
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5186–5200
August 11-16, 2024 ©2024 Association for Computational Linguistics

Quantifying Uncertainty in Answers from any Language Model and
Enhancing their Trustworthiness

Jiuhai Chen
Cleanlab, University of Maryland

jchen169@umd.edu

Jonas Mueller
Cleanlab

jonas@cleanlab.ai

Abstract

We introduce BSDETECTOR, a method for de-
tecting bad and speculative answers from a pre-
trained Large Language Model by estimating
a numeric confidence score for any output it
generated. Our uncertainty quantification tech-
nique works for any LLM accessible only via
a black-box API, whose training data remains
unknown. By expending a bit of extra compu-
tation, users of any LLM API can now get the
same response as they would ordinarily, as well
as a confidence estimate that cautions when
not to trust this response. Experiments on both
closed and open-form Question-Answer bench-
marks reveal that BSDETECTOR more accu-
rately identifies incorrect LLM responses than
alternative uncertainty estimation procedures
(for both GPT-3 and ChatGPT). By sampling
multiple responses from the LLM and consid-
ering the one with the highest confidence score,
we can additionally obtain more accurate re-
sponses from the same LLM, without any extra
training steps. In applications involving auto-
mated evaluation with LLMs, accounting for
our confidence scores leads to more reliable
evaluation in both human-in-the-loop and fully-
automated settings (across both GPT 3.5 and
4).

1 Introduction

While the promise of Large Language Models
(LLMs) and Agents (powered by LLMs) has be-
come evident, their usage in high-value applica-
tions remains limited by their unreliability. Ac-
cessed via black-box APIs (via providers like Ope-
nAI/Anthropic), today’s best LLMs have been
trained to produce convincing-looking responses
and thus often appear overconfident (Ji et al., 2023).
For many input prompts encountered in the wild,
the model cannot be certain about the desired re-
sponse (perhaps because the prompt is vague or
is related to a specific fact/event absent from the

training dataset), yet these models output plausible-
sounding yet wildly incorrect answers in such
scenarios. This hallucination problem has also
plagued traditional supervised learning systems,
where it is traditionally addressed via uncertainty
estimation to know when one can trust a model’s
prediction (Gal and Ghahramani, 2016a; Lakshmi-
narayanan et al., 2017; Guo et al., 2017; Liang et al.,
2018; Fortunato et al., 2017; Gal and Ghahramani,
2016b; Kuleshov et al., 2018).

In traditional supervised learning, one has ac-
cess to the training data of the model and its proba-
bilistic estimates, as well as being able to modify
the training procedure to improve model calibra-
tion (Gal and Ghahramani, 2016a; Fortunato et al.,
2017). Other traditional uncertainty estimation pro-
cedures require the existence of a validation set
that can be used for calibration (Angelopoulos and
Bates, 2021). None of this is available for today’s
best LLMs, which may be given any imaginable
prompt rather than (input, output) pairs stemming
from a limited distribution. Thus approaches to
uncertainty estimation for black-box LLMs must
wrap the inference procedure.

Our proposed LLM’s uncertainty quantification
technique, BSDETECTOR, calls the LLM API mul-
tiple times with varying prompts and sampling tem-
perature values (see Figure 1). We expend extra
computation in order to quantify how trustworthy
the original LLM response is, a worthwhile trade-
off for high-stakes applications. Our method is
conceptually straightforward, generally applicable
across LLM providers (as well as Agent frame-
works (Chase, 2022) or any stochastic text → text
mapping), and produces confidence scores whose
values are reliably lower for responses from the
LLM that are more likely bad.

BSDETECTOR confidence scores allow LLMs
to be more safely used in high-stakes applications,
since we can know which LLM outputs are not to
be trusted. Depending on the application, we can

5186

...

Observed Consistency

+ Ans ...

Correct

Wrong

Not Sure

Self-reflection Certainty

&. (
(. (

0.5

...

...

LLM

Prompt + Question

Prompt + Question
Question

Ans

Confidence

LLM

Ans Ans 1Sim (,)

Ans Ans 1Sim (,)Ans 2

Ans Ans 1Sim (,)Ans kAns k

Ans 2

Ans 1

T=1.0

LLM

(a) Pipeline of BSDETECTOR, which can be applied to any LLM API. (T = 1.0 means temperature
sampling with parameter 1.0, Sim (·,·) means the semantic similarities between two sentences.)

Question: Which part of
the human body
produces insulin?
Answer from ChatGPT:
pancreas.

BSDetector
ChatGPT Answer is

Correct

ChatGPT answer: pancreas
Confidence: 0.839

Question: What color are
the two stars on the
national flag of Syria?
Answer from ChatGPT:

red.

BSDetector
ChatGPT Answer is

Wrong !

ChatGPT answer: red
Confidence: 0.209

(b) Two prompts from a Trivia Q&A dataset (Joshi et al., 2017) and the responses from ChatGPT, along
with the associated confidence scores from BSDETECTOR.

Figure 1: Overview of our LLM uncertainty quantification technique.

adaptively ask a human for an alternative response
when the confidence score is low, automatically
route the prompt to an alternative LLM provider,
or simply respond “I don’t know” when a confident
response cannot be generated. Our experiments
reveal that for Question-Answering applications,
we can automatically generate more accurate an-
swers by sampling multiple responses from the
same LLM and selecting the response whose BS-
DETECTOR confidence estimate is the highest.

This paper primarily focuses on Question-
Answering applications, but our same uncertainty
estimates can also be applied to estimate how con-
fident the LLM is in its response to a more general
prompt. Intuitively, we’d like to see a low confi-
dence score when the LLM outputs: a factually
incorrect response to a question, a inaccurate sum-
mary requested for a document, or a generated
article/message that semantically differs from the
intention of the original request. Ensuring this is
challenging without control over LLM training, but
we can hope that in each of these three scenarios
where the model generated a bad response, a well-

trained LLM was also likely to output alternative
responses (which more closely reflect the desired
response). BSDETECTOR is based on this intuition,
and is observed to produce effective uncertainty es-
timates with today’s top LLMs from OpenAI across
prompts from closed and open domain benchmark
datasets.

2 Related Work

For estimating the confidence levels tied to re-
sponses output by large language models, Kuhn
et al. (2023) introduces semantic entropy, incor-
porating linguistic invariances created by shared
meanings. However their approach requires ac-
cess to token-level probabilities from the LLM,
which is often not accessible with today’s black-
box APIs. Kadavath et al. (2022) prompts the mod-
els to self-evaluate their answers and directly ask
the LLM to produce the likelihood P (Answer is
True) – also fine-tuning the model to output bet-
ter values for its stated likelihood. Relatedly, Lin
et al. (2022) prompts LLMs to generate both an
answer and a level of confidence. Manakul et al.

5187

Question: A tower is made out of 4 blue
blocks, twice as many yellow blocks, and an
unknown number of red blocks. If there are
32 blocks in the tower in total, how many
red blocks are there?

BSDetector
0.137
0.406

0.929

24

16

20

T=1.0

Select which answer ? confidence

20
correct !

Select based on confidence

Figure 2: ChatGPT is used to generate the answers to arithmetic problem "A tower is ..." with temperature sampling
T = 1.0. Subsequently, BSDETECTOR is utilized to select the most confident answer from the three possible
answers.

(2023) proposes a sampling-based approach to de-
tect hallucinated facts. All of these aforementioned
approaches train additional models via supervised
learning, unlike BSDETECTOR which does not em-
ploy any additional training. More recently, Tian
et al. (2023) conducts evaluations of computation-
ally feasible methods to extract confidence scores
from the probabilities output by LLMs trained via
Reinforcement Learning with Human Feedback.
Lin et al. (2023) differentiates between uncertainty
and confidence estimation for LLMs (under their
terms, our work is focused on the latter, but without
requiring access to the auto-regressive token prob-
ability estimates their method is based on). The
works of Tian et al. (2023) and Lin et al. (2023)
only study limited tasks, and it remains unclear
whether their conclusions still hold in the context
of reasoning or arithmetic. Here we demonstrate
that our method produces effective uncertainty esti-
mates across multiple domains involving reasoning,
arithmetic, and knowledge of facts.

3 BSDETECTOR uncertainty estimation

When posing a question to LLMs, we aim to to
estimate how confident we should be that a par-
ticular LLM answer is correct (or simply “good”
for more general LLM responses). Specifically,
for input question x, we want to not only obtain
an answer y from the LLM, but also an associ-
ated confidence score for this answer C(x, y). Our
confidence assessment derives from two factors:
Observed Consistency and Self-reflection Cer-
tainty, which respectively are extrinsic and intrin-
sic evaluations of LLM confidence. Since a well-
trained LLM should consider multiple different
answers when asked an under-specified question
or about something not contained in its training
data, Observed Consistency extrinsically measures
whether the LLM finds multiple contradictory an-
swers likely to be good responses. Since effec-
tive LLMs can reasonably evaluate text from ar-
bitrary agents, Self-Reflection Certainty directly

asks the LLM to intrinsically reflect on whether
its own previously-generated answer seems correct
and how confident it is about this.

3.1 Observed Consistency

The first critical measure of model uncertainty
is contradiction score amongst possible answers
LLMs gives to a particular input questions. Ob-
served Consistency is an extrinsic confidence as-
sessment performed by a user who engages in re-
peated interactions with LLMs. If a model ex-
hibits strong observed consistency, it’s less likely
to present alternative responses that are substan-
tially different from its initial answer. The idea was
initially inspired by Self-Consistency (Wang et al.,
2023). While Self-Consistency enhances LLM ac-
curacy in closed-form tasks like arithmetic or com-
monsense reasoning, it falls short when applied to
open-form tasks. Within the Self-consistency ap-
proach, an indicator function is used to measure the
similarity amongst various likely responses. Here
we extend the indicator function to a particular
form of semantic similarity based on contradiction
ratings, enabling our approach to be used in both
open and closed form tasks.

Producing Diverse Output. Our first action runs
the LLM multiple times to produce multiple var-
ied responses. Besides increasing the temperature
values (which can only be done so much without
getting nonsensical outputs), we can alternatively
modify the prompt itself when sampling each re-
sponse to get a more diverse set of responses for
computing the observed consistency. Here we add a
Chain-of-Thoughts (CoT, (Wei et al., 2022)) mod-
ification, along with other guidelines for output
formatting, to the prompt used to sample these out-
puts. The specific prompt template is illustrated in
Figure 6a, the outputs produced by this prompt are
denoted as {y1,y2, ...,yk}, where k is the num-
ber of sampled outputs. Higher values of k lead
to better uncertainty estimates, but require more
computation (we found k = 5 works well enough

5188

in practice).
Note here we only modify the prompt used to

sample varied responses for computing the ob-
served consistency, not the prompt originally given
to produce the original reference response. We
tried alternative prompt modification techniques to
encourage greater output diversity (such as adding
additional made-up context in the prompt, or en-
couraging the LLM to answer as a specific persona),
but found the CoT modification to work best (Table
3b).

Measuring Similarity between Sampled and
Original Answer. After receiving multiple out-
puts, the following step is to measure the similari-
ties between each element in {y1,y2, ...,yk} and
original answer y. Instead of using the indicator
function to precisely match two numeric responses
(e.g., 1.0 v.s. 2.0) or two choices (e.g. A v.s. B),
we consider semantic similarities. Not just overall
similarities (e.g. via LLM embeddings) which are
sensitive to variation that does not necessarily in-
dicate the LLM is uncertain, but rather measuring
whether the semantics of the two outputs contra-
dict one another or not. A common strategy to
estimate this is to use a natural language inference
classification system (NLI) (Kuhn et al., 2023),
which classifies a pair of two text statements yi

and y as one of: entailment, neutral, or contradic-
tion. Specifically, the input of NLI is formed by
concatenating yi and y, and then NLI returns the
probabilities p for each of these 3 classes. For each
element in {y1,y2, ...,yk}, we can get the simi-
larity scores with respect to the original reference
answer y, denoted as {s1, s2, ..., sk}.

Note that today’s best NLI models (He et al.,
2021) are significantly smaller than LLMs, and
thus the NLI computation to obtain si is negligi-
ble compared to sampling each LLM answer yi.
However, even the best NLI models were trained
on a limited dataset and thus do not always gener-
alize reliably to arbitrary pairs of statements. In
particular, we note the contradiction probabilities
can be unreliable for single-word statements as
encountered in certain closed-form tasks whose
answers are likely not well-represented in the orig-
inal NLI training dataset. To account for this, we
additionally incorporate the indicator function in
our similarity measure to enhance its stability for
closed-form tasks. The indicator function is de-
noted as ri = 1[y = yi] for i = 1, 2, ..., k.

For each element yi in {y1,y2, ...,yk}, we de-

rive the similarity score as: oi = αsi + (1− α)ri,
here 0 ≤ α ≤ 1 is a trade-off parameter. It
should have larger value the more we trust our
NLI model to properly generalize its contradiction
estimates. Finally, we average over k samples to
obtain the Observed Consistency score for answer
y is O = ōi.

3.2 Self-reflection Certainty
Our Self-reflection certainty is an confidence esti-
mate output by LLM itself when asked follow-up
questions encouraging it to directly estimate the
correctness of its original answer. Unlike sampling
multiple outputs from the model (as in Observed
Consistency) or computing likelihoods/entropies
based on its token-probabilities which are extrin-
sic operations, self-reflection certainty is an intrin-
sic confidence assessment performed within the
LLM. Because today’s best LLMs are capable of
accounting for rich evidence and evaluation of text
(Kadavath et al., 2022; Lin et al., 2022), such in-
trinsic assessment via self-reflection can reveal ad-
ditional shortcomings of LLM answers beyond ex-
trinsic consistency assessment. For instance, the
LLM might consistently produce the same non-
sensical answer to a particular question it is not
well equipped to handle, such that the observed
consistency score fails to flag this answer as suspi-
cious. Like CoT prompting, self-reflection allows
the LLM to employ additional computation to rea-
son more deeply about the correctness of its answer
and consider additional evidence it finds relevant.
Through these additional steps, the LLM can iden-
tify flaws in its original answer, even when it was a
high-likelihood (and consistently produced) output
for the original prompt.

To specifically calculate self-reflection certainty,
we prompt the LLM to state how confident it is that
its original answer was correct. Like Peng et al.
(2023), we found asking LLMs to rate their confi-
dence numerically on a continuous scale (0-100)
tended to always yield overly high scores (> 90).
Instead we ask the LLM to rate its confidence in its
original answer via multiple follow-up questions
each on a multiple-choice (e.g. 3-way) scale. For
instance, we instruct the LLM to determine the
correctness of the answer by choosing from the
options: A) Correct, B) Incorrect, C) I am not sure.
Our detailed self-reflection prompt template can
be viewed in Figure 6b. We assign a numerical
score for each choice: A = 1.0, B = 0.0 and C
= 0.5, and finally, our self-reported certainty S is

5189

Wrong Correct
GPT-4 evaluation

W
ro

ng
Co

rre
ct

Tr
ue

 e
va

lu
at

io
n

94
15.67%

88
14.67%

10
1.67%

408
68.00%

50

100

150

200

250

300

350

400

(a) TriviaQA: Using GPT-4 to evaluate the correctness of an-
swers generated by text-davinc-003, and judging them as cor-
rect or incorrect. This is the confusion matrix for GPT-4 evalu-
ation v.s ground truth evaluation.

Bad Fair Good Excellent
GPT-4 evaluation

Ba
d

Fa
ir

Go
od

Ex
ce

lle
nt

Tr
ue

 e
va

lu
at

io
n

58
9.67%

19
3.17%

23
3.83%

0
0.00%

22
3.67%

52
8.67%

84
14.00%

3
0.50%

7
1.17%

39
6.50%

170
28.33%

9
1.50%

0
0.00%

4
0.67%

103
17.17%

7
1.17%

0

20

40

60

80

100

120

140

160

(b) Summarize-from-feedback: Using GPT-4 to assess the qual-
ity of summaries (ranging from bad to excellent) given the
original context,. This is the confusion matrix for GPT-4 evalu-
ation v.s ground truth evaluation.

Figure 3: In both datasets, automated evaluation based on GPT-4 is not as reliable as one would hope to reach
trustworthy conclusions.

the average of these scores over all rounds of such
follow-up questions.

3.3 Overall Confidence Estimate
Considering the distinct characteristics of the Ob-
served Consistency and Self-reflection Certainty,
we anticipate they might complement each other.
BSDETECTOR aggregates the Observed Consis-
tency and Self-reflection Certainty values into an
overall confidence score for the LLM response:

C = βO + (1− β)S, (1)

here 0 ≤ β ≤ 1 is a trade-off parameter. It should
have larger value the more we trust the LLM’s
ability to do calibrated self-reflection assessment
of arbitrary (question, answer) pairs.

4 Application: Generating More Reliable
Answers from any LLM

One straightforward application of our BSDETEC-
TOR uncertainty estimation is to apply it to (each
of) multiple candidate answers produced from the
same LLM: {y′

1,y
′
2, ...,y

′
k}. This assessment al-

lows is to determine which candidate LLM an-
swer y′

i appears most trustworthy, and return that
one instead of always returning y (see Figure 2).
Specifically, we use the same prompt to ask the
LLM to produce several responses via tempera-
ture sampling. For each candidate answer, we
reuse the same set of previously-described LLM
outputs {y1, y2, ..., yk} to compute an observed-
consistency score. Following the standard BSDE-
TECTOR procedure, we prompt the LLM to assign a

self-reflection certainty to each candidate response.
Finally we select the answer with highest BSDE-
TECTOR confidence score. An alternate answer
y′
i ̸= y can be deemed most trustworthy via this

procedure only if: the LLM was able to identify
fewer likely answers that contradict y′

i and was
more certain about the correctness of y′

i during the
intrinsic self-reflection assessment.

5 Application: More reliable LLM-based
(automated) evaluation

In open-domain tasks, it is challenging to evaluate
the correctness/quality of answers (irrespective of
whether these answers were generated by a LLM
or human). Often one resorts to automated evalua-
tion using models like GPT-3.5-turbo or GPT-4 to
assess the correctness of answers (Lin et al., 2023;
Chen et al., 2023c; Taori et al., 2023; Chen et al.,
2023b; Xu et al., 2023; Chen et al., 2023a). Re-
cent instruction fine-tuning techniques such as Al-
paca (Taori et al., 2023) and WizardLM (Xu et al.,
2023) also utilize GPT-4 for automated evaluation
of generated answers. Even when they are based
on advanced LLMs like GPT-4, there remain ques-
tions about the reliability of these LLM-based
evaluations.

Here we outline two ways to boost the reliability
of LLM-based evaluation: human-in-the–loop and
fully automated. Both start by computing BSDe-
tector confidence scores for each LLM-evaluation
(these scores estimate not the trustworthiness of the
generator of the answers, but rather the evaluator
of their correctness). Let A denote the subset of

5190

Table 1: AUROC (higher is better) achieved by different confidence scoring methods across various datasets.

Dataset Likelihood Based Uncertainty Temperature Sampling Self-reflection Certainty BSDETECTOR
(Malinin and Gales, 2021) (Wang et al., 2023) (Tian et al., 2023)

Text-Davinci-003

GSM8K 0.647 0.614 0.521 0.867
CSQA 0.490 0.540 0.539 0.743

SVAMP 0.668 0.653 0.619 0.936
TriviaQA 0.708 0.769 0.653 0.828

GPT-3.5 Turbo

GSM8K - 0.660 0.831 0.951
CSQA - 0.583 0.506 0.769

SVAMP - 0.671 0.839 0.927
TriviaQA - 0.689 0.655 0.817

answers where the corresponding LLM-evaluation
had the lowest BSDetector confidence scores (in-
dicating the automated evaluation for this answer
is untrustworthy). The gold-standard for evaluat-
ing open-domain answers is human inspection, but
this is costly. Under a limited labor budget, we
can boost the reliability of LLM-based evaluation
by having humans only inspect and provide eval-
uations for the answers in A. In settings where
this human-in-the-loop approach is not possible,
an alternative fully-automated way to boost the re-
liability of LLM-evaluation is to simply omit the
answers in A entirely from the evaluation-set.

6 Experiments

6.1 Calibration of uncertainty estimates

Datasets. Our experiments consider numerous
question-answering benchmarks listed below. For
each example in each benchmark dataset, the true
answer is known enabling us to precisely assess
the accuracy of LLM responses. We study per-
formance in: GSM8K (Cobbe et al., 2021) and
SVAMP (Patel et al., 2021), datasets composed
of grade school math word problems, Common-
sense Question Answering (CSQA) (Talmor et al.,
2019), a dataset requiring some level of reasoning,
and TriviaQA (Joshi et al., 2017), an open-form
trivia question dataset that gauges models’ factual
knowledge. Because TriviaQA is open-domain, the
correct answers provided do not entail all valid so-
lutions, so we also manually validated the accuracy
of LLM-generated responses.

Baseline Methods. Our study also evaluates the
following baseline uncertainty estimation methods:
Likelihood Based Uncertainty calculates the joint
log-probability of a sequence from the autoregres-
sive estimator and normalizes it by the sequence
length (Malinin and Gales, 2021). While it repre-
sents the typical way to estimate aleatoric uncer-
tainty in traditional supervised learning and struc-
tured prediction (Hendrycks and Gimpel, 2017),

this approach can only can be applied to Text-
Davinci-003, since the GPT-3.5 Turbo API does
not provide access to token-level probabilities from
the model. Self-reflection Certainty (Tian et al.,
2023) and BSDETECTOR are introduced in Fig 1a.
Temperature sampling (Wang et al., 2023) is equiv-
alent to BSDETECTOR without: CoT prompting,
self-reflection certainty, and the indicator function
term inside of the text-similarity metric.

Results. Table 1 presents the performance results
for our various benchmark tasks and uncertainty
estimation methods. Here BSDETECTOR signif-
icantly outperforms all baselines across datasets,
revealing that confidence from BSDETECTOR well
aligns with accuracy.

6.2 Generating More Reliable Answers from
any LLM

In Table 2, we select the response with the high-
est confidence out of 5 generated responses as de-
scribed in Section 4. For all tasks, BSDETECTOR

can identify less accurate responses and notably
improve LLM accuracy. Table 2 compares this
approach against the original single answer y gen-
erated by the LLM (with temperature set to 0),
referred to as the Reference Answer. We also com-
pare two prompting strategy: Standard Prompting
and CoT prompting. The consistent accuracy gain
observed in Table 2 demonstrates our method gen-
erates more accurate answer. .

Table 2: Generating more reliable LLM answers using
GPT-3.5 Turbo. We show the accuracy of each set of
answers for the dataset produced from the LLM with
different prompting.

LLM Dataset Reference Answer (%) BSDETECTOR (%)

Standard Prompting

GSM8K 47 70
CSQA 72 73

SVAMP 75 82
TriviaQA 73 76

CoT Prompting

GSM8K 71 73
CSQA 74 76

SVAMP 78 83
TriviaQA 75 79

5191

0 100 200 300 400 500 600

Number of samples reviewed

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

G
P

T4
 E

va
lu

at
io

n
P

er
fo

rm
an

ce
 (A

cc
ur

ac
y)

random selection
confidence selection

(a) TriviaQA

0 100 200 300 400 500 600

Number of sample reviewed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
P

T4
 E

va
lu

at
io

n
P

er
fo

rm
an

ce
 (M

S
E

)

random selection
confidence selection

(b) Summarize-from-feedback

Figure 4: Human in the loop LLM-based evaluation, with the number of answers evaluated by humans varied
along the x-axis (remaining answers are auto-evaluated by GPT-4). The resulting accuracy/MSE of the combined
set of human + GPT-4 evaluations is shown along the y-axis, under confidence-based vs. random selection to
decide which subset of answers receive human evaluation. Selecting answers for human review based on low
BSDETECTOR confidence scores (confidence selection) leads to higher evaluation accuracy than random
selection (left figure), lower evaluation MSE error than random selection (right figure).

6.3 More reliable LLM-based (automated)
evaluation

We first investigate how reliable GPT-4 based eval-
uation is in practice. First we employ the Text-
Davinci-003 model to produce answers for Triv-
iaQA (Joshi et al., 2017). Subsequently, GPT-
4 is given the question and generated answer
(from Text-Davinci-003) and asked to designate
the answer as correct or incorrect (see the Fig-
ure 6c for the specific evaluation prompt). Since
ground-truth answers are available for TriviaQA,
we can report the accuracy of GPT-4 based eval-
uation (Figure 3a). We further explore the relia-
bility of GPT-4 judgments by testing them on an-
other dataset, Summarize-from-feedback (Stien-
non et al., 2020). This dataset provides the original
context, a summary derived from that context, and a
human assessment of the summary’s quality (which
we hold out only for reporting purposes here). We
employ GPT-4 based evaluation to automatically
rate each summary’s quality, asking the GPT-4 to
select from options: Bad/Fair/Good/Excellent (see
the Figure 6d for the specific evaluation prompt).
Given that the discrepancy between Good and Ex-
cellent ratings is smaller than that between Bad and
Excellent, we assign numerical values of 1/2/3/4 to
Bad/Fair/Good/Excellent, and calculate the mean
squared error (MSE) for the evaluation error. Both
Figure 3a and 3b indicate automated evaluation
based on GPT-4 is not as reliable as one would
hope to reach trustworthy conclusions.

Finally we study whether BSDETECTOR can
help us achieve more reliable evaluations with GPT-

4, as described in Section 5. We consider the
TriviaQA and Summarize-from-feedback datasets
with the same evaluation prompts from the previ-
ous paragraph, and compute BSDETECTOR confi-
dence scores for the GPT-4 evaluator as described
in Section 5. Specifically, we consider a human-in-
the-loop approach where humans evaluate answers
that GPT-4 is least confident about, where the cor-
responding GPT-4 evaluation has BSDETECTOR

confidence score amongst the K lowest values. We
compare this method, termed confidence selection
against a baseline where answers for human review
are chosen randomly. Figure 4 shows that selecting
answers for human review based on BSDETEC-
TOR confidence leads to more accurate evaluations
across both datasets.

To conclude, we study the fully-automated ap-
proach to LLM-based evaluation from Section 5,
which offers a labor-free way to utilize the BSDE-
TECTOR confidence scores. Recall in this approach
we simply omit the subset of answers from the
evaluation-set entirely. We can then compute the
average evaluation-score from GPT-4 as an over-
all quality estimate for the collection of generated
answers. Intuitively, we do not want to include
answers in this average whose GPT-4 evaluation is
highly uncertain (to reduce variance), but discard-
ing answers shrinks the remaining evaluation-set
thus increasing variance of the resulting average.

Evaluating the impact of these variance changes
requires statistical repetition, so we repeat the fol-
lowing procedure 500 times: For both datasets
(TriviaQA, Summarize-from-feedback), we select

5192

0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

GPT4 Evaluation Performance (Accuracy)

0

100

200

300

400

500

C
ou

nt

random selection
confidence selection
full datasets

(a) TriviaQA: higher scores on the X-axis indicate better accu-
racy.

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76

GPT4 Evaluation Performance (MSE)

0

20

40

60

80

100

120

140

160

C
ou

nt

random selection
confidence selection
full datasets

(b) Summarize-from-feedback: lower values on the X-axis
indicate smaller error.

Figure 5: The histogram of evaluation accuracy/error over 500 experiments: fully-automated GPT-4 based evaluation,
assessing the accuracy/error over many replicate datasets (observed counts amongst replicates on y-axis). By
discarding the bottom 20% of evaluations with the lowest confidence, the average GPT-4 evaluation score consistently
reaches an accuracy of 1.0 on TriviaQA, indicating completely trustworthy LLM-based evaluations (and the MSE
of the average GPT-4 score consistently improves compared to the full dataset or discarding a random 20%).

500 answers and calculate the average GPT4
evaluation-score over these answers. We call these
the full dataset and the resulting average is the base-
line score (estimator), whose accuracy/MSE we
report against the average human evaluation score
across the full dataset (estimand). To utilize BS-
DETECTOR for a more reliable estimator of the av-
erage human-evaluation score, we simply remove
the 20% of answers with the lowest confidence
scores for the corresponding GPT-4 evaluation, and
compute the average GPT-4 evaluation score over
the remaining 400 answers. As a sanity check,
we also repeat this procedure but this time ran-
domly dropping 20% of the answers (rather than
based on confidence score), which purely increases
the variance of resulting average GPT-4 evalua-
tion score with no benefits. Figure 5 shows the re-
sulting deviation between average GPT-evaluation
score and average human evaluation score over all
of these statistical replicate experiments. Across
both datasets, we get more reliable average LLM-
evaluation scores by discarding the answers with
the lowest confidence scores for the corresponding
LLM-evaluation. Preventing the high-uncertainty
LLM-evaluations from corrupting the average eval-
uation score is clearly worth the variance-penalty
paid by shrinking the size of the evaluation set.

7 Comparison with Related Work and
Further Impact of our Work

It is very challenge to benchmark some LLM base-
lines, this difficulty often arises due to the extensive
use of meticulously crafted prompt engineering in
some papers. Our goal is not necessarily to out-

perform some baselines, as prompt engineering
can significantly impact results. Instead, we strive
to minimize task-specific, ad-hoc processes in fa-
vor of creating simple, yet effective methods. In
our paper, we concentrate exclusively on Question-
Answer scenarios because their performance is eas-
ily measurable. However, in practice, BSDETEC-
TOR is applied across a wider range of applications.
For instance, we applied our method to assist at-
torneys in drafting documents (Table 5 in the ap-
pendix). Our approach not only generates extensive
text but also provides a confidence score for each
draft. Additionally, we developed a chat window
allowing interaction with our AI agent. In each
conversation, the agent produces text accompanied
by a confidence score (Table 6 in the appendix).
It’s important to note that benchmark performance
alone does not fully reflect a language model’s
capability. The true evaluation should consider
the user experience during interactions between
users and the agents. Surveys of users of our chat
application reveal that our method assigns useful
confidence scores for long text generation in open-
domain settings, and these users report the scores
help them identify hallucinations.

8 Discussion

This paper presents BSDETECTOR, a method de-
signed to identify unreliable or speculative answers
from LLMs by computing a confidence score for
its generated outputs. Due to its simplicity and
generality, we expect BSDETECTOR uncertainty
estimation to find many applications across diverse
domains/tasks, beyond the studies in this paper on.

5193

Limitations

The introduction of BSDETECTOR, while promis-
ing for improving the reliability of Large Lan-
guage Models (LLMs) through confidence scoring,
presents limitations including its dependency on
sampling multiple responses which could increase
computational demands, potential challenges in
generalizing across different LLM architectures or
domains, and the inherent limitations of working
with black-box APIs which may restrict the depth
of analysis possible. Additionally, the method’s
performance in accurately identifying incorrect re-
sponses and its effectiveness across various ques-
tion types and domains has yet to be fully explored.
These constraints underscore the need for further
research to enhance the method’s applicability and
efficiency, particularly in scenarios with tight re-
source constraints or specialized knowledge re-
quirements.

References
Anastasios N. Angelopoulos and Stephen Bates. 2021.

A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. CoRR,
abs/2107.07511.

Harrison Chase. 2022. LangChain.

Jiuhai Chen, Lichang Chen, Heng Huang, and Tianyi
Zhou. 2023a. When do you need chain-of-thought
prompting for chatgpt? CoRR, abs/2304.03262.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou.
2023b. How many demonstrations do you need for
in-context learning? In Findings of the Association
for Computational Linguistics: EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 11149–11159.
Association for Computational Linguistics.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng
Huang, and Tianyi Zhou. 2023c. Instructzero: Ef-
ficient instruction optimization for black-box large
language models. CoRR, abs/2306.03082.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. CoRR, abs/2110.14168.

Meire Fortunato, Charles Blundell, and Oriol Vinyals.
2017. Bayesian recurrent neural networks. CoRR,
abs/1704.02798.

Yarin Gal and Zoubin Ghahramani. 2016a. Dropout
as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the
33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24,

2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 1050–1059. JMLR.org.

Yarin Gal and Zoubin Ghahramani. 2016b. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pages 1019–1027.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages
1321–1330. PMLR.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: decoding-enhanced
bert with disentangled attention. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline
for detecting misclassified and out-of-distribution ex-
amples in neural networks. In 5th International Con-
ference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12):248:1–248:38.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 1601–1611. Association for
Computational Linguistics.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El Showk, Andy
Jones, Nelson Elhage, Tristan Hume, Anna Chen,
Yuntao Bai, Sam Bowman, Stanislav Fort, Deep
Ganguli, Danny Hernandez, Josh Jacobson, Jack-
son Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know what
they know. CoRR, abs/2207.05221.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.

5194

http://arxiv.org/abs/2107.07511
http://arxiv.org/abs/2107.07511
https://github.com/hwchase17/langchain
https://doi.org/10.48550/ARXIV.2304.03262
https://doi.org/10.48550/ARXIV.2304.03262
https://aclanthology.org/2023.findings-emnlp.745
https://aclanthology.org/2023.findings-emnlp.745
https://doi.org/10.48550/ARXIV.2306.03082
https://doi.org/10.48550/ARXIV.2306.03082
https://doi.org/10.48550/ARXIV.2306.03082
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/1704.02798
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
https://proceedings.neurips.cc/paper/2016/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.48550/ARXIV.2207.05221
https://doi.org/10.48550/ARXIV.2207.05221
https://openreview.net/pdf?id=VD-AYtP0dve
https://openreview.net/pdf?id=VD-AYtP0dve

In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Er-
mon. 2018. Accurate uncertainties for deep learning
using calibrated regression. In Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2801–2809. PMLR.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
In Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 6402–6413.

Shiyu Liang, Yixuan Li, and R. Srikant. 2018. En-
hancing the reliability of out-of-distribution image
detection in neural networks. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Teaching models to express their uncertainty in
words. Trans. Mach. Learn. Res., 2022.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. 2023.
Generating with confidence: Uncertainty quantifica-
tion for black-box large language models. CoRR,
abs/2305.19187.

Andrey Malinin and Mark J. F. Gales. 2021. Uncertainty
estimation in autoregressive structured prediction. In
9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 9004–9017. Association for Computational
Linguistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems?

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
GPT-4. CoRR, abs/2304.03277.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F. Christiano. 2020. Learn-
ing to summarize with human feedback. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher D. Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human
feedback. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 5433–5442. Association for Computational
Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. CoRR,
abs/2304.12244.

5195

http://proceedings.mlr.press/v80/kuleshov18a.html
http://proceedings.mlr.press/v80/kuleshov18a.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=8s8K2UZGTZ
https://openreview.net/forum?id=8s8K2UZGTZ
https://doi.org/10.48550/ARXIV.2305.19187
https://doi.org/10.48550/ARXIV.2305.19187
https://openreview.net/forum?id=jN5y-zb5Q7m
https://openreview.net/forum?id=jN5y-zb5Q7m
https://aclanthology.org/2023.emnlp-main.557
https://aclanthology.org/2023.emnlp-main.557
https://aclanthology.org/2023.emnlp-main.557
https://doi.org/10.48550/ARXIV.2304.03277
https://doi.org/10.48550/ARXIV.2304.03277
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2023.emnlp-main.330
https://aclanthology.org/2023.emnlp-main.330
https://aclanthology.org/2023.emnlp-main.330
https://aclanthology.org/2023.emnlp-main.330
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2304.12244
https://doi.org/10.48550/ARXIV.2304.12244

A Appendix

Experiment details. We experiment on two
LLMs from OpenAI: Text-Davinci-003 and GPT-
3.5 Turbo. The reference answer y is always pro-
duced with the temperature set at 0. To evaluate
the confidence of y, we use prompt in Figure 6a to
generate k = 5 outputs (unless otherwise stated)
with the temperature set at 1.0 (the highest value al-
lowed by the OpenAI API), combined with the indi-
cator function to compute the observed-consistency
score. For self-reflection certainty, two follow-
up questions in Figure 6b are used to assess the
correctness of the answer y. As previously de-
scribed, we combine the observed-consistency and
self-reflection certainty to derive the final confi-
dence score. Following Kuhn et al. (2023), we
use Area Under the Receiver Operator Character-
istic Curve (AUROC) to evaluate the quality of
our uncertainty estimates. AUROC represents the
likelihood that a correct answer selected at random
will have a higher uncertainty score compared to
an randomly chosen incorrect answer. A higher
AUROC value is preferable, with an ideal AUROC
rating being 1, whereas a random uncertainty es-
timate would yield AUROC = 0.5. To evaluate
generation quality from the method to get better
LLM answers in Section 4, we simply rely on the
accuracy of LLM answers.

A.1 Details about NLI model
Specifically, the input of NLI is formed by con-
catenating yi and y, and then NLI returns the
probabilities p for each of these 3 classes. Here
we choose 1− pcontradiction (output by an already
trained NLI system (He et al., 2021)) as our simi-
larity between two sampled LLM outputs. To mit-
igate positional bias within the NLI system, we
consider both orders (yi,y) and (y,yi), produc-
ing 1−pcontradiction and 1−p′contradiction for each
order and averaging these two values into a single
similarity score. The similarity scores using NLI
to assess each sampled LLM answer for contradic-
tions with respect to the original reference answer
are denoted, for i = 1, 2, ..., k:

si =
1

2
(1− pcontradiction + 1− p′contradiction).

A.2 Compute costs
The compute costs associated with various uncer-
tainty methods differ. Uncertainty based on au-
toregressive likelihood is the most cost-effective,

requiring only a single API call that returns the
token-level probability. However, this cannot be
implemented on GPT-3.5 Turbo since it does not
provide token-level probabilities. While BSDE-
TECTOR incurs a slight additional cost for self-
certainty reflection in comparison to the baseline
Temperature Sampling approach, Table 3a shows
that even when we double the number of outputs
from Temperature Sampling (thus allowing it far
more compute than our approach), its performance
remains inferior to BSDETECTOR.

A.3 Prompts used in BSDETECTOR

Figure 6 show the prompts used in BSDETECTOR.

A.4 Ablation Study

In this section, we study that whether each compo-
nent is required to achieve high quality. Our inves-
tigation leads to the following primary insights: 1)
Enhancing the number of outputs and integrating
CoT prompt in Observed Consistency result in a
greater variety of responses, thereby making the
confidence estimation more reliable. 2) Our simi-
larity metric is crucial for capturing the variation
between different responses.

A.4.1 Increasing the number of outputs and
integrating CoT prompt introduce more
diversity?

Table 3a shows an ablation study involving the
number of outputs in Observed Consistency, we
compare 5 and 10 outputs, observing that for each
dataset 10 outputs outperforms 5 outputs. However,
for GSM8K, SVAMP, and TriviaQA, the gain from
5 to 10 outputs is marginal. Given the trade-off
between cost and performance, and considering
that doubling the API calls results in only a slight
improvement, we decide to stick with 5 outputs in
our experiments. Table 3b indicates that CoT is
essential for introducing the diversity of responses
and achieving the good confidence estimation per-
formance.

A.4.2 Effect of different sentence similarity
metrics

Table 4 shows the AUC performance with different
similarity metrics. We compare Jaccard similar-
ity calculated by dividing the number of obser-
vations in both output strings by the number of
observations in either string, LLM-embedding uti-

5196

Table 3: Ablation study

(a) AUC of BSDETECTOR with different num-
bers of outputs.

5 outputs 10 outputs

GSM8K 0.951 0.961
CSQA 0.769 0.802
SVAMP 0.927 0.937
TriviaQA 0.817 0.814

(b) AUC of BSDETECTOR without and with CoT prompt aug-
mentation.

Remove CoT prompting BSDETECTOR

GSM8K 0.837 0.951
CSQA 0.665 0.769
SVAMP 0.882 0.927
TriviaQA 0.792 0.817

lizing text-embedding-ada-0021 to get embedding
for each output answers and calculating the cosine
similarities between them, NLI using an off-the-
shelf DeBERTa-large model (He et al., 2021) for
the purpose of categorizing into one of: entailment,
contradiction, and neutral, NLI (1-contradiction)
using 1−pcontradiction as the final similarities met-
rics. Table 4 shows that the similarity metric used
in BSDETECTOR is essential for discerning the
differences among various responses.

1https://platform.openai.com/docs/api-
reference/embeddings

5197

Table 4: Effect of different sentence similarity metrics

Dataset Jaccard LLM-embedding NLI (1-contradiction) BSDETECTOR

GSM8K 0.896 0.866 0.892 0.951
CSQA 0.857 0.849 0.727 0.769
SVAMP 0.917 0.888 0.901 0.927
TriviaQA 0.650 0.642 0.794 0.817

[Input:] Some related document: prior to ... litigation and preserve them.
[Instruction:] Please provide a list of custodians, noncustodial data sources, and third-
party data sources that may contain discoverable electronic information in connection with
the instant litigation. In addition, please identify any inaccessible data sources that may
contain discoverable information.
[Response:] The answer to the question is not provided in the given text.
[Confidence for response:] 0.042425017.
The response provided is incorrect; the relevant document does indeed have the neces-
sary information. The attorney needs to re-examine this answer.

Here is another example:
[Input:] Some related document: a producing ... linear review.
[Instruction:] Please draft a clause that would allow a producing party to use tar to
organize or prioritize documents for linear review without disclosure of that use so long as
all documents identified by the electronic search methodology discussed above are reviewed
as part of the linear review.
[Response:] The producing party may utilize technology-assisted review (TAR) to organize
or prioritize documents for linear review, ... without the obligation to disclose such use,
provided that all documents identified by the electronic search methodology, as discussed
above, are reviewed as part of the linear review process.
[Confidence for response:] 0.939547988
Notably, response with low confidence scores are typically of low quality, suggesting
that attorneys only need to review these to save considerable effort.

Table 5: We show two demos (mask some confidential content) applying our method to assist attorneys in drafting
documents.

5198

Please strictly use the following template to provide answer:
explanation: [insert step-by-step analysis], answer: [provide
your answer] + Question: [User Provided]

(a) Prompt template for Observed Consistency

1. Question: [User Provided], Proposed Answer: [User/LLMs
Provided]. Is the proposed answer: (A) Correct (B) Incorrect
(C) I am not sure. The output should strictly use the
following template: explanation: [insert analysis], answer:
[choose one letter from among choices A through C]

2. Question: [User Provided], Proposed Answer: [User/LLMs
Provided]. Are you really sure the proposed answer is
correct? Choose again: (A) Correct (B) Incorrect (C) I am
not sure. The output should strictly use the following
template: explanation: [insert analysis], answer: [choose
one letter from among choices A through C]

(b) Prompt template for Self-reflection Certainty

"Statement: " + [User Provided Question] + "\n" + "Response: " +
+ [User Provided Answer] + "\n" + "What do you think of this
response to the statement is correct or incorrect, please pick
one of these choices:"

(c) Prompt template for triviaQA in the application of using BSDETECTOR as an evaluator.

"Article: " + [User Provided Context] + "\n\n\n" + "Summary: " +
[User Provided Summary] + " Your task: Rate how well this
Summary overall represents the original Article? Choose from the
options: [Bad, Fair, Good, Excellent]. Bad indicates the Summary
is inaccurate, misses important information, or is incoherent
and hard to understand. Fair indicates the Summary has some flaw
in terms of accuracy, coverage, and coherence, but is otherwise
decent along the other dimensions. Good indicates the Summary
accurately matches the factual information, conveys the main
idea of the Article, and is easy to understand but has some
minor flaws in any dimensions. Excellent indicates it is hard to
find ways to make the Summary better. Your rating (chosen from
Bad, Fair, Good, Excellent):"

(d) Prompt template for Summarize-from-feedback in the application of using BSDETECTOR as an evaluator.

Figure 6: Prompts used to produce the confidence score in BSDETECTOR.

5199

» User: who was the only survivor of Titanic?
» Agent: The only survivor of the Titanic who is still alive today is Millvina Dean. However,
she passed away on May 31, 2009, at the age of 97.
» Confidence: 13.37%

» User: Are you sure Millvina Dean is the sole survivor of Titanic? Any other survivors?
» Agent: No, Millvina Dean was not the sole survivor of the Titanic. There were 705 survivors
in total out of the approximately 2,224 people on board. Millvina Dean was the youngest
passenger on the ship and the last living survivor until her death in 2009. There were many
other survivors, including notable individuals like Margaret Brown (also known as "The
Unsinkable Molly Brown") and others. Charles Lightoller, who was the most senior officer
to survive the sinking.
» Confidence: 93.44%

Table 6: Chatbot Demo: from the first round conversation, the answer is wrong since over 700 people actually
survived the catastrophe. The confidence level associated with this incorrect response was low. However, in the
subsequent interaction, the correct information was supplied with a much higher confidence rating.

5200

