
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5294–5316
August 11-16, 2024 ©2024 Association for Computational Linguistics

PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal
Retrievers

*Weizhe Lin, Jingbiao Mei, Jinghong Chen, Bill Byrne
Department of Engineering
University of Cambridge

Cambridge, United Kingdom CB2 1PZ
{wl356, jm2245, jc2124, wjb31}@cam.ac.uk

Abstract

Large Multimodal Models (LMMs) excel in
natural language and visual understanding
but are challenged by exacting tasks such as
Knowledge-based Visual Question Answering
(KB-VQA) which involve the retrieval of rel-
evant information from document collections
to use in shaping answers to questions. We
present an extensive training and evaluation
framework, M2KR, for KB-VQA. M2KR con-
tains a collection of vision and language tasks
which we have incorporated into a single suite
of benchmark tasks for training and evalu-
ating general-purpose multi-modal retrievers.
We use M2KR to develop PreFLMR, a pre-
trained version of the recently developed Fine-
grained Late-interaction Multi-modal Retriever
(FLMR) approach to KB-VQA, and we re-
port new state-of-the-art results across a range
of tasks. We also present investigations into
the scaling behaviors of PreFLMR intended to
be useful in future developments in general-
purpose multi-modal retrievers. The code,
demo, dataset, and pre-trained checkpoints are
available at https://preflmr.github.io/.

1 Introduction

Knowledge-based Visual Question Answering (KB-
VQA) systems generate answers to queries consist-
ing of questions about given images. Correctly
answering these questions requires accessing rel-
evant world knowledge as well as vision and lan-
guage understanding. Despite their demonstrated
abilities in vision and language, recent Large Multi-
modal Models (LMMs) (Chen et al., 2023a; Driess
et al., 2023; Liu et al., 2023a; Zhu et al., 2023;
OpenAI, 2023) have performed poorly in recent
challenging KB-VQA tasks (Chen et al., 2023b;
Mensink et al., 2023a). One promising approach to
improve their KB-VQA performance is Retrieval-
Augmented Generation (RAG), in which answer
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generation by LMMs is grounded in relevant docu-
ments retrieved from a knowledge base.

The best-performing document retrieval ap-
proach for KB-VQA to date is Fine-grained Late-
interaction Multi-modal Retrieval (FLMR) (Lin
et al., 2023b). FLMR uses multi-dimensional
embedding matrices to represent documents and
queries and then efficiently computes their rele-
vance scores via late-interaction (Khattab and Za-
haria, 2020), thus capturing fine-grained relevance
at the token level rather than at the passage level,
as in Dense Passage Retrieval (DPR) (Karpukhin
et al., 2020). As a late-interaction retriever, FLMR
substantially outperforms DPR on a range of KB-
VQA tasks, with only minor speed penalties. In all
of these methods, model and data size are impor-
tant considerations. There has been much work in
scaling up Large Language Models (LLMs) (Ka-
plan et al., 2020; Alabdulmohsin et al., 2022; Chen
et al., 2023a) and text-based retrieval (Ni et al.,
2022), but the scaling properties of these vision
and language retrieval systems have not been stud-
ied. We therefore investigate the following three
aspects of FLMR in KB-VQA.

(1) Vision & Text Encoding: We investigate how
KB-VQA performance is affected by scaling the
size and complexity of vision and text encoders.

(2) Pre-training: As originally formulated,
FLMR employs simple, lightly trained Multi-Layer
Perceptrons (MLP). We investigate whether gains
can be had through more extensive model pre-
training.

(3) Task Diversity: We gather nine open-source
vision-language datasets into a suite of benchmark
tasks, M2KR, for assessing Multi-task Multi-modal
Knowledge Retrieval. M2KR encompasses Image-
to-Text, Question-to-Text, and Image&Question-
to-Text retrieval tasks, and also includes prompting
instructions that can be provided to an LLM for
each of the component tasks. General purpose
multi-modal retrieval models can be created by
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training on the entirety of the M2KR training data
and these models can then be evaluated on any
or all of the included tasks. Models can further
be fine-tuned for specific M2KR tasks using the
task-specific tuning data included in the collection.

We show that M2KR can be used in training
an FLMR-based RAG LLM for multi-task multi-
modal retrieval. We refer to this model as Pre-
FLRM (for Pre-trained FLMR). PreFLMR can be
used directly in its pre-trained form for multi-task
multi-modal retrieval. PreFLMR can also be fine-
tuned for specific task-specific performance. In
both uses we find that PreFLMR gives us substan-
tial gains across the M2KR tasks.

Contributions of this paper are:

• The M2KR task suite encompassing nine
datasets and three types of retrieval tasks for
training and evaluating general-purpose vision-
language retrievers. We create M2KR by re-
purposing various vision and language data
sets that might not be originally created for
knowledge-based visual question answering,
thus ensuring a rich and diverse collection.

• PreFLMR, a strong multi-modal retriever pre-
trained on a vision-language corpus of over
ten million items. We show that PreFLMR
performs well across a range of knowledge re-
trieval tasks when given the appropriate instruc-
tions. We will release PreFLMR upon publica-
tion.

• A study of the scaling behaviour of FLMR in
terms of its model parameters and training data.
To our knowledge, this is the first systematic
study of scaling in late-interaction based vision-
language retrievers and should provide empiri-
cal guidance for future work.

2 Related Work

Document Retrieval. DPR has become a corner-
stone in knowledge-intensive tasks (Chen et al.,
2017; Izacard and Grave, 2021; Guu et al., 2020;
Lee et al., 2019; Lewis et al., 2020) as well as
in KB-VQA tasks due to its fast and precise re-
trieval capabilities (Karpukhin et al., 2020; Gui
et al., 2021; Luo et al., 2021; Lin and Byrne, 2022;
Wu and Mooney, 2022). Recent developments
in retrieval methods, particularly Late Interaction
models (Khattab and Zaharia, 2020; Santhanam
et al., 2022b), have shown notable performance
gains over DPR, albeit with some efficiency trade-
offs (Lin et al., 2023a,b). In multi-modal retrieval,

FILIP (Yao et al., 2022) used pre-trained late in-
teraction models for single-modal image-text re-
trieval, while FLMR (Lin et al., 2023b) extended
the approach to multi-modal retrieval for KB-VQA
with finer-grained visual and text features. This pa-
per further extends FLMR and explores its scaling
properties in multi-modal retrieval. Similar to our
M2KR benchmark, A concurrent work (Wei et al.,
2023) introduces M-Beir, which combines several
retrieval tasks and can be used to train and evaluate
universal multi-modal retrievers.

Another line of relevant research is KB-VQA
retrieval involving Named Entities, where retrieved
documents must identify the person in the image.
For example, on ViQuAE (Lerner et al., 2022),
Lerner et al. (2023) trains the retriever with a multi-
modal inverse cloze task, while Lerner et al. (2024)
shows that combining mono- and cross-modal re-
trieval improves performance. Both use a weighted
sum of BERT (Devlin et al., 2019) and CLIP (Rad-
ford et al., 2021) embeddings, while our work trains
a single multi-modal late-interaction retriever.
Knowledge-based VQA Systems. Recent multi-
modal systems have significantly improved in com-
plex tasks like OKVQA (Schwenk et al., 2022) that
require external knowledge sources (Narasimhan
et al., 2018; Garderes et al., 2020; Li et al., 2020;
Wu et al., 2022; Marino et al., 2021; Chen et al.,
2023d; Gao et al., 2022; Gui et al., 2021; Hu
et al., 2023b; Rao et al., 2023). Systems like
KAT (Gui et al., 2021) and REVIVE (Lin et al.,
2022) used LLMs (e.g. GPT-3) for generating can-
didate answers. Challenges remain in answering
more knowledge-intensive questions (Chen et al.,
2023b; Mensink et al., 2023a), underscoring the
need for robust document retrieval. Mensink et al.
(2023a) showed that even state-of-the-art LLMs
perform poorly on difficult KB-VQA questions,
with an accuracy of under 20% when retrieval is
not incorporated. RA-VQAv2 (Lin et al., 2023b)
and prior work (Lin and Byrne, 2022; Luo et al.,
2021; Qu et al., 2021; Gao et al., 2022; Hu et al.,
2023b; Mensink et al., 2023a) demonstrated strong
performance in KB-VQA by using external knowl-
edge databases.
Scaling Retrieval Systems. Previous work has ex-
plored scaling laws in language/vision systems (Ka-
plan et al., 2020; Alabdulmohsin et al., 2022), re-
vealing correlations between model performance,
computation, number of parameters, and dataset
sizes. In retrieval, Ni et al. (2022) and Hu et al.
(2023b) both observe improvements in DPR-like
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models with one-dimensional embeddings by in-
creasing the size of language/vision encoders. This
paper reports similar scaling investigations in multi-
modal late-interaction retrieval.

3 The M2KR Benchmark Suite

Current multi-modal retrievers are typically trained
and evaluated on a single dataset only. To properly
study general-purpose multi-modal retrievers, we
introduce the Multi-task Multi-modal Knowledge
Retrieval (M2KR) benchmark suite. We convert
nine diverse datasets, originally designed for vi-
sion and language tasks such as image recognition,
image captioning, and conversational interactions,
into a uniform retrieval format. Details of the pre-
processing steps, data partition, and prompting in-
structions are provided in Appendix A, but we note
here that re-purposing these datasets into a single
consistent collection for knowledge-based visual
question answering represents a non-trivial effort.
M2KR will be released with our models.

3.1 Tasks and Datasets
Table 1 shows the composition of M2KR. We pre-
process the datasets into a uniform format and
write several task-specific prompting instructions
for each dataset. The M2KR benchmark contains
three types of tasks:

Image to Text (I2T) retrieval. These tasks eval-
uate the ability of a retriever to find relevant docu-
ments associated with an input image. Component
tasks are WIT (Srinivasan et al., 2021), IGLUE-
en (Bugliarello et al., 2022), KVQA (Shah et al.,
2019), and CC3M (Sharma et al., 2018). CC3M
is included in the M2KR training set to improve
scene understanding but not in the validation/test
set as the task concerns caption generation, not
retrieval. The IGLUE test set, which is a subset
of WIT and has an established benchmark, is in-
cluded to enable comparison with the literature.
The KVQA task, initially designed as a KB-VQA
task, has been re-purposed into an I2T task for our
modelling purposes (Appendix A.1.3).

Question to Text (Q2T) retrieval. This task is
based on MSMARCO (Bajaj et al., 2018) and is
included to assess whether multi-modal retrievers
retain their ability in text-only retrieval after any
retraining for images.

Image & Question to Text (IQ2T) retrieval.
This is the most challenging task which requires

#Examples #Passages
Datasets Train Val Test Train Val/Test

I2T Retrieval

WIT 2.8M 20,102 5,120 4.1M 40K
IGLUE - - 685 - 1K

KVQA 65K 13,365 5,120 16.3K 4,648
CC3M 595K - - 595K -

Q2T Retrieval

MSMARCO 400K 6,980 5,120 8.8M 200K

IQ2T Retrieval

OVEN 339K 20,000 5,120 10K 3,192
LLaVA 351K - 5,120 351K 6,006
OKVQA 9K 5,046 5,046 110K 110K
Infoseek 100K - 4,708 100K 100K
E-VQA 212K 9,852 3,750 50K 50K

Table 1: Datasets in M2KR Benchmark Suite.

joint understanding of questions and images for
accurate retrieval. It consists of these subtasks:
OVEN (Hu et al., 2023a), LLaVA (Liu et al.,
2023b), OKVQA (Schwenk et al., 2022), Infos-
eek (Chen et al., 2023c) and E-VQA (Mensink
et al., 2023b). We note in particular that we convert
LLaVA, a multi-modal conversation dataset, into a
multi-modal retrieval task (Appendix A.3.1).

The training/validation/test examples are down-
sampled from the respective sets of the original
datasets. We take test examples from the origi-
nal validation sets for LLaVA and Infoseek since
LLaVA has no test sets and the test set annotation
of Infoseek has not been released. We limit the
maximum test samples to 5,120 for each dataset
to allow faster performance tests on all 9 datasets.
Data preprocessing and partitioning details are in
Appendix A. We further verified that there are no
identical images between the training and test sets
by checking the MD5 of the images, thereby pre-
venting data contamination during training. We
use the validation splits to select hyperparameters
for the models which can be found in detail in Ap-
pendix B.2

3.2 Evaluation

We use Recall@K (R@K), which measures whether
at least one of the target documents is in the top-
K retrieved entries, to evaluate retrieval perfor-
mance. Additionally, for the datasets Infoseek, E-
VQA, and OKVQA, we mainly employ Pseudo
Recall/PRecall@K (PR@K) for evaluation. This
metric measures whether at least one of the top K
documents includes the target answer.1

1In practice, PR@K more accurately reflects actual re-
trieval performance and exhibits a stronger correlation with
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We use R@10 for WIT and MSMARCO, and
R@1 for LLaVA and IGLUE. Other datasets are
evaluated with R@5 or PR@5. As in Table 2, we
also report the average rank (A.R.) of each model
over all datasets to indicate multi-task retrieval per-
formance relative to other models in comparison;
lower is better.

3.3 Baselines

For each dataset, we show the best published re-
sults in recent literature as baselines, if available
(Table 2). For datasets without previous results
such as LLaVA and OVEN, we use our replica-
tion of CLIP (Radford et al., 2021) and FLMR as
zero-shot baselines following Lin et al. (2022).

4 PreFLMR Architecture and Training

Our architecture generally follows that of
FLMR (Lin et al., 2023b) as shown in Fig. 1. Pre-
FLMR uses token embedding matrices Q and D to
represent query and document, respectively. Given
a query q̄ consisting of texts q and an image I ,
PreFLMR uses a language model FL to obtain em-
beddings of all tokens in q, a vision model FV

to obtain embeddings of I , and a mapping struc-
ture FM to project image embeddings into the text
embedding space. All token-level embeddings are
concatenated to form the query representation Q.
The document matrix D is obtained similarly with
the language model FL but without visual features.

The relevance score r(q̄, d) is computed via late-
interaction (Khattab and Zaharia, 2020) between
Q and D, aggregating the maximum dot products
over all query tokens with respect to all document
tokens (Eq. 9). lQ and lD denote the total number
of tokens in query q̄ and document d, respectively.

r(q̄, d) =

lQ∑

i=1

lD
max
j=1

QiD
⊤
j (1)

PreFLMR improves over FLMR in the follow-
ing aspects: (1) While FLMR only uses the [CLS]
embedding from ViT as the image representation,
in PreFLMR we additionally extract embeddings
of image patches from ViT’s penultimate layer to
obtain a detailed visual representation. (2) We intro-
duce Transformer blocks with cross-attention into
the mapping structure to obtain query-aware visual

the ultimate VQA performance. This is because document
annotations are frequently incomplete, and alternative doc-
uments within the corpus can often provide answers to the
questions.

representation. The Transformer blocks take the
image patch embeddings as input, and use cross-
attention to integrate the features of the text en-
coder. This allows PreFLMR to attend to differ-
ent aspects of the image under different queries.
These Transformer blocks are placed in parallel
with FLMR’s 2-layer MLP mapping structure. (3)
We append task-specific instructions to the text
query to distinguish between tasks. The list of
instructions for each task can be found in Ap-
pendix A. For each query, the instruction is ran-
domly sampled from the corresponding instruction
list. Instruction tokens are masked in computing
relevance score. For Q2T retrieval training, we
feed a blank image as PreFLMR’s image input. For
I2T retrieval training, we use instructions as text
input to PreFLMR.

PreFLMR training and inference follow that of
FLMR. When training on data consisting of several
datasets, we randomly shuffle the entire training
data and only use in-batch negative examples from
the same corpus. Post-training, all documents are
indexed through PLAID (Santhanam et al., 2022a)
for efficient late-interaction retrieval. For detailed
evaluation of retrieval efficiency, we refer readers
to Lin et al. (2023b).

The detailed formal expression of the entire
model can be found in Appendix B.4.

4.1 Training Procedures
PreFLMR’s pre-training involves four stages.

Stage 0: Text Encoder Pre-training. We train
ColBERT following Khattab and Zaharia (2020)
on the MSMARCO dataset to obtain the initial
checkpoint for PreFLMR’s text encoder FL. This
is a straightforward replication of ColBERT used
as an initial text encoder as was done in FLMR, but
also allowing for size variations.

Stage 1: Training the Mapping Structure. In
this stage, we only train the mapping structure FM ,
keeping the language and vision models frozen.
This approach is an extension of the FLMR method-
ology, incorporating a larger dataset and an addi-
tional cross-attention mapping layer. The train-
ing is performed on the IQ2T dataset (LLaVA,
OVEN), I2T datasets (WIT, CC3M, KVQA), and
Q2T dataset (MSMARCO). Our objective is to en-
compass all three task types in M2KR without the
need to optimize the data mixing ratio or manu-
ally select datasets to achieve an effective map-
ping structure. This strategy is inspired by pre-
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20cm (8 inches) tall...
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Figure 1: PreFLMR Model Architecture. (1) the text query consists of an instruction and a question, which is
encoded by a text encoder; (2) at the output of the vision encoder, a mapping network consisting of Multi-Layer
Perceptrons (MLP) converts the ‘[CLS]’ token representations into the same embedding space as the text encoder;
(3) the transformer blocks take in the patch image embeddings from the penultimate layer of the vision encoder
and attend to the text features by cross-attention; (4) a text encoder encodes documents in the knowledge base; (5)
the scores between queries and documents are computed based on late-interaction, allowing each query token to
interact with all document token embeddings.

vious studies (Lin et al., 2023b; Zhu et al., 2023;
Liu et al., 2023b), which utilized relatively simple
multi-modal tasks to develop image-to-text map-
pings.

We mask the late-interaction token embeddings
in query matrix Q that are produced by the lan-
guage model (not the token embeddings at the in-
put embedding layer). This encourages the Trans-
former cross-attention layer to integrate informa-
tion from its textual inputs and enables PreFLMR
to perform IQ2T, I2T, and Q2T retrieval when pro-
vided with the appropriate instructions for each
task.

Stage 2: Intermediate KB-VQA Pre-training.
We tune the text encoder FL and the mapping
structure FM on the E-VQA dataset, a large and
high quality KB-VQA dataset, to enhance Pre-
FLMR’s retrieval performance. Including an in-
termediate pre-training stage to align the model
with in-domain data has been well-explored in the
literature (e.g., Google’s TAPAS (Eisenschlos et al.,
2020)). We opt for a straightforward procedure to
train on E-VQA in the intermediate stage because
of its diversity, increased difficulty, and larger quan-
tity compared to other KB-VQA datasets. Specifi-
cally, E-VQA requires recognition of less common
entities such as spotted hyenas and relies on more
specialized domain knowledge such as American
landmarks, making it good for retrieval training.
This design choice is well-supported by experimen-
tal results (Table 2 #8 vs #5, #3 vs #2) and we

provide detailed analysis in Sec. 5.6.

Stage 3: Full-scale Fine-tuning. We train on
the entire M2KR corpora, including OKVQA and
Infoseek. This stage is straightforward multi-task
learning. We tune the entire model except the vi-
sion encoder FV . We adjust the dataset proportions
to ensure balanced learning on these datasets of
varying sizes (Appendix B.1). Additionally, we use
separate text encoders to encode queries and doc-
uments; their parameters were shared in previous
steps.

4.2 Training Configurations

We use the Adam optimizer (Kingma and Ba, 2015)
with a fixed learning rate of 10−4 for the mapping
structures and 10−5 for other parameters in all ex-
periments. Training was run up to 300k, 220k,
12k, and 50k steps in the four stages, respectively.
Full training configurations (including the hyperpa-
rameters for downstream VQA fine-tuning) can be
found in Appendix B.2.

5 Experiments and Results

In this section we present results of scaling Pre-
FLMR components (Sec. 5.2, 5.4), analyze the ef-
fect of each training stage (Sec. 5.3, 5.6), and eval-
uate on the downstream KB-VQA tasks (Sec. 5.5).
We summarize our findings in Sec. 5.7. Multi-task
performance refers to PreFLMR results, i.e. Stages
0, 1, 2, and 3, without any single-task fine-tuning.
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5.1 Model Variants
We experiment with a range of model configu-
rations. Model sizes range from BERT-Small
(28.8M), BERT-Medium (41.1M), BERT-Base
(110M) to BERT-large (340M). ColBERT text en-
coders are denoted as "[BERT size]-[pre-training
scheme]". There are two ColBERT pre-training
schemes: “v1” (Khattab and Zaharia, 2020) and
“v2” (Santhanam et al., 2022b). “v2” yields a bet-
ter performing model than “v1” as evaluated on
MSMARCO. We compare models initialized from
“v1” and “v2” checkpoints to investigate how the
performance of the initial uni-modal text retriever
affects the final multi-modal vision-language re-
triever. Except for “Base-v2”, all ColBERT vari-
ants are trained using our replication of ColBERT
following the “v1” pre-training scheme.2 For the
vision encoders, we use the ViT variants: ViT-B
(88M), ViT-L (303M) (Radford et al., 2021), ViT-H
(631M) and ViT-G (1.84B) (Cherti et al., 2023).

5.2 PreFLMR Performance
The best-performing PreFLMR model (ViT-G +
Base-v2) outperforms other variants on most of
M2KR benchmark (Table 2, #13). Without single-
task fine-tuning, PreFLMR outperforms baseline
models optimized for the individual tasks on 7 out
of 9 datasets, showcasing its capability as a general
visual-language retriever. We now analyze how
each PreFLMR component affects performance.

Vision Encoder Scaling. Scaling ViT from ViT-
B (86M) to ViT-G (1.8B) while keeping the text
encoder fixed brings about substantial performance
gain across all tasks (Table 2 #2, #5, #12, #13),
e.g. 48.8 to 59.6 on Infoseek and 67.9 to 73.1 on
E-VQA. The gain is greater when upgrading ViT-B
to ViT-L with recall improvements of ∼ 10% on
WIT, KVQA, OVEN, and Infoseek, showing the
benefit of using better vision encoders. In addi-
tion, Fig. 3 in the appendix illustrates performance
gains in scaling the vision encoder with a radar plot.
However, the performance plateaus when scaling
ViT to H and G. This observation aligns with re-
sults reported in the literature. OpenCLIP (Cherti
et al., 2023) and BLIP2 (Li et al., 2023) have re-
ported marginal or no performance improvement
when scaling beyond ViT-L across several datasets.
A plausible explanation is that if the ViT model
is not pre-trained on domain-specific data, it may
struggle to make fine distinctions.

2The training code of “v2” has not been released officially.

Text Encoder Scaling. Scaling up the text en-
coder from BERT-Small-v1 to Medium-v1 to Base-
v1 (Table 2 #9, #10, #4) yields substantial perfor-
mance gain (A.R. 8.3, 8.2, and 5.6). However,
we find that further scaling to Large-v1 (#11) ad-
versely impacts the performance (A.R. decreased
to 6.6). We attribute this to overfitting and unstable
training for large models given the available data
(Appendix B.3). The results suggest that BERT-
Base (110M) is adequate for building a capable
vision-language retriever.

Improving Text Encoder. Compared to Pre-
FLMR models initialized from Base-v1, models
initialized from Base-v2 have better multi-tasking
performance indicated by better A.R. (Table 2 #1
vs #2 and #4 vs #5). The gain from improving
the text encoder is more substantial when using
the “ViT-L” vision model (-2.4 A.R.) compared
to using “ViT-B” (-0.8 A.R.), indicating that the
text encoder is relatively weak as the vision model
improves.

5.3 Performance of Each PreFLMR Stage

In this section, we analyze intermediate perfor-
mance in the earlier stages of pre-training to better
understand the scaling behaviour of PreFLMR.

Text Encoder Pre-training. We train “ColBERT-
v1” at different sizes and evaluate on the MS-
MARCO dataset. Table 3 shows larger model sizes
consistently yield better text retrieval performance.
In contrast to the multi-modal case, scaling up to
“Large-v1” does not destabilize training and leads
to better performance compared to “Base-v1”.

Training the Mapping Structures. Table 4 de-
tails system performance after Stage 1 training, in
which only the vision-language mapping structure
is trained. Similar to Sec.5.2, scaling up the vi-
sion encoder improves performance across tasks.
PreFLMR exhibits strong zero-shot KB-VQA per-
formance at this preliminary stage (50.87 in Infos-
eek, 42.44 in E-VQA, and 52.14 in OKVQA). After
Stage 1, PreFLMR with ViT-G performs worse than
other variants on IGLUE, E-VQA and OKVQA.
However, it attains the best performance on these
datasets after Stage 3. This suggests that tuning
the mapping structure alone is not enough to fully
utilize larger vision models.

Intermediate Pre-training. Stage 1 improves
performance on KB-VQA tasks (Table 2 #3 vs #2
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I2T Q2T IQ2T

Model
Vis. Text Total WIT IGLUE KVQA MM OVEN LLaVA Infoseek E-VQA OKVQA A.R.
Enc. Enc. Param. R@10 R@1 R@5 R@5 R@5 R@1 PR@5 PR@5 PR@5

CLIP 28.1 44.1 23.8 - 22.0 33.0 17.1 10.4 5.7
SOTA FLMR GIVL FLMR ColBERT FLMR FLMR FLMR Lens FLMR

Res. 23.8 30.8 31.9 86.9 40.5 56.4 47.1 62.53 68.1

Multi-task Performance

1 PreFLMR B B-v1 207M 41.5 56.8 28.6 77.9 45.9 67.4 48.9 65.4 67.2 9.0
2 PreFLMR B B-v2 207M 41.7 57.3 28.6 79.5 46.3 67.2 48.8 67.9 66.1 8.2
3 w/o inter. B B-v2 207M 41.2 56.8 26.5 78.2 43.7 65.0 47.0 57.3 65.1 10.9
4 PreFLMR L B-v1 422M 58.2 69.8 40.6 72.1 59.3 69.3 57.4 70.7 67.9 5.6
5 PreFLMR L B-v2 422M 60.5 69.2 43.6 78.7 59.8 71.8 57.9 70.8 68.5 3.2
6 ViT trainable L B-v2 422M 18.7 1.5 0.8 76.7 5.6 54.6 36.7 57.2 58.9 12.3
7 w/o instruct. L B-v2 422M 13.3 10.5 38.2 75.2 52.1 62.1 49.1 71.3 65.7 9.2
8 w/o inter. L B-v2 422M 60.0 72.0 40.5 80.3 56.1 70.5 55.4 67.0 66.6 4.6
9 PreFLMR L S-v1 334M 54.2 66.3 37.9 73.6 53.9 66.0 52.6 66.8 65.3 8.3

10 PreFLMR L M-v1 348M 56.2 67.9 37.1 72.9 55.5 64.7 52.2 70.4 65.3 8.2
11 PreFLMR L L-v1 677M 49.9 62.8 40.0 72.8 58.8 69.3 59.4 58.2 68.6 6.6
12 PreFLMR H B-v2 750M 60.5 71.2 39.4 78.5 61.5 72.3 59.5 71.7 68.1 3.1
13 PreFLMR G B-v2 1.96B 61.5 71.5 42.1 78.6 63.4 72.4 59.6 73.1 68.6 1.6

Fine-tuned PreFLMR for Specific Downstream Tasks

14 PreFLMR L B-v2 422M 68.5 70.8 60.3 71.4 67.3
15 PreFLMR H B-v2 750M 69.3 72.3 62.3 72.1 70.5
16 PreFLMR G B-v2 1.96B 69.3 73.1 62.1 73.7 70.9

Table 2: PreFLMR performance on all datasets. PR stands for Pseudo Recall. Best multi-task performance is in
bold and best downstream fine-tuning performance is underlined. For the vision encoder, we compare ViT-B (B),
ViT-L (L), ViT-H (H) and ViT-G (G). For the text encoder, we compare Base-v1 (B-v1), Base-v2 (B-v2), Small-v1
(S-v1), Medium-v1 (M-v1), and Large-v1 (L-v1). A.R.: Average Rank against all other models on all tasks. For
baselines, we show: GIVL (Yin et al., 2023) for IGLUE; ColBERTv2 for MSMARCO (MM); FLMR (Lin et al.,
2023b) for Infoseek and OKVQA; and Google Lens (Google) for E-VQA. We follow the procedure as detailed in
the Appendix C of the E-VQA paper (Mensink et al., 2023b) to use CLIP as a zero-shot retriever.

and #8 vs #5). Although we are only training on E-
VQA, the score on other KB-VQA tasks (Infoseek,
KVQA, OKVQA) increases by ∼1% or more. This
shows that E-VQA is an appropriate corpus for
training a general-purpose knowledge retriever. We
analyze the gain from intermediate pre-training in
more detail in Sec.5.6.

5.4 Ablation Studies
Instructions. Removing instructions (Table 2 #7)
results in much worse overall performance, with
the WIT recall rate reduced to 13.3. This shows that
instructions are necessary for multi-task learning
and that our instruction scheme works well (the full
list of instructions is given in Appendix A).

Pre-training Datasets. As shown in Table 5,
adding CC3M to training improves performance
on all metrics, showing that learning to understand
scene via captioning datasets is beneficial. Remov-
ing either LLaVA or MSMARCO harms zero-shot
KB-VQA performance (−3.0 in Infoseek), noting

3The performance is not fully comparable due to differ-
ences in the construction of the test passage corpus and the
proprietary nature of the data and pipeline used in Lens. The
reported figures serve as a reference point.

Datasets WIT LLaVA Infoseek

All 34.14 50.82 42.71
w/o CC3M 29.33 44.82 40.18
w/o LLaVA 33.78 30.78 39.20
w/o MSMARCO 33.96 47.88 38.90
w/o OVEN&KVQA 33.96 49.85 35.62

Table 5: Ablation study on Stage 1 pre-training datasets.
The model is ViT-B + Base-v1. We evaluate systems
on Infoseek in zero-shot mode though it is not used in
Stage 1 training.

that Infoseek is not used in this stage. Training on
these datasets facilitates learning question-aware
visual representations as the cross-attention in the
mapping structure must attend to the text input to
perform well on these tasks. Omitting knowledge-
intensive datasets (OVEN and KVQA) negatively
impacts the zero-shot performance on Infoseek,
showing the importance of in-domain data.

Mapping Structure Scaling. Table 6 illustrates
the impact of scaling up the mapping structure un-
der two PreFLMR configurations. Increasing cross-
attention layers from 1 to 4 marginally improves
LLaVA performance (+0.5, approx.), but adversely
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Model MRR@10 Recall@50

Small-v1 (28.8M) 34.5 79.8
Medium-v1 (41.4M) 35.5 81.4
Base-v1 (110M) 35.8 82.4
Large-v1 (345M) 37.0 83.2

Base-v1 (official) 36.0 82.9
Base-v2 (official) 39.7 86.8

Table 3: Text encoder pre-training
results evaluated on the full MS-
MARCO test set.

Vis. Enc. Text Enc. WIT LLa. OVEN KVQA IGLUE Info. E-VQA OK. A.R.

1 ViT-B Base-v2 34.2 50.9 46.1 28.9 60.5 42.5 32.7 46.5 6.5
2 ViT-L Small-v1 46.5 46.1 37.9 17.9 57.3 43.5 26.6 56.7 7.0
3 ViT-L Medium-v1 49.6 47.8 38.6 23.1 58.7 46.7 27.7 58.1 5.3
4 ViT-L Base-v1 49.3 50.8 52.3 38.2 68.5 46.1 41.9 49.4 4.6
5 ViT-L Base-v2 49.6 51.2 54.8 40.5 69.5 48.7 45.0 50.9 2.3
6 ViT-L Large-v1 48.5 47.3 51.8 32.8 67.2 45.1 40.0 49.7 5.6
7 ViT-H Base-v2 51.8 51.6 55.3 35.6 69.0 48.6 42.2 51.3 2.8
8 ViT-G Base-v2 49.5 51.8 59.6 38.7 69.3 50.9 42.4 52.1 2.0

Table 4: PreFLMR performance after Stage 1. Infoseek, E-VQA, and OKVQA
are tested in zero-shot mode. A.R.: Average Rank against all other models on
all tasks. LLa.- LLaVA; Info.- Infoseek; OK. - OKVQA.

NTR WIT LLaVA Infoseek

ViT-B + Base-v1 1L 34.1 50.8 42.7
ViT-B + Base-v1 4L 29.0 51.4 40.8
ViT-L + Base-v2 1L 49.6 51.2 48.7
ViT-L + Base-v2 4L 45.9 51.7 46.8

Table 6: Performance of adding more Transformer lay-
ers to the mapping structure. NTR is the number of
Transformer layers in the mapping structure.

impacts performance on WIT (-4, approx.) and
Infoseek (-2, approx.). We adhere to the 1-layer de-
sign, noting that adding parameters to the mapping
structure does not improve performance.

5.5 Retrieval Augmented Visual Question
Answering with PreFLMR

Model OKVQA Infoseek E-VQA

Baseline 66.10 21.80 48.80
Baseline model PaLM-E PALI-X PaLM-B + Lens

AVIS 60.20 50.70/56.404 -
RA-VQAv2 w/ FLMR 60.75 - -
RA-VQAv2 w/ PreFLMR 61.88 30.65 54.45

w/o retrieval 55.44 21.78 19.80

Table 7: Downstream KB-VQA performance when RA-
VQAv2 (Lin et al., 2023b) is equipped with PreFLMR
and fine-tuned on the target M2KR’s KB-VQA sub-
tasks. AVIS (Hu et al., 2024) is a recently published
hybrid system that leverages many planning stages to
solve KB-VQA questions, which we include for refer-
ence. Performance on Infoseek and E-VQA may not be
directly comparable to results in the literature.5

We build on RA-VQAv2 (Lin et al., 2023b),
a strong retrieval-augmented visual question an-
swering system to tackle OKVQA, Infoseek, and
E-VQA. We fine-tune the best-performing Pre-
FLMR variant on the target retrieval task (ViT-G +
Base-v2, Table 2 #14) and follow RA-VQAv2 to
fine-tune a BLIP-2 answer generator on the target

450.7 for Unseen Entity and 56.4 for Unseen Question; no
overall accuracy is reported.

M2KR KB-VQA task.5 Following previous liter-
ature (Schwenk et al., 2022; Chen et al., 2023c;
Mensink et al., 2023b), we use VQA score, Ac-
curacy, and BERT matching (BEM) (Bulian et al.,
2022) to evaluate performance on OKVQA, Infos-
eek, and E-VQA, respectively.

A brief summary of the systems shown in Ta-
ble 7: PaLM-E (Driess et al., 2023), PALI-X (Chen
et al., 2022) and PaLM-B (Anil et al., 2023)
are large multi-modal models with 562B, 55B,
and 1T parameters, respectively. The E-VQA
SOTA (Mensink et al., 2023b) uses Lens (Google),
the Google API for image retrieval. AVIS (Hu
et al., 2024) is a hybrid system with many compo-
nents (such as PaLI, PaLM, and Google Lens&Web
Search API) and planning stages powered by LLMs.
We note that PreFLMR could be used as part of
the AVIS pipeline to enhance its ability to fetch
relevant documents given questions and images.

As shown in Table 7, compared to models with-
out retrieval, PreFLMR improves performance by
approximately 6% on OKVQA, 9% on Infoseek,
and 34% on E-VQA. These results highlight the
effectiveness of PreFLMR in document retrieval
for KB-VQA tasks.

On OKVQA, the performances of RA-VQAv2
(PreFLMR) and RA-VQAv2 (FLMR) are similar.
Table 2 #13 shows that PreFLMR attains similar Re-
call@5 as FLMR on OKVQA even though it has a
much larger vision encoder. As a possible explana-
tion, compared to E-VQA and Infoseek, the knowl-
edge required to answer OKVQA question is less
specialized and many OKVQA questions can be an-
swered without document retrieval (Mensink et al.,
2023b). See Appendix E for qualitative analysis.

5We note that this work was conducted during the early
stage of the release of Infoseek and E-VQA. We prepared the
data splits according to the need for retrieval training following
Appendix A. The systems are trained and evaluated on the data
splits provided in M2KR to show the improvement relative to
systems without retrieval.
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Another possibility is that, compared to E-VQA
and Infoseek where the ground-truth document is
provided for each question, the OKVQA training
set does not provide ground-truth knowledge doc-
uments. The retriever uses pseudo-relevant doc-
uments in training that contain the target answer
but these may not be truly useful for answering the
question. This is evidence that data quality should
be improved along with model scaling.

5.6 Analysis of Intermediate Pre-training
Sec. 5.3 shows that Stage 2 Intermediate Pre-
training improves the performance as evaluated
by task-specific metrics. In this section, we further
quantify the gains from Stage 2 for each dataset
and more clearly show that KB-VQA tasks benefit
more from Stage 2 than other tasks. We use the
difference in minimal validation loss6 achieved on
each dataset starting from checkpoints before or af-
ter Stage 2 Intermediate Pre-training as a measure
of benefit. This enables comparison of tasks with
different performance metrics. Intuitively, a larger
absolute difference in validation loss indicates that
the dataset benefits more from the Intermediate
Pre-training stage.
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Figure 2: Change in Stage 3 validation loss when ini-
tialized from Stage 2 checkpoints after Ninter steps of
intermediate pre-training. A large difference indicates a
greater gain from intermediate pre-training.

Figure 2 plots the difference in validation loss of
every dataset when the starting checkpoints have
undergone Ninter intermediate pre-training steps
using either BERT-medium or BERT-base as the
text encoder backbone. As expected, starting from
E-VQA-pre-trained checkpoints yields lower val-
idation loss in knowledge-intensive tasks such as
OKVQA, KVQA, and OVEN after the same num-
ber (5,000) of fine-tuning steps. Performance on

6We find that the validation loss is predictive of the actual
performance. A lower validation loss usually suggests a better
performance in the tasks that we study.

these datasets indeed sees more gain from Stage
2 training (Table 2, #5 v.s. #8). Figure 2 also
indicates the existence of an optimal Ninter, be-
yond which the model overfits to E-VQA, harm-
ing performance on other datasets. The larger
PreFLMR model with BERT-base text encoder
overfits faster than PreFLMR with BERT-medium
(Ninter ≈ 15, 000 versus Ninter ≈ 10, 000). We
use V-Entropy (Xu et al., 2020) to formalize our
analysis as an empirical measure of mutual infor-
mation between datasets in Appendix D.

5.7 Summary of Findings
We summarise the results of our investigations into
scaling behaviour as follows:

• The text encoder size need not exceed that
of BERT-base (110M) to achieve competitive
multi-modal retrieval performance (Sec.5.2).

• Scaling up the vision encoder from ViT-B to
ViT-G yields substantial gains (Sec.5.2).

• Scaling up the mapping structure does not im-
prove performance (Sec.5.4).

• Intermediate pre-training on high-quality in-
domain data (E-VQA) effectively improves
retrieval performance across KB-VQA tasks
(Sec.5.3, 5.6).

• Strong knowledge retrievers boost perfor-
mance on challenging KB-VQA tasks such as
OKVQA, Infoseek, and E-VQA via Retrieval-
Augmented Generation (Sec.5.5).

• Ground-truth document labels are important to
make full use of large models in training multi-
modal retrievers (Sec.5.5).

6 Conclusion

This work has studied the scaling behaviour of
state of the art multi-modal document retrieval sys-
tems, with a focus on enhancing fine-grained late-
interaction retrieval for knowledge-based visual
question answering. We contribute a comprehen-
sive training and evaluation framework, M2KR, for
general-purpose multi-modal knowledge retrieval.
The PreFLMR system we train in the M2KR frame-
work yields excellent retrieval performance across
a range of tasks and can also serve as a base for
further task-specific fine-tuning.
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Limitations

Limited by available computational resources, we
leave several further investigations as future work:
(1) The CLIP-ViT models (Cherti et al., 2023) were
not pre-trained on in-domain data of knowledge-
intensive tasks. Further training may enhance the
model’s ability to recognize a broader range of ob-
jects; (2) Advanced training approaches beyond
contrastive learning, such as score distillation (San-
thanam et al., 2022b), could be explored to further
enhance retrieval performance; (3) Investigating
a more optimal mix proportion of datasets with
varying sizes also warrants further exploration.

Ethics Statement

Our proposed model retrieves documents without
generating new content. We acknowledge the po-
tential for the retrieved documents to include in-
appropriate information if the document database
lacks adequate filtering. Consequently, extra care
must be taken to ensure the sanitization of the doc-
ument database, particularly when employing this
model in applications involving direct interaction
with real users.
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Ivan Vulić. 2022. Iglue: A benchmark for transfer

5303

https://proceedings.neurips.cc/paper_files/paper/2022/file/8c22e5e918198702765ecff4b20d0a90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8c22e5e918198702765ecff4b20d0a90-Paper-Conference.pdf
http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403
https://doi.org/10.48550/arXiv.1611.09268
https://doi.org/10.48550/arXiv.1611.09268
https://proceedings.mlr.press/v162/bugliarello22a.html


learning across modalities, tasks, and languages. In
Proceedings of the 39th International Conference on
Machine Learning, page 2370–2392. PMLR.

Jannis Bulian, Christian Buck, Wojciech Gajewski, Ben-
jamin Börschinger, and Tal Schuster. 2022. Tomayto,
tomahto. beyond token-level answer equivalence for
question answering evaluation. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 291–305, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Andrea Burns, Krishna Srinivasan, Joshua Ainslie, Ge-
off Brown, Bryan A. Plummer, Kate Saenko, Jianmo
Ni, and Mandy Guo. 2023. Wikiweb2m: A page-
level multimodal wikipedia dataset.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1870–1879,
Vancouver, Canada. Association for Computational
Linguistics.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil
Mustafa, Soravit Changpinyo, Jialin Wu, Car-
los Riquelme Ruiz, Sebastian Goodman, Xiao Wang,
Yi Tay, et al. 2023a. Pali-x: On scaling up a multi-
lingual vision and language model. arXiv preprint
arXiv:2305.18565.

Xi Chen, Xiao Wang, Soravit Changpinyo, A. J.
Piergiovanni, Piotr Padlewski, Daniel Salz, Sebas-
tian Goodman, Adam Grycner, Basil Mustafa, Lu-
cas Beyer, Alexander Kolesnikov, Joan Puigcerver,
Nan Ding, Keran Rong, Hassan Akbari, Gaurav
Mishra, Linting Xue, Ashish Thapliyal, James
Bradbury, Weicheng Kuo, Mojtaba Seyedhosseini,
Chao Jia, Burcu Karagol Ayan, Carlos Riquelme,
Andreas Steiner, Anelia Angelova, Xiaohua Zhai,
Neil Houlsby, and Radu Soricut. 2022. Pali: A
jointly-scaled multilingual language-image model.
(arXiv:2209.06794). ArXiv:2209.06794 [cs].

Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, So-
ravit Changpinyo, Alan Ritter, and Ming-Wei Chang.
2023b. Can pre-trained vision and language models
answer visual information-seeking questions? In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
14948–14968, Singapore. Association for Compu-
tational Linguistics.

Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, So-
ravit Changpinyo, Alan Ritter, and Ming-Wei Chang.
2023c. Can pre-trained vision and language mod-
els answer visual information-seeking questions?
(arXiv:2302.11713). ArXiv:2302.11713 [cs].

Zhuo Chen, Yufeng Huang, Jiaoyan Chen, Yuxia Geng,
Yin Fang, Jeff Z. Pan, Ningyu Zhang, and Wen Zhang.
2023d. Lako: Knowledge-driven visual question
answering via late knowledge-to-text injection. In

Proceedings of the 11th International Joint Confer-
ence on Knowledge Graphs, IJCKG ’22, page 20–29,
New York, NY, USA. Association for Computing
Machinery.

Mehdi Cherti, Romain Beaumont, Ross Wightman,
Mitchell Wortsman, Gabriel Ilharco, Cade Gordon,
Christoph Schuhmann, Ludwig Schmidt, and Jenia
Jitsev. 2023. Reproducible scaling laws for con-
trastive language-image learning. In 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2818–2829.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and
Serge Belongie. 2018. Large scale fine-grained cat-
egorization and domain-specific transfer learning.
(arXiv:1806.06193). ArXiv:1806.06193 [cs].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics. ACL.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe
Yu, Wenlong Huang, Yevgen Chebotar, Pierre Ser-
manet, Daniel Duckworth, Sergey Levine, Vincent
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus
Greff, Andy Zeng, Igor Mordatch, and Pete Florence.
2023. Palm-e: An embodied multimodal language
model. In Proceedings of the 40th International Con-
ference on Machine Learning, ICML’23. JMLR.org.

Julian Eisenschlos, Syrine Krichene, and Thomas
Müller. 2020. Understanding tables with interme-
diate pre-training. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
281–296, Online. Association for Computational Lin-
guistics.

Feng Gao, Qing Ping, Govind Thattai, Aishwarya Re-
ganti, Ying Nian Wu, and Prem Natarajan. 2022.
Transform-retrieve-generate: Natural language-
centric outside-knowledge visual question answer-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
5067–5077.

François Garderes, Maryam Ziaeefard, Baptiste Abe-
loos, and Freddy Lecue. 2020. Conceptbert:
Concept-aware representation for visual question an-
swering. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 489–498.

Google. Google lens: Image recognition and retrieval
api. https://lens.google.com.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the V in VQA
matter: Elevating the role of image understanding
in Visual Question Answering. In Conference on
Computer Vision and Pattern Recognition (CVPR).

5304

https://proceedings.mlr.press/v162/bugliarello22a.html
https://doi.org/10.18653/v1/2022.emnlp-main.20
https://doi.org/10.18653/v1/2022.emnlp-main.20
https://doi.org/10.18653/v1/2022.emnlp-main.20
https://arxiv.org/abs/2305.05432v1
https://arxiv.org/abs/2305.05432v1
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.48550/arXiv.2209.06794
https://doi.org/10.48550/arXiv.2209.06794
https://doi.org/10.18653/v1/2023.emnlp-main.925
https://doi.org/10.18653/v1/2023.emnlp-main.925
https://doi.org/10.48550/arXiv.2302.11713
https://doi.org/10.48550/arXiv.2302.11713
https://doi.org/10.1145/3579051.3579053
https://doi.org/10.1145/3579051.3579053
https://doi.org/10.1109/CVPR52729.2023.00276
https://doi.org/10.1109/CVPR52729.2023.00276
https://doi.org/10.48550/arXiv.1806.06193
https://doi.org/10.48550/arXiv.1806.06193
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://lens.google.com


Liangke Gui, Borui Wang, Qiuyuan Huang, Alex Haupt-
mann, Yonatan Bisk, and Jianfeng Gao. 2021. Kat:
A knowledge augmented transformer for vision-and-
language. arXiv preprint arXiv:2112.08614.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Hexiang Hu, Yi Luan, Yang Chen, Urvashi Khandel-
wal, Mandar Joshi, Kenton Lee, Kristina Toutanova,
and Ming-Wei Chang. 2023a. Open-domain vi-
sual entity recognition: Towards recognizing mil-
lions of wikipedia entities. (arXiv:2302.11154).
ArXiv:2302.11154 [cs].

Ziniu Hu, Ahmet Iscen, Chen Sun, Kai-Wei Chang,
Yizhou Sun, David Ross, Cordelia Schmid, and
Alireza Fathi. 2024. Avis: Autonomous visual in-
formation seeking with large language model agent.
Advances in Neural Information Processing Systems,
36.

Ziniu Hu, Ahmet Iscen, Chen Sun, Zirui Wang, Kai-
Wei Chang, Yizhou Sun, Cordelia Schmid, David A.
Ross, and Alireza Fathi. 2023b. Reveal: Retrieval-
augmented visual-language pre-training with multi-
source multimodal knowledge memory. page
23369–23379.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874–880, Online. Association for Computa-
tional Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized

late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’20, page 39–48, New York, NY, USA. Association
for Computing Machinery.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-
Fei. 2013. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop
on 3D Representation and Recognition (3dRR-13),
Sydney, Australia.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6086–6096, Florence, Italy.
Association for Computational Linguistics.

Paul Lerner, Olivier Ferret, and Camille Guinaudeau.
2023. Multimodal inverse cloze task for knowledge-
based visual question answering. In European Con-
ference on Information Retrieval, pages 569–587.
Springer.

Paul Lerner, Olivier Ferret, and Camille Guinaudeau.
2024. Cross-modal retrieval for knowledge-based
visual question answering. In European Conference
on Information Retrieval, pages 421–438. Springer.

Paul Lerner, Olivier Ferret, Camille Guinaudeau, Hervé
Le Borgne, Romaric Besançon, José G Moreno, and
Jesús Lovón Melgarejo. 2022. Viquae, a dataset for
knowledge-based visual question answering about
named entities. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 3108–
3120.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Guohao Li, Xin Wang, and Wenwu Zhu. 2020. Boost-
ing visual question answering with context-aware
knowledge aggregation. In Proceedings of the 28th
ACM International Conference on Multimedia, pages
1227–1235.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

5305

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2302.11154
http://arxiv.org/abs/2302.11154
http://arxiv.org/abs/2302.11154
https://openaccess.thecvf.com/content/CVPR2023/html/Hu_REVEAL_Retrieval-Augmented_Visual-Language_Pre-Training_With_Multi-Source_Multimodal_Knowledge_Memory_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Hu_REVEAL_Retrieval-Augmented_Visual-Language_Pre-Training_With_Multi-Source_Multimodal_Knowledge_Memory_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Hu_REVEAL_Retrieval-Augmented_Visual-Language_Pre-Training_With_Multi-Source_Multimodal_Knowledge_Memory_CVPR_2023_paper.html
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612


Leroy Lin, Yujia Xie, Dongdong Chen, Yichong Xu,
Chenguang Zhu, and Lu Yuan. 2022. REVIVE: Re-
gional visual representation matters in knowledge-
based visual question answering. In Advances in
Neural Information Processing Systems.

Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adria
de Gispert, and Gonzalo Iglesias. 2023a. LI-RAGE:
Late interaction retrieval augmented generation with
explicit signals for open-domain table question an-
swering. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 1557–1566, Toronto,
Canada. Association for Computational Linguistics.

Weizhe Lin and Bill Byrne. 2022. Retrieval augmented
visual question answering with outside knowledge.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
11238–11254, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru
Coca, and Bill Byrne. 2023b. Fine-grained late-
interaction multi-modal retrieval for retrieval aug-
mented visual question answering. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning. arXiv preprint arXiv:2310.03744.

Haotian Liu, Chunyuan Li, Qingyang Wu, and
Yong Jae Lee. 2023b. Visual instruction tuning.
(arXiv:2304.08485). ArXiv:2304.08485 [cs].

Man Luo, Yankai Zeng, Pratyay Banerjee, and Chitta
Baral. 2021. Weakly-supervised visual-retriever-
reader for knowledge-based question answering. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
6417–6431, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav
Gupta, and Marcus Rohrbach. 2021. Krisp: Inte-
grating implicit and symbolic knowledge for open-
domain knowledge-based vqa. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14111–14121.

Thomas Mensink, Jasper Uijlings, Lluis Castrejon,
Arushi Goel, Felipe Cadar, Howard Zhou, Fei Sha,
André Araujo, and Vittorio Ferrari. 2023a. Encyclo-
pedic vqa: Visual questions about detailed properties
of fine-grained categories. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 3113–3124.

Thomas Mensink, Jasper Uijlings, Lluis Castrejon,
Arushi Goel, Felipe Cadar, Howard Zhou, Fei Sha,
André Araujo, and Vittorio Ferrari. 2023b. Encyclo-
pedic vqa: Visual questions about detailed proper-
ties of fine-grained categories. (arXiv:2306.09224).
ArXiv:2306.09224 [cs].

Medhini Narasimhan, Svetlana Lazebnik, and Alexan-
der Schwing. 2018. Out of the box: Reasoning with
graph convolution nets for factual visual question an-
swering. Advances in neural information processing
systems, 31.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo
Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.
Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
9844–9855, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report.

Chen Qu, Hamed Zamani, Liu Yang, W Bruce Croft,
and Erik Learned-Miller. 2021. Passage retrieval for
outside-knowledge visual question answering. In
Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1753–1757.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. arXiv.

Jiahua Rao, Zifei Shan, Longpo Liu, Yao Zhou, and
Yuedong Yang. 2023. Retrieval-based knowledge
augmented vision language pre-training. In Proceed-
ings of the 31st ACM International Conference on
Multimedia, MM ’23, page 5399–5409, New York,
NY, USA. Association for Computing Machinery.

Keshav Santhanam, Omar Khattab, Christopher Potts,
and Matei Zaharia. 2022a. Plaid: An efficient en-
gine for late interaction retrieval. In Proceedings of
the 31st ACM International Conference on Informa-
tion & Knowledge Management, CIKM ’22, page
1747–1756, New York, NY, USA. Association for
Computing Machinery.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022b. Col-
BERTv2: Effective and efficient retrieval via
lightweight late interaction. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3715–3734, Seat-
tle, United States. Association for Computational
Linguistics.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi.
2022. A-okvqa: A benchmark for visual question
answering using world knowledge. arXiv preprint
arXiv:2206.01718.

Sanket Shah, Anand Mishra, Naganand Yadati, and
Partha Pratim Talukdar. 2019. Kvqa: Knowledge-
aware visual question answering. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):8876–8884.

5306

https://openreview.net/forum?id=wwyiEyK-G5D
https://openreview.net/forum?id=wwyiEyK-G5D
https://openreview.net/forum?id=wwyiEyK-G5D
https://doi.org/10.18653/v1/2023.acl-short.133
https://doi.org/10.18653/v1/2023.acl-short.133
https://doi.org/10.18653/v1/2023.acl-short.133
https://doi.org/10.18653/v1/2023.acl-short.133
https://doi.org/10.18653/v1/2022.emnlp-main.772
https://doi.org/10.18653/v1/2022.emnlp-main.772
https://openreview.net/forum?id=IWWWulAX7g
https://openreview.net/forum?id=IWWWulAX7g
https://openreview.net/forum?id=IWWWulAX7g
https://doi.org/10.48550/arXiv.2304.08485
https://doi.org/10.18653/v1/2021.emnlp-main.517
https://doi.org/10.18653/v1/2021.emnlp-main.517
http://arxiv.org/abs/2306.09224
http://arxiv.org/abs/2306.09224
http://arxiv.org/abs/2306.09224
https://doi.org/10.18653/v1/2022.emnlp-main.669
http://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arxiv.2103.00020
https://doi.org/10.48550/arxiv.2103.00020
https://doi.org/10.48550/arxiv.2103.00020
https://doi.org/10.1145/3581783.3613848
https://doi.org/10.1145/3581783.3613848
https://doi.org/10.1145/3511808.3557325
https://doi.org/10.1145/3511808.3557325
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.1609/aaai.v33i01.33018876
https://doi.org/10.1609/aaai.v33i01.33018876


Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), page 2556–2565,
Melbourne, Australia. Association for Computational
Linguistics.

Krishna Srinivasan, Karthik Raman, Jiecao Chen,
Michael Bendersky, and Marc Najork. 2021. Wit:
Wikipedia-based image text dataset for multimodal
multilingual machine learning. In Proceedings of
the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’21, page 2443–2449, New York, NY, USA.
Association for Computing Machinery.

Cong Wei, Yang Chen, Haonan Chen, Hexiang Hu,
Ge Zhang, Jie Fu, Alan Ritter, and Wenhu Chen.
2023. Uniir: Training and benchmarking universal
multimodal information retrievers. arXiv preprint
arXiv:2311.17136.

Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack
Sim. 2020. Google landmarks dataset v2 – a large-
scale benchmark for instance-level recognition and
retrieval. (arXiv:2004.01804). ArXiv:2004.01804
[cs].

Jialin Wu, Jiasen Lu, Ashish Sabharwal, and Roozbeh
Mottaghi. 2022. Multi-modal answer validation for
knowledge-based vqa. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 2712–2721.

Jialin Wu and Raymond Mooney. 2022. Entity-focused
dense passage retrieval for outside-knowledge visual
question answering. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8061–8072, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stew-
art, and Stefano Ermon. 2020. A theory of usable
information under computational constraints. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu,
Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo
Li, Xin Jiang, and Chunjing Xu. 2022. FILIP: Fine-
grained interactive language-image pre-training. In
International Conference on Learning Representa-
tions.

Da Yin, Feng Gao, Govind Thattai, Michael Johnston,
and Kai-Wei Chang. 2023. Givl: Improving geo-
graphical inclusivity of vision-language models with
pre-training methods. page 10951–10961.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

A Datasets details

This section outlines the preprocessing methods
used to convert various datasets into formats suit-
able for retrieval tasks. Table 8 provides examples
from each dataset, demonstrating the transforma-
tion from their original to the adapted structure.
Subsequent subsections detail the specific prepro-
cessing steps for each dataset. The M2KR dataset
is available at Huggingface Hub.

A.1 I2T Retrieval

A.1.1 WIT
WIT (Srinivasan et al., 2021) is a corpus based on
Wikipedia with image-text pairs, where the text
is the Wikipedia passage associated with the im-
age. To enhance data quality, we exclusively select
image-text pairs where the images are the main/title
images of their respective Wikipedia documents,
and we limit our scope to English-language docu-
ments.

Our training set, comprising 2.8 million exam-
ples, is sourced from the original WIT training set.
20,102 and 5,120 examples from the original WIT
validation set are selected to build the validation set
and test set in our M2KR benchmark, respectively.
The test corpus includes all documents from the
original WIT validation and test sets. This setting
ensures that there is no overlap between different
sets.

Each image-document pair is paired with a ran-
domly selected instruction from our set of tem-
plates. The task is to retrieve the correct document
from the test corpus, given the image and instruc-
tion.

A.1.2 IGLUE
The IGLUE English retrieval test set (Bugliarello
et al., 2022), which is a subset of the WIT test
set and has an established benchmark for image-
to-text retrieval, is included to enable compari-
son with models in previous literature. Following
Bugliarello et al. (2022), the test set contains 685
unique images and 1,000 Wikipedia passages. The
task is similar to WIT: using the image and the
instruction to retrieve the corresponding Wikipedia
passage.
Instruction templates for WIT and IGLUE:

• <Image> Identify the document that is con-
nected to this image.

• <Image> Provide information about the docu-
ment linked to this image.
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• <Image> Please describe the document that
corresponds to this image.

• <Image> What is the document that this image
is related to?

• <Image> Could you elucidate the document
associated with this image?

• <Image> Describe the document that accompa-
nies this image.

• <Image> Please give information on the docu-
ment that goes with this image.

• <Image> What document is represented by this
image?

• <Image> Identify the document that this image
pertains to.

A.1.3 KVQA
KVQA (Shah et al., 2019) is a dataset containing
a rich collection of entities representing famous
individuals. The KVQA task, initially designed as
a KB-VQA task, has been re-purposed into an I2T
task for our modelling purposes. This adaptation is
based on our findings that using images as queries
alone suffices to retrieve the documents containing
the correct identities. In our context, where the
primary focus is on document retrieval, the origi-
nal questions are unnecessary. Our reformulated
task for KVQA is to retrieve the details of famous
people like gender, nationality, birthplace, and em-
ployment history based solely on their images. The
training set is downsampled from the KVQA origi-
nal training set by removing repeated examples of
the same famous individuals. We transformed the
structured entities such as gender and nationality
into passages. For example, “nationality: America;
date of birth: dd/mm/yyyy; ...” is serialized as “na-
tionality is America, date of birth is dd/mm/yyyy,
...”.

The training corpus is composed of all the doc-
uments that appear in the original KVQA training
set. For the validation/test set, we selected a subset
of 13,365/5,120 samples from the original KVQA
validation set. Correspondingly, the test corpus
encompasses all documents found in the original
KVQA validation set.

The instruction we use for KVQA is: <Image>
Provide a brief description of the image and the
relevant details of the person in the image.

A.1.4 CC3M
CC3M (Sharma et al., 2018) is a dataset consisting
of a vast collection of image-caption pairs. Instead
of utilizing the entire dataset comprising 3 million

pairs, we adopt the downsampling methodology as
delineated in LLaVA’s work (Liu et al., 2023b), re-
sulting in a reduced dataset of approximately 595K.

We reformulate the image-caption pairs into
image-to-text retrieval tasks in our pre-training. To
construct the training corpus, we treat each caption
as an individual document linked to its correspond-
ing image. The task then involves retrieving the
most relevant caption for a given image, guided
by a set of randomly selected instructions. Since
CC3M is originally an image captioning task, we
do not validate or test our retriever on CC3M.
Instruction templates for CC3M

• <Image> Describe the image concisely.
• <Image> Provide a brief description of the

given image.
• <Image> Offer a succinct explanation of the

picture presented.
• <Image> Summarize the visual content of the

image.
• <Image> Give a short and clear explanation of

the subsequent image.
• <Image> Share a concise interpretation of the

image provided.
• <Image> Present a compact description of the

photo’s key features.
• <Image> Relay a brief, clear account of the

picture shown.
• <Image> Render a clear and concise summary

of the photo.
• <Image> Write a terse but informative sum-

mary of the picture.
• <Image> Create a compact narrative represent-

ing the image presented.

A.2 Q2T Retrieval

A.2.1 MSMARCO
MSMARCO (Bajaj et al., 2018) stands for Mi-
crosoft Machine Reading Comprehension dataset.
It is a text-only dataset with around 1 million ques-
tions and 8 million passages. At stage 0, we train
according to ColBERT-v1 by Khattab and Zaharia
(2020). For later stages, we downsample the dataset
to 400K questions to balance between the multi-
modal tasks and unimodal tasks. For the training
corpus, we still use the full 8 million passages. For
testing, we select 6,980 and 5,120 samples from
the original MSMARCO validation set and sample
400K passages to retrieve from and ensure the sub-
set contains all ground-truth passages.
Instruction templates for MSMARCO:
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• <Blank image> Retrieve the document that
answers this question. <Questions>

• <Blank image> Find the document that is most
relevant to the question. <Questions>

• <Blank image> Obtain the document that re-
solves this query. <Questions>

• <Blank image> Acquire the document that elu-
cidates this question. <Questions>

• <Blank image> Choose the document most
relevant to the query. <Questions>

• <Blank image> Identify the document most
applicable to the question. <Questions>

• <Blank image> Extract the document that an-
swers this query. <Questions>

• <Blank image> Locate the document that ad-
dresses the query.<Questions>

A.3 IQ2T Retrieval
A.3.1 LLaVA
The LLaVA instruction following dataset contains
GPT-3.5 generated high-quality conversation about
an image between a human and an AI assistant.
There are around 150K rounds of conversations.
We took each conversation (each question from the
human and the answer from the AI assistant) as
a separate sample. This results in a total of 356K
samples. Since there are no original validation or
test sets associated with the LLaVA, we manually
split the sample pool into 351K training examples
and 5,120 test examples.

The task is reformulated to an Image&Question
to Text retrieval task. The training corpus and test
corpus each contain the associated answers as pas-
sages to be retrieved by the image and question
pairs. We use two types of instruction templates
depending on the preciseness of the question:

• <Image> Provide a brief description of the im-
age along with the following question: <Question>

• <Image> Provide a concise explanation of the
image along with the following question: <Ques-
tion>

A.3.2 OVEN
OVEN is a dataset targeting open-domain visual
entity recognition. The dataset consists of two
splits: entity set and query set. The entity set
is derived from image classification datasets such
as INaturalist2017 (Cui et al., 2018), Food-101
(Bossard et al., 2014), Cars196 (Krause et al., 2013)
and Google Landmarks Dataset v2 (Weyand et al.,
2020). The query set is derived from VQA datasets
such as VQAv2 (Goyal et al., 2017) and OKVQA

(Schwenk et al., 2022). To avoid overlapping with
our other KB-VQA datasets, we only use the entity
set of OVEN. The entity set contains about 10K
unique entities.

The original entity set contains about 5 million
question-image pairs. However, the questions are
highly duplicated in the original OVEN dataset.
We downsample the dataset by removing repeated
questions corresponding to the same entity. This
reduces duplications while maximizing the diver-
sity of the questions and coverage of entities. After
the filtering, we keep 339K training samples. For
validation and testing, we select 20,000 and 5,120
examples from the original OVEN Entity valida-
tion set. The original test set is not used in M2KR
due to the lack of annotation.

The original task is to link the image to a specific
Wikipedia Entity given a question. To formulate the
task as a retrieval problem, for each entity, we use
its associated Wikipedia passage as the document
to retrieve. The query side of this retrieval task
contains the image and its question with the inclu-
sion of a randomly sampled instruction. Given this
query, the task is to obtain the relevant Wikipedia
passage. The training corpus contains about 10K
passages, while the test corpus contains about 3.2K
passages that cover all entities in OVEN’s original
training set and validation set respectively.

A.3.3 E-VQA, Infoseek and OKVQA
E-VQA, Infoseek, and OKVQA are Knowledge-
based VQA (KB-VQA) datasets. For each given
image and question (with instruction), the task is
to retrieve the corresponding knowledge passage.

For E-VQA (Mensink et al., 2023a), the orig-
inal training set contains around 1 million sam-
ples. However, it includes duplicated questions
and answers referring to the same Wikipedia Entity
with different query images. We filter duplicated
questions that pertain to the same Wikipedia Entity.
To align with the original evaluation setting of E-
VQA, we further excluded samples that necessitate
multiple knowledge bases, reducing the count to
167K training samples. To be consistent with the
original E-VQA paper, our validation and testing
sets exclusively include questions that can be an-
swered using single knowledge. These sets contain
9,852 and 3,750 samples, respectively. We use the
WikiWeb2M (Burns et al., 2023) as the knowledge
source. For the training and test passage corpus,
we keep all the passages that appear in the original
E-VQA to align with the official E-VQA’s setting
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for retrieval.
For OKVQA, we use the original training and

test set. Following Lin et al. (2023b), we prepare
a knowledge corpus with Wikipedia documents
based on pseudo-relevance. The training and test
passage corpus both contain all passages in the
knowledge corpus.

For Infoseek, following the preprocessing steps
described by Chen et al. 2023c, we use Wikipedia
documents as knowledge sources and remove ex-
amples whose answers can not be found in the
ground-truth documents. We randomly selected
100K examples from the training set for training
and 4,708 examples from the validation set for test-
ing (the annotation of the original test set has yet
been released). The downsampling is motivated by
our observation that many questions are repeated
and the number of unique documents associated
with the whole dataset is only about 40K. We down-
sampled the dataset such that the model won’t over-
fit severely to Infoseek passages.

Note that the aforementioned downsampling pro-
cedure for the test set is only used for constructing
the M2KR benchmark. For downstream VQA eval-
uation, we use the same test set that existed in
previous literature to ensure a fair comparison.
Instruction templates for OVEN, Infoseek, E-
VQA, and OKVQA

• <Image> Using the provided image, obtain
documents that address the subsequent question:
<Question>

• <Image> Retrieve documents that provide an
answer to the question alongside the image: <Ques-
tion>

• <Image> Extract documents linked to the
question provided in conjunction with the image:
<Question>

• <Image> Utilizing the given image, obtain
documents that respond to the following question:
<Question>

• <Image> Using the given image, access docu-
ments that provide insights into the following ques-
tion: <Question>

• <Image> Obtain documents that correspond to
the inquiry alongside the provided image: <Ques-
tion>

• <Image> With the provided image, gather doc-
uments that offer a solution to the question: <Ques-
tion>

• <Image> Utilizing the given image, obtain
documents that respond to the following question:
<Question>

B Implementation Details

B.1 Breakdown of Data Used in Training

In Stage 3 Full-scale Fine-tuning, the different sub-
tasks in the M2KR dataset are downsampled or
duplicated to balance the dataset proportions dur-
ing training. The detailed breakdown of the data
used in different phases is presented in Table 9. We
observed that without adjusting the data propor-
tions during training, the model’s training losses
on certain datasets like WIT, Infoseek, and OVEN
decrease much faster than on others once all pa-
rameters become trainable. This goes against our
goal of training a multi-tasking system. Adjusting
the data proportions is crucial to ensure a more
consistent learning process across different tasks.

B.2 Detailed Hyperparameters

We use the Adam optimizer (Kingma and Ba, 2015)
with a fixed learning rate of 10−4 for the mapping
structure and 10−5 for the rest parameters in all
experiments in all training stages. 4 Nvidia A100
GPUs were used with data parallel in all experi-
ments.

Stage 0: Training was run up to 300k steps. The
batch size is 8 and the gradient accumulation step
is 8. The number of negative examples is 1. The
validation ran per 10k steps. The checkpoint was
taken at the best Recall@50 on the original MS-
MARCO validation set, following Khattab and Za-
haria (2020). The total training time is approxi-
mately 1.5 days per model.

Stage 1: Training was run up to 220k. The batch
size is 8 and the gradient accumulation step is 8.
The number of negative examples is 4. The valida-
tion interval is 10k steps. The checkpoint was taken
at the best Recall@10 on the validation set of WIT
in M2KR. The total training time is approximately
5 days per model.

Stage 2: The intermediate pre-training was run
for 12k steps for all experiments. The batch size is
8 and the gradient accumulation step is 8. The num-
ber of negative examples is 4. The total training
time is approximately 2 days per model.

Stage 3: Training was run for 50k for all exper-
iments. Training was early-stopped if the perfor-
mance on WIT or E-VQA decreases for 3 consec-
utive validation runs. Validation was run per 10k
steps. The batch size is 8 and the gradient accumu-
lation step is 8. The number of negative examples
is 4. The total training time is approximately 2
days per model.
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WIT IGLUE KVQA CC3M MSMARCO

Describe the image
concisely.

Summarize the visual
content of the image.

Provide a brief de-
scription of the image
and the relevant de-
tails of the person in
the image.

Describe the image
concisely.

Retrieve the document
that answers this ques-
tion: how many years
did william bradford
serve as governor of
plymouth colony?

title: PS Herald sec-
tion title: Formation
and operation of the
North Shore Steam
Company ...

title: National Library
of Uzbekistan hier-
archical section title:
National Library of
Uzbekistan caption ...

This is an image of
Pilkington playing for
Cardiff City in 2016.
Anthony Pilkington
date of birth is ...

olive oil is a healthy
ingredient used liber-
ally.

William Bradford
(c.1590 - 1657) was
an English Separatist
leader in Leiden, ...

LLaVA OVEN E-VQA Infoseek OKVQA

Provide a brief de-
scription of the im-
age along with the fol-
lowing question: what
unique situation is oc-
curring in this soccer
match?

Using the provided im-
age, obtain documents
that address the subse-
quent question: what
is this park called?

Obtain documents that
correspond to the in-
quiry alongside the
provided image: how
big can this plant be-
come?

With the provided im-
age, gather documents
that offer a solution to
the question: What is
the country of origin
of this food?

Using the provided im-
age, obtain documents
that address the subse-
quent question: How
many teeth does this
animal use to have?

In this soccer match,
a unique situation
is occurring where
three men are playing
against each other,
each wearing a differ-
ent colored uniform.

Nationals Park is
a baseball stadium
along the Anacostia
River in the Navy
Yard neighborhood...

Dwarf cornel is a rhi-
zomatous herbaceous
perennial growing to
20cm (8 inches) tall...

title: Submarine sand-
wich content: Subma-
rine sandwich A sub-
marine sandwich, also
known as a sub...

Most cats have 26 de-
ciduous teeth and 30
permanent teeth.

Table 8: Demonstration of the retrieval tasks for each dataset. We show the image (first row) query, the text query
(second row), and the retrieved ground truth document (third row) for each dataset. Since some retrieved documents
are too long, we only show part of the document and use ... to stand for continuing documents.
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Stage 1 Stage 2 Stage 3

WIT 2.8M - 140K
IGLUE - - -
KVQA 65K - 6.5K
CC3M 595K - 29.8K
MSMARCO 400K - 40K
OVEN 339K - 33.9K
LLaVA 351K - 35.1K
OKVQA 9K - 90K (repeat 10 times)
Infoseek 100K - 50K
E-VQA 167K 167K 167K

Table 9: The dataset sizes are adjusted in Stage 3 in
practice.

Single-task Downstream Fine-tuning: The batch
size is 8 and the gradient accumulation step is 8.
The number of negative examples is 4. For ref-
erence, in our experiments, the downstream fine-
tuning took 20k, 5k, 1k, 15k, 2.5k steps to achieve
the best performance for WIT, OVEN, Infoseek,
E-VQA, OKVQA respectively (for the ViT-G +
Base-v2 PreFLMR). The total training time is ap-
proximately 1 days per model per task.

VQA Fine-tuning: We used BLIP2-T5XL as
the answer generator as in RA-VQAv2 (Lin et al.,
2023b). The retriever was frozen during training
and inference. The batch size is 1 and the gradient
accumulation step is 16. For each question in a
training batch, top-5 relevant documents were pre-
extracted using the retriever, and 3 out of 5 were
randomly selected. These 3 documents were con-
catenated to the question and sent to the answer
generator for one forward pass individually. This
setting is to enable training with top-5 documents
given limited GPU memory. The total training time
is approximately 2 days per model.

Every model reported in this paper was repro-
duced once to make sure the training is repro-
ducible. The best result is reported since the model
with the best result will be released to the com-
munity. There is not much difference in the two
runs. The absolute difference is less than 0.2 Recall
score in most datasets (except that PreFLMR_ViT-
B_Base-v2 has a -0.4 difference on Infoseek).

B.3 Large-v1 Training
In our experiments, we found that training Large-v1
during Stage 2/3 was not steady. First, the loss de-
creased faster than in other systems, like Base-v1,
even though Large-v1 had worse system perfor-
mance. This happened because Large-v1’s bigger
model capacity made it more prone to overfitting.

Next, the loss suddenly shot up, causing the train-

ing to collapse, despite using the same data and
strategy as Base-v1. We tried different hyperpa-
rameters, like lowering the learning rate to 1e− 6,
3e− 6, but the model still collapsed.

Finally, when we used LoRA (Hu et al., 2022)
with Large-v1 during training, it helped stabilize
the process. The LoRA hyperparameters used were:
r = 16, α = 32, and a dropout rate of 0.05.

B.4 Model Design in Detail
Similar to FLMR, PreFLMR consists of three com-
ponents: a vision model FV , a mapping structure
FM , and a language model FL.

Feature Extraction. The textual query q consists
of an instruction and (optionally) a question (e.g.,
"Utilize the given image to procure documents ad-
dressing the following query: [Question]"). We use
a language model with hidden size dL to obtain em-
beddings for all Nq tokens which are concatenated
into matrix Qq:

Qq = FL(q) ∈ RNq×dL (2)

Like FLMR, a vision model FV encodes the
input image I , extracting the [CLS] token embed-
dings from the last layer. PreFLMR additionally
uses the patch embeddings from the penultimate
layer of ViT for more complete representation.

QI,[CLS] = FV (I) ∈ R1×dV (3)

QI,PATCH = FV,−2(I) ∈ RNV ×dV (4)

The mapping structure FM comprises two com-
ponents: a 2-layer MLP FMLP

M and a Transformer
block FTR

M .
Following the FLMR model, a 2-layer Multi-

Layer Perceptron (MLP) FMLP
M is utilized to con-

vert the initial token embeddings into visual token
embeddings with a length of Nvt and a hidden size
dh:7

QMLP
I = FMLP

M (QI,[CLS]) ∈ RNvt×dh (5)

Moreover, an additional Transformer module
FTR
M is introduced to manage all patch embeddings.

It is a stack of NTR transformer layers with a hid-
den size dL, followed by a simple MLP layer at the

7Transformation sequence: RdV → RNvtdh/2 →
RNvtdh , subsequently reshaped into RNvt×dh .
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end. This module leverages cross-attention with the
text query Qq, enabling query-aware image feature
mapping.

QTR
I = FTR

M (Fv(QI,PATCH),Qq) ∈ RNV ×dh

(6)
Here, Fv represents a 1-layer MLP that adapts

the dimension from dV to dL, which is subse-
quently transformed to dh by the linear MLP layer
of FTR

M . The resultant features from these pro-
cesses are concatenated to formulate the query em-
beddings:

Q =
[
Qq|QMLP

I |QTR
I

]
∈ R(Nvt+NV +Nq)×dh

(7)
Furthermore, the document representations in

the knowledge base are denoted by D, derived from
the document content d with length lD:

D = Fl(FL(d)) ∈ RlD×dh , (8)

where Fl signifies a straightforward MLP layer
tasked with mapping dL to dh, thereby aligning the
dimensionality with the query embeddings.

Multi-Modal Late Interaction. The relevance
score between a question-image pair q̄ = (q, I)
and a document d is calculated using a late-
interaction paradigm:

r(q̄, d) = r((q, I), d) =

lQ∑

i=1

lD
max
j=1

QiD
⊤
j (9)

where lQ = Nvt + NV + Nq. For each token
in the query, the system aggregates the maximum
relevance score across all tokens in the document.

Training and Inference. For model training,
documents d∗ corresponding to a query q are con-
sidered gold (positive) samples. We incorporate
random negative sampling from the corpus.8 Ad-
ditionally, we adopt in-batch negative sampling as
suggested by Karpukhin et al. (2020), treating all
non-corresponding documents in a batch as nega-
tives for q, denoted as N (q). The model is trained
using a contrastive loss across the dataset D:

L = −
∑

(q,d∗)∈D
log

exp (r(q, d∗))

exp (r(q, d∗)) +
∑

z∈N (q)

exp (r(q, z))

(10)
8In multi-dataset scenarios, negative samples are selected

from the same corpus as d∗.

Post-training, all documents are indexed through
PLAID (Santhanam et al., 2022a) for efficient late-
interaction retrieval. For detailed evaluation of
retrieval efficiency, we refer readers to Lin et al.
(2023b).

C Ablation Study on Pre-training Stages

We present the ablation study for the four pre-
training stages in Table 10. To ensure consistent
comparison, these ablated versions underwent the
same number of training steps as PreFLMR_ViT-
B_Base-v2. The results clearly indicate that the
removal of any stage deteriorates performance.
Specifically, disabling Stage 0 (i.e. using untrained
text encoder) leads to the most significant per-
formance decline because the text encoder is not
pre-trained on late-interaction, resulting in a di-
minished ability to capture fine-grained relevance
within the same computational budget. Note that
removing Stage 0 leads to collapsed performance
on Stage 1, where the text encoder is frozen. Fur-
thermore, removing Stage 2 notably affects the
performance on E-VQA more than on other KB-
VQA datasets, highlighting the challenge posed
by E-VQA and the necessity of intermediate pre-
training.

D V-Entropy-based Analysis of
Intermediate Pre-training

V-Entropy (Xu et al., 2020), HV(Y |X), is the min-
imal Negative Log-Likelihood (NLL) achievable
by the probabilistic predictor f(Y |X) under the
predicative family V . A predicative family can
be viewed as the set of reachable models under a
certain model architecture and training budgets.

We define Mutual Information IV[Nf ](D1 →
D2) between datasets D1 and D2 in Eq.11. We de-
fine HV[Nf ](D2) as the minimal achieved NLL loss
on the validation set of dataset D2 after Nf train-
ing steps on D2. V[Nf , D1, Nt] denotes the set of
reachable models after Nf fine-tuning steps on D2

starting from a checkpoint that has been trained on
dataset D1 for Nt steps. This is V-Entropy with
additional predictive family specification.

IV[Nf ](D1 → D2) = HV[Nf ](D2)

−HV[Nf ,D1,Nt](D2)
(11)

Intuitively, D1 has high mutual information with
D2 if models initialized from D1 checkpoints at-
tain much lower NLL loss compared to models
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Model WIT IGLUE KVQA MM OVEN LLaVA Infoseek E-VQA OKVQA

PreFLMR_ViT-B_Base-v1 41.7 57.3 28.6 79.5 46.3 67.2 48.8 67.9 66.1
w/o Stage 0 25.5 28.8 21.0 56.5 33.9 55.0 42.5 51.8 64.5
w/o Stage 1 38.2 54.9 26.6 78.0 45.5 62.8 44.6 61.9 65.5
w/o Stage 2 41.2 56.8 26.5 78.2 43.7 65.0 47.0 57.3 65.1

Table 10: Retrieval performance when disabling pre-training stages. Removal of any stage deteriorated the
performance.

initialized without training on D1. Nf and Nt set
the computation constraints for training on D2 and
D1, respectively. In our experiment, V is the Pre-
FLMR architecture, D1 is the E-VQA dataset and
D2 is the training set of M2KR. Nf corresponds to
Ninter in Sec. 5.6, which is the intermediate train-
ing steps on the E-VQA dataset. In the analysis,
we set Nf to 5,000 and sweep Nt from 0 to 25,000
in intervals of 5,000.

We refer readers to Xu et al. (2020) for de-
tailed properties of V-Entropy and emphasize that
IV[Nf ](D1 → D2) is an empirical value we define
to estimate mutual information between datasets.
It is different from the V-Information defined in Xu
et al. (2020) which estimates the mutual informa-
tion between model input and output.

E Qualitative Analysis for OKVQA and
E-VQA

In this section, we compare examples from the
OKVQA and E-VQA datasets to highlight their
differences. To avoid cherry-picking, we use exam-
ples from its official website9 for OKVQA. Sim-
ilarly, we use the examples included in the paper
for E-VQA. Table 11 presents three examples from
each dataset.

The OKVQA examples typically require com-
mon sense knowledge, like ‘people attend church
on Sundays’ or ‘firetrucks use fire hydrants.’ State-
of-the-art Large Language Models (LLMs) often
have this common sense knowledge inherently
built-in, making additional knowledge retrieval less
impactful for OKVQA tasks.

In contrast, E-VQA examples demand more spe-
cialized, expert-level knowledge, necessitating an
effective knowledge retrieval system. For instance,
correctly answering a question about ’Acacia para-
doxa’ requires first retrieving the relevant doc-
ument providing specific information about this
plant species. Enhancing the knowledge retrieval

9https://okvqa.allenai.org/

system to source accurate documents is crucial for
improving performance on the E-VQA dataset.

F Artifacts and License

We list the resources used and their License below:
(1) huggingface-transformers (Apache Li-

cense 2.0) provides pre-trained model check-
points for BLIP 2, DPR, and their tokenizers:
https://github.com/huggingface/transformers

(2) FAISS (Johnson et al., 2019) (MIT
License) is used to index document em-
beddings for fast retrieval with DPR:
https://github.com/facebookresearch/faiss

(3) huggingface-PEFT (Apache License
2.0) for parameter-efficient LoRA fine-tuning:
https://github.com/huggingface/peft

(4) PLAID and ColBERTv2 (MIT License):
https://github.com/stanford-futuredata/ColBERT

(5) RA-VQA-v2 official reposi-
tory with training and testing codes
(GNU General Public License v3.0):
https://github.com/LinWeizheDragon/Retrieval-
Augmented-Visual-Question-Answering.

(6) Datasets used in building the M2KR bench-
mark:

• WIT (Creative Commons
Attribution-ShareAlike 3.0 Unported
https://github.com/google-research-
datasets/wit/blob/main/LICENSE);

• MSMARCO (non-
commercial research purposes
only https://microsoft.github.io/msmarco/);

• CC3M (Free for any pur-
poses https://github.com/google-research-
datasets/conceptual-captions);

• LLaVA, the image of LLaVA is a subset of
CC3M. It should inherit the license of CC3M.
The conversation data follows policy of Ope-
nAI: https://openai.com/policies/terms-of-use.

• IGLUE (MIT license https://github.com/e-
bug/iglue/blob/main/LICENSE);
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OKVQA

Q: What days might I most commonly
go to this building?

Q: What sort of vehicle uses this item? Q: Is this photo from the 50’s or the
90’s?

A: Sunday A: firetruck A: 50’s

E-VQA

Q: How many feet tall does this tree
grow to?

Q: How many eggs does this reptile typ-
ically lay?

Q: Who founded this monastery?

A: 7 to 13 A: 3-6 A: Prince Constantin Brâncoveanu

Table 11: Demonstrative examples from OKVQA and E-VQA. Questions in E-VQA require more domain knowledge
to answer generally.

• KVQA (No specific license is men-
tioned https://malllabiisc.github.io/resources/kvqa/);

• OVEN (Apache-2.0 license
https://github.com/open-vision-
language/oven/blob/main/LICENSE);

• E-VQA (no specific license mentioned
https://github.com/google-research/google-
research/tree/master/encyclopedic_vqa);

• Infoseek (Apache License 2.0
https://github.com/open-vision-
language/infoseek/blob/main/LICENSE)

• OKVQA (Copyright (c) 2021, Chen Qu
and Center for Intelligent Information
Retrieval, University of Massachusetts,
Amherst. https://github.com/prdwb/okvqa-
release/blob/main/LICENSE)

In particular, we emphasize that no changes are
made to the original data of all the datasets used in
our work. Our released models and artifacts should
only be used for non-commercial purposes. By
using the pre-trained models, users agree to respect
the terms and conditions of the datasets used in
pre-training.

G PreFLMR model performance radar
chart on M2KR tasks

Fig. 3 demonstrates the performance of PreFLMR
with a radar plot. The best and worst numbers of
each task are annotated.

H AI Assistance

Our coding work was assisted by Github Copilot.10

OpenAI ChatGPT11 was only used in proofread-
ing and spell-checking. We claim that the content
presented in this paper was fully original.

10https://github.com/features/copilot
11https://chat.openai.com/
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Figure 3: PreFLMR achieves strong performance on the M2KR benchmark. The scale of the plot is adjusted for
better visualization. The best and worst numbers of each task are annotated.
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