
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5511–5558
August 11-16, 2024 ©2024 Association for Computational Linguistics

CodeScope: An Execution-based Multilingual Multitask Multidimensional
Benchmark for Evaluating LLMs on Code Understanding and Generation

Weixiang Yan1∗ Haitian Liu2∗ Yunkun Wang3∗ Yunzhe Li4∗ Qian Chen5 Wen Wang5

Tingyu Lin6 Weishan Zhao7 Li Zhu2 Hari Sundaram4 Shuiguang Deng3

1 University of California, Santa Barbara 2 School of Software Engineering, Xi’an Jiaotong University
3 Zhejiang University 4 University of Illinois at Urbana-Champaign 5 Alibaba Group

6 Computer Vision Lab, TU Wien 7 University of Chinese Academy of Sciences
weixiangyan@ucsb.edu liuhaitian@stu.xjtu.edu.cn wangykun@zju.edu.cn

yunzhel2@illinois.edu {tanqing.cq, w.wang}@alibaba-inc.com

Abstract

Large Language Models (LLMs) have demon-
strated remarkable performance on assisting hu-
mans in programming and facilitating program-
ming automation. However, existing bench-
marks for evaluating the code understanding
and generation capacities of LLMs suffer from
severe limitations. First, most benchmarks are
insufficient as they focus on a narrow range
of popular programming languages and spe-
cific tasks, whereas real-world software devel-
opment scenarios show a critical need to im-
plement systems with multilingual and mul-
titask programming environments to satisfy
diverse requirements. Second, most bench-
marks fail to consider the actual executabil-
ity and the consistency of execution results of
the generated code. To bridge these gaps be-
tween existing benchmarks and expectations
from practical applications, we introduce Code-
Scope, an execution-based, multilingual, multi-
task, multidimensional evaluation benchmark
for comprehensively measuring LLM capabil-
ities on coding tasks. CodeScope covers 43
programming languages and eight coding
tasks. It evaluates the coding performance of
LLMs from three dimensions (perspectives):
length, difficulty, and efficiency. To facili-
tate execution-based evaluations of code gen-
eration, we develop MultiCodeEngine, an au-
tomated code execution engine that supports
14 programming languages. Finally, we sys-
tematically evaluate and analyze eight main-
stream LLMs and demonstrate the superior
breadth and challenges of CodeScope for eval-
uating LLMs on code understanding and gen-
eration tasks compared to other benchmarks.
The CodeScope benchmark and code are pub-
licly available at https://github.com/
WeixiangYAN/CodeScope.

∗Equal contribution. Work is supported by Alibaba Group.
Corresponding to: weixiangyan@ucsb.edu

Category Dimension Task #Lang. #Samples Length

Understanding Length

Code Summarization 43 4,838 385
Code Smell 2 200 650

Code Review 9 900 857
Automated Testing 4 400 251

Generation
Difficulty

Program Synthesis 14 803 538
Code Translation 14 5,382 513

Code Repair 14 746 446
Efficiency Code Optimization 4 121 444

Table 1: Summary of our CodeScope. We re-
port the number of language (#Lang.) and sam-
ples (#Samples) and the average number of tokens
per sample (Length) for test sets of each task. To-
ken counts are based on OpenAI’s tiktoken tokenizer
(https://github.com/openai/tiktoken). For more detailed
length statistics, see Appendix Table 7.

1 Introduction

Driven by advances in deep learning and NLP,
LLMs have demonstrated outstanding proficiency
in various generation and understanding tasks (Ope-
nAI, 2023; Anil et al., 2023). However, existing
benchmarks (Hendrycks et al., 2020; Zhong et al.,
2023; Zheng et al., 2023a) for evaluating LLMs
mainly focus on NLP tasks, such as common sense
reasoning, academic examination, and authenticity
verification. Existing evaluation methods are signif-
icantly insufficient in terms of evaluating complete-
ness and comprehensiveness for code understand-
ing and generation capabilities of LLMs. Firstly,
many code LLMs, such as CodeT5+ (Wang et al.,
2023b), WizardCoder (Luo et al., 2023), and Code
LLaMA (Rozière et al., 2023), employ their own
specific single-task evaluation datasets, making it
infeasible to comprehensively compare the perfor-
mance of various LLMs on code understanding and
generation tasks on a unified standard.

Secondly, existing datasets mostly evaluate
LLMs on code tasks (Chen et al., 2021; Austin
et al., 2021) for a narrow range of popular program-
ming languages, with a focus on Python and single
program synthesis tasks. However, software de-
velopment often involves multiple programming

1
5511

https://github.com/WeixiangYAN/CodeScope
https://github.com/WeixiangYAN/CodeScope
https://github.com/openai/tiktoken

languages, each following different programming
paradigms such as object-oriented, functional, and
procedural. Evaluating LLMs within a multilingual
framework can reveal their ability to generalize
across various languages and paradigms. More-
over, the complementarity between multiple tasks
facilitates a comprehensive evaluation of the over-
all performance of LLMs, ensuring that an LLM is
not over-optimized for a specific task and can main-
tain strong performance across diverse tasks. Im-
portantly, multitask settings more accurately simu-
late the various requirements and challenges faced
in real-world software development practices and
hence better test the generalizability of LLMs.

Thirdly, most studies (e.g., widely used bench-
marks CodeXGLUE (Lu et al., 2021) and XL-
CoST (Zhu et al., 2022)) rely on matching-based
evaluation metrics, such as BLEU (Papineni et al.,
2002) or CodeBLEU (Ren et al., 2020), to measure
the quality of generated code. However, these met-
rics may not reflect the practical applicability of
the code, as they only compare the surface form
similarity between the generated code and the ref-
erence code (Yan et al., 2023). The ultimate goal of
code generation is to produce code that can execute
correctly and accomplish specific tasks. Therefore,
execution-based metrics, which evaluate the func-
tionality and correctness of the generated code by
running it on test cases or comparing its output
with the expected output, are more reliable and
informative.

To address these limitations, we propose Code-
Scope, a benchmark that evaluates the coding pro-
ficiency of LLMs using execution-based metrics in
a multilingual and multitask setting. CodeScope
consists of eight tasks for code understanding and
generation, covering 43 programming languages
with an average of 13 languages per task. The
task descriptions are summarized in Table 1. We
also conduct comprehensive evaluations of LLMs
across three dimensions (that is, multidimensional):
Length, Difficulty, and Efficiency. Length mea-
sures the ability to process code of different lengths;
Difficulty evaluates proficiency in solving increas-
ingly complex programming challenges; and Effi-
ciency examines the execution speed and resource
consumption of the code generated by LLMs for a
specific Code Optimization task.

To support CodeScope, we develop a Multilin-
gual Code Execution Engine, MultiCodeEngine,
which extends the ExecEval engine (Khan et al.,

2023) to accommodate 14 programming languages
for code generation tasks. We also establish eight
strong baselines for each task to facilitate com-
prehensive comparisons of coding capabilities of
LLMs. We expect these explorations will provide a
deep understanding of the strengths and limitations
of LLMs on code understanding and generation
tasks and provide valuable guidance for future re-
search directions. Our contributions can be sum-
marized as follows:

• CodeScope benchmark: We built the first-ever
comprehensive benchmark for evaluating LLMs
on code understanding and generation tasks,
CodeScope, which covers the largest number
of programming languages (43 in total) and com-
prises the most comprehensive spectrum of di-
verse code understanding and generation tasks
(eight tasks in total) to date. This benchmark eval-
uates the actual execution of the generated code,
facilitated by MultiCodeEngine, a multilingual
code execution engine supporting 14 program-
ming languages.

• Multidimensional fine-grained evaluation: We
comprehensively evaluate the performance of
LLMs on eight tasks from three dimensions,
namely, length (i.e., length of code required to
solve the problem); difficulty (i.e., complexity
of programming problems); and efficiency (i.e.,
execution efficiency of generated code).

• Comprehensive evaluations and in-depth anal-
yses: We evaluate and compare the coding capa-
bilities of eight mainstream LLMs and establish
strong baselines for each task. We conduct com-
prehensive validations and analyses of the utility
of the CodeScope benchmark.

2 Related Work

Many existing benchmarks for code understanding
and generation tasks do not use execution-based
evaluations. For example, CodeXGLUE (Lu et al.,
2021) and XLCoST (Zhu et al., 2022) only use
matching-based metrics, such as BLEU or Code-
BLEU, which compare the surface form similarity
between the generated code and the reference code.
However, these metrics may not capture the practi-
cal applicability of the code, as they can be misled
by syntactically correct but semantically incorrect
code, or by different implementations of the same
functionality. Previous research has shown that
code lexical similarity and execution correctness
are weakly correlated (Chen et al., 2021; Austin

2
5512

et al., 2021; Ren et al., 2020). A recent benchmark,
XCodeEval (Khan et al., 2023), uses execution-
based metrics in a multilingual and multitask set-
ting, but some of its tasks are not relevant for LLMs,
such as code retrieval, which requires a large and re-
liable code knowledge base that is not yet available
for LLMs. Furthermore, we found several flaws
in the XCodeEval dataset, such as the inclusion of
Russian language data, which biases the natural
language understanding of the instructions; incon-
sistencies between test cases and actual execution
outputs; and the presence of invalid “cheat codes”
that users have submitted to the website.

In addition, most of the related
works (Hendrycks et al., 2021; Lai et al.,
2023; Huang et al., 2022; Nijkamp et al., 2023;
Chandel et al., 2022) evaluate model performance
on program synthesis tasks with Python as the
target language. Among the existing datasets
for program synthesis, HumanEval (Chen et al.,
2021) is the most popular, with 164 problems
and an average of 6.7 unit tests per problem.
MBPP (Austin et al., 2021) contains 974 entry-
level programming tasks, while MathQA (Austin
et al., 2021) includes 23,914 more advanced
programming problems. APPS (Hendrycks et al.,
2021) is designed to pose more challenging
programming problems. However, the coverage
of programming languages in program synthesis
tasks is still limited. Some recent studies (Yu
et al., 2023; Li et al., 2022a) have attempted to
expand the range of programming languages in
program synthesis task, but they only cover a few
languages. MBXP (Athiwaratkun et al., 2023) is
a dataset that covers ten programming languages,
generated by a scalable transformation framework.
HumanEval-X (Zheng et al., 2023b) is another
dataset that covers five programming languages,
created by human translation. Moreover, some
recent research (Yu et al., 2023) has pointed out
the limitations of HumanEval in evaluating the
contextual appropriateness of the generated code.

Puri et al. (2021) propose the semantics-based
CodeNet benchmark, which significantly increases
the variety of supported programming languages,
yet the evaluation tasks remain relatively limited as
code similarity and classification, and code trans-
lation. Notably, experts find about half of the so-
lutions in the CodeNet datasets are incorrect (Zhu
et al., 2022). Hao et al. (2022) introduce AiXBench,
which includes 175 Java samples. However, due

to the absence of unit tests, model performance
has to be evaluated manually. MultiPL-E (Cas-
sano et al., 2022) translates the HumanEval and
MBPP benchmarks into eighteen languages using
compiler methods, though the translation accuracy
is not guaranteed. ClassEval (Du et al., 2023)
evaluates LLMs in the complex scenario of class-
level program synthesis, including 100 class-level
Python program synthesis samples. This study in-
dicates that current LLMs still face considerable
challenges in effectively handling class-level code
generation. We provide a more detailed discussion
of other code evaluation benchmarks in Section
A.2 of the appendix. Table 2 presents a comparison
between the different code evaluation benchmarks.

Benchmark Execution-Based Multilingual Multitask Multidimensional

HumanEval ✓ ✗ ✗ ✗

MBPP ✓ ✗ ✗ ✗

CodeXGlue ✗ ✓ ✓ ✗

XLCoST ✗ ✓ ✓ ✗

MathQA ✓ ✗ ✗ ✗

MBXP ✓ ✓ ✗ ✗

ClassEval ✓ ✗ ✗ ✗

MultiPL-E ✓ ✓ ✗ ✗

AiXBench ✓ ✗ ✗ ✗

DS-1000 ✓ ✗ ✗ ✗

APPS ✓ ✗ ✗ ✗

HumanEval-X ✓ ✓ ✓ ✗

XCodeEval ✓ ✓ ✓ ✗

CodeScope ✓ ✓ ✓ ✓

Table 2: Comparisons between our CodeScope and ex-
isting code evaluation benchmarks.

3 The CodeScope Benchmark

CodeScope evaluates the performance of LLMs
on both code understanding and generation tasks.
More details on dataset construction for each task
are in Appendix A.3.1 to A.3.8.

3.1 Code Understanding

The code understanding tasks aim to evaluate the
LLMs’ ability to comprehend and analyze code.
The tasks include code summarization, which re-
quires the model to concisely summarize the core
functionality and intent of the code; code smell,
which requires the model to detect potential pro-
gramming issues and poor practices in snippets
within the input code; code review, which requires
the model to evaluate the overall quality, style, and
errors of the code; and automated testing, which
requires the model to understand the programming
logic, data flow, and execution process of the code.
Figure 1 shows the main workflow for evaluating
LLMs on the four code understanding tasks.

3
5513

Code Smell

Large Language Models

NL Summarization Code Smell Category
Quality Category

& Review Comment
Test Case × 5

• Code Smell Options

• Source Code

• Smelly Code Snippet

Code Review

• Quality Options

• Source Code

• Code Diff Chunk

Automated Testing

• Problem Description

• Source Code

Code Summarization

• Source Code

Figure 1: Diagrams illustrating four code understanding
tasks, including the input and expected output for each
task.

3.1.1 Code Summarization
Task Definition Code summarization aims to sum-
marize the functionality and intent of source code
into concise natural language descriptions (PL-to-
NL), assisting developers in quickly grasping the
functionality and behavior of the code. This task
requires the model to not only accurately recognize
the structure of the code but also understand how its
components work together to achieve specific func-
tions. The input of this task is a snippet of source
code and the output is its functional description in
natural language.
Data Characteristics Since each programming
language has its own distinct syntax, semantics, and
usage patterns, evaluating code summarization ca-
pabilities based solely on a handful of mainstream
programming languages is insufficient. Hence, we
collect code summarization data for the 43 most
popular programming languages from the Rosetta
Code website1. To the best of our knowledge, our
code summarization dataset covers the largest num-
ber of programming languages.
Evaluation Metrics We employ four commonly
used metrics, BLEU, METEOR (Banerjee and
Lavie, 2005), ROUGE (Lin and Hovy, 2003), and
BERTScore (Zhang et al., 2020), for evaluating
code summarization.

3.1.2 Code Smell
Task Definition Code smells are indicators of
bad design choices that degrade the quality of the
software system, without necessarily affecting its
functionality or correctness. However, these code
smells can result in lower system performance and
higher likelihood of future errors. To identify code
smells accurately, LLMs need to analyze and un-
derstand the source code from both global and local
perspectives. The task input consists of a smelly
code snippet, the source code where it belongs, and

1https://rosettacode.org/wiki/Rosetta_Code

five possible code smell categories. The task output
is the correct code smell category for the snippet.
Data Characteristics We select a subset of sam-
ples from the Java and C# datasets published
by Madeyski and Lewowski (2023); Slivka et al.
(2023), covering three class-level and two method-
level code smell categories. To the best of our
knowledge, our code smell dataset covers the
largest number of programming languages in the
open-source datasets.
Evaluation Metrics We adopt common classifi-
cation evaluation metrics for the five-class classi-
fication task of code smells, including accuracy,
precision, recall, and weighted F1 score.

3.1.3 Code Review
Task Definition Code review is a systematic ex-
amination of source code written by other develop-
ers, aiming to identify and fix potential errors and
ensure adherence to the team’s coding standards.
This process can evaluate the understanding and
analytical skills of LLMs by asking them to judge
and comment on the code. We use two reviewer-
perspective tasks from Li et al. (2022b) to evaluate
the code review skills of LLMs: quality estimation
and code review generation. The quality estima-
tion task is a binary classification task that predicts
whether code changes need further comments or
suggestions. The input is the code changes, and the
output is either comments required or no comments
required. The code review generation task is a se-
quence generation task that generates comments or
suggestions for code changes that need improve-
ment. The input is the same code changes, and the
output is the generated natural language comment.
Data Characteristics We use the code quality esti-
mation dataset released by Li et al. (2022b), which
includes real-world code changes, quality estima-
tion, and review comment data in Github, covering
nine commonly used programming languages.
Evaluation Metrics Quality estimation use accu-
racy, precision, recall and weighted F1 scores as
evaluation metrics. For the evaluation of comment
generation, we employ the BLEU, ROUGE, and
BERTScore as our evaluation metrics.

3.1.4 Automated Testing
Task Definition Automated testing refers to run-
ning test cases that are automatically generated
through specific tools or scripts, aiming to quickly
and comprehensively verify code functionality and
performance without human intervention to ensure

4
5514

https://rosettacode.org/wiki/Rosetta_Code

that it meets expected requirements. Automatically
generated test cases play a key role in identifying
and locating defects and errors in the code, which
can effectively ensure the stability and reliability
of the code. Automated testing requires the LLM
to understand the core purpose of the code, identify
potential boundary conditions and constraints, and
grasp the flow and transformation of data during
the code’s execution. The task input is the problem
description and the corresponding code solution,
and the output is a set of test cases.
Data Characteristics We construct an automated
testing dataset using samples of four programming
languages Python, Java, C, and C++, which we
crawl from Codeforces2, a popular online algo-
rithm competition platform.
Evaluation Metrics We use three metrics to mea-
sure the quality of test cases generated by LLMs:
pass rate, line coverage, and branch coverage. The
pass rate is the percentage of test cases that pass
the test, which means they meet the format require-
ments, execute correctly, and produce the expected
output. Line coverage is the percentage of code
lines that are covered by test cases out of the total
number of code lines. Branch coverage is the per-
centage of branches that are executed by test cases
out of all possible branches in the code.

Code Translation

Large Language Models

Generated Code Target Code Correct Code Optimized Code

• Source Code

Code Repair
• Problem Description

• Error Message

• Buggy Code

Code Optimization

• Problem Description

• Unoptimized Code

Program Synthesis

• Problem Description

Figure 2: Diagrams illustrating four code generation
tasks, including the input and expected output for each
task.

3.2 Code Generation

Compared to code understanding, code generation
tasks require LLMs to produce target code that
meets various requirements. The tasks are: Pro-
gram synthesis (Correctness), which evaluates the
ability of LLMs to generate correct code accord-
ing to the given NL-description; Code translation
(Compatibility), which examines whether LLMs
can maintain functional consistency when trans-
lating between different programming languages;

2https://codeforces.com

Code repair (Maintainability), which focuses on
LLMs’ ability to detect and fix errors automatically;
and Code optimization (Efficiency), which evalu-
ates LLMs’ capability to improve the performance
and resource consumption of the code. Figure 2
shows the main workflow for evaluating LLMs on
the four code generation tasks.

3.2.1 Program Synthesis (NL-to-PL)
Task Definition The objective of program synthe-
sis is to generate expected code solutions based on
the natural language description of the task. Pro-
gram synthesis not only requires LLMs to have
strong logical reasoning and problem-solving abili-
ties, but also examines the ability of LLMs to ac-
curately express logical structures into concrete
code at a deeper level. The input is a programming
scenario described in natural language, including
sample inputs and outputs of the problem, while
the expected output is code that can solve the cor-
responding problem.
Data Characteristics Given that LLMs should
be able to generate code in various programming
languages, we have designed the most diverse set
of execution-based program synthesis tasks so far,
covering 14 programming languages with differ-
ent levels of resources. Unlike existing bench-
marks (Chen et al., 2021; Austin et al., 2021) that
give explicit and straightforward descriptions of
programming requirements, we evaluate the LLMs’
ability to solve real-world coding problems with
increasing difficulty. This requires LLMs to not
only understand the task description, but also to
design or choose suitable programming algorithms
and generate the corresponding solutions.

We construct the Codeforces4LLM dataset by
collecting data from Codeforces. According to the
TIOBE Programming Community Index3, we col-
lect problem descriptions and correct submissions
of corresponding problems in 14 different program-
ming languages. This constitutes the dataset to
date covering the broadest variety of programming
languages in code generation tasks. According to
the official difficulty standards of the Codeforces
platform, we set two difficulty levels for each pro-
gramming language: Easy ([800, 1600)) and Hard
([1600, 2800))4.

3TIOBE Programming Community Index is a metric of
the popularity of programming languages.

4Among them, a difficulty rating of 800 represents the low-
est level of challenge on the website. As this number increases,
it indicates a corresponding rise in both the complexity and
difficulty of the problems to be solved.

5
5515

Evaluation Metrics We adopt the execution-
based metric Pass@k (Chen et al., 2021) to eval-
uate the code generated by LLMs. To facilitate
this evaluation metric, we develop a multilingual
integrated execution testing environment, called
MultiCodeEngine, which can support 47 compil-
er/interpreter versions across the 14 programming
languages involved in code generation.

3.2.2 Code Translation (PL-to-PL)

Task Definition The objective of code translation
is to convert source code from one programming
language to another, promoting software compati-
bility across different platforms, and supporting the
maintenance and modernization of early software
systems. This process requires LLMs not only to
achieve functional equivalence in execution-based
evaluation, but also to identify dependencies and
edge cases in different programming languages. Its
input includes the source code of a specific lan-
guage and the designation of the target program-
ming language, and the expected output is the cor-
responding and functionally consistent code in the
target programming language.
Data Characteristics We follow the same pro-
gramming language coverage and task difficulty
settings as program synthesis task. We utilize the
Codeforces4LLM dataset in our program synthesis
task.
Evaluation Metrics We adopt the same metrics
pass@k, and use the MultiCodeEngine as our exe-
cution environment for both code translation and
program synthesis tasks.

3.2.3 Code Repair (NL&PL-to-PL)

Task Definition The objective of code repair is to
identify and correct errors or defects in source code
to ensure that the code executes correctly and meets
expected functional requirements. Code repair in-
tegrates a series of complex and diverse challenges,
including fine-grained code understanding, prob-
lem diagnosis across NL and PL, and formulating
effective repair strategies. Its input includes the
error code snippet, the corresponding problem de-
scription, and the error message returned by the
compiler/interpreter, while the expected output is
the corrected code that solves the corresponding
problem.
Data Characteristics We follow the same pro-
gramming language coverage and task difficulty
settings as program synthesis tasks. We expand the
Codeforces4LLM dataset by collecting additional

incorrect code submissions for each problem and
execute them in the MultiCodeEngine to obtain
code error information.
Evaluation Metrics Given that the code repair
task measures the LLMs’ skill in finding and fixing
specific errors or bugs in the code, we use the De-
bugging Success Rate@K (DSR@K) metric (Yan
et al., 2023) to evaluate the execution-based code
repair capabilities of LLMs. The DSR@K met-
ric counts a code sample as successfully repaired
if it produces the expected output after at most K
rounds of debugging, when it did not do so before.

3.2.4 Code Optimization
Task Definition Code optimization is the process
of improving the time or space complexity of a pro-
gram without changing its intended functionality.
The goal is to increase execution efficiency, which
saves time and hardware resources. Efficiency opti-
mization can be done at the compiler level, or by
transforming the source code (data structures, algo-
rithms, or language syntax). Code optimization in
CodeScope focuses on improving code efficiency
from the source code perspective. To the best of our
knowledge, CodeScope is the first work to explore
the capabilities of LLMs in code optimization. The
input includes the problem description, the source
code awaiting optimization, the specified program-
ming language, and representative test case inputs
and outputs. The output is the optimized code.
Data Characteristics We screen Code-
forces4LLM to construct the code optimization
dataset, specifically selecting 30 programming
tasks in each of the four prevalent programming
languages Python 3, C#, C, and C++.
Evaluation Metrics Given that code optimization
measures the LLMs’ ability to identify and im-
prove inefficient code, we propose a novel metric,
Opt@K, to quantify this skill. Opt@K assumes
that a code sample that can be optimized for effi-
ciency is successfully optimized if any of the opti-
mized code samples has higher efficiency than the
original sample in K optimization attempts. We
measure the efficiency of code samples by record-
ing their execution time and memory usage during
the code execution process.

4 Multidimensional Evaluation

We present eight popular LLMs along with their
performance on various tasks and analyze the ex-
perimental results based on different dimensions.

6
5516

Code Summarization Code Smell Length

Model Short Medium Long Avg. SD Model Short Medium Long Avg. SD Model Overall Avg.(SD)

GPT-4 33.78 33.27 33.88 33.66 0.33 WizardCoder 45.09 48.29 53.03 48.80 3.99
GPT-3.5 33.21 32.87 33.51 33.14 0.32 LLaMA 2 41.13 31.77 49.28 40.73 8.76

WizardCoder 50.14 3.53
Vicuna 32.12 32.21 31.62 32.06 0.32 Vicuna 38.94 30.66 39.54 36.38 4.96

WizardCoder 32.85 32.05 29.01 31.99 2.03 GPT-4 30.44 40.02 37.60 36.02 4.98
LLaMA 2 48.79 3.88

Code LLaMA 32.39 31.36 28.59 31.52 1.97 PaLM 2 28.48 41.61 36.14 35.41 6.60
LLaMA 2 32.03 31.25 29.34 31.40 1.38 GPT-3.5 29.12 38.13 37.55 34.93 5.04

GPT-3.5 48.10 3.66
StarCoder 31.63 30.69 30.08 31.18 0.78 Code LLaMA 34.78 40.79 24.10 33.22 8.45
PaLM 2 31.83 29.95 24.20 30.27 3.98 StarCoder 28.75 19.79 14.13 20.89 7.37

PaLM 2 47.28 3.47
Code Review Automated Testing

Model Short Medium Long Avg. SD Model Short Medium Long Avg. SD
GPT-4 47.16 2.66

Code LLaMA 39.34 44.70 43.66 42.57 2.84 GPT-3.5 87.49 86.37 80.91 84.92 3.52
GPT-4 44.08 39.93 41.69 41.90 2.08 PaLM 2 84.52 81.97 80.38 82.29 2.09

Code LLaMA 47.02 3.74
LLaMA 2 45.74 40.05 39.14 41.64 3.58 LLaMA 2 83.46 80.48 80.27 81.40 1.78
PaLM 2 41.56 42.13 39.79 41.16 1.22 Code LLaMA 82.65 79.34 80.27 80.75 1.71

Vicuna 46.47 2.68
Vicuna 43.92 38.70 40.43 41.02 2.66 WizardCoder 82.25 82.13 77.87 80.75 2.49

GPT-3.5 45.75 37.88 34.56 39.40 5.75 StarCoder 78.70 80.77 72.96 77.48 4.05
StarCoder 42.10 4.69

WizardCoder 32.68 41.05 43.36 39.03 5.62 GPT-4 80.80 75.03 75.33 77.05 3.25
StarCoder 45.34 39.02 32.20 38.85 6.57 Vicuna 75.19 74.85 79.15 76.40 2.39

Table 3: Short, Medium, and Long are the length classifications of the code. SD means standard deviation. The
Overall column under the Length section presents the average of the model’s Avg. results across four tasks, and the
Avg.(SD) column shows the average SD’ results across these four tasks.

Additionally, we report in detail the specific infor-
mation of baseline LLMs, the parameter setting of
the experiment, and the hardware information used
for inference in Appendix A.4.

4.1 Length5

Table 3 presents the performance and stability of
various LLMs in code understanding tasks across
evaluations of different lengths. The columns short,
medium, and long show the model’s performance
on the corresponding tasks for different length cat-
egories. The corresponding values represent the
average evaluation metric scores on the subsets
of the corresponding tasks in the corresponding
length category. The Avg. column reports the av-
erage scores across different lengths for each row,
while the SD column reports the standard deviation
of these results. Avg. together with SD provides a
comprehensive perspective to evaluate the accuracy
and consistency of the model in processing inputs
of different lengths.

5Regarding defining the “short”, “medium”, and “long”
length categories, we adopt a statistical method based on the
number of tokens in each sample in the dataset. First, we
analyze the length distribution of the samples and exclude any
outliers by applying the Interquartile Range (IQR) method.
Data points that fall below Q1 - 1.5IQR or above Q3 + 1.5IQR
are typically considered outliers. Detailed code length statis-
tics can be found in Appendix Table 7. Then, we split the
remaining samples evenly into short, medium, and long cate-
gories based on the number of tokens, and reassign the outlier
samples to either the short or long categories. It is important
to note that each task is considered independently, and the
short, medium, and long length category definitions for each
programming language also differ.

Detailed experimental results are provided in
Tables 9 to 12 in the appendix. Additionally, case
studies for each task are reported in Tables 37 to
44 in the appendix.

Performance WizardCoder demonstrates the
best performance among all the tested LLMs, with
an overall performance of 50.14, showing its sig-
nificant advantage in understanding and process-
ing complex code structures. This advantage is
attributed to its Evol-Instruct approach, which sig-
nificantly enhances the model’s understanding by
fine-tuning it with open-domain instructions across
varying levels of difficulty and technical scopes.
Notably, GPT-4 does not exhibit leading perfor-
mance, mainly due to its poor performance in au-
tomated testing tasks. Our analysis of GPT-4’s
experimental results finds that it struggles to gen-
erate test cases consistent with actual execution
outputs, indicating that GPT-4 still has room for
improvement in tracking and analyzing data flow
during code execution.

Stability To measure the stability of LLMs
when processing code of different lengths, we use
the standard deviation of their performance. GPT-4
and Vicuna show excellent stability, with a stan-
dard deviation of only 2.66 and 2.68, respectively,
which means they handle texts of various lengths
consistently and stably. Interestingly, some models
perform better with longer codes, which may be
due to their strong contextual understanding and
the abundance of long code samples in their train-
ing datasets.

7
5517

Program Synthesis Code Translation Code Repair Difficulty

Model Easy Hard Avg. Model Easy Hard Avg. Model Easy Hard Avg. Model Overall

GPT-4 58.57 12.01 36.36 GPT-4 40.26 22.06 31.29 GPT-4 43.56 14.04 30.03 GPT-4 32.56
GPT-3.5 39.29 4.96 22.91 GPT-3.5 28.50 14.03 21.37 GPT-3.5 18.56 7.60 13.54 GPT-3.5 19.27

Code LLaMA 7.14 0.26 3.86 WizardCoder 8.83 3.24 6.07 PaLM 2 7.43 7.02 7.24 WizardCoder 4.85
WizardCoder 5.95 0.26 3.24 StarCoder 5.75 1.89 3.85 Wizardcoder 4.95 5.56 5.23 PaLM 2 4.25

PaLM 2 3.81 0.78 1.99 PaLM 2 5.27 1.70 3.51 Code LLaMA 4.21 3.51 3.89 Code LLaMA 3.68
LLaMA 2 1.43 0.00 0.75 Code LLaMA 4.91 1.66 3.31 Vicuna 3.47 2.34 2.95 StarCoder 2.39
StarCoder 0.95 0.00 0.50 LLaMA 2 1.10 0.26 0.69 Starcoder 2.23 3.51 2.82 Vicuna 1.24

Vicuna 0.71 0.00 0.37 Vicuna 0.62 0.19 0.41 LLaMA 2 1.49 1.46 1.47 LLaMA 2 0.97

Table 4: Performance comparison in program synthesis, code translation, code repair at varying difficulty levels,
evaluated using Pass@5, Pass@1, DSR@1 testing. Easy and Hard categories refer to the difficulty.

Model
Python C C++ C#

OverallMemory Time Memory Time Memory Time Memory Time

GPT-4 46.67 36.67 43.33 6.67 29.04 3.23 36.67 23.33 28.20
GPT-3.5 40.00 20.00 76.67 6.67 29.03 19.35 0.00 20.00 26.46

WizardCoder 50.00 16.67 50.00 0.00 38.71 12.90 10.00 16.67 24.37
Code LLaMA 43.33 13.33 40.00 0.00 35.48 3.22 10.00 23.33 21.09

PaLM 2 20.00 13.33 20.00 0.00 6.45 6.45 0.00 6.67 9.11
StarCoder 20.00 6.67 13.33 0.00 16.13 0.00 3.33 6.67 8.27
LLaMA 2 16.67 3.33 16.67 6.67 6.45 0.00 6.67 0.00 7.06

Vicuna 20.00 6.67 13.33 0.00 6.45 0.00 0.00 6.67 6.64

Table 5: Performance comparison of LLMs in code op-
timization under different efficiency perspectives, evalu-
ated using Opt@5 testing.

4.2 Difficulty

Table 4 presents the performance of various LLMs
in tasks of program synthesis, code translation, and
code repair across evaluations of different difficul-
ties. Detailed experimental results are provided in
Tables 14 to 33 in the appendix, while case studies
for each task are reported in Tables 45 to 48.

GPT-4 and GPT-3.5 excel in three different code
generation tasks due to their advanced training
methods and high-quality data. GPT-3.5 handles
easy problems effectively, while GPT-4 outper-
forms it on more challenging ones. Setting different
levels of difficulty helps to show the strengths and
weaknesses of various LLMs, and shows the im-
portance of choosing the right difficulty level when
evaluating LLMs. Other LLMs lag behind GPT-4
and GPT-3.5 on both easy and hard tasks. They
struggle to provide correct solutions for hard prob-
lems, which limits their usefulness in real-world
programming applications. For these LLMs, it is
easier to fix buggy code than to generate solutions
from scratch. CodeScope is a valuable addition
to the field of code generation, as it can evaluate
the LLMs’ ability to solve real-world programming
problems more accurately. CodeScope solves the
problem of HumanEval’s benchmark accuracy rate
being too high (94.4%) (Zhou et al., 2023), which
means it is too easy.

4.3 Efficiency

As Table 5 shows, GPT-4 performs the best among
various LLMs in the overall evaluation of code op-
timization, especially in reducing execution time.
GPT-4 is not always the best in memory optimiza-
tion, but it is consistent across different program-
ming languages. WizardCoder and Code LLaMA
also perform well in code optimization, compared
to GPT-4 and GPT-3.5, which shows their aware-
ness of memory usage and time efficiency during
code execution.

We notice that LLMs optimize Python code the
best, but C code the worst, especially in terms of ex-
ecution time. This may be because C language has
low-level features and strict details, such as accu-
rate memory management and pointer operations.
We also notice that most successful optimization
cases are only at the syntactic level, where LLMs
tend to use syntactic improvement strategies. To
present our code optimization process more com-
prehensively, we provide case studies of code opti-
mization in Appendix Tables 49 to 51.

5 Comparison with HumanEval and
MBPP Benchmarks

Table 6 compares the performance of eight widely-
used LLMs on the CodeScope, HumanEval, and
MBPP benchmarks6. Unlike HumanEval and
MBPP, which primarily focus on one aspect of
evaluation, CodeScope evaluates LLMs from both
code understanding and code generation perspec-
tives, providing a more balanced and comprehen-
sive framework.

In CodeScope (Understanding), we evaluate the
LLMs’ ability to interpret and analyze code. We
calculate the average performance of each model
on four code understanding tasks, and use it as their

6HumanEval and MBPP results are from the papers of
each model and OpenCompass.

8
5518

https://opencompass.org.cn/

Ranking CodeScope CodeScope CodeScope HumanEval Pass@1 MBPP Pass@1
(Understanding) (Generation) (Overall)

1 WizardCoder (50.14) GPT-4 (31.47) GPT-4 (39.31) GPT-4 (67.0) GPT-4 (61.8)
2 LLaMA 2 (48.79) GPT-3.5 (21.07) GPT-3.5 (34.58) WizardCoder (57.3) Code LLaMA (57.0)
3 GPT-3.5 (48.10) WizardCoder (9.73) WizardCoder (29.94) GPT-3.5 (48.1) GPT-3.5 (52.2)
4 PaLM 2 (47.28) Code LLaMA (8.04) Code LLaMA (27.53) Code LLaMA (41.5) WizardCoder (51.8)
5 GPT-4 (47.16) PaLM 2 (5.46) PaLM 2 (26.37) PaLM 2 (37.6) PaLM 2 (50.0)
6 Code LLaMA (47.02) StarCoder (3.86) LLaMA 2 (25.64) StarCoder (33.6) LLaMA 2 (45.4)
7 Vicuna (46.47) Vicuna (2.59) Vicuna (24.53) LLaMA 2 (30.5) StarCoder (43.6)
8 StarCoder (42.10) LLaMA 2 (2.49) StarCoder (22.98) Vicuna (15.2) Vicuna (22.4)

Table 6: Comparison of results of eight baseline models on CodeScope, HumanEval and MBPP benchmarks.

overall score in this domain, as shown in Table 6.
The rankings of these LLMs in code understanding
are different from their rankings in HumanEval and
MBPP. For example, GPT-4, which ranks highest
in HumanEval and MBPP, is only fifth in Code-
Scope (Understanding). This indicates that strong
performance in code generation tasks does not nec-
essarily imply a good understanding of complex
code.

In CodeScope (Generation), we use the same
method to calculate the overall score. GPT-4 and
GPT-3.5 do much better in code generation than
in HumanEval and MBPP. This disparity may be
attributed to two reasons. First, CodeScope (Gener-
ation) tests the general ability of LLMs to generate
code for multiple objectives and languages. Unlike
HumanEval and MBPP, which only test NL-to-PL
tasks, CodeScope tests NL-to-PL, PL-to-PL, and
NL&PL-to-PL tasks, examining the correctness,
quality, and efficiency of the generated code, as
well as the adaptability of LLMs to different lan-
guages. Second, CodeScope (Generation) presents
more complex and diverse problems, with varying
levels of difficulty. In contrast, HumanEval and
MBPP feature simpler, predefined problems. For
instance, the average number of tokens in solutions
is 53.8 and 57.6 for HumanEval and MBPP, re-
spectively, but 507.6 for CodeScope (Generation).
Consequently, some LLMs that perform well in
HumanEval and MBPP, such as WizardCoder, do
not fare as well in CodeScope (Generation).

In CodeScope (Overall), the rankings of LLMs
on CodeScope, HumanEval, and MBPP are not
consistent. This inconsistency highlights the advan-
tages of CodeScope in terms of its breadth and chal-
lenge. CodeScope evaluates both code generation
and code understanding skills, which are more rel-
evant for real-world programming scenarios. Addi-
tionally, CodeScope employs multilingual, multidi-
mensional, multitask, and execution-based evalua-

tion methods, enhancing the difficulty and diversity
of the evaluation. CodeScope simulates the actual
programming environment better, and provides a
more comprehensive and detailed framework for
evaluating the coding skills of LLMs.

6 Conclusion

We present CodeScope, the first comprehensive
benchmark for evaluating LLMs on coding tasks.
CodeScope covers 43 programming languages,
eight coding tasks, and three evaluation dimensions,
using a fine-grained, execution-based evaluation
method. We evaluate and analyze eight popular
LLMs on CodeScope, and reveal their strengths
and weaknesses on different tasks and settings. We
also compare CodeScope with other benchmarks,
and show the importance of CodeScope in testing
LLMs on real-world programming scenarios with
multitasking, multilingual, and multidimensional
challenges. We offer a comprehensive resource,
tool, and benchmark for evaluating LLMs on code
understanding and generation skills, aiming to ad-
vance future research in this area.

In future work, we will focus on further aug-
menting LLMs’ advanced capabilities in process-
ing and generating complex code. Future studies
can progress along two distinct trajectories. Firstly,
enhance the programming capabilities of LLMs to
directly solve various challenging problems, aim-
ing to achieve over 90% performance level on
CodeScope. Secondly, explore using autonomous
agents to achieve a more effective collaborative di-
vision of labor, which could help solve complex
programming challenges more efficiently. Through
these avenues, we expect to drive the expansion
of the frontiers in the domain of code intelligence
with LLMs.

9
5519

Limitations

Data independence and fairness are paramount
when evaluating LLMs through benchmarks. How-
ever, data leakage is a likely problem for bench-
marks for evaluating LLMs. While data leakage
is considered an issue that hinders the evaluation
of models’ generalization ability, in this paper, we
re-examine the legitimacy and validity of this issue
from the following three perspectives:

Data memorization and recitation represent
a unique form of knowledge capability. Tradi-
tional model evaluation tends to pay more atten-
tion to the model’s generalization ability, which is
mainly based on the model’s scale and the training
data’s limitations. However, in the current large
model environment, although the model exhibits
memorization and recitation when dealing with
vast pre-trained data (Carlini et al., 2019; Yan and
Li, 2022), this behavior actually reflects a special
knowledge capability of LLMs. This is not exactly
equivalent to the natural generalization ability, but
in some situations, it can proficiently aid humans
in addressing real-world challenges. Therefore, the
unique ability of data memorization and recitation
still has evaluation value.

Constructing a fully zero-leakage evaluation
dataset is technically unfeasible. Given the mul-
titude of LLMs trained on various diverse pre-
training corpora, creating a test dataset that is
genuinely independent and completely untouched
by any model is extremely difficult, especially
when the pre-trained data of many models remains
closed-source. In addition, even if we attempt to
filter data based on timelines, the knowledge base
of LLMs is constantly evolving7. A zero-leakage
dataset today might be accessible to some models
in the future due to model updates. To mitigate
the risk of leakage, we construct the CodeScope
task dataset using five independent data sources,
aiming to minimize reliance on any single source
and diminish the risk of bias in evaluation results.

Furthermore, the community has two distinct
ways of handling data leakage in benchmark tests.
On the one hand, most studies tend to ignore the
risk of data leakage, such as AGIEval (Zhong
et al., 2023), a recent high-profile bilingual stan-
dardized test evaluation benchmark, the multilin-
gual, multimodal and multilevel evaluation bench-
mark M3Exam (Zhang et al., 2023b), and the in-
terdisciplinary comprehensive Chinese evaluation

7https://platform.openai.com/docs/models/

benchmark CMMLU (Li et al., 2023a). Conversely,
some recent benchmarks recognize the problem of
data leakage, and they generally believe that this
challenge is difficult to avoid completely. For exam-
ple, SciBench (Wang et al., 2023a), an evaluation
benchmark for complex scientific problems, and C-
Eval (Huang et al., 2023), an evaluation benchmark
for multilevel and multi-discipline Chinese, strive
to gather data that is difficult to extract or convert
into text to mitigate this problem.

The ability to generalize downstream tasks
beyond data memorization. Typically, the pre-
training of LLMs relies on unsupervised methods,
and their performance in various downstream tasks
covers a wide range of scenarios (Li et al., 2023b;
Wang et al., 2023b). Even though LLMs might
encounter certain datasets during the pre-training
phase, the application of these datasets in down-
stream tasks often differs from the scenarios during
pre-training. Therefore, despite the potential data
leakage, we are essentially still evaluating the capa-
bilities of LLMs to migrate and generalize across
different tasks, rather than just their data memoriza-
tion abilities.

While data leakage is an unavoidable challenge,
we should have a broader and more open-minded
perspective when evaluating LLMs. We also need
to re-examine and redefine our evaluation criteria
and methods to ensure their appropriateness and
accuracy.

References
Toufique Ahmed and Premkumar T. Devanbu. 2022.

Few-shot training llms for project-specific code-
summarization. In 37th IEEE/ACM International
Conference on Automated Software Engineering,
ASE 2022, Rochester, MI, USA, October 10-14, 2022,
pages 177:1–177:5. ACM.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan A. Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi-
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier

10
5520

https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555

Garcia, Sebastian Gehrmann, Lucas Gonzalez, and
et al. 2023. Palm 2 technical report. CoRR,
abs/2305.10403.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Su-
jan Kumar Gonugondla, Hantian Ding, Varun Ku-
mar, Nathan Fulton, Arash Farahani, Siddhartha Jain,
Robert Giaquinto, Haifeng Qian, Murali Krishna
Ramanathan, and Ramesh Nallapati. 2023. Multi-
lingual evaluation of code generation models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt,
Sebastian Nowozin, and Daniel Tarlow. 2017. Deep-
coder: Learning to write programs. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Cédric Bastoul. 2004. Code generation in the polyhe-
dral model is easier than you think. In 13th Inter-
national Conference on Parallel Architectures and
Compilation Techniques (PACT 2004), 29 Septem-
ber - 3 October 2004, Antibes Juan-les-Pins, France,
pages 7–16. IEEE Computer Society.

Berkay Berabi, Jingxuan He, Veselin Raychev, and Mar-
tin T. Vechev. 2021. Tfix: Learning to fix coding
errors with a text-to-text transformer. In Proceed-
ings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 780–791. PMLR.

Uday Bondhugula, Albert Hartono, J. Ramanujam, and
P. Sadayappan. 2008. A practical automatic poly-
hedral parallelizer and locality optimizer. In Pro-
ceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation,
Tucson, AZ, USA, June 7-13, 2008, pages 101–113.
ACM.

Leslie Pérez Cáceres, Federico Pagnozzi, Alberto
Franzin, and Thomas Stützle. 2017. Automatic con-
figuration of GCC using irace. In Artificial Evolu-
tion - 13th International Conference, Évolution Artifi-
cielle, EA 2017, Paris, France, October 25-27, 2017,

Revised Selected Papers, volume 10764 of Lecture
Notes in Computer Science, pages 202–216. Springer.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neu-
ral networks. In 28th USENIX Security Symposium,
USENIX Security 2019, Santa Clara, CA, USA, Au-
gust 14-16, 2019, pages 267–284. USENIX Associa-
tion.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2022. Multipl-e: A scalable
and extensible approach to benchmarking neural code
generation.

Shubham Chandel, Colin B. Clement, Guillermo Ser-
rato, and Neel Sundaresan. 2022. Training and
evaluating a jupyter notebook data science assistant.
CoRR, abs/2201.12901.

Chun Chen, Jacqueline Chame, and Mary Hall. 2008.
Chill: A framework for composing high-level loop
transformations. Technical report, Citeseer.

Dehao Chen, David Xinliang Li, and Tipp Moseley.
2016. Autofdo: automatic feedback-directed op-
timization for warehouse-scale applications. In
Proceedings of the 2016 International Symposium
on Code Generation and Optimization, CGO 2016,
Barcelona, Spain, March 12-18, 2016, pages 12–23.
ACM.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023).

11
5521

https://doi.org/10.48550/ARXIV.2305.10403
https://openreview.net/pdf?id=Bo7eeXm6An8
https://openreview.net/pdf?id=Bo7eeXm6An8
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://openreview.net/forum?id=ByldLrqlx
https://openreview.net/forum?id=ByldLrqlx
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.1109/PACT.2004.10018
https://doi.org/10.1109/PACT.2004.10018
http://proceedings.mlr.press/v139/berabi21a.html
http://proceedings.mlr.press/v139/berabi21a.html
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/978-3-319-78133-4_15
https://doi.org/10.1007/978-3-319-78133-4_15
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2201.12901
http://arxiv.org/abs/2201.12901
https://doi.org/10.1145/2854038.2854044
https://doi.org/10.1145/2854038.2854044
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374

Ananta Kumar Das, Shikhar Yadav, and Subhasish Dhal.
2019. Detecting code smells using deep learning.
In TENCON 2019 - 2019 IEEE Region 10 Confer-
ence (TENCON), Kochi, India, October 17-20, 2019,
pages 2081–2086. IEEE.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju,
Rishabh Singh, Abdel-rahman Mohamed, and Push-
meet Kohli. 2017. Robustfill: Neural program learn-
ing under noisy I/O. In Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 990–998. PMLR.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classeval: A
manually-crafted benchmark for evaluating llms on
class-level code generation. CoRR, abs/2308.01861.

Martin Fowler. 1999. Refactoring - Improving the De-
sign of Existing Code. Addison Wesley object tech-
nology series. Addison-Wesley.

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli.
2023. Chatgpt outperforms crowd-workers for text-
annotation tasks. CoRR, abs/2303.15056.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish
Shevade. 2017. Deepfix: Fixing common c language
errors by deep learning. In Proceedings of the aaai
conference on artificial intelligence.

Sonia Haiduc, Jairo Aponte, Laura Moreno, and An-
drian Marcus. 2010. On the use of automated text
summarization techniques for summarizing source
code. In 17th Working Conference on Reverse Engi-
neering, WCRE 2010, 13-16 October 2010, Beverly,
MA, USA, pages 35–44. IEEE Computer Society.

Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao,
He Zong, Siyuan Jiang, Yang Liu, and He Wei. 2022.
Aixbench: A code generation benchmark dataset.
CoRR, abs/2206.13179.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Bench-
marks 2021, December 2021, virtual.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. CoRR, abs/2009.03300.

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong
Yan, Haotian Cui, Jeevana Priya Inala, Colin B.
Clement, Nan Duan, and Jianfeng Gao. 2022.
Execution-based evaluation for data science code
generation models. CoRR, abs/2211.09374.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,
Maosong Sun, and Junxian He. 2023. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models. CoRR, abs/2305.08322.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Asso-
ciation for Computer Linguistics.

René Just, Darioush Jalali, and Michael D. Ernst. 2014.
Defects4j: a database of existing faults to enable con-
trolled testing studies for java programs. In Interna-
tional Symposium on Software Testing and Analysis,
ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014,
pages 437–440. ACM.

Mohammad Abdullah Matin Khan, M. Saiful Bari,
Xuan Long Do, Weishi Wang, Md. Rizwan Parvez,
and Shafiq R. Joty. 2023. xcodeeval: A large scale
multilingual multitask benchmark for code under-
standing, generation, translation and retrieval. CoRR,
abs/2303.03004.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,
Daniel Fried, Sida I. Wang, and Tao Yu. 2023. DS-
1000: A natural and reliable benchmark for data sci-
ence code generation. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 18319–18345.
PMLR.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In ICPC ’20: 28th
International Conference on Program Comprehen-
sion, Seoul, Republic of Korea, July 13-15, 2020,
pages 184–195. ACM.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang,
Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
Baldwin. 2023a. CMMLU: measuring massive mul-
titask language understanding in chinese. CoRR,
abs/2306.09212.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam

12
5522

https://doi.org/10.1109/TENCON.2019.8929628
http://proceedings.mlr.press/v70/devlin17a.html
http://proceedings.mlr.press/v70/devlin17a.html
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
https://doi.org/10.48550/ARXIV.2303.15056
https://doi.org/10.48550/ARXIV.2303.15056
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.48550/ARXIV.2206.13179
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
https://doi.org/10.48550/ARXIV.2211.09374
https://doi.org/10.48550/ARXIV.2211.09374
https://doi.org/10.48550/ARXIV.2305.08322
https://doi.org/10.48550/ARXIV.2305.08322
https://doi.org/10.48550/ARXIV.2305.08322
https://doi.org/10.18653/V1/P16-1195
https://doi.org/10.18653/V1/P16-1195
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.48550/ARXIV.2303.03004
https://doi.org/10.48550/ARXIV.2303.03004
https://doi.org/10.48550/ARXIV.2303.03004
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.48550/ARXIV.2306.09212
https://doi.org/10.48550/ARXIV.2306.09212

Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku-
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023b. Starcoder: may the source be with
you! CoRR, abs/2305.06161.

Tsz On Li, Wenxi Zong, Yibo Wang, Haoye Tian,
Ying Wang, Shing-Chi Cheung, and Jeff Kramer.
2023c. Finding failure-inducing test cases with chat-
gpt. CoRR, abs/2304.11686.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022a. Competition-level code generation with al-
phacode. CoRR, abs/2203.07814.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh
Jannu, Grant Jenks, Deep Majumder, Jared Green,
Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundare-
san. 2022b. Automating code review activities by
large-scale pre-training. In Proceedings of the 30th
ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2022, Singapore, Singapore,
November 14-18, 2022, pages 1035–1047. ACM.

Chin-Yew Lin and Eduard H. Hovy. 2003. Automatic
evaluation of summaries using n-gram co-occurrence
statistics. In Human Language Technology Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics, HLT-NAACL
2003, Edmonton, Canada, May 27 - June 1, 2003.
The Association for Computational Linguistics.

Derrick Lin, James Koppel, Angela Chen, and Armando
Solar-Lezama. 2017. Quixbugs: a multi-lingual
program repair benchmark set based on the quixey
challenge. In Proceedings Companion of the 2017
ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Soft-
ware for Humanity, SPLASH 2017, Vancouver, BC,
Canada, October 23 - 27, 2017, pages 55–56. ACM.

Tao Lin, Xue Fu, Fu Chen, and Luqun Li. 2021. A
novel approach for code smells detection based on
deep leaning. In Applied Cryptography in Computer
and Communications: First EAI International Con-
ference, AC3 2021, Virtual Event, May 15-16, 2021,
Proceedings 1, pages 171–174. Springer.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomás Kociský, Fumin Wang,

and Andrew W. Senior. 2016. Latent predictor net-
works for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Asso-
ciation for Computer Linguistics.

Fan Long and Martin C. Rinard. 2015. Staged program
repair with condition synthesis. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, Au-
gust 30 - September 4, 2015, pages 166–178. ACM.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December
2021, virtual.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct.

Lech Madeyski and Tomasz Lewowski. 2023. Detecting
code smells using industry-relevant data. Inf. Softw.
Technol., 155:107112.

Radu Marinescu. 2005. Measurement and quality in
object-oriented design. In 21st IEEE International
Conference on Software Maintenance (ICSM 2005),
25-30 September 2005, Budapest, Hungary, pages
701–704. IEEE Computer Society.

Shane McIntosh, Yasutaka Kamei, Bram Adams, and
Ahmed E. Hassan. 2014. The impact of code re-
view coverage and code review participation on soft-
ware quality: a case study of the qt, vtk, and ITK
projects. In 11th Working Conference on Mining
Software Repositories, MSR 2014, Proceedings, May
31 - June 1, 2014, Hyderabad, India, pages 192–201.
ACM.

Naouel Moha, Yann-Gaël Guéhéneuc, Laurence
Duchien, and Anne-Françoise Le Meur. 2010.
DECOR: A method for the specification and detec-
tion of code and design smells. IEEE Trans. Software
Eng., 36(1):20–36.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N.
Nguyen. 2013a. Lexical statistical machine transla-
tion for language migration. In Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Peters-
burg, Russian Federation, August 18-26, 2013, pages
651–654. ACM.

13
5523

https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2304.11686
https://doi.org/10.48550/ARXIV.2304.11686
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.1145/3540250.3549081
https://doi.org/10.1145/3540250.3549081
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.18653/V1/P16-1057
https://doi.org/10.18653/V1/P16-1057
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2786805.2786811
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.1016/J.INFSOF.2022.107112
https://doi.org/10.1016/J.INFSOF.2022.107112
https://doi.org/10.1109/ICSM.2005.63
https://doi.org/10.1109/ICSM.2005.63
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1145/2491411.2494584
https://doi.org/10.1145/2491411.2494584

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roy-
choudhury, and Satish Chandra. 2013b. Semfix: pro-
gram repair via semantic analysis. In 35th Inter-
national Conference on Software Engineering, ICSE

’13, San Francisco, CA, USA, May 18-26, 2013, pages
772–781. IEEE Computer Society.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

OpenAI. 2023. GPT-4 technical report.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Karl Pettis and Robert C. Hansen. 1990. Profile guided
code positioning. In Proceedings of the ACM SIG-
PLAN’90 Conference on Programming Language De-
sign and Implementation (PLDI), White Plains, New
York, USA, June 20-22, 1990, pages 16–27. ACM.

Dmitry Plotnikov, Dmitry Melnik, Mamikon Vardanyan,
Ruben Buchatskiy, and Roman Zhuykov. 2013. An
automatic tool for tuning compiler optimizations. In
Ninth International Conference on Computer Science
and Information Technologies Revised Selected Pa-
pers, pages 1–7. IEEE.

Mihail Popov, Chadi Akel, Yohan Chatelain, William
Jalby, and Pablo de Oliveira Castro. 2017. Piecewise
holistic autotuning of parallel programs with CERE.
Concurr. Comput. Pract. Exp., 29(15).

Julian Aron Prenner and Romain Robbes. 2021. Auto-
matic program repair with openai’s codex: Evaluat-
ing quixbugs. CoRR, abs/2111.03922.

Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir R. Choudhury, Lindsey
Decker, Veronika Thost, Luca Buratti, Saurabh Pujar,
and Ulrich Finkler. 2021. Project codenet: A large-
scale AI for code dataset for learning a diversity of
coding tasks. CoRR, abs/2105.12655.

Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and
Chengsong Wang. 2014. The strength of random
search on automated program repair. In 36th Inter-
national Conference on Software Engineering, ICSE

’14, Hyderabad, India - May 31 - June 07, 2014,
pages 254–265. ACM.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. CoRR,
abs/2009.10297.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Mazeiar Salehie, Shimin Li, and Ladan Tahvildari. 2006.
A metric-based heuristic framework to detect object-
oriented design flaws. In 14th International Con-
ference on Program Comprehension (ICPC 2006),
14-16 June 2006, Athens, Greece, pages 159–168.
IEEE Computer Society.

Tushar Sharma, Pratibha Mishra, and Rohit Tiwari.
2016. Designite: a software design quality assess-
ment tool. In Proceedings of the 1st International
Workshop on Bringing Architectural Design Thinking
into Developers’ Daily Activities, BRIDGE@ICSE
2016, Austin, Texas, USA, May 17, 2016, pages 1–4.
ACM.

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi
Han, Hongyu Zhang, Dongmei Zhang, and Hong-
bin Sun. 2022. On the evaluation of neural code
summarization. In 44th IEEE/ACM 44th Interna-
tional Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022, pages
1597–1608. ACM.

Mohammed Latif Siddiq, Joanna C. S. Santos, Rid-
wanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat,
and Vinicius Carvalho Lopes. 2023. Exploring the
effectiveness of large language models in generating
unit tests. CoRR, abs/2305.00418.

Jelena Slivka, Nikola Luburic, Simona Prokic, Katarina-
Glorija Grujic, Aleksandar Kovacevic, Goran Sladic,
and Dragan Vidakovic. 2023. Towards a systematic
approach to manual annotation of code smells. Sci.
Comput. Program., 230:102999.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni,
Lori L. Pollock, and K. Vijay-Shanker. 2010. To-
wards automatically generating summary comments
for java methods. In ASE 2010, 25th IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering, Antwerp, Belgium, September 20-24, 2010,
pages 43–52. ACM.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,

14
5524

https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1109/ICSE.2013.6606623
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/93542.93550
https://doi.org/10.1145/93542.93550
https://doi.org/10.1002/CPE.4190
https://doi.org/10.1002/CPE.4190
http://arxiv.org/abs/2111.03922
http://arxiv.org/abs/2111.03922
http://arxiv.org/abs/2111.03922
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2105.12655
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2568225.2568254
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.1109/ICPC.2006.6
https://doi.org/10.1109/ICPC.2006.6
https://doi.org/10.1145/2896935.2896938
https://doi.org/10.1145/2896935.2896938
https://doi.org/10.1145/3510003.3510060
https://doi.org/10.1145/3510003.3510060
https://doi.org/10.48550/ARXIV.2305.00418
https://doi.org/10.48550/ARXIV.2305.00418
https://doi.org/10.48550/ARXIV.2305.00418
https://doi.org/10.1016/J.SCICO.2023.102999
https://doi.org/10.1016/J.SCICO.2023.102999
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1858996.1859006

Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2019. An empirical study on learning bug-
fixing patches in the wild via neural machine transla-
tion. ACM Trans. Softw. Eng. Methodol., 28(4):19:1–
19:29.

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo,
Luca Pascarella, Denys Poshyvanyk, and Gabriele
Bavota. 2022. Using pre-trained models to boost
code review automation. In 44th IEEE/ACM 44th
International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022,
pages 2291–2302. ACM.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu
Zhang, Satyen Subramaniam, Arjun R. Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang.
2023a. Scibench: Evaluating college-level scientific
problem-solving abilities of large language models.
CoRR, abs/2307.10635.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi
D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023b. Codet5+: Open code large language mod-
els for code understanding and generation. CoRR,
abs/2305.07922.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
and Stephanie Forrest. 2009. Automatically finding
patches using genetic programming. In 31st Inter-
national Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Pro-
ceedings, pages 364–374. IEEE.

David Williams-King and Junfeng Yang. 2019. Code-
mason: Binary-level profile-guided optimization. In
Proceedings of the 3rd ACM Workshop on Form-
ing an Ecosystem Around Software Transformation,
pages 47–53.

Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang
Deng, and Jianwei Yin. 2023. Chatunitest: a chatgpt-
based automated unit test generation tool. CoRR,
abs/2305.04764.

Weixiang Yan and Yuanchun Li. 2022. Whygen: Ex-
plaining ml-powered code generation by referring to
training examples. In 44th IEEE/ACM International
Conference on Software Engineering: Companion
Proceedings, ICSE Companion 2022, Pittsburgh, PA,
USA, May 22-24, 2022, pages 237–241. ACM/IEEE.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and
Wen Wang. 2023. Codetransocean: A comprehensive
multilingual benchmark for code translation. CoRR,
abs/2310.04951.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pages 440–450. Association for Com-
putational Linguistics.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Tao Xie, and
Qianxiang Wang. 2023. Codereval: A benchmark
of pragmatic code generation with generative pre-
trained models. CoRR, abs/2302.00288.

Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding,
Kaixin Wang, Yixuan Chen, and Xin Peng. 2023. No
more manual tests? evaluating and improving chatgpt
for unit test generation. CoRR, abs/2305.04207.

Kechi Zhang, Ge Li, Jia Li, Zhuo Li, and Zhi Jin. 2023a.
Toolcoder: Teach code generation models to use API
search tools. CoRR, abs/2305.04032.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Wenxuan Zhang, Sharifah Mahani Aljunied, Chang
Gao, Yew Ken Chia, and Lidong Bing. 2023b.
M3exam: A multilingual, multimodal, multilevel
benchmark for examining large language models.
CoRR, abs/2306.05179.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023a. Judging
llm-as-a-judge with mt-bench and chatbot arena.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b.
Codegeex: A pre-trained model for code generation
with multilingual evaluations on humaneval-x. CoRR,
abs/2303.17568.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023. Language
agent tree search unifies reasoning acting and plan-
ning in language models. CoRR, abs/2310.04406.

15
5525

https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3510003.3510621
https://doi.org/10.1145/3510003.3510621
https://doi.org/10.48550/ARXIV.2307.10635
https://doi.org/10.48550/ARXIV.2307.10635
https://doi.org/10.48550/ARXIV.2305.07922
https://doi.org/10.48550/ARXIV.2305.07922
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.48550/ARXIV.2305.04764
https://doi.org/10.48550/ARXIV.2305.04764
https://doi.org/10.1145/3510454.3516866
https://doi.org/10.1145/3510454.3516866
https://doi.org/10.1145/3510454.3516866
https://doi.org/10.48550/ARXIV.2310.04951
https://doi.org/10.48550/ARXIV.2310.04951
https://doi.org/10.18653/V1/P17-1041
https://doi.org/10.18653/V1/P17-1041
https://doi.org/10.48550/ARXIV.2302.00288
https://doi.org/10.48550/ARXIV.2302.00288
https://doi.org/10.48550/ARXIV.2302.00288
https://doi.org/10.48550/ARXIV.2305.04207
https://doi.org/10.48550/ARXIV.2305.04207
https://doi.org/10.48550/ARXIV.2305.04207
https://doi.org/10.48550/ARXIV.2305.04032
https://doi.org/10.48550/ARXIV.2305.04032
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.48550/ARXIV.2306.05179
https://doi.org/10.48550/ARXIV.2306.05179
https://doi.org/10.48550/ARXIV.2306.05685
https://doi.org/10.48550/ARXIV.2306.05685
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2304.06364
https://doi.org/10.48550/ARXIV.2304.06364
https://doi.org/10.48550/ARXIV.2310.04406
https://doi.org/10.48550/ARXIV.2310.04406
https://doi.org/10.48550/ARXIV.2310.04406

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K. Reddy. 2022.
Xlcost: A benchmark dataset for cross-lingual code
intelligence.

A Appendix

A.1 Statistics of CodeScope

Task Min Max Mean Quartile1 (25%) Median Quartile3 (75%)

Code Summarization 5 8622 385 88 199 441

Code Smell 22 2113 650 366 587 915

Code Review 8 2573 857 494 809 1204

Automated Testing 8 1596 251 104 185 329

Program Synthesis 98 1035 449 314 430 555

Code Translation 19 6163 522 195 350 667

Code Repair 164 4852 836 489 703 1035

Code Optimization 115 4991 689 401 524 789

Table 7: Detailed code length statistics for each task
in CodeScope. Token counts are based on OpenAI’s
tiktoken tokenizer (https://github.com/openai/tiktoken).

A.2 Detailed Related Work

Code Summarization The field of code summa-
rization evolves significantly, transitioning from
early template-based methods to more sophisti-
cated Neural Machine Translation (NMT) models.
Template-based approaches, despite leveraging ex-
pert knowledge, often fail to capture the nuanced
semantics of code accurately (Sridhara et al., 2010;
Haiduc et al., 2010). In contrast, NMT-based mod-
els, such as CodeNN (Iyer et al., 2016), employ ad-
vanced techniques like Abstract Syntax Tree (AST)
flattening and Graph Neural Networks (GNNs) to
gain a deeper understanding of the source code (Shi
et al., 2022; LeClair et al., 2020).
Code Smell Detecting and repairing code smells
early in the development process is essential to en-
hance the reliability, scalability, and maintainability
of software systems. Fowler (1999) first proposes
the concept of code smells, introducing 22 22 types
that violate design principles, along with their fea-
tures and impacts. Traditional code smell detection
primarily adopts metric-based and rule/heuristic-
based approaches. Metric-based approaches com-
bine metrics such as complexity, coupling, and
class size, and then use thresholds or ranges to de-
termine the presence of code smells (Marinescu,
2005; Salehie et al., 2006). Rule/Heuristic-based
approaches rely on rules and heuristic criteria set
by experienced developers or experts (Moha et al.,
2010; Sharma et al., 2016). In recent years, re-
searchers have explored using neural network for
detecting code smells. Lin et al. (2021) use a fully

convolutional network that focuses on code seman-
tic features for detection, while the convolutional
neural network trained by Das et al. (2019) demon-
strated commendable efficacy in detecting specific
code smells.

Code Review McIntosh et al. (2014) demonstrate
that code review effectively reduces the defect rate
of software. Tufano et al. (2022) propose a method
based on the T5 model that automatically provides
code improvement suggestions for reviewers and
implements code changes based on submitted code
and natural language review feedback. This ap-
proach shows great potential in shortening code
review cycles and assisting code submitters. Li
et al. (2022b) design four pre-trained tasks specif-
ically for code review, enhancing the accuracy of
code review. Additionally, the performance of neu-
ral networks in code review is evaluated based on
three tasks: code change quality estimation, code
review generation, and code refinement.

Automated Testing In recent studies, Siddiq
et al. (2023) explore the ability of LLMs to gener-
ate unit tests for software, and evaluate the quality
of these generated tests. Li et al. (2023c) intro-
duce differential prompting, employing ChatGPT
to identify test cases that can trigger program er-
rors. Yuan et al. (2023) propose ChatTESTER to
enhance ChatGPT’s ability to generate high-quality
test cases, investigating the correctness and usabil-
ity of these cases, and effectively improving the
accuracy and efficiency of automated testing. Xie
et al. (2023) design a ChatGPT-based automated
unit test generation-validation-repair framework
called ChatUniTest, which not only generate high-
coverage unit tests, but also repair syntactic and
compilation errors.

Program Synthesis Previous works (Balog et al.,
2017; Ling et al., 2016; Yin and Neubig, 2017) typi-
cally focus on synthesizing and analyzing programs
in domain-specific language. Deepcoder (Balog
et al., 2017) leverages an encoder-decoder network
to predict program properties based on given inputs
and outputs. Ling et al. (2016); Yin and Neubig
(2017) utilize RNNs and Ptr-Nets to map natural
language descriptions to code elements, such as
code structure and syntax trees. Devlin et al. (2017)
directly generate target codes by applying a seq-to-
seq generative network.

Code Translation Code translation involves
converting source code written in one program-
ming language (the source language) into equiva-

16
5526

https://doi.org/10.48550/ARXIV.2206.08474
https://doi.org/10.48550/ARXIV.2206.08474
https://github.com/openai/tiktoken

lent code in another (the target language). Most
existing works only focus on mutual translation
between two languages. One of the most popu-
lar benchmarks, CodeXGLUE (Lu et al., 2021)
provides CodeTrans, facilitating the translation be-
tween Java and C#. Additionally, Ahmed and De-
vanbu (2022) and Nguyen et al. (2013a) include
translations between Java and Python, and Java and
C#, respectively. To enable translation among var-
ious programming languages, works by Zhu et al.
(2022); Yan et al. (2023); Khan et al. (2023) primar-
ily focus on supporting 7, 45, and 11 programming
languages, respectively.

For evaluation, most works (Ahmed and De-
vanbu, 2022; Lu et al., 2021; Zhu et al., 2022)
rely on n-gram matching metrics like BLEU and
CodeBLE, which depend heavily on the compre-
hensiveness and accuracy of the reference code. In
contrast, Yan et al. (2023) and Khan et al. (2023)
adopt executable metrics such as Debugging Suc-
cessful Rate@K (DSR@k) and Pass@K, which
evaluate code based on executability and accuracy
under test cases.

Code Repair The earliest tools for code repair
are static analysis tools that check code for basic
errors, such as syntax violations. For automatic
code repair, semantic-based techniques develop
with the help of specifications for the intended pro-
gram behavior (Nguyen et al., 2013b; Weimer et al.,
2009; Long and Rinard, 2015; Qi et al., 2014). In-
spired by neural machine translation (NMT), some
works leverage language models to enhance au-
tomatic code repair. Tufano et al. (2019) utilize
the capabilities of NMT to transform flawed code
into corrected code, simulating the fusion of an
Abstract Syntax Tree (AST). Prenner and Robbes
(2021) explore the code repairing performance of
CodeX (Chen et al., 2021) on Python and Java us-
ing the QuixBugs benchmark (Lin et al., 2017).

Recently, Khan et al. (2023) test the GPT-3.5’s
performance across 11 programming languages.
Unlike previous works, we evaluate the code re-
pairing abilities of eight powerful LLMs across 14
programming languages, providing a more com-
prehensive evaluation. Additionally, TFix (Berabi
et al., 2021) presents a semantic-based dataset for
JavaScript code repair, while Just et al. (2014) and
Gupta et al. (2017) propose execution-based code
repair datasets Defects4J and DeepFix for Java and
C, respectively.

Code Optimization Compilers apply numer-

ous optimization techniques during the compilation
process, including dead code elimination, inline
expansion, loop optimization, instruction schedul-
ing, and automatic parallelization. Researchers
employ various static techniques to identify the
optimal compiler flag combinations to maximize
performance (Cáceres et al., 2017; Popov et al.,
2017; Plotnikov et al., 2013). Profile-guided op-
timization (PGO) approaches (Pettis and Hansen,
1990; Williams-King and Yang, 2019) collect pro-
file feedback data by executing the code, which is
then analyzed to produce an optimized version of
the code. However, this method requires additional
compilation time, which impacts usability.

Another set of optimization techniques focuses
on transforming the source code itself to en-
hance efficiency. Research in this domain of-
ten targets loop optimization using the polyhe-
dral model (Bondhugula et al., 2008; Bastoul,
2004). Additionally, some researchers utilize auto-
tuning (Chen et al., 2008, 2016) to generate multi-
ple code variants through alternative algorithms or
code transformations, such as loop unrolling and
blocking scheduling, and then search for the best
optimization.

A.3 The CodeScope Benchmark
A.3.1 Code Summarization
According to the TIOBE Programming Community
Index8, we collect code summarization data for the
43 most popular programming languages from the
Rosetta Code programming website9. To maintain
consistent difficulty across different languages and
ensure fair evaluation, we select 170 high-quality
programming tasks and extract 4,838 code sam-
ples, which prioritize tasks covering a wider range
of programming languages, ensuring an equivalent
level of task difficulty across all languages. To pre-
serve balance in our dataset, we ensure that each
programming language has at least 30 samples. We
revise and craft a reference summarization for each
sample based on the task description, sample code
explanation, and source code. Consequently, each
sample includes the task description, programming
language, source code, and its reference summa-
rization.

For the reference summaries, we first manually
created summaries based on the task descriptions

8https://www.tiobe.com/tiobe-index/
9The Rosetta Code programming website aims to demon-

strate the differences in usage between languages by providing
multilingual code solutions to a given set of tasks.

17
5527

https://www.tiobe.com/tiobe-index/

on the website. Then, we used GPT-4 to paraphrase
the manually written content in natural language
into natural language summaries, in order to uni-
formize the style. Finally, these summaries were
subject to manual review and minor modifications.
It is noteworthy that during GPT-4 rephrasing, the
original code snippets are not in the input. Note
that many research works have used GPT-3.5 or
GPT-4 to create pseudo labels (Zhang et al., 2023a;
Gilardi et al., 2023). In our three-step reference
generation procedure, we used GPT-4 for natural
language-to-natural language (NL-NL) paraphras-
ing on our manually created summaries from the
first step, to make the style uniform. This three-step
procedure effectively alleviates the effect of test re-
sults being overly biased towards the generation
patterns of GPT-4.

A.3.2 Code Smell
Madeyski and Lewowski (2023) provide a substan-
tial dataset of code smells identified by experienced
developers from industry-relevant open-source Java
projects. Similarly, Slivka et al. (2023) propose a
systematic approach for manually annotating code
smells and collect a dataset of C# code smells from
active GitHub projects. In CodeScope, we integrate
these Java and C# datasets, encompassing three
class-level and two method-level code smell cate-
gories. We select 100 representative samples for
each language and manually review each sample to
ensure the dataset’s balance and high quality. This
process guarantees an equal number of samples
for each code smell type. Each sample includes
source code, smelly code snippets, and potential
code smell options.

A.3.3 Code Review
We utilize the code quality estimation dataset re-
leased by Li et al. (2022b), which includes real-
world code changes, quality estimation, and review
comment data from GitHub. This dataset spans
nine widely-used programming languages, includ-
ing Python, Java, Go, C++, Javascript, C, C#, PHP,
and Ruby. To maintain balance and ensure the
dataset’s high quality, we filter each language ac-
cording to the code length and select 200 represen-
tative samples per language.

A.3.4 Automated Testing
We construct an automated testing dataset using
samples of four programming languages Python,
Java, C, and C++ in the dataset crawled from Code-

forces. Each sample consists of a problem descrip-
tion, input and output specifications, input and out-
put samples with explanations, the source code
solution, and multiple test cases. To ensure the
high quality of our dataset, we manually verify
and select 100 representative samples from each
language, each exhibiting a 100% pass rate, line
coverage, and branch coverage.

Given that the limited token count of LLMs can
critically constrain the generation of effective test
cases, we limit the number of test cases gener-
ated by LLMs to five to ensure fairness of eval-
uation. We randomly select five test cases from
each sample and test their pass rate, line coverage,
and branch coverage on the source code solution.
To reduce bias caused by random selection, we re-
peat this process five times and average the results.

A.3.5 Program Synthesis

We collect problem descriptions and correct sub-
missions for corresponding problems in 14 dif-
ferent programming languages, including C++,
Java, Python, C, C#, Ruby, Delphi, Go, JavaScript,
Kotlin, PHP, D, Perl, and Rust.

To ensure the quality of the dataset, we exclude
problems with fewer than 10 test cases, as well as
non-deterministic problems with multiple poten-
tial outputs for the same test input. When select-
ing ground truth, we perform execution validation
and exclude submissions that fail to compile in
various environments due to environmental differ-
ences. Additionally, we exclude submissions for
brute force solutions that exceed 5,000 tokens.

A.3.6 Code Translation

We utilize the Codeforces4LLM dataset con-
structed in the program synthesis task. Given that
evaluating all permutation combinations across 14
programming languages incurs excessive overhead,
we limit the number of code pairs to 15 at each dif-
ficulty level. Additionally, we preserve the integrity
of the remaining data within the Codeforces4LLM
dataset.

A.3.7 Code Repair

We expand the Codeforces4LLM dataset by col-
lecting additional incorrect code submissions for
each problem and executing them in the Multi-
CodeEngine to obtain error information. Further-
more, we preserve the integrity of the remaining
data within the Codeforces4LLM dataset.

18
5528

A.3.8 Code Optimization

To ensure that each task has diverse solutions from
both algorithmic and source code syntactic per-
spectives, we evaluate the performance of different
solutions across various test cases. Therefore, we
select problem samples with more than 10 correct
answer submissions and over 20 test cases.

Additionally, we inspect the execution time and
memory usage of code submissions for each prob-
lem in its corresponding test cases. Based on these
inspections, we identify the code submission sam-
ples with the longest execution time and highest
memory usage for each problem. These samples
are deemed to have considerable optimization po-
tential in terms of time and memory efficiency, and
we calibrate the time and memory efficiency base-
line for each problem accordingly. In summary,
each data sample includes the problem description,
the type of programming language, the code solu-
tion flagged for optimization potential concerning
execution time and memory usage, and an array of
test cases pertinent to the problem.

A.4 Experimental Setup

Closed-sourced LLMs GPT-4 (OpenAI, 2023)
and GPT-3.5, developed by OpenAI, generate se-
mantically coherent and logically rigorous natural
language text. They also perform exceptionally
well on code understanding and generation tasks.
PaLM 2 (Anil et al., 2023), with its 340 billion
parameters, is trained on 3.6 trillion tokens and
includes training in 20 programming languages,
significantly enhancing its code generation capabil-
ities.
Open-sourced LLMs LLaMA 2 (Touvron et al.,
2023) is a highly regarded open-source regression
LLM, trained on 2 trillion tokens with an expanded
context length of 4096 tokens. Vicuna (Chiang
et al., 2023), which fine-tunes LLaMA 2 using a
dialogue corpus, aims to process dialogue text with
greater precision.
Open-sourced Code LLMs StarCoder (Li et al.,
2023b), , a widely-adopted open-source Code
LLM, is trained on a corpus of 1 trillion tokens
from over 80 programming languages and fea-
tures a context length of 8,192 tokens. Wizard-
Coder (Luo et al., 2023) leverages a new train-
ing dataset constructed from Code Alpaca to
fine-tune StarCoder, incorporating fine-grained in-
struction evolution, code debugging features, and
space-time complexity constraints. Recently, Code

LLaMA (Rozière et al., 2023), based on LLaMA 2,
is further trained on a specific code dataset, capable
of stably generating up to 100K context tokens.

To facilitate the replication of our experimental
results, we detail the specific configuration informa-
tion for each LLM and the corresponding inference
environments in Table 8.

A.5 Case Study
We provide comprehensive case studies for each
experiment in Table 37 to Table 52, detailing spe-
cific workflows and relevant information for each
experiment.

19
5529

Model Model Version Model Size Inference GPU

GPT-4 gpt-4-0613 - -
GPT-3.5 gpt-3.5-turbo-0613 - -
PaLM 2 text-bison-001 - -

LLaMA 2 LLaMA-2-70b-chat-hf 70B NVIDIA Tesla A800 * 4
StarCoder starchat-beta 15B NVIDIA Tesla A800 * 1

Code LLaMA Code LLaMA-34b-Instruct-hf 34B NVIDIA GeForce RTX 4090 * 4
WizardCoder WizardCoder-15B-V1.0 15B NVIDIA GeForce RTX 4090 * 2

Vicuna vicuna-13b-v1.5-16k 13B NVIDIA GeForce RTX 4090 * 2

Table 8: Configuration information for the baseline LLMs, parameters for the experiment, and hardware information
for inference.

Model BLEU METEOR ROUGE BERTScore Overall

GPT-4 4.73 19.94 24.23 85.72 33.66
GPT-3.5 4.29 19.88 22.72 85.69 33.14
Vicuna 3.39 18.19 22.26 84.40 32.06

WizardCoder 3.29 19.04 21.60 84.01 31.99
Code LLaMA 3.11 17.85 21.80 83.34 31.52

LLaMA 2 2.84 17.41 21.69 83.67 31.40
StarCoder 2.74 17.06 20.72 84.19 31.18
PaLM 2 4.71 19.10 16.17 81.08 30.27

Table 9: Performance comparison of LLMs in code summarization.

Model
Java C#

OverallAccuracy Precision Recall F1-score Accuracy Precision Recall F1-score

WizardCoder 24.00 20.64 24.00 21.87 65.00 82.55 65.00 72.44 46.94
LLaMA 2 25.00 33.75 25.00 24.57 41.00 64.86 41.00 50.17 38.17
GPT-3.5 32.00 24.85 32.00 25.11 30.00 86.25 30.00 34.18 36.80
Vicuna 15.00 19.27 15.00 14.07 47.00 75.27 47.00 57.04 36.21

Code LLaMA 21.00 33.37 21.00 25.38 35.00 78.30 35.00 38.22 35.91
PaLM 2 30.00 38.31 30.00 26.29 41.00 32.03 41.00 35.96 34.32
GPT-4 27.00 25.29 27.00 22.00 34.00 57.16 34.00 41.83 33.53

StarCoder 1.00 6.25 1.00 1.72 49.00 74.74 49.00 34.61 27.16

Table 10: Performance comparison of LLMs in code smell.

Model Accuracy Precision Recall F1-score BLEU ROUGE BERTScore Overall

Code LLaMA 52.67 55.39 52.67 45.82 0.95 8.40 82.50 42.63
Vicuna 52.22 53.60 52.22 47.40 0.77 6.97 82.56 42.25

LLaMA 2 51.22 52.02 51.22 46.06 0.73 7.44 83.17 41.69
GPT-4 49.56 49.51 49.56 48.34 1.02 8.39 83.63 41.43

PaLM 2 47.56 48.59 47.56 47.97 1.62 9.01 83.54 40.84
GPT-3.5 49.89 49.52 49.89 37.93 1.37 8.37 84.52 40.21

StarCoder 47.22 45.99 47.22 42.50 0.46 7.78 83.70 39.27
WizardCoder 49.56 49.42 49.56 36.68 0.36 6.64 81.77 39.14

Table 11: Performance comparison of LLMs in code review.

20
5530

Model
Python Java C C++

OverallPR LC BC PR LC BC PR LC BC PR LC BC

Human 100.0 96.59 93.84 100.0 97.83 92.14 100.0 97.30 93.05 100.0 98.17 94.04 96.91
GPT-3.5 68.20 97.74 95.86 72.80 98.68 93.75 63.60 97.05 92.52 68.00 97.73 93.33 86.61
PaLM 2 64.80 94.79 92.92 63.60 97.49 92.55 59.60 96.05 91.25 60.80 97.54 93.76 83.76

LLaMA 2 61.60 96.92 95.85 59.40 96.30 90.67 54.80 96.15 90.90 57.60 98.10 94.15 82.70
Code LLaMA 62.60 95.59 95.00 57.60 92.97 86.70 55.60 94.69 89.04 60.20 98.39 93.70 81.84
WizardCoder 57.00 96.13 94.21 56.40 97.93 91.67 53.20 96.33 90.34 56.60 98.31 93.81 81.83

GPT-4 59.60 96.76 94.03 52.60 95.87 88.71 47.20 95.36 89.33 39.40 97.83 92.24 79.08
StarCoder 52.20 90.51 88.85 54.40 92.87 87.21 47.20 94.68 87.50 55.60 97.77 93.94 78.56

Vicuna 50.60 90.78 87.78 47.60 90.08 81.94 39.80 95.07 88.55 47.60 97.36 89.98 75.59

Table 12: Performance comparison of LLMs in automated testing, where PR denotes Pass Rate, LC denotes Line
Coverage, BC denotes Branch Coverage.

21
5531

Language Metric GPT-4 GPT-3.5 Code LLaMA LLaMA 2 PaLM 2 WizardCoder Vicuna StarCoder

C

Accuracy 49.00 49.00 52.00 57.00 44.00 50.00 49.00 50.00
Precision 48.90 41.41 54.15 63.73 45.31 50.53 48.49 25.00

Recall 49.00 49.00 52.00 57.00 44.00 50.00 49.00 50.00
F1-score 47.83 34.54 44.85 51.00 44.30 37.04 44.32 33.33
BLEU 1.81 2.76 1.72 1.41 2.11 0.48 1.23 0.05

ROUGE 9.72 10.24 10.65 9.32 10.26 8.67 8.31 1.01
BERTScore 84.34 85.06 81.04 83.94 84.82 83.01 83.08 75.79

C#

Accuracy 55.00 51.00 51.00 49.00 46.00 52.00 51.00 49.00
Precision 55.25 52.21 52.55 48.73 45.83 75.51 51.94 24.75

Recall 55.00 51.00 51.00 49.00 46.00 52.00 51.00 49.00
F1-score 54.45 43.23 42.21 46.15 45.45 37.63 46.03 32.89
BLEU 0.40 0.49 0.00 0.38 0.00 0.18 0.77 0.00

ROUGE 8.32 7.85 8.67 7.64 7.53 6.37 7.10 0.93
BERTScore 83.74 84.46 83.48 83.41 83.89 82.13 82.64 75.83

C++

Accuracy 57.00 53.00 48.00 51.00 42.00 51.00 46.00 50.00
Precision 57.23 75.77 45.27 53.84 42.43 56.99 40.53 25.00

Recall 57.00 53.00 48.00 51.00 42.00 51.00 46.00 50.00
F1-score 56.65 39.67 39.22 39.88 42.21 45.27 36.89 33.33
BLEU 1.48 1.62 1.16 0.88 3.10 0.37 0.94 0.08

ROUGE 7.62 7.20 7.65 7.29 10.22 5.56 6.09 0.81
BERTScore 83.61 84.28 81.64 83.32 84.03 81.52 82.68 75.50

Go

Accuracy 54.0 49.00 51.00 46.00 57.00 48.00 67.00 50.00
Precision 54.60 24.75 53.05 43.75 57.00 24.74 69.22 25.00

Recall 54.0 49.00 51.00 46.00 57.00 48.00 67.00 50.00
F1-score 52.46 32.89 41.10 40.66 57.00 32.65 66.02 33.33
BLEU 0.76 1.19 0.70 0.45 1.49 0.16 0.47 0.00

ROUGE 8.61 8.06 7.75 7.05 9.50 6.01 7.13 0.67
BERTScore 83.65 84.53 82.00 83.12 84.30 80.22 82.55 75.37

Java

Accuracy 46.00 47.00 54.00 52.00 46.00 49.00 52.00 50.00
Precision 45.83 44.12 61.11 53.25 45.89 44.74 52.38 25.00

Recall 46.00 47.00 54.00 52.00 46.00 49.00 52.00 50.00
F1-score 52.46 32.89 41.10 40.66 57.00 32.65 66.02 33.33
BLEU 0.76 1.19 0.70 0.45 1.49 0.16 0.47 0.00

ROUGE 8.61 8.06 7.75 7.05 9.50 6.01 7.13 0.80
BERTScore 83.65 84.53 82.00 83.12 84.30 80.22 82.55 75.44

JavaScript

Accuracy 45.00 53.00 51.00 49.00 53.00 50.00 50.00 51.00
Precision 44.16 75.77 51.33 48.59 55.27 25.00 50.00 75.25

Recall 45.00 53.00 51.00 49.00 53.00 50.00 50.00 51.00
F1-score 42.94 39.67 47.73 44.99 53.96 33.33 44.30 35.52
BLEU 1.17 1.16 1.00 0.62 1.55 0.41 0.52 0.00

ROUGE 9.35 10.39 9.56 7.48 11.20 7.23 7.65 0.99
BERTScore 83.93 84.77 83.92 83.19 84.35 82.84 83.05 75.89

PHP

Accuracy 44.00 48.00 51.00 48.00 43.00 49.00 52.00 50.00
Precision 42.56 45.27 52.55 47.40 47.27 24.75 53.70 25.00

Recall 44.00 48.00 51.00 48.00 43.00 49.00 52.00 50.00
F1-score 41.15 39.22 42.21 44.82 45.02 32.89 46.77 33.33
BLEU 0.63 1.37 0.00 0.00 0.57 0.38 0.60 0.04

ROUGE 7.11 7.35 7.10 5.78 6.16 6.84 6.42 0.76
BERTScore 83.39 84.46 81.84 82.82 79.84 82.63 82.56 75.43

Python

Accuracy 48.00 49.00 50.00 51.00 38.00 46.00 55.00 49.00
Precision 47.77 24.75 50.00 51.96 38.70 36.41 58.86 24.75

Recall 48.00 49.00 50.00 51.00 38.00 46.00 55.00 49.00
F1-score 46.63 32.89 41.56 44.16 38.28 34.43 49.50 32.89
BLEU 0.96 1.54 1.18 0.74 2.69 0.65 1.00 0.00

ROUGE 9.37 9.54 9.29 8.29 10.76 6.93 7.39 0.80
BERTScore 83.56 84.52 83.54 82.80 84.17 81.49 82.57 75.51

Ruby

Accuracy 48.00 50.00 66.00 58.00 59.00 51.00 48.00 49.00
Precision 47.7 50.00 70.79 64.88 59.46 55.26 43.21 24.75

Recall 48.00 50.00 66.00 58.00 59.00 51.00 48.00 49.00
F1-score 46.26 36.58 63.92 52.51 58.50 38.56 36.86 32.89
BLEU 0.91 0.97 0.50 1.03 1.78 0.24 0.81 0.05

ROUGE 7.17 6.79 6.40 7.16 7.18 4.87 5.23 0.73
BERTScore 83.09 83.91 81.33 82.69 82.91 79.72 81.90 75.59

Overall 41.37 39.97 42.41 41.77 40.79 38.29 41.92 34.28

Table 13: Detailed experimental results of code review.

22
5532

Language\Model GPT-4 GPT-3.5 Code LLaMA WizardCoder PaLM 2 LLaMA 2 StarCoder Vicuna Avg.

C++ 86.67 66.67 20.00 13.33 10.00 0.00 0.00 6.67 28.10
Java 90.00 60.00 10.00 23.33 13.33 3.33 0.00 0.00 28.57

Python 53.33 33.33 3.33 3.33 0.00 3.33 0.00 0.00 13.81
C 66.67 33.33 3.33 0.00 6.67 3.33 0.00 0.00 16.19

C# 56.67 33.33 3.33 3.33 0.00 0.00 0.00 0.00 13.81
Ruby 36.67 26.67 3.33 3.33 6.67 0.00 3.33 0.00 11.43

Go 56.67 26.67 6.67 6.67 0.00 0.00 0.00 0.00 13.81
JavaScript 23.33 10.00 3.33 0.00 0.00 6.67 0.00 0.00 6.19

Kotlin 76.67 56.67 6.67 6.67 0.00 0.00 3.33 0.00 21.43
PHP 30.00 16.67 0.00 3.33 0.00 0.00 0.00 0.00 7.14
Rust 73.33 53.33 10.00 10.00 3.33 0.00 0.00 0.00 21.43
Perl 70.00 53.33 23.33 10.00 10.00 3.33 6.67 3.33 25.24

D 33.33 33.33 0.00 0.00 0.00 0.00 0.00 0.00 9.52
Delphi 66.67 46.67 6.67 0.00 3.33 0.00 0.00 0.00 17.62
Avg. 58.57 39.29 7.14 5.95 3.81 1.43 0.95 0.71 -

Table 14: Evaluation result of program synthesis on easy problems, employing the PASS@5 metric.

Language\Model GPT-4 GPT-3.5 PaLM 2 Code LLaMA WizardCoder LLaMA 2 StarCoder Vicuna Avg.

C++ 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43
Java 20.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 4.29

Python 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43
C 6.67 3.33 0.00 0.00 0.00 0.00 0.00 0.00 1.43

C# 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43
Ruby 10.00 3.33 0.00 0.00 0.00 0.00 0.00 0.00 1.90

Go 16.67 3.33 3.33 0.00 0.00 0.00 0.00 0.00 3.33
JavaScript 0.00 9.09 0.00 0.00 0.00 0.00 0.00 0.00 1.30

Kotlin 17.24 3.45 0.00 0.00 0.00 0.00 0.00 0.00 2.96
PHP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rust 13.33 6.67 0.00 0.00 0.00 0.00 0.00 0.00 2.86
Perl 36.67 20.00 6.67 3.33 3.33 0.00 0.00 0.00 10.00

D 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48
Delphi 0.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43
Avg. 10.99 4.94 0.71 0.24 0.24 0.00 0.00 0.00 -

Table 15: Evaluation result of program synthesis on hard problems, employing the PASS@5 metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 60.00 26.67 73.33 40.00 60.00 46.67 13.33 33.33 26.67 53.33 0.00 0.00 6.67 33.85
Java 53.33 - 40.00 46.67 33.33 13.33 26.67 13.33 46.67 13.33 40.00 0.00 0.00 0.00 25.13

Python 40.00 20.00 - 33.33 33.33 53.33 46.67 13.33 20.00 33.33 40.00 6.67 0.00 0.00 26.15
C 73.33 66.67 40.00 - 26.67 20.00 33.33 6.67 46.67 13.33 13.33 0.00 0.00 0.00 26.15

C# 53.33 73.33 66.67 20.00 - 53.33 20.00 33.33 40.00 26.67 40.00 0.00 0.00 0.00 32.82
Ruby 26.67 33.33 53.33 6.67 46.67 - 20.00 0.00 26.67 33.33 6.67 0.00 0.00 0.00 19.49

Go 53.33 66.67 66.67 33.33 46.67 20.00 - 6.67 60.00 0.00 33.33 0.00 6.67 0.00 30.26
JavaScript 33.33 26.67 46.67 53.33 40.00 20.00 26.67 - 33.33 13.33 20.00 33.33 0.00 0.00 26.67

Kotlin 40.00 26.67 46.67 13.33 40.00 13.33 6.67 26.67 - 6.67 46.67 6.67 0.00 0.00 21.03
PHP 46.67 60.00 40.00 26.67 53.33 46.67 26.67 26.67 53.33 - 46.67 6.67 0.00 0.00 33.33
Rust 40.00 40.00 46.67 20.00 20.00 26.67 0.00 6.67 26.67 6.67 - 26.67 0.00 0.00 20.00
Perl 33.33 33.33 26.67 20.00 33.33 46.67 26.67 20.00 46.67 26.67 46.67 - 0.00 0.00 27.69

D 33.33 60.00 60.00 66.67 33.33 33.33 26.67 26.67 40.00 53.33 46.67 46.67 - 0.00 40.51
Delphi 66.67 60.00 40.00 46.67 40.00 20.00 26.67 6.67 33.33 26.67 40.00 33.33 26.67 - 35.90
Avg. 45.64 48.21 46.15 35.38 37.44 32.82 25.64 15.38 38.97 21.54 36.41 12.31 2.56 0.51 28.50

Table 16: Evaluation result of code translation on easy problems using GPT-3.5, employing the Pass@1 metric.

23
5533

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 26.67 6.67 20.00 13.33 6.67 6.67 6.67 20.00 0.00 6.67 0.00 0.00 0.00 8.72
Java 26.67 - 20.00 33.33 13.33 0.00 0.00 0.00 13.33 0.00 26.67 0.00 0.00 0.00 10.26

Python 20.00 20.00 - 6.67 46.67 20.00 13.33 13.33 33.33 13.33 13.33 13.33 6.67 0.00 16.92
C 80.00 33.33 0.00 - 13.33 6.67 26.67 0.00 6.67 6.67 6.67 0.00 0.00 0.00 13.85

C# 26.67 20.00 13.33 13.33 - 6.67 6.67 20.00 20.00 13.33 0.00 0.00 0.00 0.00 10.77
Ruby 33.33 33.33 33.33 26.67 20.00 - 20.00 0.00 13.33 26.67 13.33 13.33 6.67 0.00 18.46

Go 13.33 20.00 6.67 13.33 20.00 6.67 - 13.33 13.33 0.00 6.67 0.00 0.00 0.00 8.72
JavaScript 27.27 18.18 0.00 18.18 18.18 0.00 0.00 - 9.09 18.18 0.00 18.18 0.00 0.00 9.79

Kotlin 40.00 40.00 13.33 20.00 13.33 20.00 6.67 0.00 - 6.67 6.67 0.00 0.00 0.00 12.82
PHP 53.85 38.46 30.77 23.08 38.46 38.46 0.00 23.08 30.77 - 23.08 7.69 0.00 0.00 23.67
Rust 13.33 33.33 6.67 20.00 13.33 33.33 0.00 6.67 6.67 6.67 - 0.00 0.00 0.00 10.77
Perl 40.00 33.33 53.33 26.67 26.67 13.33 6.67 13.33 26.67 40.00 26.67 - 6.67 6.67 24.62

D 40.00 26.67 26.67 20.00 13.33 13.33 6.67 0.00 20.00 26.67 13.33 6.67 - 0.00 16.41
Delphi 46.67 20.00 0.00 46.67 6.67 6.67 6.67 0.00 0.00 0.00 6.67 0.00 0.00 - 10.77
Avg. 35.47 27.95 16.21 22.15 19.74 13.21 7.69 7.42 16.40 12.17 11.52 4.55 1.54 0.51 14.04

Table 17: Evaluation result of code translation on hard problems using GPT-3.5, employing the Pass@1 metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 86.67 46.67 53.33 53.33 53.33 60.00 33.33 66.67 33.33 80.00 0.00 6.67 0.00 44.10
Java 66.67 - 33.33 46.67 40.00 26.67 33.33 40.00 60.00 20.00 46.67 0.00 0.00 0.00 31.79

Python 66.67 60.00 - 33.33 53.33 60.00 53.33 80.00 46.67 53.33 53.33 6.67 0.00 0.00 43.59
C 66.67 80.00 46.67 - 53.33 33.33 60.00 40.00 46.67 40.00 53.33 0.00 0.00 0.00 40.00

C# 73.33 46.67 60.00 53.33 - 60.00 26.67 40.00 53.33 60.00 53.33 0.00 0.00 0.00 40.51
Ruby 40.00 53.33 40.00 20.00 46.67 - 13.33 53.33 53.33 40.00 40.00 6.67 0.00 0.00 31.28

Go 73.33 53.33 46.67 26.67 46.67 26.67 - 53.33 73.33 13.33 40.00 6.67 6.67 6.67 36.41
JavaScript 26.67 53.33 46.67 20.00 33.33 46.67 46.67 - 53.33 20.00 33.33 26.67 13.33 0.00 32.31

Kotlin 73.33 60.00 66.67 6.67 66.67 40.00 20.00 40.00 - 13.33 33.33 20.00 0.00 13.33 34.87
PHP 66.67 53.33 53.33 33.33 60.00 46.67 60.00 60.00 60.00 - 46.67 20.00 6.67 6.67 44.10
Rust 60.00 73.33 26.67 53.33 46.67 26.67 33.33 13.33 40.00 6.67 - 33.33 0.00 20.00 33.33
Perl 66.67 53.33 26.67 40.00 53.33 53.33 33.33 46.67 66.67 53.33 66.67 - 13.33 13.33 45.13

D 66.67 86.67 53.33 33.33 86.67 60.00 40.00 53.33 80.00 60.00 46.67 66.67 - 20.00 57.95
Delphi 60.00 53.33 40.00 40.00 40.00 66.67 46.67 20.00 60.00 26.67 60.00 86.67 26.67 - 48.21
Avg. 62.05 62.56 45.13 35.38 52.31 46.15 40.51 44.10 58.46 33.85 50.26 21.03 5.64 6.15 40.26

Table 18: Evaluation result of code translation on easy problems using GPT-4, employing the Pass@1 metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 60.00 20.00 40.00 20.00 6.67 33.33 6.67 13.33 6.67 13.33 0.00 0.00 0.00 16.92
Java 40.00 - 33.33 20.00 20.00 13.33 13.33 6.67 13.33 0.00 20.00 0.00 0.00 0.00 13.85

Python 46.67 46.67 - 20.00 46.67 26.67 46.67 26.67 40.00 40.00 33.33 13.33 6.67 6.67 30.77
C 66.67 46.67 6.67 - 26.67 13.33 20.00 13.33 40.00 13.33 6.67 0.00 0.00 0.00 19.49

C# 46.67 13.33 6.67 13.33 - 6.67 13.33 13.33 33.33 26.67 26.67 0.00 0.00 0.00 15.38
Ruby 26.67 26.67 26.67 13.33 33.33 - 20.00 13.33 33.33 26.67 20.00 26.67 0.00 6.67 21.03

Go 20.00 33.33 6.67 6.67 0.00 0.00 - 20.00 33.33 0.00 6.67 0.00 0.00 0.00 9.74
JavaScript 27.27 9.09 27.27 36.36 18.18 9.09 18.18 - 18.18 27.27 0.00 27.27 9.09 0.00 17.48

Kotlin 46.67 46.67 33.33 20.00 33.33 26.67 20.00 26.67 - 13.33 6.67 0.00 0.00 0.00 21.03
PHP 53.85 23.08 61.54 15.38 38.46 53.85 30.77 30.77 30.77 - 30.77 0.00 0.00 0.00 28.40
Rust 40.00 33.33 53.33 13.33 46.67 26.67 13.33 33.33 33.33 13.33 - 0.00 0.00 0.00 23.59
Perl 53.33 53.33 60.00 40.00 60.00 33.33 46.67 60.00 40.00 33.33 60.00 - 20.00 13.33 44.10

D 33.33 40.00 6.67 26.67 26.67 20.00 40.00 20.00 26.67 13.33 26.67 33.33 - 6.67 24.62
Delphi 60.00 53.33 20.00 33.33 13.33 20.00 20.00 13.33 0.00 6.67 20.00 13.33 13.33 - 22.05
Avg. 43.16 37.35 27.86 22.95 29.49 19.71 25.82 21.85 27.36 16.97 20.83 8.76 3.78 2.56 22.03

Table 19: Evaluation result of code translation on hard problems using GPT-4, employing the Pass@1 metric.

24
5534

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 33.33 13.33 20.00 0.00 0.00 6.67 0.00 6.67 13.33 6.67 0.00 0.00 0.00 7.69
Java 20.00 - 0.00 13.33 0.00 0.00 6.67 0.00 6.67 13.33 0.00 0.00 0.00 0.00 4.62

Python 20.00 13.33 - 0.00 13.33 13.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.62
C 33.33 13.33 6.67 - 0.00 6.67 0.00 0.00 6.67 13.33 0.00 0.00 0.00 0.00 6.15

C# 20.00 6.67 26.67 6.67 - 13.33 0.00 0.00 0.00 6.67 6.67 0.00 0.00 0.00 6.67
Ruby 0.00 0.00 6.67 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51

Go 20.00 6.67 13.33 20.00 6.67 6.67 - 0.00 26.67 0.00 0.00 0.00 0.00 0.00 7.69
JavaScript 13.33 13.33 13.33 6.67 0.00 0.00 0.00 - 6.67 0.00 0.00 6.67 0.00 0.00 4.62

Kotlin 0.00 0.00 6.67 0.00 0.00 6.67 0.00 0.00 - 0.00 6.67 0.00 0.00 0.00 1.54
PHP 13.33 6.67 13.33 20.00 0.00 20.00 0.00 0.00 20.00 - 0.00 0.00 0.00 0.00 7.18
Rust 6.67 20.00 6.67 6.67 6.67 6.67 0.00 0.00 6.67 0.00 - 0.00 0.00 0.00 4.62
Perl 6.67 6.67 13.33 0.00 0.00 6.67 0.00 6.67 6.67 6.67 0.00 - 0.00 0.00 4.10

D 20.00 26.67 13.33 13.33 26.67 6.67 6.67 0.00 13.33 6.67 13.33 6.67 - 0.00 11.79
Delphi 26.67 26.67 26.67 13.33 0.00 0.00 6.67 0.00 6.67 6.67 0.00 0.00 0.00 - 8.72
Avg. 15.38 13.33 12.31 9.23 4.10 6.67 2.05 0.51 8.21 5.13 2.56 1.03 0.00 0.00 5.75

Table 20: Evaluation result of code translation on easy problems using StarCoder, employing the Pass@1 metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.51
Java 6.67 - 0.00 0.00 0.00 0.00 0.00 0.00 13.33 0.00 0.00 0.00 0.00 0.00 1.54

Python 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.51
C 33.33 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 3.08

C# 6.67 6.67 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03
Ruby 6.67 0.00 20.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 2.56

Go 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.51
JavaScript 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 9.09 0.00 0.00 0.00 0.00 0.00 0.70

Kotlin 13.33 6.67 0.00 6.67 0.00 6.67 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 2.56
PHP 0.00 0.00 7.69 7.69 7.69 0.00 0.00 0.00 7.69 - 0.00 0.00 0.00 0.00 2.37
Rust 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 6.67 0.00 - 0.00 0.00 0.00 1.03
Perl 0.00 13.33 13.33 6.67 6.67 0.00 0.00 6.67 0.00 13.33 0.00 - 0.00 6.67 5.13

D 13.33 6.67 0.00 20.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 - 0.00 3.59
Delphi 0.00 6.67 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 - 1.03
Avg. 6.15 3.59 3.16 3.16 1.10 0.51 0.51 0.51 3.86 2.05 0.51 0.51 0.00 0.51 1.87

Table 21: Evaluation result of code translation on hard problems using StarCoder, employing the Pass@1 metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 33.33 13.33 26.67 0.00 6.67 6.67 6.67 6.67 0.00 6.67 0.00 0.00 0.00 8.21
Java 26.67 - 26.67 6.67 0.00 6.67 13.33 0.00 6.67 13.33 0.00 0.00 0.00 0.00 7.69

Python 0.00 13.33 - 6.67 0.00 13.33 0.00 0.00 0.00 13.33 0.00 6.67 0.00 0.00 4.10
C 46.67 20.00 13.33 - 0.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 6.67

C# 6.67 20.00 20.00 0.00 - 20.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 5.64
Ruby 0.00 0.00 13.33 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03

Go 20.00 20.00 13.33 20.00 0.00 20.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.18
JavaScript 0.00 6.67 13.33 6.67 0.00 6.67 0.00 - 0.00 0.00 6.67 0.00 0.00 0.00 3.08

Kotlin 0.00 6.67 13.33 0.00 6.67 6.67 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 2.56
PHP 20.00 20.00 26.67 0.00 0.00 20.00 0.00 0.00 6.67 - 0.00 0.00 0.00 0.00 7.18
Rust 20.00 6.67 0.00 13.33 0.00 13.33 13.33 0.00 13.33 13.33 - 0.00 0.00 0.00 7.18
Perl 0.00 13.33 0.00 6.67 0.00 0.00 0.00 0.00 13.33 13.33 0.00 - 0.00 0.00 3.59

D 6.67 6.67 13.33 0.00 0.00 13.33 6.67 6.67 6.67 13.33 0.00 6.67 - 0.00 6.15
Delphi 20.00 6.67 0.00 13.33 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 - 3.59
Avg. 12.82 13.33 12.82 7.69 0.51 9.74 3.59 1.03 4.10 6.15 1.03 1.03 0.00 0.00 5.27

Table 22: Evaluation result of code translation on easy problems using PaLM 2, employing the Pass@1 metric.

25
5535

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Java 6.67 - 0.00 6.67 0.00 0.00 0.00 0.00 13.33 0.00 0.00 0.00 0.00 0.00 2.05

Python 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 40.00 13.33 0.00 - 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.62

C# 6.67 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 1.03
Ruby 0.00 6.67 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51

Go 0.00 13.33 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03
JavaScript 9.09 0.00 0.00 9.09 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 1.40

Kotlin 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.51
PHP 0.00 7.69 7.69 7.69 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 1.78
Rust 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.67 0.00 - 0.00 0.00 0.00 1.03
Perl 0.00 6.67 13.33 0.00 6.67 6.67 0.00 6.67 6.67 20.00 0.00 - 0.00 0.00 5.13

D 13.33 20.00 0.00 13.33 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 4.10
Delphi 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.51
Avg. 7.37 5.21 1.62 2.83 1.03 0.51 0.51 0.51 2.05 2.05 0.00 0.00 0.00 0.00 1.69

Table 23: Evaluation result of code translation on hard problems using PaLM 2, employing the Pass@1 metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 33.33 6.67 40.00 0.00 13.33 20.00 13.33 6.67 6.67 0.00 0.00 0.00 0.00 10.77
Java 20.00 - 0.00 13.33 26.67 6.67 6.67 0.00 6.67 20.00 0.00 0.00 0.00 0.00 7.69

Python 20.00 26.67 - 6.67 13.33 20.00 0.00 0.00 13.33 20.00 0.00 0.00 0.00 0.00 9.23
C 33.33 20.00 13.33 - 6.67 6.67 13.33 0.00 6.67 13.33 0.00 0.00 0.00 0.00 8.72

C# 20.00 33.33 40.00 6.67 - 6.67 0.00 0.00 0.00 40.00 0.00 0.00 0.00 0.00 11.28
Ruby 6.67 6.67 6.67 0.00 0.00 - 0.00 0.00 0.00 13.33 0.00 0.00 0.00 0.00 2.56

Go 26.67 0.00 20.00 26.67 6.67 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.15
JavaScript 13.33 26.67 13.33 6.67 6.67 0.00 0.00 - 6.67 6.67 0.00 6.67 0.00 0.00 6.67

Kotlin 0.00 13.33 20.00 6.67 13.33 6.67 0.00 0.00 - 6.67 0.00 0.00 0.00 0.00 5.13
PHP 20.00 20.00 40.00 26.67 6.67 33.33 6.67 0.00 26.67 - 0.00 0.00 0.00 0.00 13.85
Rust 13.33 13.33 26.67 26.67 6.67 13.33 13.33 0.00 6.67 0.00 - 13.33 0.00 0.00 10.26
Perl 6.67 13.33 6.67 6.67 6.67 13.33 0.00 13.33 6.67 6.67 6.67 - 0.00 0.00 6.67

D 33.33 53.33 20.00 20.00 20.00 6.67 6.67 0.00 6.67 20.00 0.00 13.33 - 0.00 15.38
Delphi 20.00 26.67 13.33 6.67 6.67 0.00 6.67 0.00 20.00 13.33 6.67 0.00 0.00 - 9.23
Avg. 17.95 22.05 17.44 14.87 9.23 9.74 5.64 2.05 8.21 12.82 1.03 2.56 0.00 0.00 8.83

Table 24: Evaluation result of code translation on easy problems using WizardCoder, employing the Pass@1 metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 6.67 0.00 20.00 0.00 6.67 6.67 0.00 0.00 0.00 6.67 0.00 0.00 0.00 3.59
Java 6.67 - 0.00 6.67 0.00 0.00 0.00 0.00 6.67 0.00 6.67 0.00 0.00 0.00 2.05

Python 0.00 6.67 - 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03
C 46.67 0.00 6.67 - 0.00 6.67 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.13

C# 6.67 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 13.33 0.00 0.00 0.00 0.00 1.54
Ruby 13.33 6.67 13.33 0.00 6.67 - 0.00 0.00 0.00 13.33 0.00 0.00 0.00 0.00 4.10

Go 6.67 6.67 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03
JavaScript 0.00 9.09 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.70

Kotlin 6.67 26.67 0.00 6.67 6.67 0.00 0.00 0.00 - 6.67 0.00 0.00 0.00 0.00 4.10
PHP 7.69 15.38 7.69 0.00 7.69 7.69 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 3.55
Rust 0.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 6.67 0.00 - 0.00 0.00 0.00 1.03
Perl 0.00 6.67 26.67 6.67 26.67 6.67 13.33 0.00 6.67 33.33 6.67 - 0.00 0.00 10.26

D 13.33 20.00 0.00 6.67 0.00 0.00 0.00 0.00 6.67 6.67 0.00 0.00 - 0.00 4.10
Delphi 13.33 0.00 6.67 6.67 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 2.56
Avg. 9.31 8.04 4.69 4.10 4.18 3.16 2.05 0.00 2.05 5.64 1.54 0.00 0.00 0.00 3.20

Table 25: Evaluation result of code translation on hard problems using WizardCoder, employing the Pass@1 metric.

26
5536

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 20.00 6.67 13.33 0.00 0.00 20.00 0.00 0.00 0.00 0.00 0.00 6.67 0.00 5.13
Java 13.33 - 0.00 6.67 0.00 0.00 6.67 0.00 0.00 6.67 0.00 0.00 0.00 0.00 2.56

Python 33.33 6.67 - 0.00 0.00 13.33 13.33 0.00 0.00 20.00 0.00 0.00 0.00 0.00 6.67
C 40.00 13.33 6.67 - 0.00 6.67 6.67 0.00 0.00 6.67 6.67 0.00 0.00 0.00 6.67

C# 6.67 13.33 0.00 0.00 - 0.00 6.67 0.00 0.00 6.67 0.00 0.00 0.00 0.00 2.56
Ruby 6.67 0.00 6.67 0.00 0.00 - 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 1.54

Go 20.00 20.00 6.67 0.00 6.67 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.10
JavaScript 6.67 6.67 6.67 0.00 6.67 0.00 0.00 - 0.00 13.33 0.00 6.67 0.00 0.00 3.59

Kotlin 20.00 0.00 13.33 6.67 0.00 0.00 6.67 0.00 - 6.67 0.00 0.00 0.00 0.00 4.10
PHP 6.67 20.00 33.33 0.00 6.67 6.67 13.33 0.00 20.00 - 0.00 0.00 0.00 0.00 8.21
Rust 13.33 13.33 0.00 13.33 6.67 0.00 0.00 0.00 0.00 6.67 - 0.00 0.00 0.00 4.10
Perl 0.00 6.67 20.00 13.33 0.00 0.00 6.67 0.00 0.00 13.33 0.00 - 0.00 0.00 4.62

D 6.67 6.67 20.00 13.33 6.67 20.00 0.00 6.67 20.00 13.33 0.00 6.67 - 0.00 9.23
Delphi 13.33 26.67 6.67 0.00 6.67 6.67 6.67 0.00 0.00 6.67 0.00 0.00 0.00 - 5.64
Avg. 14.36 11.79 9.74 5.13 3.08 4.10 6.67 0.51 3.08 8.21 0.51 1.03 0.51 0.00 4.91

Table 26: Evaluation result of code translation on easy problems using Code LLaMA, employing the Pass@1 metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 0.00 6.67 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03
Java 6.67 - 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03

Python 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.51
C 20.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.54

C# 0.00 13.33 0.00 6.67 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.54
Ruby 6.67 0.00 0.00 0.00 6.67 - 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 1.54

Go 0.00 0.00 0.00 0.00 0.00 0.00 - 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.51
JavaScript 9.09 9.09 0.00 0.00 9.09 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 2.10

Kotlin 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.51
PHP 7.69 0.00 15.38 0.00 7.69 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 2.37
Rust 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.67 - 0.00 0.00 0.00 0.51
Perl 0.00 6.67 20.00 0.00 0.00 6.67 0.00 6.67 13.33 20.00 0.00 - 0.00 6.67 6.15

D 6.67 0.00 0.00 6.67 0.00 6.67 0.00 0.00 6.67 0.00 0.00 0.00 - 0.00 2.05
Delphi 20.00 0.00 0.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 - 2.05
Avg. 5.91 2.75 3.23 1.54 1.80 1.03 0.51 1.54 1.54 3.08 0.00 0.00 0.00 0.51 1.67

Table 27: Evaluation result of code translation on hard problems using Code LLaMA, employing the Pass@1
metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 13.33 0.00 20.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.08
Java 0.00 - 6.67 6.67 0.00 0.00 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 1.54

Python 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 46.67 0.00 0.00 - 0.00 0.00 13.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.62

C# 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ruby 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Go 6.67 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51
JavaScript 0.00 0.00 0.00 6.67 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.51

Kotlin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00
PHP 0.00 0.00 0.00 0.00 0.00 6.67 6.67 0.00 0.00 - 0.00 0.00 0.00 0.00 1.03
Rust 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00
Perl 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.51

D 13.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 1.03
Delphi 26.67 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 2.56
Avg. 7.18 1.03 0.51 3.59 0.00 1.03 1.54 0.00 0.00 0.51 0.00 0.00 0.00 0.00 1.10

Table 28: Evaluation result of code translation on easy problems using LLaMA 2, employing the Pass@1 metric.

27
5537

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51
Java 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Python 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 13.33 0.00 0.00 - 0.00 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.54

C# 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ruby 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Go 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JavaScript 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Kotlin 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.51
PHP 0.00 7.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.59
Rust 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00
Perl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00

D 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.51
Delphi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00
Avg. 2.05 1.10 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26

Table 29: Evaluation result of code translation on hard problems using LLaMA 2, employing the Pass@1 metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 0.00 6.67 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03
Java 0.00 - 0.00 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51

Python 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 40.00 0.00 6.67 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.59

C# 6.67 0.00 6.67 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03
Ruby 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Go 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JavaScript 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Kotlin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00
PHP 6.67 0.00 6.67 6.67 6.67 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 2.05
Rust 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00
Perl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.67 - 0.00 0.51
Delphi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00
Avg. 4.10 0.00 2.05 1.03 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.62

Table 30: Evaluation result of code translation on easy problems using Vicuna, employing the Pass@1 metric.

from\to C++ Java Python C C# Ruby Go JavaScript Kotlin PHP Rust Perl D Delphi Avg.

C++ - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Java 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Python 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 26.67 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.05

C# 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ruby 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Go 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JavaScript 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Kotlin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00
PHP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00
Rust 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00
Perl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00

D 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.51
Delphi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00
Avg. 2.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18

Table 31: Evaluation result of code translation on hard problems using Vicuna, employing the Pass@1 metric.

28
5538

Language\Model GPT-4 GPT-3.5 PaLM 2 WizardCoder Code LLaMA Vicuna StarCoder LLaMA 2 Avg.

C++ 63.33 43.33 10.00 13.33 6.67 10.00 10.00 3.33 20.00
Java 66.67 23.33 10.00 0.00 6.67 6.67 3.33 0.00 14.58

Python 40.00 10.00 3.33 0.00 0.00 0.00 0.00 3.33 7.08
C 30.00 23.33 16.67 3.33 10.00 10.00 0.00 0.00 11.67

C# 40.00 16.67 10.00 3.33 0.00 3.33 3.33 0.00 9.58
Ruby 30.00 6.67 6.67 13.33 6.67 6.67 3.33 10.00 10.42

Go 50.00 10.71 17.86 7.14 3.57 3.57 3.57 0.00 12.05
JavaScript 37.93 24.14 3.45 0.00 6.90 3.45 3.45 0.00 9.91

Kotlin 50.00 15.00 5.00 0.00 0.00 0.00 0.00 5.00 9.38
PHP 10.00 10.00 3.33 3.33 3.33 0.00 0.00 0.00 3.75
Rust 62.96 14.81 0.00 3.70 3.70 0.00 3.70 0.00 11.11
Perl 46.67 36.67 3.33 10.00 10.00 3.33 0.00 0.00 13.75

D 40.00 13.33 13.33 6.67 0.00 0.00 0.00 0.00 9.17
Delphi 46.67 10.00 0.00 3.33 0.00 0.00 0.00 0.00 7.50
Avg. 43.87 18.43 7.36 4.82 4.11 3.36 2.19 1.55 -

Table 32: Evaluation result of code repair on easy problems, employing the DSR@1 metric.

Language\Model GPT-4 GPT-3.5 PaLM 2 WizardCoder StarCoder Code LLaMA Vicuna LLaMA 2 Avg.

C++ 6.67 6.67 6.67 0.00 6.67 3.33 3.33 0.00 4.17
Java 23.33 6.67 6.67 10.00 6.67 3.33 0.00 3.33 7.50

Python 10.00 3.33 3.33 3.33 0.00 0.00 0.00 0.00 2.50
C 23.33 26.67 16.67 16.67 6.67 16.67 6.67 0.00 14.17

C# 13.33 6.67 3.33 6.67 0.00 3.33 0.00 3.33 4.58
Ruby 16.67 0.00 16.67 0.00 8.33 4.17 4.17 4.17 6.77

Go 7.69 7.69 7.69 7.69 0.00 0.00 7.69 0.00 4.81
JavaScript 14.29 14.29 0.00 14.29 0.00 0.00 0.00 0.00 5.36

Kotlin 11.76 17.65 17.65 11.76 11.76 0.00 5.88 0.00 9.56
PHP 0.00 8.33 8.33 8.33 0.00 8.33 0.00 0.00 4.17
Rust 19.23 7.69 7.69 7.69 3.85 7.69 3.85 7.69 8.17
Perl 20.00 3.33 0.00 0.00 0.00 0.00 0.00 0.00 2.92

D 20.00 0.00 5.00 0.00 5.00 0.00 0.00 0.00 3.75
Delphi 3.33 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.83
Avg. 13.55 8.02 7.12 6.17 3.50 3.35 2.26 1.32 -

Table 33: Evaluation result of code repair on hard problems, employing the DSR@1 metric.

29
5539

Language Metric GPT-4 GPT-3.5 Vicuna WizardCoder Code LLaMA LLaMA 2 StarCoder PaLM 2

Python

BLEU 4.9 5.05 3.9 2.79 3.48 2.98 2.57 3.28
METEOR 25.14 24.56 23.82 21.5 22.28 23.2 21.54 15.4
ROUGE 20.21 21.38 19.13 18.04 18.06 18.08 17.01 17.47

BERTScore 85.79 85.95 85.11 82.3 83.75 84.53 83.87 76.02

C

BLEU 4.72 4.17 3.83 3.32 2.64 2.83 2.65 4.8
METEOR 25.43 23.58 23.73 22.51 21.77 22.68 21.95 15.38
ROUGE 20.02 19.78 19.1 19.35 17.23 17.53 16.67 18.33

BERTScore 85.71 85.65 84.63 83.0 83.47 84.0 84.48 81.78

C++

BLEU 4.87 4.01 3.24 3.48 2.91 2.66 2.47 4.54
METEOR 25.06 23.74 22.52 23.06 21.49 21.8 22.15 16.32
ROUGE 20.51 19.9 18.44 18.9 16.81 17.51 17.3 19.87

BERTScore 85.87 85.8 85.0 84.82 83.25 84.37 84.6 83.8

Java

BLEU 4.77 4.63 3.81 3.08 2.87 3.03 2.93 3.86
METEOR 25.28 24.84 24.4 23.33 23.19 23.09 23.19 13.24
ROUGE 20.13 20.39 19.57 19.53 17.99 18.54 18.02 17.08

BERTScore 85.83 86.1 85.59 83.6 82.88 84.35 84.69 78.45

C#

BLEU 4.76 4.08 3.58 3.3 2.88 2.75 2.08 4.29
METEOR 24.49 22.62 22.63 21.76 21.79 21.42 20.89 16.33
ROUGE 20.36 19.46 18.66 19.26 17.85 17.95 16.19 19.99

BERTScore 85.99 84.84 83.77 81.64 82.42 83.18 82.88 83.41

JavaScript

BLEU 4.87 4.39 3.01 2.79 2.91 2.63 2.45 2.63
METEOR 24.52 23.91 22.93 21.88 22.56 22.27 21.65 15.51
ROUGE 19.84 20.3 18.01 18.76 18.11 17.58 17.09 17.31

BERTScore 85.56 85.71 84.6 84.52 83.6 84.24 84.29 80.0

Visual
Basic

BLEU 4.65 3.51 3.65 4.98 3.17 2.63 2.53 3.71
METEOR 20.19 19.56 20.36 21.39 20.55 20.08 20.26 13.58
ROUGE 17.61 16.79 16.49 17.95 17.81 16.15 15.72 16.88

BERTScore 85.2 85.28 84.23 85.75 84.96 84.47 84.56 83.95

Visual
Basic

(.NET)

BLEU 5.12 4.42 3.88 2.72 3.54 3.04 3.51 5.96
METEOR 25.59 23.07 24.44 21.79 21.89 22.32 21.32 16.04
ROUGE 20.48 18.79 18.67 19.98 18.73 18.99 18.61 21.25

BERTScore 86.43 84.5 83.76 82.87 82.13 83.7 85.27 82.02

SQL

BLEU 3.19 4.76 4.1 1.53 2.5 2.44 1.8 3.91
METEOR 22.47 21.35 21.74 19.2 21.53 19.61 18.01 17.74
ROUGE 17.86 19.22 17.0 16.94 17.24 16.44 15.84 19.93

BERTScore 85.27 85.79 85.28 85.1 84.61 84.09 83.84 82.63

PHP

BLEU 5.12 5.38 4.29 3.74 4.18 3.58 3.13 5.22
METEOR 24.15 24.12 23.59 22.92 23.09 23.01 21.57 17.18
ROUGE 21.25 21.46 19.2 20.85 19.75 19.29 17.88 21.4

BERTScore 86.18 86.15 85.04 85.76 84.65 85.08 84.62 83.63

MATLAB

BLEU 5.73 4.81 3.45 4.39 3.82 3.36 2.97 6.37
METEOR 23.3 22.19 22.64 21.17 21.39 21.43 21.07 15.84
ROUGE 20.97 21.53 19.37 19.97 18.25 18.6 19.16 18.29

BERTScore 86.08 85.95 84.81 83.85 83.06 83.01 85.26 72.98

Fortran

BLEU 5.4 4.92 3.99 3.46 3.79 2.53 3.39 3.64
METEOR 24.78 23.84 22.82 22.06 22.17 22.12 22.53 12.9
ROUGE 20.58 20.98 18.66 18.64 18.12 17.06 18.0 16.86

BERTScore 85.92 86.19 84.04 83.07 81.75 83.38 84.26 74.82

Go

BLEU 4.49 4.53 3.58 3.98 3.27 2.8 3.1 4.38
METEOR 25.27 23.54 23.72 22.94 22.85 21.5 22.19 14.71
ROUGE 20.35 20.29 18.82 19.35 18.56 17.63 18.54 18.11

BERTScore 85.91 85.99 85.13 85.41 84.36 84.7 85.23 77.65

X86
Assembly

BLEU 4.01 3.64 2.86 1.63 3.01 1.58 2.37 5.88
METEOR 24.03 21.93 22.11 18.69 20.3 20.78 19.6 14.44
ROUGE 18.24 18.67 18.03 17.55 15.73 13.43 16.94 17.58

BERTScore 85.05 85.02 84.94 77.12 78.7 82.84 81.52 79.95

ARM
Assembly

BLEU 3.35 3.43 2.34 1.29 1.46 1.03 1.8 4.12
METEOR 21.16 19.72 17.15 14.06 12.99 13.54 12.78 11.01
ROUGE 15.36 16.13 13.83 11.38 9.59 7.8 9.04 10.05

BERTScore 84.81 85.56 75.04 64.66 62.69 67.34 79.18 46.69

Table 34: The detailed performance of each LLM in code summarization across all languages.

30
5540

Language Metric GPT-4 GPT-3.5 Vicuna WizardCoder Code LLaMA LLaMA 2 StarCoder PaLM 2

Delphi

BLEU 4.38 4.63 3.94 4.27 3.34 2.84 3.12 5.45
METEOR 23.79 23.4 23.07 22.11 22.72 22.01 21.21 16.38
ROUGE 20.02 20.73 18.62 19.82 18.47 17.91 17.12 20.8

BERTScore 85.78 86.12 85.46 85.88 85.03 84.89 84.8 84.33

Ruby

BLEU 5.2 4.68 3.33 2.96 2.53 3.61 2.78 4.4
METEOR 24.86 23.01 22.16 22.58 23.61 23.6 20.88 16.94
ROUGE 21.5 20.98 19.34 19.64 19.47 19.59 17.17 19.34

BERTScore 86.18 86.01 85.14 85.22 85.09 84.85 84.5 82.16

Rust

BLEU 4.48 3.67 3.16 3.6 3.07 2.78 2.55 5.08
METEOR 24.4 22.54 23.0 22.67 22.07 22.1 21.76 17.82
ROUGE 19.81 19.44 18.5 19.42 18.15 18.55 17.43 20.51

BERTScore 85.05 84.71 84.13 84.21 83.66 83.54 84.37 83.62

Swift

BLEU 4.88 3.86 3.35 3.66 2.78 3.33 2.85 5.26
METEOR 24.27 22.3 21.7 22.42 22.13 22.03 21.62 17.99
ROUGE 20.13 19.47 17.81 19.4 17.96 17.89 17.24 19.85

BERTScore 85.68 85.46 84.58 85.4 84.58 84.32 84.59 83.4

R

BLEU 5.64 4.57 3.59 2.72 3.68 3.27 2.62 3.95
METEOR 26.08 24.08 22.65 22.25 22.65 22.59 20.19 18.81
ROUGE 21.9 21.14 19.34 19.97 19.47 18.58 17.09 20.25

BERTScore 86.12 86.17 84.79 85.74 85.11 84.59 84.19 84.95

COBOL

BLEU 4.12 4.24 3.74 2.72 2.86 2.16 2.74 3.58
METEOR 23.83 22.53 21.21 20.15 20.4 19.47 20.79 13.94
ROUGE 18.99 19.02 16.92 18.14 16.23 13.97 16.84 18.4

BERTScore 85.58 85.88 83.13 81.45 81.61 80.71 82.48 80.61

Ada

BLEU 4.78 4.24 3.47 3.15 2.95 2.97 2.56 5.01
METEOR 24.53 23.28 22.59 22.51 21.8 22.37 21.8 16.38
ROUGE 20.1 20.02 18.87 19.92 17.26 17.11 17.0 20.97

BERTScore 85.49 85.95 84.49 85.31 83.5 83.77 84.23 85.02

Julia

BLEU 5.16 4.51 2.97 4.07 3.51 3.22 3.11 4.24
METEOR 25.21 23.35 21.89 22.34 22.28 22.04 20.6 18.46
ROUGE 21.39 20.76 18.2 20.11 19.21 18.5 17.26 20.23

BERTScore 86.13 85.92 84.74 84.56 84.69 84.23 83.74 82.69

SAS

BLEU 5.6 5.18 4.63 2.13 4.26 3.4 3.51 5.12
METEOR 23.27 21.33 21.65 21.25 22.86 22.75 19.82 19.16
ROUGE 20.39 20.7 18.71 20.6 19.58 18.3 17.98 20.97

BERTScore 85.43 85.98 85.15 86.06 85.37 84.5 84.05 85.74

Kotlin

BLEU 4.56 4.01 3.35 3.49 3.02 2.73 2.81 5.71
METEOR 24.52 23.16 22.99 23.47 22.02 22.29 21.97 16.96
ROUGE 20.42 19.8 18.91 19.9 17.65 18.94 17.25 20.48

BERTScore 86.0 85.33 85.27 85.28 84.4 85.16 84.73 83.97

Perl

BLEU 5.18 4.45 3.8 3.63 3.2 2.96 2.61 5.4
METEOR 23.93 22.93 22.11 22.08 21.81 21.86 20.6 17.05
ROUGE 20.38 20.66 18.8 19.55 18.14 17.99 16.78 19.76

BERTScore 85.91 85.8 85.17 85.09 84.29 84.41 84.09 79.91

Objective-C

BLEU 4.31 4.78 3.61 4.54 3.77 3.48 3.65 4.11
METEOR 23.11 22.46 21.64 19.4 22.23 23.29 21.94 14.61
ROUGE 19.13 20.04 17.95 18.95 18.22 18.82 18.92 19.07

BERTScore 85.5 85.74 84.76 84.11 84.75 84.42 83.93 79.18

Prolog

BLEU 4.25 3.42 3.19 2.08 2.38 2.46 2.54 5.15
METEOR 24.05 23.0 22.96 21.47 21.63 21.98 20.97 16.74
ROUGE 19.92 19.28 18.6 18.76 16.65 16.37 17.41 19.26

BERTScore 84.99 84.93 84.1 84.96 82.23 83.35 84.16 82.48

Lua

BLEU 4.81 4.12 3.31 3.8 3.06 2.56 2.2 4.94
METEOR 24.56 21.96 22.32 21.86 22.11 22.21 20.16 16.07
ROUGE 20.19 19.6 18.04 19.88 18.45 17.9 16.82 18.9

BERTScore 85.99 85.98 85.03 85.67 84.96 84.42 84.7 81.39

Scala

BLEU 4.45 4.36 3.32 3.88 2.91 2.87 2.86 4.13
METEOR 25.35 23.62 23.3 23.09 21.73 22.06 21.42 18.06
ROUGE 19.55 19.16 17.93 18.92 17.51 17.49 17.2 18.87

BERTScore 85.77 85.59 84.84 85.41 84.61 84.45 84.53 82.18

Table 35: The detailed performance of each LLM in code summarization across all languages. (Cont. Table 34)

31
5541

Language Metric GPT-4 GPT-3.5 Vicuna WizardCoder Code LLaMA LLaMA 2 StarCoder PaLM 2

Dart

BLEU 5.06 3.72 3.48 4.17 3.44 3.58 2.66 5.23
METEOR 25.21 22.62 22.97 21.58 22.04 23.62 22.63 15.62
ROUGE 20.19 20.71 18.46 18.22 19.66 20.06 18.63 19.67

BERTScore 86.17 86.03 85.2 85.15 85.45 85.22 85.31 86.26

D

BLEU 5.23 4.4 3.84 3.45 3.5 2.97 3.18 5.89
METEOR 24.01 22.34 21.78 22.15 22.58 21.71 21.08 16.4
ROUGE 20.2 20.13 18.22 18.79 17.45 18.08 16.7 20.99

BERTScore 85.71 85.53 84.83 85.22 84.05 84.58 84.61 83.74

Haskell

BLEU 5.12 4.05 3.27 2.81 2.91 2.44 2.62 4.35
METEOR 25.79 23.33 22.33 21.85 22.19 21.46 19.31 16.88
ROUGE 20.66 19.86 18.96 18.52 17.58 17.21 17.01 17.91

BERTScore 85.55 85.54 84.48 84.2 83.6 83.81 84.29 79.71

VBScript

BLEU 4.14 4.55 3.25 2.99 3.16 2.62 2.91 5.23
METEOR 23.89 22.05 20.77 20.42 21.7 21.24 21.48 16.57
ROUGE 19.2 19.59 16.62 18.57 17.81 16.44 17.06 18.58

BERTScore 85.65 85.85 84.58 85.38 83.79 84.38 84.54 83.81

Scheme

BLEU 4.52 4.05 2.77 2.26 3.2 2.86 2.83 5.62
METEOR 24.84 23.16 22.82 21.47 21.67 21.25 21.71 17.34
ROUGE 20.05 20.09 18.21 19.02 17.52 17.48 17.7 20.25

BERTScore 85.61 85.74 83.8 82.86 82.09 82.79 84.66 81.45

PowerShell

BLEU 5.04 5.47 4.29 3.93 3.58 3.4 3.05 5.11
METEOR 24.72 23.94 23.88 21.73 23.22 22.33 21.13 15.97
ROUGE 20.61 21.91 19.46 19.73 19.6 18.51 17.66 19.59

BERTScore 86.01 86.24 85.29 85.73 85.12 84.69 84.66 82.72

Logo

BLEU 3.45 3.22 2.68 2.07 2.36 2.33 2.64 3.05
METEOR 21.94 20.0 20.41 19.51 19.8 19.86 20.06 14.9
ROUGE 17.84 17.99 16.69 18.31 17.34 15.83 17.08 16.92

BERTScore 85.1 85.05 84.46 85.11 84.36 83.63 84.48 83.5

ABAP

BLEU 4.77 3.59 3.21 4.87 2.1 2.58 2.75 4.8
METEOR 24.63 20.33 20.75 20.68 21.2 20.55 19.89 15.64
ROUGE 19.89 18.52 17.11 19.01 17.04 15.83 16.2 18.37

BERTScore 85.4 85.22 82.06 83.17 81.95 81.38 84.11 80.8

F#

BLEU 5.84 4.84 3.29 3.92 2.67 2.67 2.96 4.35
METEOR 25.31 23.79 22.91 22.52 22.36 21.88 20.65 17.28
ROUGE 21.59 21.08 18.57 19.22 18.22 17.21 17.65 19.95

BERTScore 86.14 86.04 84.68 85.29 84.88 84.3 84.75 81.97

AWK

BLEU 4.02 4.23 3.23 3.85 3.06 2.54 2.22 4.93
METEOR 23.51 23.53 23.0 22.01 22.77 21.0 19.5 17.03
ROUGE 19.81 20.09 18.08 20.17 18.56 17.38 16.16 19.96

BERTScore 85.87 86.07 84.95 85.83 85.06 84.43 83.97 82.11

Groovy

BLEU 4.57 3.87 1.97 3.0 2.93 3.06 2.64 4.35
METEOR 24.37 22.76 21.18 21.84 23.01 22.91 20.67 17.26
ROUGE 20.73 20.56 17.94 19.5 18.54 18.46 17.65 19.9

BERTScore 85.86 85.76 84.56 84.95 85.04 84.52 84.28 82.51

ColdFusion

BLEU 6.45 4.64 1.59 3.79 4.54 3.94 2.43 7.41
METEOR 24.02 21.65 21.47 22.59 21.46 22.03 16.27 16.78
ROUGE 21.64 20.93 17.92 22.01 20.05 19.17 16.77 21.83

BERTScore 86.24 85.91 84.06 86.25 83.25 84.92 84.07 84.21

Zig

BLEU 3.49 3.32 2.45 3.16 2.47 2.58 2.85 4.27
METEOR 23.22 21.91 19.27 22.57 21.3 21.44 20.32 16.76
ROUGE 17.58 17.54 16.28 18.29 15.91 16.57 16.0 19.15

BERTScore 85.46 85.51 84.3 85.57 84.63 84.44 84.8 84.19

Overall 33.66 33.14 32.06 31.99 31.52 31.40 31.18 30.27

Table 36: The detailed performance of each LLM in code summarization across all languages. (Cont. Table 35)

32
5542

Prompt
Please generate a short summarization for the following codes:
Align columns - RC - VBScript
Const nr=16, nc=16
ReDim d(nc),t(nr), wor(nr,nc)
i=i+1: t(i) = "Givenatext$file$of$many$lines,$where$fields$within$a$line$"
i=i+1: t(i) = "are$delineated$byasingle$’dollar’$character,$write$a$program"
i=i+1: t(i) = "that$aligns$each$column$of$fields$by$ensuring$that$words$in$each$"
i=i+1: t(i) = "columnareseparatedbyat$least$one$space."
i=i+1: t(i) = "Further,$allow$for$each$wordina$column$Tobeeither$left$"
i=i+1: t(i) = "justified,$right$justified,orcenter$justified$withinitscolumn."
For r=1 to nr

If t(r)="" Then Exit For
w=xRTrim(t(r),"$")
m=Split(w,"$")
For c=1 To UBound(m)+1

wor(r,c)=m(c-1)
If Len(wor(r,c))>d(c) Then d(c)=Len(wor(r,c))

Next ’c
If c>cols Then cols=c

Next ’r
rows=r-1
tt=Array("Left","Right","Center")
For n=1 To 3

Wscript.Echo
Wscript.Echo "*****" & tt(n-1) & "*****"
For r=1 To rows

w=""
For c=1 To cols

x=wor(r,c): s=Space(d(c))
Select Case n

Case 1: w=w &" "& Left (x & s,d(c))
Case 2: w=w &" "& Right (s & x,d(c))
Case 3: w=w &" "& xCentre(x,d(c)," ")

End Select ’n
Next ’c
Wscript.Echo Mid(w,2)

Next ’r
Next ’n

Function xCentre(c, n, Pad)
Dim j
If n > Len(c) Then

j = (n - Len(c)) \ 2
If (n - Len(c)) Mod 2 <> 0 Then j = j + 1
xCentre = Mid(String(j, Pad) & c & String(j, Pad), 1, n)

Else
xCentre = c

End If
End Function ’xCentre

Function xRTrim(c, Pad)
Dim i2, l, cc
cc = "": l = Len(c)
If l > 0 Then

i2 = l
Do While (Mid(c, i2, 1) = Pad And i2 > 1)

i2 = i2 - 1
Loop
If i2 = 1 And Mid(c, i2, 1) = Pad Then i2 = 0
If i2 > 0 Then cc = Mid(c, 1, i2)

End If
xRTrim = cc

End Function ’xRTrim

Table 37: A detailed case study on high-quality code summarization by GPT-4. (Lang: VBScript).

33
5543

Generated Summarization
The provided VBScript code is designed to align columns of text from a file. The text file contains many
lines, with fields within a line delineated by a single dollar character. The program aligns each column of
fields by ensuring that words in each column are separated by at least one space. It also allows for each
word in a column to be either left justified, right justified, or center justified within its column. The code
includes two functions, xCentre and xRTrim, which are used to center the text and trim the right side of
the text respectively.

Reference Summarization
The code reads a text file with lines separated by a dollar character. It aligns each column of fields by
ensuring at least one space between words in each column. It also allows each word in a column to be left,
right, or center justified. The minimum space between columns is computed from the text, not hard-coded.
Trailing dollar characters or consecutive spaces at the end of lines do not affect the alignment. The output
is suitable for viewing in a mono-spaced font on a plain text editor or basic terminal.

Analysis
In this example, GPT-4 generates a high-quality summarization for a relatively lower-popularity program-
ming language, VBScript. The generated summarization accurately captures the code’s semantics and
successfully summarizes its functionality and behavior, achieving high performance in our evaluation
metrics (BLEU=25, ROUGE-L=45, METEOR=37, BERTScore=88).

Table 38: A detailed case study on high-quality code summarization by GPT-4. (Cont. Table 37)

34
5544

Prompt
Please generate a short summarization for the following codes:
def readconf(fn):

ret = {}
with file(fn) as fp:

for line in fp:
Assume whitespace is ignorable
line = line.strip()
if not line or line.startswith(’#’): continue

boolval = True
Assume leading ";" means a false boolean
if line.startswith(’;’):

Remove one or more leading semicolons
line = line.lstrip(’;’)
If more than just one word, not a valid boolean
if len(line.split()) != 1: continue
boolval = False

bits = line.split(None, 1)
if len(bits) == 1:

Assume booleans are just one standalone word
k = bits[0]
v = boolval

else:
Assume more than one word is a string value
k, v = bits

ret[k.lower()] = v
return ret

if __name__ == ’__main__’:
import sys
conf = readconf(sys.argv[1])
for k, v in sorted(conf.items()):

print k, ’=’, v

Generated Summarization
def readconf(fn):

"""
Read a configuration file and return a dictionary of key-value pairs.

Comments are indicated by ’#’ at the beginning of a line.
Boolean values can be specified by a leading ’;’.

Args:
fn: The name of the configuration file to read.

Returns:
A dictionary of key-value pairs.

"""

ret = {}
with file(fn) as fp:

for line in fp:
Assume whitespace is ignorable
line = line.strip()
if not line or line.startswith(’#’): continue

Table 39: A detailed case study on low-quality code summarization by PaLM 2 (Lang: Python).

35
5545

boolval = True
Assume leading ";" means a false boolean
if line.startswith(’;’):

Remove one or more leading semicolons
line = line.lstrip(’;’)
If more than just one word, not a valid boolean
if len(line.split()) != 1: continue
boolval = False

bits = line.split(None, 1)
if len(bits) == 1:

Assume booleans are just one standalone word
k = bits[0]
v = boolval

else:
Assume more than one word is a string value
k, v = bits

ret[k.lower()] = v
return ret

if __name__ == ’__main__’:
import sys
conf = readconf(sys.argv[1])
for k, v in sorted(conf.items()):

print k, ’=’, v

Reference Summarization
The code reads a standard configuration file, ignores lines starting with a hash or semicolon, and blank
lines. It sets variables based on the configuration parameters, preserving case sensitivity for parameter data.
It also handles optional equals sign used for separating parameter data from the option name and multiple
parameters separated by commas. The variables set are ‘fullname’, ‘favouritefruit’, ‘needspeeling’,
‘seedsremoved’, and ‘otherfamily’ which is an array.

Analysis
In this example, PaLM 2 generates a low-quality summarization. It misunderstood the task and inserted
natural language comments back into the code. As a result, the answers consist of both code language and
natural language, which lowers the scores of semantic-based metrics like BERTScore (73.44). However,
the generated comments contain similar phrases with the reference summarization, making n-gram
overlap-based metrics such as BLEU (38.51) perform well. We observed many PaLM 2 generated cases
like this, contributing to the abnormal results in PaLM 2’s code summarization overall scores.

Table 40: A detailed case study on low-quality code summarization by PaLM 2. (Cont. Table 39)

36
5546

Prompt
As an expert software developer with years of experience, please meticulously inspect the following smell
code snippet and categorize it into one of the following categories:

- large class - data class - blob - feature envy - long method
The detailed information are as follows:
1. Programming language: Java
2. Smell code snippet:
public static int run() {

List<Integer> integers = Arrays.asList(1, 2, 3, 4);
List<Integer> mapped = integers.stream().map(n -> n).collect(Collectors.toList()

);
return mapped.size();

}

3. Source code containing code smells:
package basic;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
public class StreamC2 {

public static void main(String[] args) {
System.out.println("This is Java8");

}
public static int run() {

List<Integer> integers = Arrays.asList(1, 2, 3, 4);
List<Integer> mapped = integers.stream().map(n -> n).collect(Collectors.

toList());
return mapped.size();

}
}

Respond only with one of the specified categories.

Generated Smell
long method

Reference Smell
long method

Table 41: A detailed case study on code smell by WizardCoder (Lang: Java).

37
5547

Prompt
As an expert code reviewer with years of experience, please meticulously inspect the following code
change and categorize its quality into one of the following categories:

- 0: Good quality that no review comments required.
- 1: Poor quality that requires review comments.

The detailed information are as follows:
1. Programming language: Javascript
2. Original version code:
import resolver from ’./helpers/resolver’;
import {setResolver} from ’ember-mocha’;
setResolver(resolver);
mocha.setup({

timeout: 15000,
slow: 500

});

3. Code diff chunk:
@@ -5,7 +5,7 @@ setResolver(resolver);
mocha.setup({

- timeout: 15000,
+ timeout: 25000,

slow: 500
});

Respond only with the number: 0 or 1.

Generated Review (Quality Estimation)
1

Reference Review (Quality Estimation)
1

Table 42: A detailed case study on code review by Code LLaMA (Lang: JavaScript).

38
5548

Prompt
As an expert code reviewer with years of experience, please meticulously inspect the following code
change and provide a concise review comment. The detailed information are as follows:
1. Programming language: Javascript
2. Original version code:
import resolver from ’./helpers/resolver’;
import {setResolver} from ’ember-mocha’;
setResolver(resolver);
mocha.setup({

timeout: 15000,
slow: 500

});

3. Code diff chunk:
@@ -5,7 +5,7 @@ setResolver(resolver);
mocha.setup({

- timeout: 15000,
+ timeout: 25000,

slow: 500
});

Respond only with a string that represents review comment.

Generated Review (Comments Generation)
The timeout value in the mocha.setup() function has been increased from 15000 to 25000, which may
cause longer wait times for test execution. Please ensure that this change is intentional and necessary.

Reference Review (Comments Generation)
Were you having trouble with timeouts in general acceptance tests or only the editor test? It’s possible to
set timeouts on a per-test basis by using ‘this.timeout(25000)‘ within the ‘it()‘ function. I’d like to drop
the global timeout in the future if possible rather than increase it - in some circumstances a failing test can
have a knock-on effect which makes all later tests timeout so Travis can get hung up for a long time if no
one notices and cancels the build.

Table 43: A detailed case study on code review by Code LLaMA. (Cont. Table 42)

39
5549

Prompt
As an expert code test developer with years of experience, please provide multiple test cases for a given
problem along and its solution. The detailed information are as follows:
1. Problem description: There is the faculty of Computer Science in Berland. In the social net "TheCon-
tact!" for each course of this faculty there is the special group whose name equals the year of university
entrance of corresponding course of students at the university. Each of students joins the group of his
course and joins all groups for which the year of student’s university entrance differs by no more than x
from the year of university entrance of this student, where x — some non-negative integer. A value x is
not given, but it can be uniquely determined from the available data. Note that students don’t join other
groups. You are given the list of groups which the student Igor joined. According to this information you
need to determine the year of Igor’s university entrance.
2. Time limit: 1 second
3. Memory limit: 256 megabytes
4. Input specification: The first line contains the positive odd integer n (1 ≤ n ≤ 5) — the number of
groups which Igor joined. The next line contains n distinct integers a1, a2, . . . , an (2010 ≤ ai ≤ 2100)
— years of student’s university entrance for each group in which Igor is the member. It is guaranteed that
the input data is correct and the answer always exists. Groups are given randomly.
5. Output specification: Print the year of Igor’s university entrance.
6. Sample inputs: ["3\n2014 2016 2015", "1\n2050"]
7. Sample outputs: ["2015", "2050"]
8. Sample explanations: NoteIn the first test the value x=1. Igor entered the university in 2015. So he
joined groups members of which are students who entered the university in 2014, 2015 and 2016.In the
second test the value x=0. Igor entered only the group which corresponds to the year of his university
entrance.
9. Programming language: Python
10. Solution source code:
count = int(input())
sum = 0
years = input().split(’ ’)
for y in years:

sum += int(y)
print(int(sum/count))

Craft 5 test cases with these criteria:
1. Each test case contains a string for both input and output.
2. The solution source code successfully processes the test case’s input with no errors.
3. The solution source code’s outcome aligns with the test case’s output.
4. All test cases are simple and achieve optimal branch and line coverage.
Respond only with a string in the following JSON format: ["input": input string, "output": output string]

Generated Test Cases
[{"input": "1\n2010\n", "output": "2010"},

{"input": "3\n2014 2016 2015\n", "output": "2015"},
{"input": "5\n2020 2022 2021 2019 2018\n", "output": "2020"},
{"input": "2\n2030 2032\n", "output": "2031"},
{"input": "4\n2070 2072 2071 2069\n", "output": "2070"}]

Table 44: A detailed case study on automated testing by GPT-3.5 (Lang: Python).

40
5550

Prompt:
As a professional code developer with years of experience, please provide the corresponding code solution
based on the problem description. Detailed information is given below:
1. Problem description: Volodya and Vlad play the following game. There are k pies at the cells of n×m
board. Each turn Volodya moves one pie to the neighbouring (by side) cell. If the pie lies at the border of
the board then Volodya can move it outside the board, get the pie and win. After Volodya’s move, Vlad
bans some edge at the border of the board of length 1 (between two knots of the board) so that Volodya is
not able to move the pie outside the board through this edge anymore. The question is: will Volodya win
this game? We suppose both players follow the optimal strategy.
2. Input specification: First line contains 3 integers, separated by space: 1 ≤ n,m ≤ 100 — dimensions
of the board and 0 ≤ k ≤ 100 — the number of pies. Each of the next k lines contains 2 integers,
separated by space: 1 ≤ x ≤ n, 1 ≤ y ≤ m coordinates of the corresponding pie. There could be more
than one pie at a cell.
3. Output specification: Output only one word: "YES" — if Volodya wins, "NO" — otherwise.
4. Sample inputs: ["2 2 1\n 1 2", "3 4 0", "100 50 2\n 50 25\n 50 25"]
5. Sample outputs: ["YES", "NO", "NO"]
6. Sample explanations: None
7. Programming language: C#
8. Support programming language version: ["MS C#", "Mono C#", ".NET Core C#"]
Respond should only with a string in the following JSON format: {"version": specific version used in the
programming language, "target code": the code you produced in the respective programming language
version.}

Generated Code:
using System;
using System.Linq;

class Program
{

static void Main(string[] args)
{

int[] nm = Console.ReadLine().Split().Select(int.Parse).ToArray();
int n = nm[0], m = nm[1], k = nm[2];

bool canWin = false;
for (int i = 0; i < k; i++)
{

int[] xy = Console.ReadLine().Split().Select(int.Parse).ToArray();
int x = xy[0], y = xy[1];

if (x <= 5 || y <= 5 || x > n - 5 || y > m - 5)
{

canWin = true;
break;

}
}
Console.WriteLine(canWin ? "YES" : "NO");

}
}

Analysis
Here is a C# solution for the problem. This solution does not require any complex header files, and
it is compatible with all versions of C#, including MS C#, Mono C#, and .NET Core C#. It reads the
dimensions of the board and the number of pies from the input, then checks the coordinates of each pie.
If any pie is close enough to the border (within 5 cells), Volodya can win, because he can move the pie
outside before Vlad can block all possible exits.

Table 45: A detailed case study on program synthesis by GPT-4 (Lang: C#; Difficulty: 1900-hard).

41
5551

Prompt:
As an expert code developer proficient in multiple programming languages with years of experience,
please translate the source code in python to the programming language C++ within our supported version.
The detailed information is shown as follows:
1. Target programming language: C++
2. Support programming language version: [‘GNU C++11’, ‘GNU C++14’, ‘MS C++’, ‘GNU C++0x’,
‘GNU C++’, ‘MS C++ 2017’, ‘Clang++17 Diagnostics’, ‘GNU C++17’]
3. Source code:
n, t = [int(x) for x in input().split()]
l = []
t *= 2
for i in range(n):

x, a = [int(x) for x in input().split()]
l.append((x * 2, a * 2))

l.sort()
ans = 0
for i in range(1, n):

if l[i][0] - l[i - 1][0] > t + (l[i][1] + l[i - 1][1])//2:
ans += 2

elif l[i][0] - l[i - 1][0] == t + (l[i][1] + l[i - 1][1])//2:
ans += 1

print(ans + 2)

Respond should only with a string in the following JSON format: {"version": specific version used in the
programming language, "target code": the code you produced in the respective programming language
version.}

Generated Code:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main() {
int n, t;
cin >> n >> t;
vector<pair<int, int>> l;
t *= 2;
for (int i = 0; i < n; i++) {

int x, a;
cin >> x >> a;
l.push_back(make_pair(x * 2, a * 2));

}
sort(l.begin(), l.end());
int ans = 0;
for (int i = 1; i < n; i++) {

if (l[i].first - l[i - 1].first > t + (l[i].second + l[i - 1].second) / 2) {
ans += 2;

}
else if (l[i].first - l[i - 1].first == t + (l[i].second + l[i - 1].second)

/ 2) {
ans += 1;

}
}
cout << ans + 2 << endl;
return 0;

}

Table 46: A detailed case study on code translation by GPT-3.5 from Python to C++ (Difficulty: 1200-easy).

42
5552

Prompt:
As an expert code developer with years of experience, please debug the source code in Delphi based on
the corresponding problem description and show the correct code. The detailed information is shown as
follows:
1. Problem description: A little boy Gerald entered a clothes shop and found out something very
unpleasant: not all clothes turn out to match. For example, Gerald noticed that he looks rather ridiculous
in a smoking suit and a baseball cap. Overall, the shop sells n clothing items, and exactly m pairs of
clothing items match. Each item has its price, represented by an integer number of rubles. Gerald wants
to buy three clothing items so that they matched each other. Besides, he wants to spend as little money as
possible. Find the least possible sum he can spend.
2. Input specification: The first input file line contains integers n and m — the total number of clothing
items in the shop and the total number of matching pairs of clothing items (). Next line contains n integers
ai (1 ≤ ai ≤ 106) — the prices of the clothing items in rubles.
Next m lines each contain a pair of space-separated integers ui and vi (1 ≤ ui, vi ≤ n, ui ̸= vi). Each
such pair of numbers means that the ui-th and the vi-th clothing items match each other. It is guaranteed
that in each pair ui and vi are distinct and all the unordered pairs (ui, vi) are different.
3. Output specification: Print the only number — the least possible sum in rubles that Gerald will have to
pay in the shop. If the shop has no three clothing items that would match each other, print "-1" (without
the quotes).
4. Sample inputs: ["3 3\n1 2 3\n1 2\n2 3\n3 1\n", "3 2\n2 3 4\n2 3\n2 1\n"]
5. Sample outputs: ["6\", "-1\"]
6. Programming language: Delphi
7. Buggy code:
program Project1;
{$APPTYPE CONSOLE}
uses

SysUtils,math;
var

a:array[0..101,0..101] of boolean;
b:array[0..101] of longint;
i,j,n,m,x,y,k,ans:longint;

begin
read(n,m);
for i:=1 to n do
read(b[i]);

for i:=1 to m do
begin

read(x,y);
a[x][y]:=true;
a[y][x]:=true;

end;
ans:=maxlongint;
for i:=1 to n do
for j:=1 to n do

for k:=1 to n do
if (a[i][j]) and (a[i][k]) and (a[k][j]) then

ans:=min(ans,b[i]+b[j]+b[k]);
writeln(ans);

end.

8. Error message: WRONG ANSWER
Respond should only with a string in the following JSON format: {"version": specific version used in the
programming language, "target code": the code you produced in the respective programming language
version.}

Table 47: A detailed case study on code repair by WizardCoder (Lang: Delphi; Difficulty: 1200-easy).

43
5553

Generated Code:
program Project1;
{$APPTYPE CONSOLE}
uses

SysUtils;
const

MAX_INT = 2147483647;
var

a: array[0..101, 0..101] of boolean;
b: array[0..101] of longint;
i, j, n, m, x, y, k, ans: longint;

begin
read(n, m);
for i := 1 to n do
read(b[i]);

for i := 1 to m do
begin
read(x, y);
a[x][y] := true;
a[y][x] := true;

end;
ans := MAX_INT;
for i := 1 to n do
for j := 1 to n do

for k := 1 to n do
if (a[i][j]) and (a[i][k]) and (a[k][j]) then

ans := min(ans, b[i] + b[j] + b[k]);
writeln(ans);

end.

Analysis
The error message is due to a missing semicolon at the end of the program. Also, using a constant instead
of a variable to store the maximum integer value is better.

Table 48: A detailed case study on code repair by WizardCoder. (Cont. Table 47)

44
5554

Prompt
As an expert software developer with years of experience, please meticulously inspect the following
unoptimized inefficient code and give an optimized version of the code, making it solve the same exact
problem while achieving faster execution time. To pass the testcases, the generated optimized code should
strictly follow the same input/output format as the original unoptimized code.The detailed information are
as follows:
1. Description of the problem: Bajtek is learning to skate on ice. He’s a beginner, so his only mode of
transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands
in another snow drift. He has noticed that in this way it’s impossible to get from some snow drifts to some
other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get
from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to
be created.We assume that Bajtek can only heap up snow drifts at integer coordinates.
2. Programming language: Python 3
3. Unoptimized code:
n=int(input())
M=[[0 for i in range(1001)] for i in range(1001)]
ans=n-1
T=[]
for i in range(n) :

a,b=map(int,input().split())
M[a][b]=1
T.append([a,b])

for i in range(n) :
r=T[i]
if M[r[0]][r[1]]!=-1 :

M[r[0]][r[1]]=-1
l=[[r[0],r[1]]]
while len(l)>0 :

g=l[0]
del(l[0])
for j in range(n) :

if T[j][0]==g[0] and M[T[j][0]][T[j][1]]!=-1 or T[j][1]==g[1] and
M[T[j][0]][T[j][1]]!=-1 :
l.append([T[j][0],T[j][1]])
M[T[j][0]][T[j][1]]=-1
ans=ans-1

print(ans)

4. Example testcase input: ["2\n2 1\n1 2\n"]
5. Example testcase output: ["1\n"]
Respond only the optimized code in the following JSON format: {"optimized_code": code string}

Table 49: A detailed case study on code optimization to reduce memory usage by GPT-4 (Lang: Python).

45
5555

Generated Code
from collections import defaultdict

def dfs(v, visited):
visited.add(v)
for neighbour in graph[v]:

if neighbour not in visited:
dfs(neighbour, visited)

n = int(input())
points = [tuple(map(int, input().split())) for _ in range(n)]
graph = defaultdict(list)
for i in range(n):

for j in range(i+1, n):
if points[i][0] == points[j][0] or points[i][1] == points[j][1]:

graph[points[i]].append(points[j])
graph[points[j]].append(points[i])

visited = set()
components = 0
for point in points:

if point not in visited:
dfs(point, visited)
components += 1

print(components - 1)

Analysis
The above example demonstrates a piece of human-written code aimed at solving a search problem.
GPT-4 was tasked with generating an optimized version of the code that achieves more minor memory
usage.
In the unoptimized implementation, a 2-dimensional array, “M” (see lines 1-2 in the unoptimized code
snippet), is used to represent the adjacency matrix of the snowfield, with 1 denoting a snowdrift and 0
denoting an absence of drift. In the optimized version, GPT-4 creates a dictionary(see lines 9-11 in the
optimized code snippet) to store only the coordinates where there is a drift and uses a built-in library called
“defaultdict” that efficiently provides a default value for a nonexistent key. Note that the optimization is
achieved by reducing the size of the adjacency matrix from n× n to only include the present points. This
makes graph traversal faster and reduces memory usage. By doing so, the optimized code successfully
reduced average memory usage by 25KB during runtime, saving an average of 20% memory compared to
the unoptimized code and making the implementation more spatially efficient.

Table 50: A detailed case study on code optimization to reduce memory usage by GPT-4. (Cont. Table 49)

46
5556

Prompt
As an expert software developer with years of experience, please meticulously inspect the following
unoptimized inefficient code and give an optimized version of the code, making it solve the same exact
problem while achieving faster execution time. To pass the testcases, the generated optimized code should
strictly follow the same input/output format as the original unoptimized code. The detailed information
are as follows:
1. Description of the problem: One day little Vasya found mom’s pocket book. The book had n names
of her friends and unusually enough, each name was exactly m letters long. Let’s number the names
from 1 to n in the order in which they are written. As mom wasn’t home, Vasya decided to play with
names: he chose three integers i, j, k (1 ≤ i < j ≤ n, 1 ≤ k ≤ m), then he took names number i and j
and swapped their prefixes of length k. For example, if we take names "CBDAD" and "AABRD" and
swap their prefixes with the length of 3, the result will be names "AABAD" and "CBDRD". You wonder
how many different names Vasya can write instead of name number 1, if Vasya is allowed to perform any
number of the described actions. As Vasya performs each action, he chooses numbers i, j, k independently
from the previous moves and his choice is based entirely on his will. The sought number can be very
large, so you should only find it modulo 109 + 7.
2. Programming language: Python 3
3. Unoptimized code:
import logging
import copy
import sys

logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)

def solve(names):
m = len(names[0])

postfix = {}
for name in names:

postfix[name[-1:]] = True

if m == 1:
return len(postfix)

newList = list((map(lambda x: x[:-1], names)))

return len(postfix) * solve(newList)

def main():
firstLine = input().split()
firstLine = list(map(int, firstLine))
inputLines = []
for i in range(firstLine[0]):

line = input()
inputLines.append(line)

#solve(firstLine)
print (solve(inputLines) % 1000000007)

def log(*message):
logging.debug(message)

if __name__ == "__main__":
main()

4. Example testcase input: ["2 3\n AAB\n BAA\n"]
5. Example testcase output: ["4\n"]
Respond only the optimized code in the following JSON format: {"optimized_code": code string}

Table 51: A detailed case study on code optimization to reduce execution time by GPT-4 (Lang: Python).

47
5557

Generated Code
def solve(names):

m = len(names[0])

postfix = {}
for name in names:

postfix[name[-1:]] = True

if m == 1:
return len(postfix)

newList = list((map(lambda x: x[:-1], names)))

return len(postfix) * solve(newList)

def main():
firstLine = input().split()
firstLine = list(map(int, firstLine))
inputLines = []
for i in range(firstLine[0]):

line = input()
inputLines.append(line)

#solve(firstLine)
print (solve(inputLines) % 1000000007)

if __name__ == "__main__":
main()

Analysis
The above example demonstrates a piece of human-written code aimed at solving a given problem.
GPT-3.5 was tasked with generating an optimized version of the code that achieves faster execution time.
In the unoptimized code, the developer left her “logging” implementation in the code, which is only for
debugging and has nothing to do with achieving the functionality as specified in the problem description.
GPT-3.5 successfully accomplished the optimization by simply removing the debug-related implemen-
tation that takes unnecessary execution time. Moreover, it spotted that the imported package “copy” was
never used in the code and removed the unused package. By doing so, the optimized code successfully
reduced average execution time by 7.28 ms during runtime, saving an average of 37.8% time compared to
the unoptimized code and making the implementation more temporally efficient.

Table 52: A detailed case study on code optimization to reduce execution time by GPT-4. (Cont. Table 51)

48
5558

