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Abstract

The emergence of large language models
(LLMs) has increasingly drawn attention to the
use of LLMs for human-like planning. Existing
work on LLM-based planning either focuses on
leveraging the inherent language generation ca-
pabilities of LLMs to produce free-style plans
or employs reinforcement learning approaches
to learn decision-making for a limited set of
actions within restricted environments. How-
ever, both approaches exhibit significant dis-
crepancies between the open and executable
requirements in real-world planning. In this
paper, we propose a new planning task—open
grounded planning. The primary objective of
open grounded planning is to ask the model to
generate an executable plan based on a variable
action set, thereby ensuring the executability
of the produced plan. To this end, we estab-
lish a benchmark for open grounded planning
spanning a wide range of domains. Then we
test current state-of-the-art LLMs along with
five planning approaches, revealing that exist-
ing LLMs and methods still struggle to address
the challenges posed by grounded planning in
open domains. The outcomes of this paper de-
fine and establish a foundational dataset for
open grounded planning, and shed light on the
potential challenges and future directions of
LLM-based planning. Our code and datasets
are at https://github.com/Shiguang-Guo/
Open-Grounded-Planning

1 Introduction

Human life is filled with tasks of varying complex-
ities, from simple activities like brewing coffee
to more substantive pursuits such as learning new
skills. By utilizing our understanding of the world,
we can formulate plans for tasks and execute these
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Figure 1: Heuristic Task Planning: Free and arbitrary
planning. Restricted Grounded Planning: Domain-
specific planning on small action sets, usually given in a
context window. Open Grounded Planning: Planning
on extensive action sets in various domains.

steps in sequence. Although we can employ innu-
merable strategies and plans to achieve our objec-
tives, the scenario is significantly more complex
for artificial intelligence. Grounding plans to open
action sets for tasks in open domains poses one of
the challenges for AI.

Some prior research has delved into the plan-
ning ability of Large Language Models (LLMs)
and found that LLMs can engage in planning to
some extent using their internal knowledge through
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common-sense reasoning (Zhao et al., 2023; Brown
et al., 2020). However, these plans are often heuris-
tic, coherent, and rational in natural language, yet
possess a high degree of freedom and cannot serve
as executable instructions for AI agents (Yao et al.,
2023; Huang et al., 2022). In other words, these
plans are not grounded in an actionable space. In
addressing the issue of grounded planning, various
approaches have been explored in fields like robot
controlling (Ahn et al., 2022; Wang et al., 2023b)
and tool use (Qin et al., 2023; Li et al., 2023; Tang
et al., 2023). Typically, model fine-tuning is ap-
plied for performance improvement in certain re-
stricted scenarios (Song et al., 2023; Shen et al.,
2023; Yuan et al., 2023). However, these methods
can only enable models to perform planning on a
limited set of actions for specific domain tasks (Lin
et al., 2023; Wu et al., 2023; Hao et al., 2023). As
the task domain becomes broad, the action space
becomes vast and open, these grounded planning
methods appear too restricted to handle the steeply
increased complexity (Wang et al., 2023b).

The capability to perform a wide range of ac-
tions and to devise viable, comprehensive plans
by selecting suitable actions from an extensive ac-
tion library for tasks in various domains epitomizes
both a vision and a future trend in LLMs. Conse-
quently, in this work, we introduce the concept of
Open Grounded Planning to advance the research
on LLM planning across broad fields and a rich
array of potential actions. We delineate the concept
in two distinct dimensions:

• Grounded Planning: LLM is required to
compose plans utilizing only the actions avail-
able within the executable action sets.

• Open Planning: We aspire for the model to
conduct planning within an extensive set of ac-
tions in an open domain that contains various
task fields.

Moreover, we collect datasets from three major
areas, including daily life, tool use, and robot sand-
box scenarios. All collected datasets have been
transformed into a uniform format, including task
objectives, constraint conditions, golden steps, and
candidate action sets. Building upon this founda-
tion, we have developed a benchmark to assess the
performance of various models and methods in the
Open Grounded Planning task.

Besides, to address the open grounded plan-
ning challenges, we proposed a novel Retrieve and

Rewrite framework. The method utilizes the LLMs
to generate an initial plan and iteratively rewrites
this plan using actions retrieved based on the cur-
rent planning situation.

We conducted comprehensive experiments on
four commonly used methods and our Retrieve and
Rewrite method for current planning tasks using
GPT-3.5, Vicuna-7B, and LLaMA-2-7B fine-tuned
with a small amount of domain knowledge. The
explored methods include retrieval-based methods
and inference-based methods. We observed that
fine-tuning contributes much to bridge the gap be-
tween smaller models and extremely large-scale
language models by raising the instruction follow-
ing and task understanding abilities. Various meth-
ods exhibited trade-offs regarding the executability
and quality of generated plans. Generalizing ability
from in-domain to out-of-domain planning tasks
exists to a certain extent.

Generally speaking, our contributions are:

• We proposed the concept of Open Grounded
Planning. We envision future artificial in-
telligence systems being able to plan tasks
within open domains, and having the ability
to ground plans onto open executable action
sets.

• We constructed a benchmark consisting of
datasets from diverse domains for Open
Grounded Planning and an automated eval-
uating procedure to assess the performance of
different models and methods.

• We introduced the Retrieve and Rewrite frame-
work to address challenges in Open Grounded
Planning tasks, and conducted comprehen-
sive experiments on state-of-the-art models
with various methods, and found that current
models and methods still struggle with Open
Grounded Planning tasks.

2 Related Work

Large language models are trained on data contain-
ing extensive common knowledge and exhibit cer-
tain planning and common-sense reasoning abili-
ties (Zhao et al., 2023; Brown et al., 2020). Prompt-
ing can be employed to guide large language mod-
els in generating plans for given tasks, and these
plans often possess a high degree of freedom, mak-
ing them challenging to execute in specific envi-
ronments (Huang et al., 2022). To facilitate the
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grounding of generated plans to an AI agent’s exe-
cutable action space, prior research has extensively
explored grounded planning tasks (Lin et al., 2023;
Wu et al., 2023). Some approaches opt for a global
planning strategy based on the task, aiming to di-
rectly generate plans that can be grounded to the
execution environment in a single step (Song et al.,
2023; Shen et al., 2023; Yuan et al., 2023; Wang
et al., 2023a). Conversely, other methodologies em-
ploy iterative interactive approaches as the primary
means of plan generation to adapt to changes in
the environment and conditions (Ahn et al., 2022;
Wang et al., 2023b). However, these approaches of-
ten demonstrate limited effectiveness, completing
constrained tasks with a finite set of actions within
a singular domain.

In open-domain environments, the enormity of
tasks and action sets poses significant challenges,
making it increasingly difficult to bridge the gap
between plans generated by large language models
and the execution of real-world tasks. Therefore, in
our work, we raise the challenge of open grounded
planning and compile benchmark data from multi-
ple domains ranging from everyday life to tool use
and robot control scenarios, which consist of tens
of thousands of tasks and actions. We also utilized
our benchmark to assess the performance of main-
stream proprietary models and open-source models
with various planning methods on open grounded
planning tasks.

3 Open Grounded Planning Benchmark

In this section, we initially present the task defini-
tion of Open Grounded Planning and its associated
challenges. Subsequently, we introduce the Open
Grounded Planning Benchmark, encompassing the
construction of the dataset, evaluation metrics, and
the methodology for automated assessment.

3.1 Definition of Open Grounded Planning
Specifically, for a given task objective G stem-
ming from any domain, along with conditional con-
straints C (which may be absent for task without
additional constraints), we aim to find a plan P
composed of a series of actions {si}, where each
action si is from an open action set S. In other
words, the generated plan P must be grounded
onto the action set S which is vast and extendable:

P = (s1, s2, · · · , sn|G,C), si ∈ S, 0 ≤ i ≤ n

where n is the length of P . Table 1 shows the
grounded planning process.

Task:
How to Activate the Dark Theme on YouTube
Method:
Using the YouTube App for Android
Action Candidate Set:
* Close the Tool Options window.
* Double click the file.
* Do price forecasting.
* Click on the blue coloured YOUTUBE STUDIO BETA button.
* Open the YouTube app on your iPhone or iPad.
* Launch the YouTube app on your Android device.
* <other steps>...
Steps:
1. Launch the YouTube app on your Android device.
2. Tap on your profile picture.
3. Tap on Settings.
4. Select the General option.
5. Tap on the grey switch, right across Dark theme text.
6. Enjoy YouTube in dark mode

Table 1: An example of an Open Grounded Planning
task. LLM needs to select appropriate actions from a
complex and huge set of actions to generate a plan to
complete the task.

As discussed in Section 2, many explorations
into LLM planning are focusing on heuristic plan-
ning in which the generated plans cannot be di-
rectly used as instructions for downstream con-
trol mechanisms, in other words, they are not
"grounded". Some previous studies have demon-
strated that LLMs can undertake grounded plan-
ning tasks in certain fields. However, these applica-
tions have often been limited to constrained scenar-
ios and task domains. As the richness of the task
domains and actions increases, the model’s plan-
ning proficiency tends to diminish. LLMs still face
challenges in executing grounded planning across
open domains, which encompass a wide array of
tasks and actions from diverse fields.

3.2 Dataset Construction

LLM’s planning capabilities have a variety of appli-
cation scenarios. We refer to many other works and
summarize the three main application areas includ-
ing daily life, tool usage, and robots. To balance the
proportions of data across different categories, we
retain a maximum of 500 tasks for each category,
forming our evaluation set. All actions related to
the original tasks are preserved in the action library
as candidate actions.

We split the dataset into two parts. We employ
the daily life dataset wikiHow to evaluate the in-
domain grounded planning capabilities because this
dataset covers a very wide range and the action
set for selection is more complex. Additionally,
we utilize datasets related to tool use and robots
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Category Eval-Set Full-Set Actions Category Eval-Set Full-Set Actions

wikiHow(Zhang et al., 2020)

Arts and Entertainment 500 4104 26222 Home and Garden 500 6916 39872
Cars and Other Vehicles 500 1685 10929 Personal Care and Style 500 3888 20786

Computers and Electronics 500 12801 75186 Pets and Animals 500 2282 11056
Education and Communications 500 5485 29856 Philosophy and Religion 500 748 5000

Family Life 500 1532 8634 Relationships 500 1683 8609
Finance and Business 500 4376 24746 Sports and Fitness 500 1898 10916
Food and Entertaining 500 9493 58585 Travel 500 852 5433

Health 500 7918 37364 Work World 500 1088 6618
Hobbies and Crafts 500 7095 47168 Youth 500 1477 8389

Holidays and Traditions 500 904 5658

Tools Robot

APIBank(Li et al., 2023) 263 263 101 SayCan(Ahn et al., 2022) 164 164 97
GPT4Tools(Yang et al., 2023) 500 1750 32 VitualHome(Huang et al., 2022) 500 5088 47522
ToolAlpaca(Tang et al., 2023) 201 201 89

Table 2: Statistics of the Open Grounded Planning benchmark, marking the quantitative attributes of the in-domain
and out-of-domain datasets.

to evaluate the generalization of various models
and methods for out-of-domain grounded planning.
The statistical information of the evaluation set can
be found in Table 2. We also provide the more
detailed data processing procedure in Appendix A.

3.2.1 In-Domain Datasets
Wikihow Wikihow is an extensive collection of
guides and tutorials, encompassing topics ranging
from everyday life skills to more complex subjects1.
Each guide on WikiHow is presented in a step-by-
step manner, making it easy to understand and fol-
low. We gathered the original corpus of WikiHow
by referencing Zhang et al. (2020). For each arti-
cle, we retained only the tasks, methods (if any),
and headlines. We eliminated sections contain-
ing multiple "parts" as they introduced additional
hierarchy. By directly utilizing the original catego-
rization within the WikiHow corpus, we ultimately
identified 19 categories, with a total of more than
76,000 tasks. The action libraries for each cate-
gory are derived from the collective actions of all
tasks within the same category, with an average
size exceeding 20,000.

3.2.2 Out-of-Domain Datasets
Tools Previous studies have demonstrated the ca-
pability of LLMs to utilize tools to accomplish
tasks. Effective planning is crucial for tool use, es-
pecially when the candidate toolset is extensive.
We have collected open-source data relevant to
tool usage by LLMs, including contributions from
ToolAlpaca (Tang et al., 2023), API-Bank (Li et al.,

1https://www.wikihow.com/

2023), and GPT4Tools (Yang et al., 2023). These
datasets encompass various types of tools and pro-
vide standard tool invocation sequences to com-
plete the tasks as well. To maintain consistency
with other datasets, we only retain the API names
and their corresponding description, while ignoring
the parameters.

Robot There exists some research related to
grounded planning in robotics(Yoshida et al., 2023;
Brohan et al., 2023; Ahn et al., 2022), but there is
still a lot of room for development. We have con-
verted datasets proposed in VirtualHome (Huang
et al., 2022) and SayCan (Ahn et al., 2022) and
merged all executable actions as a candidate action
set2. It is important to note that complete robot
processing involves multiple stages, including vi-
sual information processing and action execution.
Our dataset, however, only focuses on the planning
generation.

3.3 Evaluation
3.3.1 Plan Quality Assessment
In all the datasets we collected, every task has a
corresponding golden plan which is provided by the
original datasets and presents one of the possible
ways to handle the task. Since the solutions to
the tasks in our benchmark could be quite diverse,
especially when it involves thousands of candidate
operations to form a planned execution path, it is
unfair to directly judge whether the generated plans
match exactly with the golden plans. Instead, we

2There seems to be some mismatch in the dataset provided
by saycan, we fix it manually. A more detailed procedure is
provided in Appendix A.
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make the golden plan a reference and compare the
plan generated by the model with it from multiple
perspectives to judge which plan is better. The
specific evaluation criteria are as follows:

Completeness: Examine whether the plan is
comprehensive, with a focus on the coherence and
logic between steps, and the avoidance of arbitrar-
ily introduced conditions and missing steps.

Feasibility: Assess the practicality of the plan,
considering whether each step can be implemented,
whether the plan aligns with common sense, ad-
heres to human ethical standards, and avoids exces-
sive redundant steps.

Relevance to the Task: Evaluate the relevance
of the plan to the given task, considering the utiliza-
tion of the provided task conditions and whether it
achieves the goal.

We use ChatGPT to evaluate, which is a widely
used evaluation method in previous similar work.
During one evaluation, the target task to be solved
is delivered to the evaluator along with the model
generated plan and the golden plan. Then we
prompt ChatGPT to list how good the two plans
are regarding the evaluation criteria, and ask it to
elect a better plan based on its analyses.

Due to many reported issues with ChatGPT as
an evaluator, such as position bias, length prefer-
ence, and style partiality (Koo et al., 2023; Wu and
Aji, 2023; Zheng et al., 2023a), we employ vari-
ous methods to mitigate those biases. We swap the
order of the two plans and average the scores to
eliminate positional bias. Additionally, we prompt
ChatGPT to penalize the score for redundant steps
to reduce length preference. We sampled a small
dataset for manual evaluation and verified the plau-
sibility of ChatGPT’s automatic evaluation. For
detailed analysis, please refer to appendix C.

3.3.2 Metrics
To more intuitively compare the performance of
various models and methods on open domain plan-
ning datasets, we define the following metrics to
quantify their performance.

Executability is the proportion of executable
cases. Executable cases are actions in the plan that
all exist within the given action library.

Quality of the executable plans is evaluated from
the dimensions in section 3.3.1. We define win rate
as the average of the outcomes of two comparisons
involving position swaps. Intuitively, quality as-
sesses how complete the generated plan is.

Overall Pass Rate is the proportion of all gener-

ated plans that can be executed while also complet-
ing the task. Considering both executability and
quality, we choose pass rate as the final evaluation
metric to evaluate the overall performance of the
model in the entire process. The pass rate is the
product of executability and quality.

Executability =
#executable cases

#all cases

Quality =
#win cases

#executable cases
Pass Rate = Executability × Quality

4 Methods

In order to assess the performance of current main-
stream models on the Open Grounded Planning
task, we endeavored to employ five distinct meth-
ods including Retrieve and Rewrite, a new frame-
work we proposed, to address this challenge.

Task-Retrieve: We first adopt a simple and in-
tuitive approach by using the task name as the
query for action retrieval. Given a task T and an
action set A, we retrieve the relevant action list
A′ = retrieve(T,A). LLM selects and orders ap-
propriate actions from this list to generate plan
P = select&sort(T,A′).

Plan-Retrieve: Simply searching by task name
makes it difficult to recall important steps that are
not directly related to the task name. We try to spec-
ify the query to improve. We first force LLM to gen-
erate an initial plan P0 = {s1, s2, · · · , sn} for the
task, then retrieve related actions based on the gen-
erated plan to get action list A′ = retrieve(P0, A).
Finally, we perform similar selection and rearrange-
ment as in task-retrieve. We also provide the initial
plan for LLM to refer to generate the final plan
P = select&sort′(T,A′, P0).

Step-wise Select: In addition to retrieval and re-
arrangement, we also try the step-wise selection
method. We adopt a method similar to ReAct
(Yao et al., 2023) to our tasks. Each time, LLM
generates a possible next step sp for the given
task T , Then we obtain a candidate action list
A′ = {a1, a2, ...} ⊂ A by retrieving actions based
on the generated steps. LLM selects one of the
retrieved results as the next step, which means
the target plan P is generated step by step, i.e.,
P = {s1, s2, ...} ∪ {aj} where aj ∈ A′. Selec-
tion iteration repeats until 1) LLM outputs None
when generating the possible next step, 2) LLM
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Figure 2: Left: The Retrieve and Rewrite framework. Right: An illustration of different rewriting operations.

refuses to select from the candidate list, and 3) the
maximum number of iterations is reached.

DFS: The Step-wise Selecting method suffers
from small searching space. ToolLLM (Qin et al.,
2023) proposed a DFS-based method to improve.
We implement this by simply extending the Step-
wise Selecting method. During the procedure of
model selecting the next step, we allow LLM to
abandon the selection if it thinks there exists no
suitable choice in the retrieved candidate actions
to be the next step of the current plan. In this case,
we perform a backtracking.

Retrieve and Rewrite: We realize that methods
based on retrieval and rearrangement can consider
the overall plan, but may not obtain the optimal
choice for each step. The step-wise selection ap-
proach enables adjustments during the generation
process but does not take into account the plan as a
whole. We combine the advantages of both meth-
ods and propose a new method named Retrieve
and Rewrite.Figure 2 illustrates its framework and
different rewriting operations.

LLM is first asked to generate an initial plan
P0 = {s1, s2, ..., sn0

} based on the relevant steps
A0 with the given task T . Different from the Task-
Retrieve method, P0 does not have to be composed
of the exact steps in A0. We mark steps not in
action set with underline. We perform several it-
erations to use steps from the action set to rewrite
P0. For iteration i ≥ 1, we choose some of the
steps not in action set for retrieval to retrieve rele-
vant actions Ai = {ai1, ai2, · · · , aimi}, where mi

is the length of candidate action list of iteration

i. LLM is allowed to perform various operations
when rewriting Pi−1, including adding, deleting,
and modifying arbitrarily. We only need to ensure
using actions in the action set to replace as much
as possible those not in the action set. The plan af-
ter rewriting might be Pi =

{
s1, s2, s3, · · · , sni

}
,

where ni is the new length of current plan Pi. Sim-
ilarly, iteration stops until all actions are in the
action set or iteration reaches the maximum num-
ber.

5 Experiment

We systematically assess the capabilities of various
LLMs and methods in the Open Grounded Plan-
ning task by selecting and comparing mainstream
proprietary models, open-source models, and open-
source models fine-tuned with a small amount of
domain-specific data. For each model, we examine
the performance of different methods in Section
4. We test the models’ abilities in Open Grounded
Planning on both in-domain, the wikiHow dataset,
and out-of-domain, the tools and robot datasets.

5.1 Experiment Settings

We chose the proprietary model GPT-3.53 and the
open-source model Vicuna-7B-v1.5-16k (Zheng
et al., 2023b) for experiments. In addition to this,
we fine-tuned Llama-2-7B (Touvron et al., 2023)
to check the performance of the SFT model. We
believe these three models can represent the capa-
bilities of current mainstream models.

We select 200 tasks from each subcategory be-
low wikiHow as the training set. For each setting,

3We use gpt-3.5-turbo-1106 for our experiments.
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In-Domain (wikiHow) Out-of-Domain (Tools, Robot)

Average of All Types APIBank GPT4Tools ToolAlpaca VirtualHome SayCan

Method Executability(%) Quality(%) Pass Rate(%) Pass Rate(%) Pass Rate(%) Pass Rate(%) Pass Rate(%) Pass Rate(%)

Vicuna-7B-v1.5-16k

Task-Retrieve 89.60 27.87 24.97 36.50 16.30 19.90 12.40 14.94
Plan-Retrieve 67.77 42.41 28.74 26.05 15.10 9.70 11.90 12.20
Step-wise Select 73.17 12.34 9.03 20.72 15.80 10.20 7.10 1.83
DFS 97.92 7.18 7.03 26.81 20.50 16.17 6.80 2.44
Retrieve and Rewrite 80.75 34.88 28.17 45.44 22.30 23.63 16.00 12.50

GPT-3.5

Task-Retrieve 95.99 44.43 42.65 37.26 23.20 14.93 26.50 29.27
Plan-Retrieve 69.46 60.15 41.78 30.61 32.30 11.94 37.60 44.82
Step-wise Select 93.44 21.21 19.82 32.32 23.50 16.67 30.60 26.83
DFS 98.84 50.76 50.17 35.55 25.00 19.90 32.90 11.28
Retrieve and Rewrite 92.98 58.72 54.60 43.73 26.60 28.86 47.00 41.16

LLaMA-2-7B(SFT)

Task-Retrieve 99.40 47.66 47.37 58.75 26.50 49.00 37.50 37.50
Plan-Retrieve 99.13 58.21 57.70 47.72 35.00 36.07 42.70 30.79
Step-wise Select 99.82 24.26 24.22 36.12 4.20 21.89 34.10 31.71
DFS 99.09 53.53 53.04 11.40 0.48 2.79 35.64 14.96
Retrieve and Rewrite 98.26 61.58 60.51 45.42 43.70 45.02 46.80 42.68

Table 3: The average performance of models and methods on in-domain and out-of-domain datasets. The final
metric is Pass Rate. The best performance score of each dataset is highlighted with bold, while the second-best
underlined.

we perform the inference process of GPT-3.5 on
it and select those with high quality for training.
We mixed it with the Alpaca dataset (Taori et al.,
2023) and fine-tuned the model with 3 epochs to im-
prove the generalization ability. We use OpenAI’s
text-embedding-ada-002 to generate embedding for
each step in all settings. Additional implementa-
tion details are in Appendix B and all prompts are
in Appendix F.

5.2 In-Domain Results

We measure the performance of each model and
method using metrics in Section 3.3.2. We report
the average performance on all wikiHow datasets.
Results on in-domain datasets are presented in the
left part of Table 3, from which we can derive:

SFT model achieves the best performance
Compared to Vicuna and GPT-3.5, the SFT model
surpasses them in all methods. The trained model
can improve the executability of all methods to
close to 100% and maintain high quality at the
same time.

Different methods have different focuses Al-
though the initial plan of the Plan-retrieve method
may cause interference, it can generate a better plan
than Task-retrieve. Compared with the restricted
search space in the step-wise selection, DFS usu-
ally achieves a higher executability and has better
quality. Besides, we find pre-planning grants the fi-
nal plans higher quality. The Retrieve and Rewrite
method we proposed surpasses Step-wise select

and DFS in terms of rationality and completeness
of the final plans due to our pre-planning approach
and the subsequent rewriting.

5.3 Out-of-Domain Results

The experiment results on the out-of-domain
datasets are presented in the right part of Table 3.
Due to space constraints, we provide more detailed
OOD dataset results in Appendix E. Apart from the
DFS method, LLaMA-2-SFT outperforms GPT-3.5
on most datasets using other methods. This sug-
gests that fine-tuning is beneficial for the model to
generalize from in-domain grounded planning to
out-of-domain scenarios, primarily by enhancing
the model’s ability to follow instructions, thereby
improving task completion. In the tools dataset,
despite our extensive prompt engineering, GPT-3.5
prefers to generate complete steps rather than the
provided API names, which results in poor perfor-
mance.

We observe the performance degradation in SFT
model with DFS and find that the average length
of the plans generated with DFS on tools dataset is
less than 1, while with other methods ranges from
1 to 2, which is also closer to the true length of
datasets. We observe extensive backtracking in the
generated results,which could be attributed to the
higher proportion of rejection in the training data,
leading the SFT model to exhibit reduced confi-
dence in its generation. Consequently, this makes
LLM more inclined not to select the retrieved re-
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sults as the next step when facing OOD data.
Among various methods, Rewrite method con-

sistently maintains strong performance. However,
although it performs well in-domain, the general-
ization performance is sometimes not as good as
simple retrieval and rearrangement.

5.4 Error Analysis

Task How to Build a Small Chick Brooder
Method Setting up the Brooder

Plan-Retrieve Set up a brooder.
Use absorbent bedding.
Provide a warm place.
Place any heating apparatus needed for the species that is
going to be kept.
Monitor the temperature.
Set up an attractive feeder.
Choose an appropriate hiding spot.
Ensure that there is proper ventilation in the stable.

DFS Set up a brooder.
Point a heat lamp on one side of your brooder to keep the
chicks warm.
Move your chicks to their brooder.
Move the chicks to a brooder.
Provide food and water for your chicks.
Move the chicks to a brooder.
Set up a brooder.
Move the chicks to a brooder.

Golden plan Fill the bottom of your brooder with paper towels and pine
shavings.
Point a heat lamp on one side of your brooder to keep the
chicks warm.
Provide food and water for your chicks.
Put a branch in the brooder to create a roost.

Rewrite Position the cage away from drafts and direct sunlight.
Set up a brooder.
Fill the bottom of your brooder with paper towels and pine
shavings.
Put a branch in the brooder to create a roost.
Point a heat lamp on one side of your brooder to keep the
chicks warm.
Move your chicks to their brooder.

Table 4: Red text indicates steps that are irrelevant to
the task and redundant steps, while green text denotes
supplementary additional information.

We mainly perform analysis on GPT-3.5 on wik-
iHow to fairly compare various methods. We ana-
lyze from the perspectives of executability and gen-
eration quality. As executability shown in table 3,
since the output format of the first four methods is
usually a sentence or a list, inexecutable plans all
come from the hallucination of LLM, which means
LLM generate content beyond the given set. How-
ever, the output format of the Rewrite method is
more complex. We observe that the non-executable
plans contains 11.84% format parsing errors. The
small format error ratio proves that LLMs have
strong instruction following ability, but they still
face serious hallucination problem.

To compare the generation quality of different
methods, we present cases from the Plan-retrieve,
DFS, Rewrite and golden plan from wikiHow in
table 4. The plans generated by Plan-retrieve might

generate steps that are correct in meaning but ir-
relevant in detail to the task. This is because the
retrieved actions are not always relevant to the task,
and LLM, given a one-time, limited selection, may
be forced to choose these steps to make the plan
complete. Besides being incomplete or irrelevant
to the task, DFS also suffers from duplicate steps,
despite being provided with previously selected
steps. We find that 19.32% of plans generated
by DFS contain repetitions of two or more times.
Meanwhile, this step by step generation is also
less complete, for example, missing information on
the soft bedding material. In contrast, the Rewrite
method, through iteration and global consideration,
can generate more complete plans. Additionally,
with a large pool of candidate steps, LLM can even
find supplementary information for the task.

5.5 Retrieval Amount Influence
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Figure 3: Influence of the number of retrieved actions
on the performance of GPT-3.5 and Vicuna conducting
Task-Retrieve method.

We find that the number of retrieved actions di-
rectly affects the execution rate and quality of the
generated plan. We check the result on wikiHow-
Computers and Electronics for a setup using GPT-
3.5 and Vicuna for the task-retrieve method4. Fig-
ure 3 shows how "Executability", "Quality" and
"Pass Rate" change when different numbers of
steps are recalled for plan generation. The two
solid lines representing "Pass Rate" demonstrate
a trend of initial increase followed by a decrease.
For GPT-3.5, as the number of recalled actions
increases, the proportion of generated plans that

4Different from the main experiment, here we only check
the output format.
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conform to the rules decreases, while the quality
of plans lifted. Pass Rate achieves the best per-
formance when recalling 20 actions. Interestingly,
we observed that when recalling 5 actions there
are still parts of the plan that are not executable.
We found that this is because the recalls are too
little for LLMs to complete the task using the re-
call steps. But GPT-3.5 tends to generate complete
plans, so steps for supplementing and connecting
context are generated. We continue to discuss the
results in other settings in Appendix D.

6 Conclusion

In this study, we introduced Open Grounded
Planning and developed a benchmark comprising
datasets from various domains with vast action sets.
Extensive experiments revealed significant limita-
tions in the performance of current models and
methods in generating grounded plans for these
sets. Furthermore, we observed a pronounced chal-
lenge in enabling these models and methods to gen-
eralize from in-domain scenarios to out-of-domain
datasets. Compared to four other methods, our
"Retrieve and Rewrite" approach demonstrates a
partial resolution to the challenges inherent in open
grounded planning. Our work highlights the need
for enhancing the capability of models and methods
for expansive planning domains and improving the
executability and quality of grounded plans, laying
a foundation for future research.

Limitation

Our current implementation relies on a two-stage
approach of retrieval and generation. We anticipate
that an optimized retriever tailored for this task will
achieve better performance. Additionally, our cur-
rent dataset only explores how to ground tasks into
a given set of actions. While this is sufficient for
many applications, a more challenging extension
would be to introduce parameters for each action,
meaning the use of a collection of action functions
instead of a collection of actions.

Our current method for evaluating the content
of the plan involves using ChatGPT as the evalu-
ator, which is to guide ChatGPT to compare and
judge the plans through prompting. This method
inevitably brings bias and hallucination into the
evaluation results. Although we have employed
various methods to alleviate their impact and have
sampled some cases for manual evaluation to prove
the effectiveness of our evaluation method, bias

and hallucination persist. In future work, we may
introduce more diverse objective evaluation metrics
and ways to reduce bias and hallucination.
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A Dataset Details

For the datasets of WikiHow, Tools, and Robot,
although they have different original formats, they
can all be transformed into a uniform format with
three parts: task name, method, and steps. For
WikiHow, each life guide (task) contains a title and
several steps, with each step including a headline
and a detailed explanation of the step. We retain
only the headline part as the step to complete the
task. Some guides may have different methods
to achieve this. For example, one can create a
poster by either hand drawing or using paper cut-
ting. We randomly select one of these methods
as the method to accomplish the task. The final
example for WikiHow is shown in Table 1.

For Tools scenarios, we extract all the API calls
under each task as steps. To maintain consistency
with other tasks, we only retain the API name and
description without including API parameters, as
this would require additional training, and many
works have already explored this kind of capabil-
ity(Qin et al., 2023). We will also set the default
method to some tasks to make the results they gen-
erate more consistent with requirements. Here is
an example from GPT4Tools. Given a task of Gen-
erate a real image of xxx from the sketch image and
a training instance for API call, we will transform
it into a process of Sketch Detection On Image ->
Generate Image Condition On Sketch Image.
{

"title": "Generate a real image of a
cat sitting on a table next to

a bowl from the sketch image",
"method ": "One or two steps are

usually enough to complete the
task , and there are only a few
cases where more may be required
.",

"steps": [
"Sketch Detection On Image

DESCRIPTION: useful when you
want to generate a scribble
of the image. like:

generate a scribble of this
image , or generate a sketch
from this image , detect the
sketch from this image. ",

"Generate Image Condition On
Sketch Image DESCRIPTION:
useful when you want to
generate a new real image
from both the user
description and a scribble
image or a sketch image. "

]
}

In the Robot scenario, we can also obtain tasks,
methods, and corresponding steps in the same way.
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As described in the footnotes, the SayCan reposi-
tory provides two files: one providing tasks and en-
vironment states, and the other providing tasks and
corresponding plans, but they do not completely
match. Since the tasks in this dataset have similar
processes, such as instructing the robot to reach
a certain place or pick up an item, we filled in
the inconsistent parts based on this style. We also
provide an example here.
{

"title": "I'd like a clear soda.",
"method ": "As a robot with only one

gripper , you are surrounded by a
far counter , a near counter , a

table , and a trash can. You are
located near the table. You can
only perform one action at a
time , such as moving or picking
up and putting down.
Environmental status:water on
table , 7up on table",

"steps": [
"find a 7up",
"pick up the 7up",
"bring it to you",
"put down the 7up"

]
}

B Implementation Details

We use FastChat (Zheng et al., 2023b) for train-
ing, and the training parameters are consistent with
vicuna-7B. For all generation steps, we perform
generation with temperature = 1.0. We perform up
to five retries per generation to avoid formatting
errors. We also performed a rule review on the
output of LLM to obtain the best performance of
LLM in the open grounding planning task. For
example, if LLM is required to choose one of sev-
eral options as the next step, and it does not output
a sentence that meets the requirements, we will
regard this output as a failure and regenerate it.
This retry will count towards the five retries above.
For tools datasets, our output combines API name
and API description, and the input format is "{api
name} DESCRIPTION: {API description}". Since
we only care about choosing the correct step, we
accept both API name and "{API name} DESCRIP-
TION: {anything}" as input.

We simply use OpenAI’s text-embedding-ada-
002 for embedding generation in all settings. We
used different recall numbers for different methods.
For the plan-retrieve method, each generation step
recalls the two most relevant choices. For the task-
retrieve method, we retrieve the 20 most relevant
candidate steps from the task name. Stepwise Se-

lecting and DFS methods are similar in that we both
perform recalls of size 5. In the Rewrite method,
we will select at most the first three steps that have
not been replaced in each round, and dynamically
control the recall number of each step to around 10.
In all settings, we will first perform deduplication
on the recall steps and then hand it over to LLM
for other operations.

In addition, since the Stepwise Selecting, DFS,
and Rewrite methods will iterate multiple times,
we set an upper limit of 20, 30, and 20 iterations
for them. These upper bounds are usually sufficient
to complete the task, but if the LLM reaches the
upper limit of the number of iterations, it means
that the generated steps may be incomplete. If the
plan complies with the rules, we still think the plan
is executable, but incomplete plans will have an
impact on the quality of the plan.

C Evaluation Details

In the evaluation set, we randomly selected a to-
tal of 200 cases and conducted human evaluations
on the three models and five methods we used in
our experiments. The Spearman rank correlation
coefficient between the results of human and au-
tomated is 80.76%, which indicates that the auto-
mated evaluation results using ChatGPT present a
significant consistency with those of human eval-
uation. Therefore, this automated assessment ap-
proach is deemed both reasonable and feasible.

D Different Retrieved Numbers

The experimental results concerning the impact of
the retrieved item number are illustrated in Figure
4 for both the Plan-Retrieve and Step-wise Select
methods. For the plan-retrieve method, as the num-
ber of retrieved items increases, the available ac-
tions for the model to select also increase, leading
decrease in plan executability, possibly due to ex-
cessive choices causing interference for the model,
leading to the generation of illusory steps and con-
sequently preventing the generated plan from being
fully grounded in actions from the candidate sets.
However, the generated quality shows a trend of
decline after improvement.

For the select method, vicuna and GPT-3.5 show
different properties. As the number of options avail-
able for vicuna increases, its executability rate will
also increase. This has caused its Pass Rate to
also show a slightly upward trend. The results of
GPT-3.5 show a downward trend.

12
4993



2 3 5 10
Retrieved nums

0

10

20

30

40

50

Ra
te

(%
)

Different Retrieved Number in 'Plan-Retrieve'

GPT-3.5 Executability
GPT-3.5 Quality
GPT-3.5 Pass Rate
Vicuna Executability
Vicuna Quality
Vicuna Pass Rate

(a) plan-retrieve

5 10 20
Retrieved nums

10

20

30

40

Ra
te

(%
)

Different Retrieved Number in 'Step-wise Select'

GPT-3.5 Executability
GPT-3.5 Quality
GPT-3.5 Pass Rate
Vicuna Executability
Vicuna Quality
Vicuna Pass Rate

(b) select
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& select

APIBank

Method Executability(%) Quality(%) Pass Rate(%)

Vicuna-7B-v1.5-16k

Task-Retrieve 95.06 38.40 36.50
Plan-Retrieve 62.74 41.52 26.05
Step-wise Select 79.47 26.08 20.72
DFS 100.0 26.81 26.81
Retrieve and Rewrite 91.63 49.59 45.44

GPT-3.5

Task-Retrieve 66.16 56.32 37.26
Plan-Retrieve 49.43 61.92 30.61
Step-wise Select 74.52 43.37 32.32
DFS 100.00 35.55 35.55
Retrieve and Rewrite 92.40 47.33 43.73

LLaMA-2-7B(SFT)

Task-Retrieve 96.58 60.83 58.75
Plan-Retrieve 80.61 59.20 47.72
Step-wise Select 87.83 41.14 36.12
DFS 43.02 26.49 11.40
Retrieve and Rewrite 74.43 61.03 45.42

Table 5: Detailed performance on APIBank

GPT4Tools

Method Executability(%) Quality(%) Pass Rate(%)

Vicuna-7B-v1.5-16k

Task-Retrieve 83.20 19.59 16.30
Plan-Retrieve 54.00 27.96 15.10
Step-wise Select 73.00 21.64 15.80
DFS 99.00 20.71 20.50
Retrieve and Rewrite 59.80 37.29 22.30

GPT-3.5

Task-Retrieve 81.40 28.50 23.20
Plan-Retrieve 67.40 47.92 32.30
Step-wise Select 76.00 30.92 23.50
DFS 100.00 25.00 25.00
Retrieve and Rewrite 90.60 29.36 26.60

LLaMA-2-7B(SFT)

Task-Retrieve 50.80 52.17 26.50
Plan-Retrieve 61.80 56.63 35.00
Step-wise Select 17.80 23.60 4.20
DFS 4.14 11.60 0.48
Retrieve and Rewrite 89.40 48.88 43.70

Table 6: Detailed performance on GPT4Tools

E More Result of OOD Datasets

In this section, we provide more detailed perfor-
mance results on the five OOD datasets. Tables 5,
6, and 7 show the results on the Tools dataset, while
Tables 8 and 9 present the performance of LLMs
on the Robot dataset. We can draw some simi-
lar conclusions to those found in the In-Domain
dataset. For example, the Task-Retrieve method has
a higher execution rate, but Plan-Retrieve achieves
better plans. Additionally, the performance of
methods such as Select and DFS is limited by the
model’s capabilities, as the model needs to follow
the single-step selection instruction and choose the
next step reasonably. Existing models often stop
too early or too late and lack attention to previous
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ToolAlpaca

Method Executability(%) Quality(%) Pass Rate(%)

Vicuna-7B-v1.5-16k

Task-Retrieve 50.25 39.60 19.90
Plan-Retrieve 41.79 23.21 9.70
Step-wise Select 53.73 18.98 10.20
DFS 98.01 16.50 16.17
Retrieve and Rewrite 62.19 38.00 23.63

GPT-3.5

Task-Retrieve 45.77 32.61 14.93
Plan-Retrieve 35.32 33.80 11.94
Step-wise Select 76.12 21.90 16.67
DFS 100.00 19.90 19.90
Retrieve and Rewrite 87.06 33.14 28.86

LLaMA-2-7B(SFT)

Task-Retrieve 99.50 49.25 49.00
Plan-Retrieve 79.10 45.60 36.07
Step-wise Select 67.66 32.35 21.89
DFS 12.62 22.10 2.79
Retrieve and Rewrite 90.55 49.73 45.02

Table 7: Detailed performance on ToolAlpaca

VirtualHome

Method Executability(%) Quality(%) Pass Rate(%)

Vicuna-7B-v1.5-16k

Task-Retrieve 74.80 16.58 12.40
Plan-Retrieve 45.80 25.98 11.90
Step-wise Select 65.20 10.89 7.10
DFS 98.60 6.90 6.80
Retrieve and Rewrite 75.20 21.28 16.00

GPT-3.5

Task-Retrieve 97.40 27.21 26.50
Plan-Retrieve 67.00 56.12 37.60
Step-wise Select 79.00 38.73 30.60
DFS 100.00 32.90 32.90
Retrieve and Rewrite 97.00 48.45 47.00

LLaMA-2-7B(SFT)

Task-Retrieve 99.60 37.65 37.50
Plan-Retrieve 91.80 46.51 42.70
Step-wise Select 100.00 34.10 34.10
DFS 92.40 38.57 35.64
Retrieve and Rewrite 96.20 48.65 46.80

Table 8: Detailed performance on VirtualHome

SayCan

Method Executability(%) Quality(%) Pass Rate(%)

Vicuna-7B-v1.5-16k

Task-Retrieve 70.73 21.12 14.94
Plan-Retrieve 56.71 21.51 12.20
Step-wise Select 44.51 4.11 1.83
DFS 95.12 2.56 2.44
Retrieve and Rewrite 80.49 15.53 12.50

GPT-3.5

Task-Retrieve 91.46 32.00 29.27
Plan-Retrieve 91.46 49.00 44.82
Step-wise Select 87.80 30.56 26.83
DFS 100.00 11.28 11.28
Retrieve and Rewrite 99.39 41.41 41.16

LLaMA-2-7B(SFT)

Task-Retrieve 98.78 37.96 37.50
Plan-Retrieve 73.17 42.08 30.79
Step-wise Select 100.00 31.71 31.71
DFS 91.50 16.35 14.96
Retrieve and Rewrite 92.68 46.05 42.68

Table 9: Detailed performance on SayCan

steps, leading to poorer performance.

F Prompts for All Methods

Our prompt contains two parts: instruction and
input. In GPT-3.5, we use instruction for system
messages, while in Vicuna and SFT models, since
they are not trained on different system messages,
we place it at the beginning of user input.

We use 0-shot in most settings and only use 2-
shot in a few such as generating initial plans and
rewriting. Prompts set to 0-shot often only have
formatting requirements. The rest of the operations
need to match the characteristics of the dataset
or are more complex, so we think they require
additional information.
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<GENERATE FINAL PLAN PROMPT>
INSTRUCTION: 
You will be given a task, a method to complete the task and several available actions. If no 
method is specified it will be set to "None". Here are a few things you need to keep in mind:
1. You need to generate a plan that satisfies the given tasks and methods.
2. You can only use the steps in <Actions in Library> to complete a given task, even though 
the provided steps may not complete the task.
3. You must use the actions in the library exactly. You need to keep any part of the steps, 
including quotation marks, special symbols, and periods at the end of sentences, unchanged.
Send your answer in the following format and do nothing else: 1. step1
2. step2
3. step3...

PROMPT:
<Task>: How to Tell the Difference Between a Tortoise, Terrapin and Turtle
<Method>: Observing the Reptile’s Behavior
<Actions in library>:
1. Assess what kind of turtle you are dealing with before you start.
2. {other steps}…

RESPONSE:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
1. Assess what kind of turtle you are dealing with before you start.
2. {other steps}...

Figure 5: task-retrieve prompt.

<GENERATE INITIAL PLAN PROMPT>
INSTRUCTION: 
You will be given a task and a method to complete the task. If no method is specified it will 
be set to "None". You need to generate a plan that satisfies the given tasks and methods. The 
plan needs to be a list of several actions and each action should be a complete and short 
sentence separated by newlines. Send your answer in the following format and do nothing else: 
1. step1
2. step2
3. step3...

PROMPT_EXAMPLE_0:
<Task>: How to Watch Disney Plus on iPhone
<Method>: None
RESPONSE_EXAMPLE_0:
1. Open the Disney+ app.
2. {other steps}…

PROMPT_EXAMPLE_1:
<Task>: How to Improve Your Posture
<Method>: Using Exercise to Improve Your Posture
RESPONSE_EXAMPLE_1:
1. Improve your core muscles with deep abdominal stretching.
2. {other steps}…

PROMPT:
<Task>: How to Love Your Rabbit
<Method>: Handling and Caring for Your Rabbit

RESPONSE:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
1.Spend time bonding with your rabbit every day.
2.{other steps}…

Figure 6: plan-retrieve prompt to generate initial plan.
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<GENERATE FINAL PLAN PROMPT>
INSTRUCTION: 
You will be given a task, a method to complete the task, an initial plan to follow and a 
number of available actions. If no method is specified it will be set to "None". Here are a 
few things you need to keep in mind:
1. You need to generate a plan that satisfies the given tasks and methods.
2. The initial plan is a reference only, which means you should not output the steps in the 
initial plan directly.
3. You can only use the steps in Actions in Library to complete a given task, even though the 
provided steps may not complete the task.
4. You must use the actions in the library exactly. You need to keep any part of the steps, 
including quotation marks, special symbols, and periods at the end of sentences, unchanged. 
Send your answer in the following format and do nothing else: 1. step1
2. step2
3. step3...

PROMPT:
<Task>: How to Love Your Rabbit
<Method>: Handling and Caring for Your Rabbit
<Initial steps>:
1. Spend time bonding with your rabbit every day.
2. {other steps}…

<Actions in library>:
1. Spend time interacting with your rabbit every day.
2. {other steps}…

RESPONSE:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
1. Spend time interacting with your rabbit every day.
2. {other steps}…

Figure 7: plan-retrieve prompt to generate final plan.

<GENERATE POSSIBLE NEXT STEP PROMPT>
INSTRUCTION:
You will be given a task, a method to complete the task and a current plan. If no method is 
specified it will be set to "None". If the current plan is empty, the plan will also be set 
to "None". Remember:
1. You need to generate the next step in the plan that needs to meet the given tasks and 
methods based on the existing plan. Please note that the step you generate will be added to 
the end of the existing steps, and you need to pay attention to maintain the coherence of the 
overall steps.
2. There is no going back in your generating process, you cannot try to delete or modify a 
previously existing step.
3. If you think the current plan is sufficient for the task, just output "[New step: None]". 
You only need to output one step and do nothing else.
Send your answer in the following format: [New step: step] or [New step: None]

PROMPT:
<Task>: How to Love Your Rabbit
<Method>: Handling and Caring for Your Rabbit
<Current plan>:
None

RESPONSE:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
[New step: Research the specific needs and behaviors of rabbits to understand how to properly 
care for and handle them.]

Figure 8: step-wise select prompt to generate possible next step.
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<SELECT NEXT STEP PROMPT>
INSTRUCTION:
You will be given a task, a method to complete the task, a current plan and several candidate 
actions. Candidate actions are called <Actions in Library>. If no method is specified it will 
be set to "None". If the current plan is empty, the plan will also be set to "None". Here are 
a few things you need to keep in mind:
1. You need to select the next step in the plan from the candidate actions that satisfies the 
given task and method based on the currently existing plan. Please note that the step you 
select will be added to the end of the existing steps, and you need to pay attention to 
maintain the coherence of the overall steps.
2. There is no going back in your generating process.
3. You can only use the steps in <Actions in Library> to complete a given task. If you think 
that the provided steps may not accomplish the task, you need to select "[New step: None of 
these]". Never use your own steps to complete a task, all output needs to be selected from 
the options provided.
4. You must use the actions in the library exactly. You can't just output the sequence number 
of an action, you must output the entire sentence. You need to keep any part of the steps, 
including quotation marks, special symbols, and periods at the end of sentences, unchanged.
Send your answer in the following format and do nothing else: [New step: None of these] or 
[New step: step]

PROMPT:
<Task>: How to Love Your Rabbit
<Method>: Handling and Caring for Your Rabbit
<Current plan>:
None
<Actions in library>:
Research rabbit care.
{other steps}…

RESPONSE:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
[New step: Research rabbit care.]

Figure 9: step-wise select prompt to select next step.

<GENERATE INITIAL STEPS PROMPT>
INSTRUCTION:
You will be given a task and a method to complete the task. If no method is specified it will 
be set to "None". Remember:
1. Based on your plan for a given task and method, you need to generate three candidates for 
the first step of completing the task with the specified method. These three steps must be 
different. I would choose one of the three candidates you generated as an initial step in 
planning. You need to pay attention to scalability in this step.
2. There is no going back in your generating process, you cannot try to delete or modify a 
previously existing step.
Send your answer in the following format: [1. candidate1
2. candidate2
3. candidate3]

PROMPT:
<Task>: How to Tell the Difference Between a Tortoise, Terrapin and Turtle
<Method>: Observing the Reptile’s Behavior
<Current plan>:
None

RESPONSE:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
1. Observe the reptile's feeding behavior, as tortoises are primarily herbivores, while 
terrapins and turtles eat a more varied diet.
2. Look for the reptile's swimming habits, as terrapins are generally comfortable in both 
freshwater and brackish water, while turtles prefer strictly freshwater habitats.
3. Observe the reptile's sunbathing behavior, as tortoises often bask in the sun for extended 
periods, while turtles and terrapins may do so but not as frequently.

Figure 10: DFS prompt to generate initial steps.
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<SELECT NEXT STEP PROMPT>
INSTRUCTION:
You will be given a task, a method to complete the task, a current plan and several candidate 
actions. Candidate actions are called <Actions in Library>. If no method is specified it will 
be set to "None". If the current plan is empty, the plan will also be set to "None". Here are 
a few things you need to keep in mind:
1. You need to select the next step in the plan from the candidate actions that satisfies the 
given task and method based on the currently existing plan. Please note that the step you 
select will be added to the end of the existing steps, and you need to pay attention to 
maintain the coherence of the overall steps.
2. There is no going back in your generating process.
3. You can only use the steps in <Actions in Library> to complete a given task. If you think 
that the provided steps may not accomplish the task, you need to select "[New step: None of 
these]". Never use your own steps to complete a task, all output needs to be selected from 
the options provided.
4. You must use the actions in the library exactly. You can't just output the sequence number 
of an action, you must output the entire sentence. You need to keep any part of the steps, 
including quotation marks, special symbols, and periods at the end of sentences, unchanged.
Send your answer in the following format and do nothing else: [New step: None of these] or 
[New step: step]

PROMPT:
<Task>: How to Tell the Difference Between a Tortoise, Terrapin and Turtle
<Method>: Observing the Reptile’s Behavior
<Current plan>:
None
<Actions in library>:
Bathe your tortoise often.
other steps…

RESPONSE:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
[New step: Observe what the reptile eats.]

OR:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
[New step: None of these]

Figure 11: DFS prompt to select next step. The answer can be either new step or None.
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<EXPAND NEXT STEPS PROMPT>
INSTRUCTION:
You will be given a task, a method to complete the task and a current plan. If no method is 
specified it will be set to "None". If the current plan is empty, the plan will also be set 
to "None". Remember:
1. You need to generate three candidates for the next step of the current plan based on the 
existing plan to satisfy the plan for the given task and method. These three steps must be 
different. Note that I will add one of these three candidates you generated to the end of the 
existing step. You need to pay attention to maintaining the coherence of the overall steps.
2. There is no going back in your generating process, you cannot try to delete or modify a 
previously existing step.
3. If you think the current plan is sufficient for the task, just output "[None]". You only 
need to output steps and do nothing else.
Send your answer in the following format: [1. candidate1
2. candidate2
3. candidate3] or [None]

PROMPT:
<Task>: How to Tell the Difference Between a Tortoise, Terrapin and Turtle
<Method>: Observing the Reptile’s Behavior
<Current plan>:
1.Observe what the reptile eats.

RESPONSE:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
1. Watch the reptile’s movement patterns.
2. Observe the reptile’s habitat.
3. Note the reptile’s swimming behavior.

Figure 12: DFS prompt to expand nodes.

<GENERATE INITIAL PLAN PROMPT>
INSTRUCTION:
You will be given a task, a method to complete the task and several actions for reference. 
These actions are called <References>. If no method is specified, it will be set to "None". 
Remember:
1. You need to refer to the content in <References> to generate a plan that can complete the 
task in the specified method. 
2. The generated plan does not need to use the exact steps in <Reference>. You can generate 
any plan as long as it can complete the task in the specified method. In subsequent 
operations, I will use other actions in the library to rewrite it, so the plan you generate 
needs to be as consistent in style as possible with these actions.
Send your answer in the following format and do nothing else: 1. step1
2. step2
3. step3...

PROMPT:
<Task>: How to Tell the Difference Between a Tortoise, Terrapin and Turtle
<Method>: Observing the Reptile’s Behavior
<References>:
1. Assess what kind of turtle you are dealing with before you start.
2. {other steps}…

RESPONSE:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
1. Research the characteristics of tortoises, terrapins, and turtles to understand the 
differences in their behavior and appearance.
2. {other steps}…

Figure 13: rewrite prompt to generate initial plan.
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<REWRITE PROMPT>
INSTRUCTION:
You will be given a task, a method to complete the task, a current plan and several candidate 
actions. Candidate actions are called <Actions in Library>. If no method is specified it will 
be set to "None". If the current plan is empty, the plan will also be set to "None".
Use the actions listed below to refine your current steps to complete your task. Actions 
marked with <TO BE REPLACED> indicate that the content was not found in the action library, 
and actions marked with <IN LIB> indicate that they are in the action library. You need to 
analyze which actions in the provided action library can be added to the action list and 
replace some or all of the actions marked with <TO BE REPLACED>. We encourage you to add more 
<TO BE REPLACED> content to complete these steps.
You can do the following:
* Replace any number of <TO BE REPLACED>-like operations with any number of <IN LIB> 
operations.
* Replace any number of <IN LIB> operations with any number of <IN LIB> operations as the 
latter are better suited to the task.
* Replace any number of <IN LIB> operations with more general <IN LIB> operations.
* Insert any number of <IN LIB> operations that differ from existing steps.
* Insert any number of <TO BE REPLACED> operations to fill in missing content between steps.
* Remove any number of redundant <IN LIB> operations.
* Remove any number of redundant <TO BE REPLACED> operations.
* Remove any number of overly verbose <IN LIB> operations.
* Compare several similar <IN LIB> operations and select the best one to add to the 
operations list.
* Other reasonable actions.
Remember:
1. Your output needs to be a list, and each element in the list needs to start with "{<IN 
LIB>" or "{<TO BE REPLACED>" and end with \"}\".
2. The rewritten sentences need to cover roughly the same scope as before the rewrite, 
although they may differ in detail.
3. Only actions that are newly added from <Actions in library> can be marked with <IN LIB>, 
otherwise they need to maintain their attributes in <Current steps>.
4. You must use the actions in the library exactly. You can't just output the sequence number 
of an action, you must output the entire sentence. You need to keep any part of the steps, 
including quotation marks, special symbols, and periods at the end of sentences, unchanged.
5. Always output the complete plan, not only newly added or changed steps. If the content 
containing <IN LIB> is still needed, you need to output it completely.
Send your answer in the following format and do nothing else: [1. {<IN LIB> step1}
2. {<TO BE REPLACED> step2}
...]

PROMPT_EXAMPLE_0:
<Task>: How to Increase Your Income
<Method>: Cutting Down on Expenses
<Current steps>:
1. {<TO BE REPLACED> Avoid eating out.}
2. {<TO BE REPLACED> Cancel unused subscriptions and memberships.}
3. {<TO BE REPLACED> Bike or walk to work, rather than drive.}
4. {<TO BE REPLACED> Find free or low-cost entertainment options instead of expensive 
outings.}
5. {<TO BE REPLACED> Reduce your rent.}

<Actions in library>:
{<IN LIB> Cancel or suspend memberships or subscriptions that you're no longer using, or that 
you're using ineffectively.}
{<IN LIB> Select Cancel Subscription.}
{<IN LIB> Cancel your dating profiles and subscriptions.}
{<IN LIB> Click Cancel Subscription.}
{<IN LIB> Click Cancel subscription.}
{<IN LIB> Find fun things to do together as a family that don't cost a lot.}
{<IN LIB> Find alternative or more cost effective ways to spending time on your own.}
{<IN LIB> Pursue less costly hobbies.}
{<IN LIB> Choose affordable activities.}
{<IN LIB> Take advantage of free fun.}

Figure 14: rewrite prompt to rewrite.
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<REWRITE PROMPT>-continue
RESPONSE_EXAMPLE_0：
1. {<TO BE REPLACED>Avoid eating out.}
2. {<IN LIB> Cancel or suspend memberships or subscriptions that you're no longer using, or 
that you're using ineffectively.}
3. {<TO BE REPLACED> Bike or walk to work, rather than drive.}
4. {<IN LIB> Choose affordable activities.}
5. {<TO BE REPLACED> Reduce your rent.}

PROMPT_EXAMPLE_1:
<TASK>: How to Make Fried Chicken with Buttermilk and Tarragon
<Method>: None
<Current steps>:
1. {<TO BE REPLACED> Marinate chicken pieces in buttermilk and tarragon for at least 4 hours 
or overnight in the refrigerator.}
2. {<TO BE REPLACED> Remove chicken from the buttermilk marinade and let excess drip off.}
3. {<TO BE REPLACED> Dredge the chicken in seasoned flour, ensuring it is evenly coated.}
4. {<TO BE REPLACED> Heat oil in a pan to 350°F (175°C) and carefully place the chicken in 
the hot oil.}
5. {<TO BE REPLACED> Fry until golden brown and fully cooked, usually about 15-20 minutes 
depending on the size of the chicken pieces.}
6. {<TO BE REPLACED> Once cooked, place the fried chicken on a wire rack to drain excess oil.}
7. {<TO BE REPLACED> Serve and enjoy!}

<Actions in library>:
{<IN LIB> Refrigerate marinated chicken for 4 to 6 hours.}
{<IN LIB> Allow the chicken to marinate overnight.}
{<IN LIB> Shake off the marinade from the chicken pieces.}
{<IN LIB> Remove chicken pieces from the buttermilk mixture and dredge in flour.}
{<IN LIB> Add chicken pieces to seasoned flour and toss to coat.}
{<IN LIB> Heat oil in skillet to 350 °F (177 °C).}
{<IN LIB> Preheat the oil to 350° Fahrenheit or 176° Celsius.}
{<IN LIB> Fry the chicken in a frying pan until crispy and golden in color.}
{<IN LIB> Fry about 2 to 3 minutes or until they are golden brown and crispy.}

RESPONSE_EXAMPLE_1:
1. {<TO BE REPLACED> Mix buttermilk, tarragon, salt and pepper in a large bowl.}
2. {<TO BE REPLACED> Add chicken pieces to mixture to marinate.}
3. {<IN LIB> Refrigerate marinated chicken for 4 to 6 hours.}
4. {<IN LIB> Remove chicken pieces from the buttermilk mixture and dredge in flour.}
5. {<IN LIB> Heat oil in skillet to 350 °F (177 °C).}
6. {<IN LIB> Fry the chicken in a frying pan until crispy and golden in color.}
7. {<TO BE REPLACED> Once cooked, place the fried chicken on a wire rack to drain excess oil.}
8. {<TO BE REPLACED> Serve and enjoy!}

PROMPT:
<Task>: How to Tell the Difference Between a Tortoise, Terrapin and Turtle
<Method>: Observing the Reptile’s Behavior
<Current plan>:
1. {<TO BE REPLACED> Research the characteristics of tortoises, terrapins, and turtles to 
understand the differences in their behavior and appearance.}
2. other steps…

<Actions in library>:
{<IN LIB> Assess what kind of turtle you are dealing with before you start.}
{<IN LIB> other steps…}

RESPONSE:
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-
1. {<IN LIB> Assess what kind of turtle you are dealing with before you start.}
2. {<TO BE REPLACED> Watch the reptile to observe its movement patterns and habits, paying 
attention to its interaction with water and land.}
3. other steps…

Figure 15: rewrite prompt to rewrite-continue.
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<EVALUATION PROMPT>
PROMPT:
For a given task, a possible method to solve the task and two corresponding plans, please 
evaluate the plans based on three aspects: completeness, feasibility, and relevance to the 
task, with a maximum score of 10 points for each aspect. The detailed scoring criteria for 
each aspect are as follows:
- Completeness: Examining whether the plan is comprehensive, with a focus on the coherence 
between steps, the presence of necessary steps, and the avoidance of arbitrarily introduced 
conditions.
- Feasibility: Assessing the practicality of the plan, considering whether each step can be 
implemented, whether the plan aligns with common sense, adheres to human ethical standards, 
and avoids excessive redundant steps.
- Relevance to the task: Evaluating the extent to which the plan is related to the given task, 
considering the use of provided task conditions and whether it achieves the desired goals of 
the task.

Task: {TASK}
Method: {METHOD}

Plan1:
{PLAN1}

Plan2:
{PLAN2}

Now, read the task, method and plans provided, and compare the plans. In the 'Analysis' 
section, provide a brief rationale for your comparison in the three aspects. Then, based on 
your analyses, choose the better plan (could be chosen from [Plan1, Plan2]):

Output:

<Analysis>
- Completeness: 
- Feasibility: 
- Relevance:
</Analysis>

<Better Plan> [Plan1, Plan2] </Better Plan>

Figure 16: evaluation prompt.
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