
14 trivia and quiz-league websites with human-
annotated answers and a set of answer aliases
gathered from Wikipedia. We use the unfiltered
question-answer pairs and discard the distantly su-
pervised documents as our open domain version.
Similar to NQ, we assess our model’s performance
on TriviaQA using the Exact Match (EM) metric.

ASQA (Stelmakh et al., 2023) is a long-form
question answering dataset that builds upon the
AmbigQA (Min et al., 2020) dataset. It consists
of ambiguous questions with multiple short span
answers and long-form answers from human anno-
tators that coverage all possible short span answers.
In line with Stelmakh et al. (2023), we evaluate the
performance of our model on this dataset using the
STR-EM (String Exact Match) metric. STR-EM
measures the proportion of disambiguated short an-
swers that are correctly identified within the long
answer. Since the test set of ASQA is not publicly
available, our evaluation is conducted solely on the
development set of ASQA.

Baselines We mainly compare our method with
vanilla FiD, aiming at enhancing its inference effi-
ciency. Additionally, we contrast our approach with
the model resulting from our first training stage, re-
ferred to as HybridFiD, a model that is capable of
simultaneously performing answer generation and
sentence selection. Besides, we also compare with
FiD-Light (Hofstétter et al., 2023), which propose
to select the first-k tokens from each passage as the
context for decoder and improve efficiency.

Implementation Our method is implemented us-
ing PyTorch (Paszke et al., 2019) and Huggingface
Transformers (Wolf et al., 2020), with training effi-
ciency enhanced by DeepSpeed ZeRO-2 (Rajbhan-
dari et al., 2020). Due to GPU limitations, we con-
duct experiments using T5-Base, which has 345M
parameters. We employ the AdamW (Loshchilov
and Hutter, 2019) optimizer for stable training.

0.879
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Figure 3: Sentence selection performance on NQ-Dev
for HybirdFiD and FastFiD with 100 retrieved passages.
Retriever means the accuracy of our retriever when re-
trieving 100 passages, which can be seen as an upper
bound.

More implementation details are shown in Ap-
pendix A.

4.2 Main Results

Answer Generation The performance and infer-
ence speed of our FastFiD and other baselines are
presented in Table 2. Unlike FiD-Light, which sac-
rifices QA performance to accelerate the inference
process, FastFiD achieves substantial acceleration
while maintaining similar or even superior QA per-
formance compared to vanilla FiD. Additionally,
FastFiD demonstrates significantly greater infer-
ence speedup than FiD-Light on NQ and ASQA,
and comparable acceleration on TriviaQA. This
can be attributed to our context-aware compres-
sion methods, which extract more essential infor-
mation with fewer tokens compared to the static
method employed in FiD-Light. Among the three
datasets, FastFiD achieves the highest acceleration
on ASQA due to the longer answer format. This
showcases the effectiveness of FastFiD in long-
form QA, which is a widely utilized task by modern
LLM system like New Bing' and ChatGPT?.

We also conducted experiments with varying
numbers of retrieved passages on NQ, and the re-
sults are presented in Table 3. As observed, regard-
less of the number of retrieved passages, our Fast-
FiD consistently matches or even surpasses FiD
and HybridFiD in terms of EM, while significantly
reducing the context length and inference time.
Moreover, as the number of retrieved passages in-

1ht’cps: //www.bing.com/
2https://chat.openai.com/
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Model NQ TriviaQA ASQA

EM TPQ Speed EM TPQ Speed STR-EM TPQ Speed
FiD 50.06 514 10X 69.79 550 1.0X 33.35 3,323 1.0X
FiD-Light 4091 201 26X 63.15 218 25X 27.34 867 3.8X
HybridFiD 50.14 513 1.0X 69.77 540 1.0X 35.13 3,330 1.0X
FastFiD 50.17 148 35X 69.34 241 23X 37.22 586 5.7X

Table 2: Performance of vanilla FiD, FiD-Light, HybridFiD, FastFiD with 100 retrieved passages on test set
(development set for ASQA). We select 200 sentences for NQ and ASQA, 400 sentences for TriviaQA. For FiD-
Light, we utilize a value of 64 for k, which as demonstrated by Hofstitter et al. (2023), yields the best performance.

TPQ is measured by milliseconds.

Model #Doc NQ-Dev NQ-Test Context Length TPQ Speed
FiD 25 47.33 47.23 9,600 197  1.0X
HybridFiD 25 47.71 48.42 9,600 194  1.0X
FastFiD 25 47.52 48.06 920 84 24X
FiD 50 47.79 47.89 19,200 354 1.0X
HybirdFiD 50 48.12 49.09 19,200 354 1.0X
FastFiD 50 47.96 48.89 1,035 110 3.2X
FiD 100 49.10 50.06 38,400 514 1.0X
HybirdFiD | 100 48.65 50.14 38,400 513 1.0X
FastFiD 100 48.98 50.17 1,008 148  3.5X

Table 3: Detailed performance of vanilla FiD, HybridFiD and FastFiD on NQ with different number of passages.

creases, the speedup rate also expands. This evi-
dence underscores the potential of our method for
effective implementation with a larger number of
passages or lengthy documents.

Sentence Selection Similar to the metrics em-
ployed in the retriever, we measure the performance
of sentence selection utilizing the accuracy @k,
which assesses whether the correct answer appears
within the top-k sentences. As depicted in Fig-
ure 3, there is a positive correlation between the
increase in selected sentence numbers and accu-
racy, eventually surpassing 95% of the retriever’s
accuracy for both HybridFiD and FastFiD. This
demonstrates their substantial capability to select
valuable sentences. A comparative evaluation of
FastFiD and HybridFiD indicates that the second-
stage training has a minimal impact on the sentence
selection performance. Its main contribution is to
adapt the model to the reduced context length, as
we anticipated.

Discussion The performance of HybridFiD, as
presented in Table 2 and Figure 3, highlights that
answer generation and sentence selection are not
mutually exclusive, and a multi-task training ob-

jective enables both capabilities. To further ex-
plore the relationship between sentence selection
and answer generation, we examined the average
cross-attention scores for tokens within the top 200
sentences and the non-selected segments. This anal-
ysis was conducted using HybridFiD with 100 re-
trieved passages on NQ. Following the approach
of Izacard and Grave (2021a), we calculated the
cross-attention score of each token in the inputs by
averaging across all decoder layers, attention heads
per layer, and all generated tokens.

Table 4 shows that the selected sentences have
significantly higher average cross-attention scores
compared to the non-selected segments, indicat-
ing that they contribute more significantly to the
final answer generation. Conversely, this suggests
that the non-selected segments largely contain ir-
relevant information, contributing less to answer
generation despite being present in the context, and
can therefore be disregarded during the decoding
process. This insight also served as a motivation
for our second-stage training, as described in Sec-
tion 3.2. Furthermore, for a more comprehensive
understanding of the effectiveness of our FastFiD
approach, we provide a detailed case study in Ap-
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pendix B.

| NQ-Dev  NQ-Test

5.28E-4 5.32E-4
3.46E-5 3.43E-5

Selected
Non-Selected

Table 4: Average cross-attention score for tokens in top-
200 selected sentences and non-selected sentences for
HybirdFiD with 100 retrieved passages.

5 Further Analysis

In this section, we present additional experiments
to demonstrate the effectiveness of our method.
First, we compare our sentence selection method
with the passage reranking method in Section 5.1.
Second, we evaluate the performance of our
method with varying numbers of selected sentences
in Section 5.2. Third, we conduct an ablation study
to verify the importance of our two-stage training
approach in Section 5.3. Finally, we assess the ef-
fectiveness of our method on decoder-only models
in Section 5.4.

5.1 Sentence Selection vs Passage Rerank

Similar to conducting sentence selection after the
encoder, another method is to conduct passage
rerank after encoder’s outputs and thus reducing
context length and inference time. In alignment
with our two-stage training pipeline, we substitute
the sentence selection loss with a passage reranking
loss as utilized by Nogueira and Cho (2020), lead-
ing to a model we name RerankFiD. We evaluate
the performance of FastFiD and RerankFiD un-
der comparable context lengths, with the findings
presented in Table 5. Consistently, our FastFiD
method outperforms RerankFiD across a range of
retrieved passage quantities. We hypothesize that
this is due to the higher density of related infor-
mation in the selected sentences compared to the
reranked passages, as a passage often includes nu-
merous irrelevant sentences even if it contains the
correct answer.

5.2 Number of Selected Sentences

To evaluate the impact of varying the number of
selected sentences, we conducted experiments on
NQ with 100 retrieved passages. The results in Ta-
ble 6 show that increasing the number of selected
sentences leads to a nearly linear increase in the
context length for the decoder. In terms of answer
generation effectiveness, FastFiD performs well

Model | #Doc NQ-Dev NQ-Test i‘;‘fg‘i’l‘:
FastFiD 25 4752 48.06 920
RerankFiD | 25 4642 4720 1152
FastFiD 50 4796 4889 1,035
RerankFiD | 50 4664 4723 1152
FastFiD 100 4898 5007 1008
RerankFiD 100 46.45 48.09 1,152

Table 5: Comparison between FastFiD and RerankFiD
among different number of retrieved passages. FastFiD
consistently outperforms RerankFiD within similar con-
text length.

Model S#eﬁf;ffcz NQ-Dev  NQ-Test i‘;‘;‘g‘i’l‘f
FiD - 4910 5006 38400
FastFiD 50 4825 4911 378
FastFiD | 100 4829 4928 639
FastFiD | 200 4898 5017 1,008
FastFiD | 400 4905 4983 1661

Table 6: Experiments on the number of selected sen-
tences.

even with only 50 selected sentences and improves
gradually with more sentences selected. It is worth
noting that performance reaches a plateau after a
certain number of sentences, such as 200. Beyond
this point, selecting additional sentences does not
yield further improvement but only increases con-
text length and inference time.

5.3 Two-Stage Training

To corroborate the efficacy of our two-stage train-
ing approach, we undertake experiments wherein
each training stage is separately removed, with the
outcomes displayed in Table 7. It is evident that
the removal of either training stage results in a
decrement in the final performance. Moreover, the
second stage of training appears to be more con-
sequential than the first stage, as demonstrated by
the nearly 10-point drop in performance when the
second stage is removed, compared to a decrease
of less than 1-point when only the second stage is
implemented.

5.4 Application on Decoder-Only LLM

With the success of ChatGPT and GPT-4 (OpenAl
et al., 2024), most large language models (Touvron
etal., 2023a,b) are currently built on a decoder-only
architecture and demonstrate superior performance
in ODQA. Consequently, we conducted additional
experiments to evaluate the effectiveness of our
method on decoder-only models. To adapt these
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Model | #Doc S#e Islte;ffcl NQ-Dev  NQ-Test
FastFiD 50 200 4796 48.89
- 2nd-stage 50 200 36.61 37.67
_lIststage | 50 200 4762 48.03
FastFiD 100 200 4898 5017
- 2nd-stage | 100 200 3862 3925
_Iststage | 100 200 4825 4917

Table 7: Ablation study on two-stage training method.

Model | EM  TPQ(ms) Speed
Llama2-7B 50.58 1,855 1.0X
HybridLlama2-7B | 51.86 1,867 1.0X
FastLlama2-7B 48.95 966 1.9X

Table 8: Performance of Llama2, HybridLLlama2 and
FastLlama2 with 20 retrieved passages on test set of

NQ.

models, we made a single minor modification: the
sentence selection head on top of the decoder now
extracts the key-value caches of selected sentences
instead of the final hidden states. These selected
key-value caches are then utilized to accelerate the
inference process.

Based on this, we conducted experiments on
Llama2-7B (Touvron et al., 2023b) using the NQ
dataset with 20 retrieved passages to verify our
method, as shown in Table 8. The results demon-
strate that our method can speed up Llama2-7B
by 1.9 times, with only a minor decrease in per-
formance. This acceleration is achieved by short-
ening the context length without losing important
information, indicating potential for even greater
speedup in future LLMs with longer sequences
and more retrieved passages. Consequently, our
method is well-suited to various architectures, pro-
viding a scalable way to enhance inference speed
while maintaining performance.

6 Conclusion

In this paper, we present FastFiD, a model based on
the FiD framework, designed to accelerate the in-
ference process for ODQA tasks. FastFiD utilizes a
two-stage training technique to enable the selection
of valuable sentences and focus its predictions ex-
clusively on these sentences. Experimental results
demonstrate that FastFiD substantially improves in-
ference speed while maintaining its original answer
generation performance. And our ablation study
confirms the effectiveness of the two-stage training
approach, showing a decrease in final performance

when any single training stage is omitted.

Limitations

The limitations of our FastFiD approach can be pri-
marily summarized into the following two points:

* Firstly, the effectiveness of our method de-
pends on the presence of correct answers in
the retrieved passages, as our approach uti-
lizes this information to identify supported
sentences. This reliance may limit its di-
rect applicability to more complex queries.
To address this issue, several strategies can
be explored. For example, we can leverage
the cross-attention map from FiD to identify
the most informative sentences for two-stage
training.

* Secondly, while we focus solely on the ODQA
task in this paper, many other knowledge-
intensive tasks also require the retrieval of nu-
merous passages and face inference efficiency
challenges. Conducting further experiments
on a broader range of tasks and general RAG
system will be an important avenue for future
research.
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Appendices
A Implementation Details

In the first stage of training, we employ a linear
scheduler with a warmup ratio of 0.1 and a maxi-

mum learning rate of 10~ for 10 epochs. The se-
lection of the best checkpoint for the second-stage
training is based on performance evaluation on the
development set. In the second training stage, we
use a constant learning rate of 5x 10~° for 5 epochs.
We evaluate the performance of the hyperparameter
A in the training objective using values of 0.1 and
0.05, and select the one that yields better results
for each dataset. Specifically, we use 0.1 for NQ
and ASQA, and 0.05 for TriviaQA, considering its
higher number of annotated sentences as indicated
in Table 1.

During inference, we follow the approach of
previous work (Hofstitter et al., 2023) by utilizing
beam search with a beam size of 4. The maximum
decoding length is set to 32 for NQ and TriviaQA,
while it is set to 128 for ASQA due to the longer
answer lengths in that dataset.

B Case Study

To demonstrate the effectiveness of our FastFiD
approach, we present an example using the test
set of NQ, as depicted in Figure 4. In this figure,
the text highlighted in yellow represents the valu-
able sentences identified by FastFiD, which are
subsequently utilized in the decoding process. It
is evident that FastFiD possesses the capability to
recognize valuable sentences that often contain the
correct answer, even if they are not in the highly-
ranked documents. Additionally, these valuable
sentences only constitute a small portion of all the
retrieved passages which is important for us to ac-
celerate inference. However, it is important to note
that not all selected sentences are necessarily rele-
vant to the given question. For instance, the second
selected sentence in DOCUMENT [16] may not
carry any meaningful information. Consequently,
we need to select a specific number of sentences
to retain all the pertinent information for achiev-
ing satisfactory performance, as demonstrated in
Section 5.2.

C Ablation Study of Selected Sentences
Number on TriviaQA

In Section 5.2, we examine the impact of varying
the number of selected sentences on the final per-
formance using the NQ dataset. To determine if the
optimal number of selected sentences varies across
different datasets, we extend our experiments to
TriviaQA.

The results, presented in Table 9, reveal a dif-
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Answer: May 18, 2018

Force, which includes Deadpool and Cable ...

by mid-March claiming that these reshoots ...

/ Question: When is the next Deadpool movie being released? \

Document [1] (Deadpool 2): Deadpool 2 is a 2018 American superhero film based on the Marve ...

Document [2] (Deadpool 2): integrate him into the PG-13 MCU. Deadpool 2 is ...

Document [3] (Deadpool 2): The film‘s score is the first to receive a parental advisory warning for explicit content,
and the soundtrack also includes the original song “Ashes” by Céline Dion. “Deadpool 2 was released in the United
States on May 18, 2018. It has grossed over $738 million worldwide, becoming the ...

Document [15] (Deadpool (film)): “Deadpool 2 was released on May 18, 2018, with Baccarin, T. J. Miller,
Uggams, Hildebrand, and Kapici¢ all returning. Josh Brolin joined them as Cable. The film explores the team X-

Document [16] (Deadpool 2): January, the film‘s release was moved up to May 18, 2018. In February 2018, Terry
Crews was revealed to have a role in the film, the character Shatterstar was confirmed to be appearing, and the
production returned to Vancouver for six days of reshoots under a new working title, “Daisy”. Some reports emerged

Document [99] (Josh Brolin): Summers / Cable in the “X-Men” film series. 2018‘s “Deadpool 2” is his first
kinstallment within that contract. He is set to reprise his role in ... /

Figure 4: An example from the test set of NQ with 100 retrieved passages. The text highlighted in yellow represents

the valuable sentences identified by our FastFiD.

Model | doptone,,  TriviaQA-Test Torieht
FiD i 69.79 38,400
FastFiD | 50 67,57 487
FastFiD | 100 67.96 723
FastFiD | 200 68.71 1,449
FastFiD | 400 6935 2,933
FastFiD | 800 69.56 5.038

Table 9: Experiments on the number of selected sen-
tences on TriviaQA.

ferent trend compared to the NQ dataset findings
in Table 6. In the case of TriviaQA, performance
continually improves as the number of selected
sentences increases. However, the marginal gains
decrease with the inclusion of more sentences. For
instance, increasing the number of sentences from
200 to 400 leads to a performance improvement of
0.64, while an increase from 400 to 800 sentences
results in a smaller gain of 0.21.

The observed trend can be attributed to the fact
that TriviaQA contains a greater average number
of supportive sentences per question compared to
NQ. As shown in Table 1, NQ has an average of
14.84 supportive sentences, whereas TriviaQA has
30.58, nearly double the amount. Consequently,
selecting more sentences in TriviaQA provides ad-
ditional supportive information that is beneficial
for answering the questions. Conversely, in the

NQ dataset, increasing the number of selected sen-
tences might introduce more noise, leading to in-
correct answers. Therefore, we conclude that the
optimal number of sentences to select may vary
across datasets, depending on how concentrated
the relevant information is within each dataset.

D Influence of Model Size

Model EM TPQ Speed
FiD-Base 50.06 514 1.0X
FastFiD-Base  50.17 148  3.5X
FiD-Large 53.60 1,262 1.0X
FastFiD-Large 53.19 368  3.4X

Table 10: Performance of vanilla FiD, and FastFiD with
100 retrieved passages and different model sizes on NQ
test set. We select 200 sentences for FastFiD. TPQ is
measured by milliseconds.

To verify the effectiveness of our method across
different model scales, we conducted additional
experiments using T5-Large, which consists of 770
million parameters. The performance of various
methods on T5-Large is detailed in Table 10. Our
results demonstrate that our method remains effec-
tive on larger models, achieving a speedup of 3.4X.
Moreover, FastFiD-Large outperforms FiD-Base
in both speed and the EM metric, indicating that
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our method allows for the utilization of larger mod-
els to enhance QA performance without increasing
inference time.
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