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Abstract

Transformers have become the de-facto stan-
dard for natural language processing. However,
dense information flows within transformers
pose significant challenges for real-time and
resource-constrained devices, as computational
complexity grows quadratically with sequence
length. To counteract such dense information
flows, we propose SPARSEFLOW, a novel ef-
ficient method designed to sparsify the dense
pathways of token representations across all
transformer blocks. To this end, SPARSEFLOW
parameterizes the information flows linking
token representations to transformer blocks.
These parameterized information flows are op-
timized to be sparse, allowing only the salient
information to pass through into the blocks. To
validate the efficacy of SPARSEFLOW, we con-
duct comprehensive experiments across diverse
benchmarks (understanding and generation),
scales (ranging from millions to billions), ar-
chitectures (including encoders, decoders, and
seq-to-seq models), and modalities (such as
language-only and vision-language). The re-
sults convincingly demonstrate that sparsifying
the dense information flows leads to substan-
tial speedup gains without compromising task
accuracy. For instance, SPARSEFLOW reduces
computational costs by half on average, without
a significant loss in accuracy1.

1 Introduction

Transformers (Vaswani et al., 2017) have brought
about a paradigm shift in diverse research areas
such as NLP (Brown et al., 2020; Chowdhery et al.,
2022) and computer vision (Dosovitskiy et al.,
2021; Liu et al., 2021). However, their undeniable
effectiveness often comes with a non-negligible
computational burden, scaling quadratically with
the length of the input sequence. This bottleneck
poses a critical challenge in realizing the full po-

1Our code is available at https://github.com/
yeachan-kr/sparseflow
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Figure 1: High-level concept of SPARSEFLOW that spar-
sifies the current dense information flows.

tential of Transformers, particularly in resource-
constrained or real-time systems (Sun et al., 2020).

A primary contributor to this inefficiency is the
dense information flows2 between all token repre-
sentations, specifically, the pairwise computations
between every pair of tokens. While these dense
information flows are a source of strength in trans-
formers, due to their minimal inductive bias, they
often lead to redundancy in token representations
(Ethayarajh, 2019), resulting in different tokens car-
rying similar information (Goyal et al., 2020). Such
redundancy implies that the current pre-trained lan-
guage models involve a large amount of expensive
yet unnecessary computations. This observation
underscores the potential benefits of enhancing effi-
ciency by simplifying the complexity of the current
dense information flows.

In this paper, we propose SPARSEFLOW, a novel
efficient method designed to sparsify the current
dense information flows across all transformer
blocks. To this end, SPARSEFLOW parameterizes
the information flows linking token representations
to each transformer block. These parameters are
subsequently optimized to be sparse such that only

2Following (Abnar and Zuidema, 2020), we represent a
information flow as DAG (Directed Acyclic Graph) where
nodes are input tokens and its representations and edges are the
interaction between them (e.g., feed-forward or self-attention).
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the salient information flows are preserved. To
effectively optimize the sparsified patterns for di-
verse inputs, we extend SPARSEFLOW through
sparsely activated mixture-of-experts (Fedus et al.,
2022). By engaging each sample with the opti-
mized sparse pathways, SPARSEFLOW streamlines
the transformer inference while preserving the task
accuracy, offering practical value across a broad
spectrum of applications.

To confirm the efficacy of SPARSEFLOW, we
conduct extensive experiments, encompassing di-
verse tasks (natural language understanding and
generation), scales (from millions to billions),
architectures (including encoder, decoder, and
sequence-to-sequence models), and modalities (lan-
guage and vision). We further perform a thor-
ough analysis to gain insights into the behavior
of SPARSEFLOW by examining the information
flow of task-relevant tokens and the sparsified pat-
terns of this flow. In summary, the contributions of
this paper include the following:

• We propose SPARSEFLOW, a novel efficient
method that learns to sparsify dense informa-
tion flows, thereby enhancing the efficiency
of pre-trained language models.

• We demonstrate experimentally that SPARSE-
FLOW achieves substantial speedup gains
while preserving the task accuracy in com-
parison to strong baselines.

• We confirm the general applicability of
SPARSEFLOW on different modalities, archi-
tectures, and its scales, showcasing the practi-
cal usefulness in a wide range of applications.

2 Related Work

Representation Removal in Transformers
Dense information flows in self-attention often
lead to redundancy in token representations
(Ethayarajh, 2019; Goyal et al., 2020). This
facilitates numerous studies aimed at removing
these redundant representations during a forward
pass. The major strategy behind those studies
is to reduce computations in transformer blocks
depending on the input representations, and they
can be categorized in two-fold: (i) depth reduction
(also known as early-exit) (ii) width reduction (also
known as token pruning).The former approach
reduces computations by decreasing the number
of computing layers (Zhou et al., 2020; Zhang
et al., 2022), while the latter does so by shortening

the number of tokens forwarded into transformer
blocks (Goyal et al., 2020; Kim et al., 2022; Guan
et al., 2022; Kim et al., 2023). Recent works have
more focused on token pruning approach as it can
optimize the computational resources in a more
fine-grained way (Kim et al., 2023). Given these
categorizations, SPARSEFLOW aligns more closely
with the token pruning approach.

Token Pruning The earliest token pruning ap-
proach is PoWER-BERT (Goyal et al., 2020) that
maintains only the pre-determined ratio of tokens
based on the attention weights while removing
others. However, due to the re-training costs of
PoWER-BERT for different environments, LAT
(Kim and Cho, 2021) extends it to effectively fit di-
verse configuration of computational budgets with-
out the retraining. Subsequently, LTP (Kim et al.,
2022) removes the tokens by optimizing the train-
able threshold for the attention values to identify
which tokens are significant to tasks. Beyond man-
ual analysis on attention weights, recent works
move to automatic methods that learn to select to-
kens to be removed during training. For example,
TR-BERT (Ye et al., 2021) and Transkimmer (Guan
et al., 2022) have suggested token removal strate-
gies that can be learned during training, by using
reinforcement learning and re-parameterization, re-
spectively. AdapLeR (Modarressi et al., 2022) and
LoT(Kim et al., 2023) have proposed a saliency-
based strategy that eliminates tokens by estimating
the gradients of the token representations with re-
spect to the predictions.

Compared to token pruning, SPARSEFLOW has
distinct characteristics. The token pruning methods
learn individual sparse patterns for each data. In
contrast, SPARSEFLOW learns the generalized pat-
terns across all data by directly parameterizing in-
formation flows. Furthermore, token pruning meth-
ods necessitate additional procedures (e.g., atten-
tion analysis) or specialized layers (e.g., token clas-
sifiers) to identify which tokens to remove. How-
ever, SPARSEFLOW eliminates these processes, as
it pre-determines the sparsified pathways during
the training phase, enabling streamlined inference.
Lastly, while token pruning methods progressively
discard token information from the input sequence,
SPARSEFLOW maintains all token information but
reduces connections in the flows. Such a differ-
ence renders SPARSEFLOW less susceptible to the
information loss commonly associated with token
pruning methods (Zhong et al., 2023).
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3 SPARSEFLOW

In this section, we elaborate on SPARSEFLOW,
which is designed to sparsify the dense informa-
tion flow in current pre-trained language models.
We first revisit the dense and sparse information
flows in transformer (§3.1). To construct the sparse
information flows, we directly parameterize the in-
formation flow and introduce a binarization method
to sparsify these parameterized flows (§3.2). To
cover the diverse inputs, we extend SPARSEFLOW

through adaptively optimizing multiple sets of pa-
rameterized information flows (§3.3). These pa-
rameters are lastly optimized to be sparse (§3.4),
allowing only the salient flows to be preserved.

3.1 Information Flow in Transformer

Dense Information Flow. We start by revisiting
the dense information flows in the transformer. Due
to the parallel computation over the sequence, the
information flows can be decomposed by its se-
quence index (i.e., token position). Let the token
representations of the input x in the l-th transformer
block be denoted as X(l), l ∈ [1, L] where L is the
number of layer, and its representation at i-th po-
sition be denoted as X(l)

i , the information flow at
the i-th position starts by passing through the self-
attention layer as follows:

X(l)
i = softmax

(
qiK⊤
√
dk

)
V, (1)

where qi = X(l)
i Wq, K = X(l)Wk, and V =

X(l)Wv are the query vector of the i-th position,
key, and value matrices derived from the input to-
kens, and dk is the dimensionality of the keys. Sub-
sequently, the updated representation is then for-
warded to the following feed-forward networks3.

X(l+1)
i = σFF(X

(l)
i WF1)WF2 , (2)

where WF1 ,WF2 are learnable weight matrices,
and σFF(·) denotes an activation function of the
feed-forward layers. The above information flows
occurs at every token position, and it results in
the redundancy with quadratic computational costs
with the sequence length (Goyal et al., 2020).

3For simplicity, we denote the process of information flows
only within self-attention and feedforward layers. In practice,
the information flows include processes such as layer normal-
ization and skip connections.

Sparse Information Flow. To counteract such
dense information flows, we propose SPARSE-
FLOW that sparsifies the dense information flows
to be sparse by reducing the number of positions
used for computations (i.e., Eq. (1) and Eq. (2)).
Let the reduced subset of the information flows in
the l-th block of the transformer be denoted as P(l),
the sparse information flow is defined through the
computation over this subset:

X(l) ←
{

softmax

(
qiK⊤
√
dk

)
V | i ∈ P(l)

}
, (3)

Similarly, the resulting representations of the sub-
sets are forwarded to the subsequent feed-forward
layers as follows:

X(l+1) ←
{
σ(X(l)

i WF1)WF2 | i ∈ P(l)
}
, (4)

By including only a subset P(l) forwarded to each
transformer block, SPARSEFLOW reduces the com-
putation and memory requirement. Specifically, let
the size of the subset P(l) is m≪ n where n is the
length of the input sequence, the self-attention com-
plexity is reduced from O(n2d) to O(mnd), and
the complexity of the position-wise feed-forward
is reduced from O(nd2) to O(md2).

3.2 Parameterized Information Flows
Given the definition of SPARSEFLOW, its efficacy
hinges on how we optimize the subset P(l). Specif-
ically, the subset should remain sufficiently small
to enhance efficiency without compromising task
accuracy. To achieve this, we directly parameter-
ize this subset to control the complexity of infor-
mation flows. Let the maximum length of trans-
formers be denoted as Nmax, the subset of infor-
mation flows in the l-th block is parameterized as
p(l) ∈ RNmax = [p

(l)
1 , p

(l)
2 , . . . , p

(l)
Nmax

] where the

value of p(l)i is a scalar indicator of the informa-
tion flow. To represent existence in the subset,
the parameters are constrained to have binary val-
ues (i.e., 1 for the utilized information flows, 0
for the skipped ones). These parameters are then
multiplied to token representations to bypass the
computation in each block, i.e., p(l) ⊙ X(l).

However, optimization with the binary con-
straints is non-trivial as the binarization function
is not differentiable. Inspired by the continuous
relaxation trick for the discrete function (Jang
et al., 2017), we approximate the binary constraints
through the Gumbel trick with sigmoid function,
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i.e., Gumbel-sigmoid. Specifically, as the sigmoid
function can be viewed as a 2-class softmax where
logits are learnable parameter p

(l)
i and the fixed

value of 0, the Gumbel-sigmoid is calculated as
follows:

p
(l)
i =

exp((p
(l)
i + g′)/τ)

exp((p
(l)
i + g′)/τ) + exp(g′′/τ)

(5)

= σ((p
(l)
i + g′ − g′′)/τ),

where σ(·) denotes the sigmoid function, g′ and
g′′ are independent samples drawn from a standard
Gumbel distribution4, and τ is a temperature pa-
rameter controlling the steepness of the sigmoid
function. As the temperature τ approaches zero,
the sigmoid function becomes more like a step
function, enabling the optimization of the subset
parameters using gradient-based methods.

3.3 Mixture of Sparse Information Flows
The parameterized information flows are optimized
to generalize across all training samples. How-
ever, employing a single sparse pattern to cover all
data can be sub-optimal, as different inputs may re-
quire different patterns. Inspired by the concept of
sparsely activated mixture-of-experts (MoE) (Fe-
dus et al., 2022), we extend SPARSEFLOW to a
dynamic method where multiple sparse patterns
are selectively activated for different inputs.

To this end, we first duplicate the subset param-
eters, ensuring that p(l) ∈ RK×Nmax where K is
the number of sets of parameterized information
flows (i.e., the number of experts in MoE). We then
introduce a learnable router w(·), which consists of
a single feed-forward layer. The router takes the av-
erage of input embeddings X(0) over the sequence
as input and produces the routing probability to
select the subset parameters, as follows:

w(x) = softmax(W⊤X(0)
) (6)

where W ∈ Rd×K is a learnable weights. With the
routing probability, the selected subset parameter
is derived through the soft weighted average of the
subset parameters5:

p
(l)
i =

K∑

k=1

w(x)k · p(l)k,i (7)

4Gk = − log(− log(Uk)), Uk ∼ U(0, 1) with the uni-
form distribution U .

5While we adopt learning-based routing, there exists
various alternatives, such as Top-k selection (Zhou et al.,
2022) and Random selection (Wang et al., 2022). Moreover,
semantically-driven routing can be a promising approach. We
leave the exploration of these routing variants as future work.

where p
(l)
k,i indicates the i-th connection parameter

of the l-th transformer block in the k-th pattern.
These derived parameters are subsequently bina-
rized using the Gumbel-sigmoid function (as in
Eq (5)).

3.4 Information Flow Optimization
Sparse Regularization To inject the sparsity into
the parameterized information flows, we regularize
the subset parameters to be zero, thereby resulting
in the sparse subset P . This is achieved by adding
L2 regularization term to the loss function, defined
as follows:

Lsparse =
1

L

L∑

l=1

(
α(l) − 1

n

n∑

i=1

p
(l)
i

)2

, (8)

where α(l) is the target sparse ratio in the l-th block
to prevent the model from overly removing the in-
formation flow, and λ is a hyper-parameter that
controls the degree of sparsity. This regularization
sparsifies the information flow until having the min-
imum size of subsets (i.e., α(l)) while learning the
given task.

Overall Objective The overall loss function com-
prises a task-specific loss (such as cross-entropy
for classification tasks) and sparsity regularization.
Additionally, we add a consistency regularization
loss to ensure predictions remain consistent before
and after sparsification, as follows:

Lcons(x, y) = CE(p(y;x), p(y;xsparse)) (9)

where CE(·) denote the cross-entropy, p(y;x) and
p(y;xsparse) are the prediction over classes pro-
duced by the model with the dense information
flow and SPARSEFLOW, respectively. With this
regularization, the total loss function for a given
input x and its label y can be expressed as:

L(x, y; θ) = Ltask(x, y; θ) (10)

+ λsparseLsparse + λconsLcons(x, y),

where Ltask(x, y; θ) is the loss function for the pri-
mary task (such as classification or translation),
λsparse and λcons are hyper-parameters that balance
the importance of sparsity and consistency regular-
ization, respectively. Through the above optimiza-
tion procedures, SPARSEFLOW learns to use the
most salient information flows for each transformer
blocks, thereby leading to improved efficiency.
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Table 1: Evaluation results of test accuracy (%) and speedup ratio on NLU tasks. The speedup ratio (denoted
as SpeedUp) is computed by comparing with the backbone. The best and second best results are highlighted in
boldface and underline, respectively.

Method
SST-2 OpenbookQA QNLI MRPC STS-B

Acc. SpeedUp Acc. SpeedUp Acc. SpeedUp F1. Speed Pearson. SpeedUp

Baseline 94.1 1.00× 59.6 1.00× 91.3 1.00× 88.1 1.00× 88.9 1.00×
LTP (2022) 93.3 1.31× 59.4 1.25× 90.2 1.21× 87.5 1.21× 88.4 1.21×
Transkimmer (2022) 93.0 1.42× 58.6 1.34× 89.4 1.45× 86.9 1.54× 88.1 1.64×
LoT (2023) 93.5 1.96× 59.1 1.45× 90.4 1.86× 87.2 1.82× 87.8 1.42×
SPARSEFLOW 93.3 1.85× 59.2 1.58× 90.7 2.12× 87.5 2.41× 88.4 1.85×

4 Experiments

In this section, we experimentally demonstrate the
efficacy of the proposed method. Specifically, we
answer the following three questions through ex-
tensive experiments and analysis:

Q1 (Efficiency) Does SPARSEFLOW offer better
efficiency than token pruning methods across
a wide range of tasks? (§4.2)

Q2 (Generality) Can SPARSEFLOW be generally
applicable to larger scales, different architec-
tures, and even other modalities? (§4.3)

Q3 (Insights) What flow patterns and behaviors
are learned from SPARSEFLOW? (§4.4)

4.1 Experimental Setups

Baselines As SPARSEFLOW is closely related to
the token pruning, we mainly compare our method
with following token pruning methods with a back-
bone model (denoted as Baseline in the tables):
LTP (Kim et al., 2022) which utilizes the atten-
tion maps to eliminate the tokens; Transkimmer
(Guan et al., 2022) that removes tokens with the
learnable token predictors; LoT (Kim et al., 2023)
that learns to skip per-token computations through
gradient-based routers. We follow the original se-
tups for each baseline. As for SPARSEFLOW, the
hyper-parameters and ablation results including the
effects of the number of mixtures (K) are described
in Appendix.

Tasks and Datasets To confirm the broad ap-
plicability of the methods, we evaluate each base-
line on both natural language understanding (NLU)
and natural language generation (NLG) tasks. For
NLU tasks, we evaluate each baseline on five tasks,
which are Stanford Sentiment Treebank (SST-2)
(Socher et al., 2013) for sentence classification,

Table 2: Evaluation results of test accuracy (%) and
speedup ratio on the NLG tasks. The speedup ratio
(denoted as SpeedUp) is computed by comparing with
the backbone. The best and second best results are
highlighted in boldface and underlined, respectively.

Method
SamSum XSum

RL SpeedUp RL SpeedUp

Baseline 39.1 1.00× 28.0 1.00×
LTP (2022) 38.8 1.51× 27.6 1.49×
Transkimmer (2022) 38.6 1.42× 27.9 1.57×
LoT (2023) 38.8 1.64× 27.4 1.71×
SPARSEFLOW 38.9 1.75× 27.8 1.92×

OpenbookQA (Mihaylov et al., 2018) for multiple-
choice question answering, Question-answering
NLI (QNLI) (Rajpurkar et al., 2016) for natural
language inference, Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett, 2005) for
paraphrasing task, and Semantic Textual Similarity
(STS-B) (Cer et al., 2017). For NLG tasks, we
perform summarization tasks on SamSum (Gliwa
et al., 2019) and XSum (Narayan et al., 2018).

Models For NLU task, we compare all baselines
on the BERTLarge (Devlin et al., 2019) due to the
suitability of the encoder model for understanding
tasks. For the generation tasks, we utilize T5Small
(Raffel et al., 2020) which consists of the encoder
and decoder transformers. To confirm the scal-
ability and general applicability, we additionally
perform experiments on the larger models, which
includes RoBERTaLarge (encoder, 337M parame-
ters) (Liu et al., 2019), T5Large (encoder-decoder,
770M parameters), and GPT2XL (decoder, 1.5B
parameters) (Radford et al., 2019). Note that, for
models comprising a decoder transformer, such as
T5 and GPT-2, SPARSEFLOW is applied to the con-
text token processing components (i.e., the encoder
in T5 and conditional token computation in GPT-2)
because our primary focus is on the quadratic costs
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associated with encoding. The exploration to the
decoding phase is left as future work.

Evaluation To evaluate the efficiency of each
baseline in maintaining task accuracy while re-
ducing computational demand, in every experi-
ment, we report the speedup gains achieved by
each method up to the point where it retains 99%
of the original accuracy for each task. Following
the previous work (Guan et al., 2022; Kim et al.,
2023), these speedup gains are calculated as the
ratio of reduced FLOPs compared to the backbone
model.

4.2 Main Results

Comparison to baselines Table 1 shows the over-
all comparison results. It is noticeable that SPARSE-
FLOW achieves substantial speedup gains better
than other token pruning methods on NLU tasks
(i,e., best speedups among four out of five datasets).
This result demonstrates the efficacy in sparsify-
ing the dense information flows. In addition, the
evaluation result of the generation tasks in Table 2
presents that the strength of SPARSEFLOW can be
generalized to generation tasks. Regarding the su-
periority to token pruning methods, we believe that
a significant contributing factor lies in the preser-
vation of all token information while decreasing
computations, preventing the model from losing
semantic information (Zhong et al., 2023). Further-
more, it is worth noting that the minimal overhead
compared to other approaches also contributes to
its superior efficiency. These overall results clearly
verify our hypothesis that sparsifying information
flow works quite well to improve the efficiency in
transformers.

Trade-off between Accuracy and Speedup In
Figure 2, we also analyze the trade-off between
the task accuracy and computational costs while
retaining 95% and 99% of original task accuracy.
Our results suggest that SPARSEFLOW shows a
superior performance over a wide range of speedup
gains with a smoother decline. This result also
supports the efficacy of our method, demonstrating
that the proposed method better preserves the task-
significant information than other token pruning
methods.

Throughput Increase and Memory Reduction
To confirm the actual speedup on a specific GPU
hardware, we measure the throughput increase and
memory reduction achieved by SPARSEFLOW. Ta-
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Figure 2: Trade-off between speedup gains and test
accuracy on two representative tasks.
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Figure 3: Throughput increase and memory reduction
compared to the backbone. Evaluations are conducted
in a single NVIDIA RTX 2080Ti GPU.

ble 3 presents the improvement in each metric on
an NVIDIA RTX 2080Ti. Our results provide
that SPARSEFLOW indeed brings speedup gains
in actual GPU setups while lowering the mem-
ory requirements, similar to the reduced ratio of
FLOPs. Such reduction implies that the memory
and computationally-constrained environments can
indeed benefit from SPARSEFLOW.

4.3 General Applicability of SPARSEFLOW

Different Modality SPARSEFLOW can be eas-
ily applicable to any transformer-based models
with minor modifications. We thus investigate
whether the effectiveness of SPARSEFLOW can be
generalized to the different modalities other than
text. We specifically test a multimodal (vision-
and-language) transformer, as such multi-modality
often necessitates longer sequence lengths to en-
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Table 3: Evaluation results of test accuracy (%) and
speedup ratio on the vision-language tasks. Best results
are highlighted in boldface.

Method
VQAv2 NLVR2

Acc. SpeedUp Acc. SpeedUp

ViLT 70.7 1.00× 75.5 1.00×
PuMer (2023) 68.9 1.84× 74.9 1.84×
SPARSEFLOW 69.5 1.92× 74.6 1.78×

Table 4: Evaluation results of test accuracy (%) and
speedup ratio with different architectures and larger
scales. In this experiment, RoBERTaLarge, T5Large, and
GPT2XL have 330M, 770M and 1.5B parameters.

Method
SST-2 QNLI

Acc. SpeedUp Acc. SpeedUp

RoBERTaLarge 95.6 1.00× 92.9 1.00×
LoT (2023) 95.2 1.56× 92.3 1.49×
SPARSEFLOW 95.1 2.21× 92.0 2.14×
T5Large 95.9 1.00× 94.1 1.00×
LoT (2023) 94.8 1.54× 93.4 1.65×
SPARSEFLOW 95.3 1.86× 93.8 1.81×
GPT2XL 95.4 1.00× 91.1 1.00×
LoT (2023) 94.2 1.21× 90.7 1.43×
SPARSEFLOW 94.7 1.67× 90.5 1.61×

code various types of inputs (e.g., image patches
and textual tokens). For this purpose, we employ
the Vision-and-Language Transformer (ViLT) as
the backbone model. Evaluations are conducted
on Visual Question Answering (VQAv2) (Goyal
et al., 2017) and Natural Language for Visual Rea-
soning (NLVR2) (Suhr et al., 2019). VQAv2 is to
predict the answers for the questions requiring an
understanding of vision, language, and common-
sense knowledge. NLVR2 is to predict whether
the given sentence is true about two input images.
To confirm the competitiveness of SPARSEFLOW,
we compare ours with PuMer (Cao et al., 2023),
a token pruning method specifically designed for
vision and language tasks.

Table 3 shows the evaluation result on two tasks.
Interestingly, without a modality-specific design,
SPARSEFLOW demonstrates substantial speedup
gains on both tasks, comparable to or even sur-
passing those of modality-specific methods. This
result suggests that sparsifying dense information
is a generally effective strategy for enhancing the
efficiency of pre-trained transformers. In Section
4.4, we further explore how SPARSEFLOW works
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Figure 4: Average utilization ratio of each position in
three different tasks. This ratio is the average of the re-
maining information flows across all layers. In VQAv2,
tokens from 0 to 40 correspond to the textual tokens.

differently on image and text representations.

Different Scales and Architectures As the size
of pre-trained models keeps increasing recently,
it is important to confirm whether the proposed
method can be scaled to larger models. We there-
fore examine the scalability of SPARSEFLOW by
applying ours to RoBERTaLarge (Liu et al., 2019),
T5Large (Raffel et al., 2020), and GPTXL (Radford
et al., 2019). Table 4 provides the evaluation re-
sults on this setup. This shows that the performance
trend in ther other architecture is similar to the main
experiments, demonstrating the general applicabil-
ity of SPARSEFLOW to larger and even different
architectures.

4.4 Learned Patterns of SPARSEFLOW

Sparse Distribution SPARSEFLOW learns to re-
main crucial information flow throughout the train-
ing. To investigate whether the remaining infor-
mation flows have interpretable patterns or not, we
analyze the distribution of sparse information flows
through the lens of token positions6 in Figure 4.
In the language understanding tasks (i.e., SST-2
and QNLI), we observe that initial positions tend

6In Appendix, we include the analysis on the remaining
information flows across different layers.
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to be more pruned than the later positions. We be-
lieve the frequent optimization on initial positions
contributes this result since the parameters of the
latter positions are rarely optimized during training
(More discussion can be found in the Limitation
part). We also observe the distinct patterns from the
vision-language tasks (i.e., VQAv2). It shows that
image tokens (positions after 40) are more pruned
than text tokens (positions before 40), indicating
the significant of textual tokens to solve the given
tasks or the potential existence of short-cut in tex-
tual inputs. As for the pruned positions, we also
find that the pruned image tokens are noticeably
located in the near start and end positions which
are corresponding to the edge of an image. This
suggests that SPARSEFLOW can learn the different
behavior depending on the modality and task.

Detailed examples of SPARSEFLOW To get a
deeper understanding of the SPARSEFLOW’s be-
haviors, we analyze how the information of task-
significant tokens are flowed through the remaining
positions of the information flows. Here, we trace
the similarity between the task-significant tokens
and remaining tokens (i.e., remaining information
flows) on the example of "the movie fails to live up
to the sum of its parts" from SST-2 (sentiment anal-
ysis) where the task-significant word is fails. As
token representations in transformers grow increas-
ingly similar across layers, the degree of similarity
between important tokens and others can indicate
the effectiveness with which task-specific features
are transferred throughout the network. Figure 5
shows the similarity changes compared to the base
model. Interestingly, we observe that the similarity
of the task-significant token (i.e., fails) to remain-
ing tokens is higher than that of the base model. It
implies that the the sparsified patterns (i.e., remain-
ing tokens) can convey task-significant features
well. In contrast, the similarity to the insignificant
word (e.g., the) also support our findings by show-
ing a similar or even lower similarity compared to
the base model on the less significant word.

We also see the sparsified positions on specific
images to see how the model differently performs
on image modality. Here we sample the image from
VQAv2, and Figure 6 shows the pruned positions
(i.e., image patch) on the given image. Noticeably,
in the lower layers, it is evident that the removed
information flows are primarily found from the
edge positions. In other words, the model learns
to decide that tokens in center positions are crucial
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Figure 5: Similarity between the selected words (fails,
the) and words in masked positions over different layers.
The example is "the movie fails to live up to the sum
of its parts" from SST-2 (sentiment analysis). The star
mark in the graph indicates that all information flows
are removed on this example in SPARSEFLOW.

1-3 Layers 7-9 Layers

Figure 6: Removed information flows from lower layers
(1∼3) and upper layers (7∼9). On these images, the
white box on images indicates the removed information
flows at the imagee patches.

to understand the image. This result shows that
the model automatically learns center bias (Tseng
et al., 2009) in image processing, and SPARSE-
FLOW is able to learn modality-specific informa-
tion during the training.

5 Conclusion

In this paper, we have introduced SPARSEFLOW, a
novel efficient method that sparsifies the dense in-
formation flow to improve efficiency in transform-
ers. To this end, we parameterize the information
flow of the pre-trained models and learn to sparsify
the information flow such that only the necessary
flows are preserved. We have performed extensive
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experiments on diverse benchmarks, scaled mod-
els, and modalities to verify the efficacy and gen-
eral applicability. Comprehensive result convinc-
ingly demonstrates that sparsifying the information
flows brings significant speedup gains without com-
promising the task accuracy. Moreover, we have
also shown that SPARSEFLOW can learn modality-
specific information automatically (e.g., center bias
in an image processing).

Limitations

While SPARSEFLOW enables the streamlined in-
ference of pre-trained language models, there exist
potential limitations. First, since the sparsified pat-
terns are pre-determined during the training, the
effectiveness of SPARSEFLOW can be limited to the
samples deviating from the training distributions,
such as those longer than the maximum sequence.
However, we believe that composing sufficiently
diverse inputs can mitigate the limitation. Second,
in this work, we mainly focus on the encoder part
of the transformers and the context encoding part
of the decoder model, which necessitate quadratic
computations in the forward pass. Therefore, the
efficiency of SPARSEFLOW during the decoding
phase is yet to be verified. However, we believe
that integrating SPARSEFLOW with KV-caching
tricks effectively reduces the computation costs
with memory requirements. We leave this direction
of improvement as a promising avenue for future
research.
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A Sparse Distribution of SPARSEFLOW

In Figure 7, we additionally analyze the number
of remaining information flows across layers. We
first notice that SPARSEFLOW learns to prune more
information flows located in the deeper layers. This
indicates the large redundancy in the deeper layer,
and it is closely aligned with the previous finding
that token representations get similar through mul-
tiple layers (Ethayarajh, 2019; Goyal et al., 2020).
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Figure 7: Remaining token distribution across various
layer groups (grouped by three) and datasets.

B Hyper-parameter Setup of
SPARSEFLOW

In our experiments, we control the sparsity of
SPARSEFLOW through adjusting α in Eq. (8), and
we find that α = 0.3 generally works well. For the
number of sparsified patterns in MoE, we empiri-
cally set K to 3 as it generally performs well over
the experiments.

Table 5: Ablation study of SPARSEFLOW, and ‘w/o’
indicates the model without the corresponding compo-
nent.

Method
SST-2 QNLI

Acc. Speed Acc. Speed

SPARSEFLOW (ours) 93.3 1.85× 90.7 2.12×
w/o Consistency 93.1 1.78× 90.3 1.81×
w/o Target Ratio 93.5 1.59× 90.1 1.92×
w/ Mixture (K=1) 93.1 1.69× 90.3 1.91×
w/ Mixture (K=2) 92.8 1.84× 90.1 1.95×
w/ Mixture (K=3) 93.3 1.85× 90.7 2.12×
w/ Mixture (K=4) 93.1 1.83× 90.2 2.07×

C Ablation on SPARSEFLOW

To confirm what components of SPARSEFLOW are
crucial to achieve better efficiency, we perform an
ablation study of individual components, which are

consistency regularization (Eq. (9)) and setting a
target ratio (Eq. (8)) and different configurations
of MoE. Table 5 shows the ablation results. Con-
sistent with other experiments, we maintained the
99% original accuracy of each method to evaluate
speedup gains. The findings indicate that omitting
consistency regularization and the target ratio re-
sults in reduced speedup gains, thereby empirically
justifying the importance of each component. In
terms of MoE patterns, we observed that integrat-
ing MoE into SPARSEFLOW significantly enhances
speedup gains. These results confirm the effective-
ness of our proposed method in accommodating
diverse inputs, which in turn leads to enhanced
efficiency.

D Additional Experiments with Large
Models

we have performed additional experiments with
larger models on other datasets (MRPC and STS-
B). Table 6 shows the evaluation results when ap-
plying LoT (Kim et al., 2023) and the proposed
method to T5Large and GPT2XL. Similar to the ex-
periments in others, SPARSEFLOW shows superior
trade-off between accuracy and speedups compared
to recent token pruning method, highlighting the
scalability of the proposed method.

Table 6: Evaluation results of test accuracy (%) and
speedup ratio with larger scales. In this experiment,
T5Large and GPT2XL have 770M and 1.5B parameters.

Method
MRPC STS-B

F1. Speed Pearson. Speed

T5Large 95.9 1.00× 94.1 1.00×
LoT (2023) 94.8 1.54× 93.4 1.65×
SPARSEFLOW 95.3 1.86× 93.8 1.81×
GPT2XL 95.4 1.00× 91.1 1.00×
LoT (2023) 94.2 1.21× 90.7 1.43×
SPARSEFLOW 94.7 1.67× 90.5 1.61×
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