
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5628–5640
August 11-16, 2024 ©2024 Association for Computational Linguistics

Experiential Co-Learning of Software-Developing Agents

Chen Qian†⋆ Yufan Dang†⋆ Jiahao Li♠ Wei Liu⋆ Zihao Xie⋆

Yifei Wang⋆ Weize Chen⋆ Cheng Yang♣B Xin Cong⋆ Xiaoyin Che♦

Zhiyuan Liu⋆B Maosong Sun⋆B

⋆Tsinghua University ♠Dalian University of Technology
♣Beijing University of Posts and Telecommunications ♦Siemens
qianc62@gmail.com dangyf21@mails.tsinghua.edu.cn

yangcheng@bupt.edu.cn liuzy@tsinghua.edu.cn sms@tsinghua.edu.cn

Abstract

Recent advancements in large language mod-
els (LLMs) have brought significant changes
to various domains, especially through LLM-
driven autonomous agents. A representative
scenario is in software development, where
LLM agents demonstrate efficient collabora-
tion, task division, and assurance of software
quality, markedly reducing the need for man-
ual involvement. However, these agents fre-
quently perform a variety of tasks indepen-
dently, without benefiting from past experi-
ences, which leads to repeated mistakes and
inefficient attempts in multi-step task execu-
tion. To this end, we introduce Experiential Co-
Learning, a novel LLM-agent learning frame-
work in which instructor and assistant agents
gather shortcut-oriented experiences from their
historical trajectories and use these past expe-
riences for future task execution. The exten-
sive experiments demonstrate that the frame-
work enables agents to tackle unseen software-
developing tasks more effectively. We antici-
pate that our insights will guide LLM agents
towards enhanced autonomy and contribute
to their evolutionary growth in cooperative
learning. The code and data are available at
https://github.com/OpenBMB/ChatDev.

1 Introduction

In the ever-evolving field of artificial intelligence,
large language models (LLMs) have marked a trans-
formative shift across numerous domains (Vaswani
et al., 2017; Brown et al., 2020; Bubeck et al.,
2023). Despite their impressive abilities, when
dealing with complex situations that extend be-
yond mere chatting, these models show certain
limitations inherent in their standalone capabil-
ities (Richards, 2023). Recent research in au-
tonomous agents has significantly advanced LLMs

†Equal Contribution.
BCorresponding Author.

by integrating sophisticated features like context-
sensitive memory (Park et al., 2023), multi-step
planning (Wei et al., 2022b), and strategic tool
use (Schick et al., 2023). This enhancement
has expanded their capacity to effectively man-
age a broader spectrum of complex tasks, includ-
ing social simulation (Park et al., 2023; Wang
et al., 2023f; Hua et al., 2023), software devel-
opment (Osika, 2023; Qian et al., 2023), game
playing (Wang et al., 2023a; Zhu et al., 2023;
Wang et al., 2023d; Gong et al., 2023), and sci-
entific research (Huang et al., 2023; Liang et al.,
2023). In order to study the cooperative dynamics
of autonomous agents more pertinently, we choose
software development (Mills, 1976) as an repre-
sentative scenario, due to its complexity that de-
mands a blend of natural and programming lan-
guage skills (Mills, 1976), the processuality that
often requires an in-depth understanding of coding
and continuous alterations (Barki et al., 1993), and
the objectivity of code that can provide quantifiable
feedback (Compton and Hauck, 2002).

With the development of autonomous-agent tech-
nology, a successful breakthrough has been the in-
tegration of communication among multiple agents
(Park et al., 2023; Li et al., 2023a; Qian et al.,
2023). Representative methods epitomize this
methodology by segmenting task execution into
distinct subtasks. Through engaging in coopera-
tive communication, agents participate in instruc-
tive or responsive conversations, collaboratively
contributing to the achievement of a cohesive and
automated solution for task execution. For ex-
ample, in ChatDev (Qian et al., 2023), a recent
agent-communication framework for software de-
velopment, a reviewer agent in charge of an exter-
nal compiler iteratively provides instructions for
software optimization (e.g., completing unimple-
mented code, making functional changes, and de-
bugging programs), to which a programmer agent
then reacts to these instructions by appropriately up-

5628

qianc62@gmail.com
dangyf21@mails.tsinghua.edu.cn
yangcheng@bupt.edu.cn
liuzy@tsinghua.edu.cn
sms@tsinghua.edu.cn
https://github.com/OpenBMB/ChatDev

dating the source code. The development of a more
adaptive and proactive approach to task-solving by
these agents marks a significant leap in autonomy,
going beyond the typical prompt-guided dynamic
in human-computer communications (Yang et al.,
2024) and substantially reducing dependence on
human involvement (Li et al., 2023a; Qian et al.,
2023; Wu et al., 2023).

However, when confronted with a diverse range
of task types, current multi-agent collaboration
methods tend to handle each task independently,
which largely stems from the absence of a method-
ology that can effectively incorporate the expe-
riences accumulated from previously completed
tasks (Qian et al., 2023; Chen et al., 2024; Park
et al., 2023; Hong et al., 2024). Consequently,
the inexperience nature frequently results in repeti-
tive errors or unnecessary trial-and-error processes
through multi-step task execution, ultimately neces-
sitating additional human involvement especially
when these methods are applied to real-world sce-
narios.

How do we design, gather, and apply useful ex-
periences to enhance multi-agent collaboration? In
this paper, we propose Experiential Co-Learning,
a novel multi-agent learning paradigm designed to
boost agents’ software-developing abilities through
the utilization of experiences gathered from their
historical communications. The method regards
agents into two functional roles—instructor and
assistant, involving three core modules: 1) the
co-tracking module promotes communicative re-
hearsals between the agents, fostering cooperative
exploration and the creation of procedural trajecto-
ries for various training tasks; 2) the co-memorizing
module heuristically mines "shortcuts"1 from his-
torical trajectories using external environment feed-
back, which are then preserved in their experience
pools in an interleaved manner; 3) the co-reasoning
module encourages agents to enhance their instruc-
tions and solutions by utilizing their collective ex-
perience pools when facing unseen tasks. The com-
prehensive assessment of collaborative processes
between autonomous agents in diverse software
development tasks reveals that the proposed frame-
work significantly boosts collaborative efficiency
and reduces the need for extra human involvement.

In summary, our main contributions include:

1The term "shortcut" is used positively to denote a more
efficient pathway, unlike in some papers where it implies a
superficial correlation (Geirhos et al., 2020).

• To our knowledge, this study is the first to in-
tegrate past experiences into the LLM-powered
multi-agent collaboration. Through co-tracking,
co-memorizing, and co-reasoning, this frame-
work facilitates cooperative learning among two
distinct agent types (instructor and assistant) by
leveraging heuristical experiences extracted from
their historical task execution trajectories.

• We propose to construct task execution graphs
based on procedural trajectories, in which "short-
cuts" linking non-adjacent nodes are extracted
as experiences, which can effectively motivate
agents to engage in shortcut thinking during rea-
soning.

• We conducted extensive experiments from mul-
tiple perspectives to validate the effectiveness
of our framework. The findings highlight the
enhanced quality and efficiency of agents’ col-
laborative behavior in software development.

2 Related Work

Trained on vast datasets to comprehend and manip-
ulate billions of parameters, LLMs have become
pivotal in natural language processing (Brown et al.,
2020; Bubeck et al., 2023; Vaswani et al., 2017;
Radford et al., 2019; Touvron et al., 2023; Wei
et al., 2022a; Shanahan et al., 2023; Chen et al.,
2021; Brants et al., 2007; Chen et al., 2021; Ouyang
et al., 2022; Yang et al., 2024; Qin et al., 2023; Ka-
plan et al., 2020). Recent progress, particularly in
the filed of autonomous agents (Zhou et al., 2024;
Wang et al., 2023a; Park et al., 2023; Wang et al.,
2023f; Richards, 2023; Osika, 2023; Wang et al.,
2024), is largely attributed to the foundational ad-
vances in LLMs. These agents utilize the robust
capabilities of LLMs, displaying remarkable skills
in memory (Park et al., 2023; Sumers et al., 2024),
planning (Osika, 2023; Chen et al., 2024; Liu et al.,
2023) and tool use (Schick et al., 2023; Cai et al.,
2024; Qin et al., 2024; Ruan et al., 2023; Yang et al.,
2023), enabling them to operate independently in
complex, real-world scenarios (Zhao et al., 2024;
Zhou et al., 2024; Ma et al., 2023; Zhang et al.,
2023; Wang et al., 2023b; Ding et al., 2023; Weng,
2023). Since agents like Reflexion (Shinn et al.,
2023) showcase feedback-based improvement yet
often lack cross-task experience, to enable an au-
tonomous agent to improve through trial and error
across various training tasks, ExpeL (Zhao et al.,
2024) innovatively defines experience as a history

5629

Design a basic Tetris game.

Add rule: bomb blocks can explode …

Complete the Game.run() method.

Fix the bug: “numpy not imported”.

 main.py game.py

 main.py game.py rule.py

 main.py game.py rule.py

 main.py game.py rule.py

Co-Tracking Co-Memorizing Co-Reasoning

Develop a Tetris variant where bomb blocks
explode and clear nearby blocks when aligned. { : }

{ : }

{ : }

{ : }

Experience Pool Shortcut

ReasoningKey and Value{ K : V }

Instructor

Assistant Response

EnvironmentFile

Instruction

TASK

Figure 1: The framework of Experiential Co-Learning. The co-tracking module promotes communicative rehearsals
between the agents, fostering cooperative exploration and the creation of procedural trajectories for various training
tasks. The co-memorizing module heuristically extracts "shortcuts" from the trajectories under external supervision,
integrating these heuristic shortcuts into their collective experience pools. The co-reasoning module combines
agents’ collective experience pools to foster an communication of augmented instructions and solutions, improving
their ability to collaboratively solve unseen tasks.

of successful task trajectories and utilizes these
experiences for in-context reasoning.

Parallel to these attempts, the autonomous com-
munication among multiple agents is now a promis-
ing paradigm, signaling a shift towards multi-agent
collaboration paradigm (Park et al., 2023; Zhou
et al., 2023; Chen et al., 2024; Chan et al., 2024;
Chen et al., 2023; Cohen et al., 2023; Li et al.,
2023b; Hua et al., 2023; Guo et al., 2024). Among
them, software-developing agents facilitate the
breakdown of complex tasks into more manage-
able, finer-grained subtasks (Hong et al., 2024;
Qian et al., 2023). An instructor issues directional
instructions, and an assistant provides relevant so-
lutions, facilitating a streamlined workflow for task
execution. This approach not only boosts produc-
tivity but also exhibits a degree of quality that sur-
passes the traditional prompt-guided paradigm in
human-computer communications, reducing the
need for manual involvement (Li et al., 2023a;
Chen et al., 2024).

3 Experiential Co-Learning

Traditional multi-agent collaboration methods of-
ten neglect to accumulate experience from past
tasks, leading to repetitive errors or unneces-
sary trial-and-error processes in similar future
tasks (Qian et al., 2023). To remedy this, we pro-
pose Experiential Co-Learning, illustrated in Fig-
ure 1, powered by two distinct autonomous agents

and comprising three essential modules: 1) the
co-tracking module establishes a rehearsal collab-
oration between an instructor and an assistant, fo-
cusing on tracking their cooperative "procedural
trajectories" for various training tasks, showcasing
clear strategies in their communicative collabora-
tion; 2) the co-memorizing module heuristically
extracts "shortcuts" from the trajectories under ex-
ternal supervision, integrating these heuristic short-
cuts into their collective experience pools; 3) the
co-reasoning module combines the two agents’ col-
lective experience pools to foster an communica-
tion of augmented instructions and solutions, im-
proving their ability to collaboratively solve unseen
tasks.

3.1 Co-Tracking

The co-tracking module sets up a collaborative task
execution between an instructor and an assistant,
with the goal of tracking procedural trajectories
for various training tasks (Qin et al., 2024). Each
trajectory captures the dynamic progression of a
specific task, detailing the evolving roadmap and
clearly illustrating the interacted solutions through-
out the task execution process.

Formally, in the set of training tasks T , each
task t ∈ T fosters a functional interplay of com-
munications between agents, streamlined towards
the effective execution of the task. During this
procedure, the instructor gives a series of instruc-
tions (I = {i1, i2, · · · , in}), to which the assistant

5630

responds with a matching sequence of solutions
(S = {s1, s2, · · · , sn}), where each solution repre-
sents an intact software code. This communicative
dynamic can be naturally modeled as a directed
chain G = (N , E):

N ={sj |sj ∈ S}∪{s0}
E={(sj , ij+1, sj+1)|sj , sj+1∈S, ij+1∈I}

where N represents the nodes corresponding to
the solutions (with s0 denoting the initial, typi-
cally empty solution), and E denotes the edges
corresponding to the instructions. Each edge
(sj , ij+1, sj+1) illustrates the transition from one
solution sj to the modified one sj+1, guided by the
instruction ij+1.

3.2 Co-Memorizing

We observed that not all progressions in the chain
(i.e., a single round of software optimization) lead
to better solutions. This includes solution back-
tracking, where optimization loops back to earlier
content, and correct-to-failure degeneration, where
functioning software is inadvertently changed into
a unexecutive solution. These scenarios suggest
some steps in the process are redundant or ineffec-
tive, indicating that solely memorizing complete
historical trajectories may be insufficient for de-
signing agents’ experiences. Thus, we convert the
chain into a task execution graph to map nodes
with the same content in the chain to a shared node
in a redefined (←) graph:

N←{ϕ(sj)|sj∈N}
E←{(ϕ(sj), ij+1, ϕ(sj+1))|(sj , ij+1, sj+1)∈E}

where ϕ is a mapping rule using a hash func-
tion (Sasaki and Aoki, 2009). This approach ef-
ficiently groups identical solutions and highlights
repetitions, serving as a "state transition graph"
throughout the task execution process, as visual-
ized in Figure 1.

Furthermore, in a task execution process, each
edge linking two adjacent nodes signifies one round
of autonomous solution optimization by the agents,
indicating that the agents have already possessed
the corresponding decision-making capability for
each existing edge. Hence, relying solely on ex-
isting edges might not suffice for the design of
agents’ past experiences. For this purpose, the
co-memorizing module is devised to heuristically
identify shortcuts linking non-adjacent nodes on

the graph. These form the basis of the agents’ ex-
perience pools in practical reasoning, with the goal
of accelerating future task execution.

Node Estimation Firstly, the score of each node
sj in N is estimated using an external feedback
signal, calculated in a pairwise manner:

ω(sj)=sim(sj , task)×sim(sj , s|N |)×[[sj]]

where sim(·, ·) calculates the similarity between
a node with another node or a task requirement,
achieved through the use of an external code em-
bedder and a text embedder, while [[·]] indicates
a binary signal indicating whether compilation is
successful via an external compiler. The heuristic
scoring rule assigns high evaluations to solutions
that meet the task requirements, resemble the final
solution, and are validated by an external tool.

Shortcut Extraction To discover informative
shortcuts, we selectively identify shortcuts link-
ing non-adjacent nodes that exceed an information
gain threshold ϵ:

S={(si,
99K
sisj , sj)|si, sj∈N̄ ∧(si, ·, sj) /∈E
∧[[si→sj]]∧ω(sj)−ω(si)≥ϵ}

where N̄ represents the nodes on the shortest path
between the source node s0 (i.e., empty solution)
and the sink node s|N | (i.e., final solution) in N ,
[[si → sj]] indicates that sj is reachable from si.
Since the instruction of each shortcut edge does not
inherently exist in the trajectory, for the two non-
adjacent nodes connected by the shortcut, we cre-
ate a pseudo instruction

99K
sisj that effectively links

the two non-adjacent nodes using a standard self-
instruction mechanism (Wang et al., 2023e). This
involves creating an instruction by comparing two
distinct codes. This mechanism only extracts infor-
mative shortcuts on the shortest path and integrates
compilation signals, naturally mitigating redundant
solution backtracking and unexpected correct-to-
failure degeneration.

Experience Gathering To leverage the
heuristically-discovered shortcuts identified from
historical trajectories as past experiences, the
agents accumulate their own experience pools with
key-value pairs for the future reasoning:

SI=
⋃

∀t∈T
{(si,

99K
sisj)|(si,

99K
sisj , sj)∈St}

SA=
⋃

∀t∈T
{(99K
sisj , sj)|(si,

99K
sisj , sj)∈St}

5631

where St denotes the shortcut set extracted from a
task t and T is the whole training set. This signifies
that the instructor retains solution-to-instruction
experiences to refine its instructional capabilities,
while the assistant preserves instruction-to-solution
experiences to enhance solution generation.

The design of shortcuts-as-experiences allows
for an escape from the solution optimization capa-
bilities that agents have already possessed in each
step of their historical execution process, providing
the possibility for more efficient shortcut-driven
"accelerated" reasoning.

3.3 Co-Reasoning
The co-reasoning module is designed to combine
the collective experience pools of agents, enabling
communication through augmented instructions
and solutions. By leveraging their respective experi-
ential knowledge, these agents access and generate
more refined answers, enhancing their collabora-
tive task-solving abilities on unseen tasks.

The process begins with the instructor, armed
with a solution-to-instruction memory SI , encoun-
tering the current task solution sj . It starts by us-
ing a retrieval tool to access experiential instruc-
tions that closely match the latent meaning of the
query (Lewis et al., 2020). These instructions serve
as few-shot examples (Zhao et al., 2024; Rubin
et al., 2022; Min et al., 2022), guiding the in-
structor’s reasoning to produce i∗j+1, which is then
shared with the assistant. The assistant, equipped
with an instruction-to-solution memory SA, re-
trieves optimal solutions based on the received in-
struction. These solutions form the foundation for
the assistant’s few-shot examples, culminating in
the formulation of a new solution s∗j+1. This entire
procedure can be represented as:

i∗j+1=I(sj , k(sj ,SI)) s∗j+1=A(sj ,k(i∗j+1, SA))

where k(q, s) denotes the retrieval of top-k
matched results using q as a query in a key-value
database s, I and A are the in-context reasoning
functions of the instructor and assistant, respec-
tively, utilizing few-shot examples.

In each communication, the solution obtained is
used as the next step in the agents’ ongoing commu-
nication. This process for each task is represented
as a sequence of pairs {(i∗1, s∗1), (i∗2, s∗2), · · · },
where each pair includes an experience-enhanced
instruction and the corresponding solution.

4 Evaluation

Baselines We chose different types of LLM-
driven software development paradigms as our
baselines, which include both single-agent and
multi-agent methodologies. GPT-Engineer (Osika,
2023) is a foundational single-agent approach in the
evolving domain of LLM-powered software agents;
its standout feature is its exceptional proficiency
in accurately comprehending input task require-
ments and employing one-step reasoning, which
significantly enhances its efficiency in producing
comprehensive software solutions at the repository
level. MetaGPT (Hong et al., 2024) is an innova-
tive framework that assigns diverse roles to various
LLM-powered agents and incorporates standard-
ized operating procedures to facilitate agent collab-
oration in software development; within each sub-
step, solutions are generated through a single-step
solution by agents with varying capabilities. Chat-
Dev (Qian et al., 2023) is an LLM-powered agent
collaborative software development framework that
organizes the entire software development process
into waterfall-style phases (e.g., code completion,
code review, and system testing); within this frame-
work, software agents engage in task-oriented and
multi-turn communications that play a pivotal role
in enhancing software development quality by iter-
atively providing instructions and solutions during
their communications.

Datasets We leveraged the SRDD dataset (Qian
et al., 2023), which contains various software re-
quirement descriptions. This dataset, reflecting cat-
egories from major software store platforms, was
crafted to minimize redundancy while enhancing
originality and diversity. It consists of 1,200 soft-
ware requirements, systematically arranged into 5
primary categories (Education, Work, Life, Game,
and Creation). These main categories are seg-
mented into 40 distinct subcategories, with each
subcategory containing 30 unique tasks.

Metrics Evaluating software is a challenging
task, especially when trying to assess it on a holistic
level. Traditional metrics like function-level code
evaluation (e.g., pass@k) cannot seamlessly trans-
fer to a comprehensive evaluation of entire software
systems. This is primarily because it’s often im-
practical to create manual or automated test cases
for much of the software, particularly when dealing
with complex interfaces, frequent communications,
or non-deterministic feedback. As a solution, we
use three quantifiable and objective dimensions to
assess specific aspects of the software, and then

5632

Method Paradigm Completeness Executability Consistency Quality Duration (s)

GPT-Engineer 0.4824 0.3583 0.7887 0.1363 15.6000
MetaGPT 0.4472 0.4208 0.7649 0.1439 154.0000
ChatDev 0.6131 0.8800 0.7909 0.4267 148.2150

Co-Learning 0.9497 0.9650 0.7970 0.7304 122.7750

Table 1: Overall performance of the representative software development methods, encompassing both single-agent
() and multi-agent () paradigms. Performance metrics are averaged across all tasks in the test set. The highest
scores are formatted in bold, while the second-highest scores are underlined.

combine these dimensions into a comprehensive
metric for a more holistic evaluation:

• Completeness measures the software’s ability to
fulfill code completion in software development,
quantified as the percentage of software with-
out any "TODO" code snippets. A higher score
indicates a higher probability of automated exe-
cution.

• Executability assesses the software’s ability to
run correctly within a compilation environment,
quantified as the percentage of software that com-
piles successfully and can run directly. A higher
score indicates a higher probability of successful
execution.

• Consistency evaluates the alignment between the
generated software and the original natural lan-
guage requirements. It is quantified as the cosine
distance between the embeddings of the text re-
quirements and the source code. A higher score
indicates a greater degree of compliance with the
requirements.

• Quality is a comprehensive metric that integrates
the aspects of completeness, executability, and
consistency to assess the overall quality of soft-
ware.2 A higher quality score suggests a higher
overall quality of the software generated, imply-
ing a lower need for further manual intervention.

Implementation Details Our system explicitly
encompasses essential phases such as code com-
plete, code review, and system testing. In the
co-tracking phase, we integrate GPT-3.5-Turbo
as the foundational model, limiting communica-
tion rounds between agents to a maximum of 5

2To prevent over-complication, the quality metric is de-
fined through the multiplication of completeness, executabil-
ity, and consistency. Employing a simple average sum would
produce similar results and conclusions.

ChatDev

MetaGPT

GPT-Engineer

50%

Win Rate (%)

Co-Learning

77.25%21.00%
91.41%8.59%

94.39%5.61%

59.00%41.00%

60.60%34.50%

50.00%42.00%

Co-Learning Wins
Baseline Wins
Draw

Human Evaluation
LLM Evaluation

0% 0%

1.75%

4.90%

8.00%

Figure 2: GPT-4 and human as the evaluators for pair-
wise comparisons of the solutions generated.

per phase. For co-memorizing, we select text-
embedding-ada-002 as the semantic embedder due
to its exceptional performance in both text and code
embeddings. We utilize MD5 as our hashing func-
tion, and Python-3.11.4 is employed to provide en-
vironment feedback. Agents have access to relevant
tools like code checkers and compilers. Addition-
ally, it applies an information gain threshold of 0.90
to retain informative shortcuts. In the co-reasoning
module, this approach selects the highest-ranked
result from code and text experience pools as the in-
context example for reasoning. Besides, we divided
the dataset into training, validation, and testing sets
in a 4:1:1 ratio, using random hierarchical sampling
to maintain a balanced category split. The training
set is utilized for co-tracking and co-memorizing to
gather experiences, the validation set for choosing
hyperparameters, and the test set for co-reasoning.
To maintain comparability in experimental results,
all baseline models use identical parameters and
environment settings.

4.1 Quality Analysis

According to Table 1, our method, abbreviated as
Co-Learning, significantly outperforms all three es-
tablished baseline models in terms of quality. The
comparison with ChatDev, a powerful multi-agent
framework, is particularly striking, as Co-Learning
significantly boosts the comprehensive metric from

5633

5 6 7 8 92 3 4 1015 6 7 8 92 3 4 10 11 5 6 7 8 92 3 4 101

The Number of Edges The Number of Nodes Shortest Path Length

Figure 3: Distribution of key elements in task execution graphs. In a task execution graph, the number of edges
represents the total communications between agents during code iterations in software development. The nodes
count reflects the unique software source codes after hash deduplication, indicating the solution space during
software optimization. The shortest path length shows the main path length in the task development process,
excluding cycles and invalid attempts.

0.4267 to 0.7304, highlighting the effectiveness of
utilizing agents’ past experiences in addressing un-
seen tasks. The efficacy of our method primarily
stems from the agents’ proficiency in recalling and
applying high-quality shortcuts from past trajecto-
ries, leading to notable enhancements in key perfor-
mance metrics like completeness and executability
for unseen tasks.

Moreover, Co-Learning outperforms GPT-
Engineer, illustrating the superiority of the multi-
agent approach in segmenting task-solving into dis-
crete subtasks, in contrast to a single-step strat-
egy. Through active communication, each agent
contributes to a dynamic collaboration, steering to-
wards cohesive and automated solutions for task
execution. The effectiveness of this approach in
task decomposition is further validated by contem-
porary studies (Wei et al., 2022b). Additionally, al-
though Co-Learning requires more time compared
to single-agent methods, it proves to be more time-
efficient than other multi-agent approaches, sug-
gesting that while multi-agent communications in-
herently take longer, the strategic use of "shortcut"
patterns from past experiences effectively reduces
reasoning time, striking a balance between perfor-
mance and duration.

Upon closer examination, while Co-Learning
exhibits notable strengths in the areas of complete-
ness and executability, it demonstrates only a slight
enhancement in the aspect of consistency. This re-
sult could likely stem from the embedding models’
broad-grained semantic representation capabilities
for text and code, which might not be adequately
sensitive to discern extremely nuanced inconsisten-

cies. This discovery presents an exciting research
opportunity to develop advanced criteria and met-
rics for assessing software’s consistency with its
text requirements, emphasizing the need for more
refined evaluation methodologies.

To further validate the efficacy of our method
from an alternative perspective, we drew inspira-
tion from previous work (Li et al., 2023a), which
adopts both GPT-4 and human participants for pair-
wise comparisons of the solutions producted by
agents.3 Figure 2 illustrates that our Co-Learning
method consistently surpasses other baseline meth-
ods, as evidenced by its higher average win rates
in both evaluations involving GPT-4 and human
participants. The results also reveal that ChatDev
consistently demonstrates a notably high win rate
compared to other baseline methods, indicating its
strength as a robust baseline. This success is largely
due to ChatDev’s approach of performing detailed
task decomposition and software optimization via
multi-round agent communications, effectively ad-
dressing potential shortcomings. The Co-Learning
approach, akin to a ChatDev variant emphasizing
experiential agents, highlights the importance of
agent experience accumulation.

4.2 Efficiency Analysis

Recall that we explicitly construct a task execution
graph in which shortcuts are heuristically extracted
as agents’ experiences. In this section, we delve

3For each task, GPT-4 evaluation compares solutions from
both methods, avoiding positional bias (Wang et al., 2023c).
In the human evaluation, thirty computer science researchers
assessed the software, with solutions from both methods ran-
domly presented for their preference-based selection.

5634

deeper into the graph analysis to uncover funda-
mental patterns in the task execution process by
agents. For comparison purposes, we selected Chat-
Dev as it represents the strongest baseline currently
available. Figure 3 shows that, compared to Chat-
Dev, Co-Learning trends towards fewer numbers in
terms of the number of edges, nodes, and the length
of the shortest path. This suggests a decrease in the
number of iterations required for software devel-
opment and a simplification of the solution space
during software optimization. The enhancement in
efficiency can be largely credited to the strategic
utilization of shortcuts linking non-adjacent nodes
in the graph, which enables agents to leverage pre-
vious task execution experiences while simultane-
ously boosting their future task-solving skills more
effectively through the adoption of "shortcut think-
ing". In conjunction with Table 1 and Figure 2,
this evidence demonstrates that the Co-Learning
method streamlines the software development pro-
cess by decreasing unnecessary iterations, thereby
not only boosting overall efficiency but also de-
livering higher quality solutions with fewer agent
communication.

4.3 Effectiveness Analysis
In this part, we delve into the distinct roles
of instructors and assistants within the agent-
collaboration framework, focusing on scenarios
where either one agent alone has past experiences
or both agents are inexperienced. As illustrated
in Table 2, relying solely on a single agent leads
to a marked decline in overall performance, mani-
festing in an increase in execution communications
and a decrease in the quality. Furthermore, it is
notable that systems with an experienced instructor
perform worse than those with an experienced as-
sistant (0.5305 vs. 0.6840), indicating the greater
significance of the assistant’s role in task execution,
despite both roles being essential. In situations
where neither agent type has experience, the system
reverts to its traditional technological capabilities,
resulting in the least effective performance solu-
tions. These findings highlight the necessity for
both instructors and assistants to be experienced;
systems lacking this or relying on only one expe-
rienced agent demonstrate diminished execution
efficiency and quality.

To further confirm the effectiveness of the key
mechanisms employed in our framework, we con-
duct experiments using three different configura-
tions and the results are presented in Table 2, con-

Method #Experiences #Nodes #Edges Quality

Co-Learning (537, 537) 2.3100 3.0100 0.7304

⧹Instructor’s Experiences (0, 537) 3.3500 3.8850 0.6840
⧹Assistant’s Experiences (537, 0) 4.4422 5.0352 0.5305
⧹Both Experiences (0, 0) 3.9450 4.7950 0.4267

⟲Adjacent-Execution (1604, 1604) 3.7000 4.5000 0.6398
⟲Longest-Shortcut-Only (332, 332) 2.8700 3.5200 0.6752
⟲Graph-Unconstructed (605, 605) 2.7000 3.4350 0.6821

Table 2: Ablation study on main roles or mechanisms
of our framework. ⟲ and ⧹ denote the replacement
operation and the removing operation respectively. (a,
b) indicates that the instructor and assistant are equipped
with a and b heuristic shortcuts respectively.

sistently exhibiting a decline in performance. The
adjacent-execution variant adopts the experiences
of adjacent nodes from the original trajectories
(after successfully compilation) rather than utiliz-
ing shortcuts, equivalent to ExpeL (Zhao et al.,
2024). This approach leads to a significant in-
crease in the number of experiences, ultimately
resulting in a decrease in the quality of experi-
ences. This, in turn, validates the effectiveness
of the proposed "shortcuts-as-experiences" scheme.
The longest-shortcut-only variant discards all inter-
mediate shortcuts and exclusively relying on the
"longest" shortcut that directly connects the start
and end nodes. It reveals the underlying models’
limitations and its inability to handle new tasks
using only single-step historical experiences, in-
dicating an overstretch of the agent’s contextual
reasoning ability. The graph-unconstructed variant
extracts shortcuts directly from the original trajec-
tory without constructing graphs. The obtained
solution also reveals that over-dependence on past
experience fails to achieve optimal performance, as
it creates many shortcuts for possible graph nodes,
leading to unnecessary repetition in the test set and
decreasing task execution efficiency. This result
confirms our observation that the progression of
arbitrary adjacent nodes does not necessarily lead
to continuously improved solutions. This empha-
sizes the significance of using heuristic shortcuts
in deduplicated graphs to strike a balance between
quantity and quality.

4.4 Sensitivity Analysis

In this section, we explores the effects of two key
parameters in the co-reasoning process: k (the num-
ber of matched results in retrieval) and θ (the se-
mantic similarity threshold utilized in retrieval).
The results obtained from retrieval come in two
forms: text and code, so the number of matched

5635

Figure 4: The effect of the top-k, with the dashed line
indicating the default configuration utilized in the above
experiments.

results are denoted as ktext and kcode, ranging from
1 to 5, and the semantic similarity thresholds are
denoted as θtext and θcode, ranging from 0.0 to 1.0
in increments of 0.20.

Figure 4 shows that the best retrieval perfor-
mance is achieved under the configuration (kcode =
1, ktext = 2), surpassing the default setting (kcode =
1, ktext = 1). This indicates that although the pro-
posed framework has already achieved success un-
der its default setting, there is still potential for
further improvement through hyperparameter op-
timization. Additionally, Figure 4 suggest that op-
timizing hyperparameters related with code yields
superior outcomes than optimizing hyperparame-
ters related with text, aligning well with the con-
clusions from our previous experiments. Figure 5
illustrates that the θ parameter has a limited impact
on the results, which is attributed to the consistently
high semantic similarity between the current query
and the retrieval result, often surpassing 0.85.

5 Conclusion

Recognizing the absence of a mechanism for inte-
grating cumulative experiences from past tasks in
agent collaboration, we have proposed Experiential
Co-Learning, a framework that encourages collab-
oration between autonomous agents. Through co-
tracking, co-memorizing, and co-reasoning, this ap-
proach enables agents to efficiently handle unseen
software development tasks by drawing on past
experiences and providing mutual support. The
quantitative analysis effectively showcased signif-
icant improvements in quality, leading to reduced
execution times, decreased repetitive errors, and a
decreased reliance on additional human interven-

Figure 5: The effect of the semantic similarity threshold,
with the dashed line indicating the default configuration
utilized in the above experiments.

tion. We anticipate that our insights will initiate a
paradigm shift in shaping the design of multi-agent
collaboration, propelling agents towards achieving
greater autonomy and contributing to their evolu-
tionary growth in cooperative learning.

6 Limitations

Our study has explored the capabilities of coop-
erative autonomous agents, yet both researchers
and practitioners should be mindful of certain
limitations and risks. Firstly, the ability of au-
tonomous agents to produce software might be
overestimated. In co-learning, autonomous agents
still tend to implement the simplest logic in ab-
sence of necessary and clear requirements, indicat-
ing that these technologies are more suitable for
prototype systems rather than real-world applica-
tions. Secondly, unlike traditional function-level
code generation approach, automating the evalua-
tion of general-purpose software is exceptionally
challenging. Though recent efforts aimed to em-
ploy Human Revision Cost (Hong et al., 2024),
manual verification is still impractical. This pa-
per instead focuses on three objective and crucial
dimensions and a comprehensive quality. Future
research need take additional dimensions like ro-
bustness into consideration.

Acknowledgments

The work was supported by the National Key R&D
Program of China (No.2022ZD0116312), the Post-
doctoral Fellowship Program of CPSF under Grant
Number GZB20230348, and Tencent Rhino-Bird
Focused Research Program.

5636

References
Henri Barki, Suzanne Rivard, and Jean Talbot. 1993. To-

ward an Assessment of Software Development Risk.
In Journal of Management Information Systems, vol-
ume 10, pages 203–225.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J.
Och, and Jeffrey Dean. 2007. Large Language Mod-
els in Machine Translation. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
858–867.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
et al. 2023. Sparks of Artificial General Intelligence:
Early Experiments with GPT-4. In arXiv preprint
arXiv:2303.12712.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2024. Large Language Models as
Tool Makers. In The Twelfth International Confer-
ence on Learning Representations (ICLR).

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards Better LLM-based Eval-
uators through Multi-agent Debate. In The Twelfth
International Conference on Learning Representa-
tions (ICLR).

Dake Chen, Hanbin Wang, Yunhao Huo, Yuzhao Li,
and Haoyang Zhang. 2023. GameGPT: Multi-agent
Collaborative Framework for Game Development. In
arXiv preprint arXiv:2310.08067.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating Large Lan-
guage Models Trained on Code. In arXiv preprint
arXiv:2107.03374.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin,
Yaxi Lu, Ruobing Xie, et al. 2024. Agentverse: Fa-
cilitating Multi-agent Collaboration and Exploring
Emergent Behaviors in Agents. In The Twelfth In-
ternational Conference on Learning Representations
(ICLR).

Roi Cohen, May Hamri, Mor Geva, and Amir Glober-
son. 2023. LM vs LM: Detecting Factual Errors via
Cross Examination. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 12621–12640.

Katherine Compton and Scott Hauck. 2002. Recon-
figurable Computing: a Survey of Systems and Soft-
ware. In ACM Computing Surveys (csuR), volume 34,
pages 171–210.

Shiying Ding, Xinyi Chen, Yan Fang, Wenrui Liu, Yiwu
Qiu, and Chunlei Chai. 2023. DesignGPT: Multi-
Agent Collaboration in Design. In 2023 16th Inter-
national Symposium on Computational Intelligence
and Design (ISCID), pages 204–208.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. 2020.
Shortcut Learning in Deep Neural Networks. In Na-
ture Machine Intelligence, volume 2, pages 665–673.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane
Durante, Yusuke Noda, Zilong Zheng, Song-Chun
Zhu, Demetri Terzopoulos, Li Fei-Fei, and Jianfeng
Gao. 2023. MindAgent: Emergent Gaming Interac-
tion. In arXiv preprint arXiv:2309.09971.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xi-
angliang Zhang. 2024. Large language model based
multi-agents: A survey of progress and challenges.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2024. MetaGPT: Meta Pro-
gramming for A Multi-Agent Collaborative Frame-
work. In The Twelfth International Conference on
Learning Representations (ICLR).

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei,
Jianchao Ji, Yingqiang Ge, Libby Hemphill, and
Yongfeng Zhang. 2023. War and Peace (WarA-
gent): Large Language Model-based Multi-Agent
Simulation of World Wars. In arXiv preprint
arXiv:2311.17227.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec.
2023. Benchmarking Large Language Models as
AI Research Agents. In NeurIPS 2023 Foundation
Models for Decision Making Workshop.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. In arXiv
preprint arXiv:2001.08361.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.

5637

https://www.tandfonline.com/doi/abs/10.1080/07421222.1993.11518006
https://www.tandfonline.com/doi/abs/10.1080/07421222.1993.11518006
https://aclanthology.org/D07-1090
https://aclanthology.org/D07-1090
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://openreview.net/forum?id=qV83K9d5WB
https://openreview.net/forum?id=qV83K9d5WB
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://arxiv.org/pdf/2310.08067.pdf
https://arxiv.org/pdf/2310.08067.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://openreview.net/forum?id=EHg5GDnyq1
https://openreview.net/forum?id=EHg5GDnyq1
https://openreview.net/forum?id=EHg5GDnyq1
https://doi.org/10.18653/v1/2023.emnlp-main.778
https://doi.org/10.18653/v1/2023.emnlp-main.778
https://doi.org/10.1145/508352.508353
https://doi.org/10.1145/508352.508353
https://doi.org/10.1145/508352.508353
https://doi.org/10.1109/ISCID59865.2023.00056
https://doi.org/10.1109/ISCID59865.2023.00056
https://www.nature.com/articles/s42256-020-00257-z
http://arxiv.org/abs/2309.09971
http://arxiv.org/abs/2309.09971
http://arxiv.org/abs/2402.01680
http://arxiv.org/abs/2402.01680
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
http://arxiv.org/abs/2311.17227
http://arxiv.org/abs/2311.17227
http://arxiv.org/abs/2311.17227
https://openreview.net/forum?id=kXlTY0BmK3
https://openreview.net/forum?id=kXlTY0BmK3
http://arxiv.org/abs/2001.08361

Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 33,
pages 9459–9474.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. CAMEL: Communicative Agents for ”Mind”
Exploration of Large Language Model Society. In
Thirty-seventh Conference on Neural Information
Processing Systems (NeurIPS).

Yuan Li, Yixuan Zhang, and Lichao Sun. 2023b. Metaa-
gents: Simulating Interactions of Human Behaviors
for LLM-based Task-oriented Coordination via Col-
laborative Generative Agents. In arXiv preprint
arXiv:2310.06500.

Weixin Liang, Yuhui Zhang, Hancheng Cao, Binglu
Wang, Daisy Ding, Xinyu Yang, Kailas Vodrahalli,
Siyu He, Daniel Smith, Yian Yin, Daniel McFarland,
and James Zou. 2023. Can Large Language Models
Provide Useful Feedback on Research Papers? A
Large-Scale Empirical Analysis. In arXiv preprint
arXiv:2310.01783.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,
Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,
Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, and
Silvio Savarese. 2023. BOLAA: Benchmarking and
Orchestrating LLM-augmented Autonomous Agents.
In ICLR 2024 Workshop on Large Language Model
(LLM) Agents.

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiao-
man Pan, and Dong Yu. 2023. LASER: LLM agent
with state-space exploration for web navigation. In
NeurIPS 2023 Foundation Models for Decision Mak-
ing Workshop.

Harlan D Mills. 1976. Software development. In IEEE
Transactions on Software Engineering, 4, pages 265–
273.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work? In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
11048–11064.

Anton Osika. 2023. GPT-Engineer. In
https://github.com/AntonOsika/gpt-engineer.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training Language Models to Follow Instructions
with Human Feedback. In Advances in Neural In-
formation Processing Systems (NeurIPS), volume 35,
pages 27730–27744. Curran Associates, Inc.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative Agents: Interactive Simu-
lacra of Human Behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software
and Technology (UIST), pages 1–22.

Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize
Chen, Yusheng Su, Yufan Dang, Jiahao Li, Juyuan
Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023.
ChatDev: Communicative Agents for Software De-
velopment. In Proceedings of the 62st Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2024. Toolllm: Facilitating Large
Language Models to Master 16000+ Real-World
APIs. In The Twelfth International Conference on
Learning Representations (ICLR).

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu, Don-
ald Metzler, Xuanhui Wang, and Michael Bendersky.
2023. Large Language Models are Effective Text
Rankers with Pairwise Ranking Prompting. In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
Models are Unsupervised Multitask Learners. In
OpenAI blog, volume 1, page 9.

Toran Bruce Richards. 2023. AutoGPT. In
https://github.com/Significant-Gravitas/AutoGPT.

Jingqing Ruan, YiHong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, du qing, shi shiwei, Hangyu Mao,
Xingyu Zeng, and Rui Zhao. 2023. TPTU: Task Plan-
ning and Tool Usage of Large Language Model-based
AI Agents. In NeurIPS 2023 Foundation Models for
Decision Making Workshop.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning To Retrieve Prompts for In-Context
Learning. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL), pages 2655–2671.

Yu Sasaki and Kazumaro Aoki. 2009. Finding Preim-
ages in Full MD5 Faster Than Exhaustive Search. In
Advances in Cryptology - EUROCRYPT 2009, pages
134–152.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language Models Can Teach Themselves to Use
Tools. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems (NeurIPS).

5638

https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=3IyL2XWDkG
https://arxiv.org/pdf/2310.06500.pdf
https://arxiv.org/pdf/2310.06500.pdf
https://arxiv.org/pdf/2310.06500.pdf
https://arxiv.org/pdf/2310.06500.pdf
https://arxiv.org/pdf/2310.01783.pdf
https://arxiv.org/pdf/2310.01783.pdf
https://arxiv.org/pdf/2310.01783.pdf
http://arxiv.org/abs/2308.05960
http://arxiv.org/abs/2308.05960
https://openreview.net/forum?id=sYFFyAILy7
https://openreview.net/forum?id=sYFFyAILy7
https://doi.org/10.1109/TSE.1976.233831
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://github.com/AntonOsika/gpt-engineer
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
http://arxiv.org/abs/2307.07924
http://arxiv.org/abs/2307.07924
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
http://arxiv.org/abs/2306.17563
http://arxiv.org/abs/2306.17563
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://github.com/Significant-Gravitas/AutoGPT
https://openreview.net/forum?id=GrkgKtOjaH
https://openreview.net/forum?id=GrkgKtOjaH
https://openreview.net/forum?id=GrkgKtOjaH
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.1007/978-3-642-01001-9_8
https://doi.org/10.1007/978-3-642-01001-9_8
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761

Murray Shanahan, Kyle McDonell, and Laria Reynolds.
2023. Role Play with Large Language Models. In
Nature, volume 623, pages 493–498.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language Agents with Verbal Re-
inforcement Learning. In Advances in Neural Infor-
mation Processing Systems (NeurIPS).

Theodore Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas Griffiths. 2024. Cognitive architectures
for language agents. In Transactions on Machine
Learning Research (TMLR). Survey Certification.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and Efficient
Foundation Language Models. In arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 30.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An Open-Ended
Embodied Agent with Large Language Models. In
Intrinsically-Motivated and Open-Ended Learning
Workshop @NeurIPS2023.

Lei Wang, Jingsen Zhang, Hao Yang, Zhiyuan Chen,
Jiakai Tang, Zeyu Zhang, Xu Chen, Yankai Lin, Rui-
hua Song, Wayne Xin Zhao, Jun Xu, Zhicheng Dou,
Jun Wang, and Ji-Rong Wen. 2023b. When Large
Language Model based Agent Meets User Behavior
Analysis: A Novel User Simulation Paradigm. In
arXiv preprint arXiv:2306.02552.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023c. Large Language Models are not
Fair Evaluators. In arXiv preprint arXiv:2305.17926.

Shenzhi Wang, Chang Liu, Zilong Zheng, Siyuan Qi,
Shuo Chen, Qisen Yang, Andrew Zhao, Chaofei
Wang, Shiji Song, and Gao Huang. 2023d. Avalon’s
Game of Thoughts: Battle Against Deception
through Recursive Contemplation. In Findings of
the Association for Computational Linguistics: ACL
2024.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Hao-
tian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P. Xing,
and Zhiting Hu. 2024. PromptAgent: Strategic Plan-
ning with Language Models Enables Expert-level
Prompt Optimization. In The Twelfth International
Conference on Learning Representations (ICLR).

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023e. Self-Instruct: Aligning Language

Models with Self-Generated Instructions. In Pro-
ceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages
13484–13508.

Zhilin Wang, Yu Ying Chiu, and Yu Cheung Chiu.
2023f. Humanoid Agents: Platform for Simulating
Human-like Generative Agents. In Proceedings of
the 2023 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations
(EMNLP), pages 167–176.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent Abilities of Large Language Models. In Trans-
actions on Machine Learning Research.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and
Denny Zhou. 2022b. Chain-of-thought Prompting
Elicits Reasoning in Large Language Models. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 35, pages 24824–24837.

Lilian Weng. 2023. LLM-powered Autonomous Agents.
In lilianweng.github.io.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W White, Doug Burger, and Chi Wang. 2023.
AutoGen: Enabling Next-Gen LLM Applications
via Multi-Agent Conversation Framework. In arXiv
preprint arXiv:2308.08155.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
2024. Large Language Models as Optimizers. In
The Twelfth International Conference on Learning
Representations (ICLR).

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2023. GPT4Tools: Teach-
ing Large Language Model to Use Tools via Self-
instruction. In Thirty-seventh Conference on Neural
Information Processing Systems (NeurIPS).

An Zhang, Leheng Sheng, Yuxin Chen, Hao Li, Yang
Deng, Xiang Wang, and Tat-Seng Chua. 2023. On
Generative Agents in Recommendation. In arXiv
preprint arXiv:2310.10108.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin,
Yong-Jin Liu, and Gao Huang. 2024. ExpeL: LLM
Agents Are Experiential Learners. In Proceedings
of the AAAI Conference on Artificial Intelligence, 17,
pages 19632–19642.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2024. We-
barena: A realistic Web Environment for Building
Autonomous Agents. In The Twelfth International
Conference on Learning Representations (ICLR).

5639

https://doi.org/10.1038/s41586-023-06647-8
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=1i6ZCvflQJ
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=nfx5IutEed
https://openreview.net/forum?id=nfx5IutEed
http://arxiv.org/abs/2306.02552
http://arxiv.org/abs/2306.02552
http://arxiv.org/abs/2306.02552
http://arxiv.org/abs/2305.17926
http://arxiv.org/abs/2305.17926
http://arxiv.org/abs/2310.01320
http://arxiv.org/abs/2310.01320
http://arxiv.org/abs/2310.01320
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.emnlp-demo.15
https://doi.org/10.18653/v1/2023.emnlp-demo.15
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://lilianweng.github.io/posts/2023-06-23-agent/
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2308.08155
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=cwjh8lqmOL
https://openreview.net/forum?id=cwjh8lqmOL
https://openreview.net/forum?id=cwjh8lqmOL
http://arxiv.org/abs/2310.10108
http://arxiv.org/abs/2310.10108
https://ojs.aaai.org/index.php/AAAI/article/view/29936
https://ojs.aaai.org/index.php/AAAI/article/view/29936
https://arxiv.org/pdf/2307.13854
https://arxiv.org/pdf/2307.13854
https://arxiv.org/pdf/2307.13854

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li,
Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang,
Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu
Chen, Wentao Zhang, Ningyu Zhang, Huajun Chen,
Peng Cui, and Mrinmaya Sachan. 2023. Agents: An
Open-source Framework for Autonomous Language
Agents. In arXiv preprint arXiv:2309.07870.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao,
Weijie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei
Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and
Jifeng Dai. 2023. Ghost in the Minecraft: Generally
Capable Agents for Open-World Environments via
Large Language Models with Text-based Knowledge
and Memory. In arXiv preprint arXiv:2305.17144.

5640

http://arxiv.org/abs/2309.07870
http://arxiv.org/abs/2309.07870
http://arxiv.org/abs/2309.07870
https://arxiv.org/pdf/2305.17144.pdf
https://arxiv.org/pdf/2305.17144.pdf
https://arxiv.org/pdf/2305.17144.pdf
https://arxiv.org/pdf/2305.17144.pdf

