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Abstract

We introduce a simple and effective prompt­

ing technique called in­context mixing (ICM)

for effective in­context learning (ICL) with

multilingual large language models (MLLMs).

With ICM, we modify the few­shot examples

within ICL prompts to be intra­sententially

code­mixed by randomly swapping content

words in the target languages with their English

translations. We observe that ICM prompts

yield superior performance in NLP tasks such

as disfluency correction, grammar error cor­

rection and text simplification that demand a

close correspondence between the input and out­

put sequences. Significant improvements are

observed mainly for low­resource languages

that are under­represented during the pretrain­

ing and finetuning of MLLMs. We present an

extensive set of experiments to analyze when

ICM is effective and what design choices con­

tribute towards its effectiveness. ICM works

consistently and significantly better than other

prompting techniques across models of varying

capacity such as mT0­XXL, BloomZ and GPT­

4. Code, prompts and datasets are available

here.

1 Introduction

In­context learning (ICL) has emerged as a widely

accepted gradient­free training paradigm for large

language models (LLMs) where a prompt at test­

time comprises instructions relevant to the target

task, a few task­specific labeled examples and the

test instance for which we seek an output (Brown

et al., 2020). The few­shot examples in the prompt

help the trained model adapt to the task better and

elicits more accurate predictions for the test in­

stances.

Creating prompts for ICL with multilingual

LLMs (MLLMs) is an emerging area of interest

(Shi et al., 2023; Etxaniz et al., 2023; Bang et al.,

2023; Huang et al., 2023; Kim et al., 2023). When

the test instances are in different target languages,

the prompts are typically multilingual with the in­

structions appearing in English and few­shot exam­

ples appearing in the target languages. It is common

to use English for instructions in the multilingual

prompts as a bridge to the target language, since

MLLMs are typically most proficient in English.

In this work, we expand further on this intuition of

using English as a bridge language.

We introduce a simple and effective prompt­

ing technique for MLLMs that we call in­context

mixing (ICM). In ICM, the few­shot examples in

the target languages are altered to contain intra­

sentential code­mixing, i.e., a fraction of content

words in the target language sentences are randomly

replaced by their English translations. Table 1

shows an example of an ICM prompt when the

test instance is in Hindi. We demonstrate the utility

of this simple strategy across multiple NLP tasks

such as disfluency correction (DC), grammar er­

ror correction (GEC) and text simplification (TS)

and across multiple MLLMs including open­source

models such as mT0­XXL, BloomZ and powerful

closed models like GPT­4. We make the following

two key observations:

1. We observe that ICM significantly benefits lo­

cal sequence transduction tasks like DC, GEC

and TS that demand a close correspondence

between the input sentence and the generated

output sentence. ICM does not benefit natural

language understanding tasks like sentiment

analysis and NLI that rely on sentence­level

semantics.

2. We observe that ICM tends to boost the perfor­

mance of tasks in low­resource languages (i.e.

languages that do not appear prominently in

the pretraining and/or instruction fine­tuning

data of theMLLM) compared to high­resource

languages.

We show that ICM outperforms many other
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prompting techniques and also show it is comple­

mentary to techniques such as chain­of­thought

prompting (Shi et al., 2023). We provide a very

extensive analysis of ICM including how perfor­

mance varies depending on the nature of mixing,

the degree of mixing, the source of English trans­

lations for mixing (i.e., from a lexicon or parallel

text), the choice of mixing language, etc. While

it appears like one could easily construct alternate

prompt modifications that include English and can

rival ICM (e.g., append English translations to the

target sentences, append target language to English

word mappings to the target sentences, etc.), we

show that none of these variants provide consistent

performance gains like ICM does.

In order to tease apart why ICMworks better than

other prompting techniques, we probe the MLLM

representations for disfluency correction by training

a simple MLP classifier that takes MLLM encoder

representations of the target sentences as input and

labels each word as being disfluent or not. The

probe trained on ICM representations performs sig­

nificantly better on the disfluency classification task

compared to all prompting techniques.

While prompting has been extensively studied

for English (Brown et al., 2020; Zhao et al., 2021;

Kojima et al., 2022; Wei et al., 2022; Fu et al.,

2023; Wang et al., 2023), prompting multilingual

models to enable improved cross­lingual transfer

is relatively far less explored. Thus, we think a

simple prompting mechanism like ICM that can

consistently improve performance across LLMs

and across languages that are under­represented

in the pretraining/instruction tuning corpora of the

multilingual LLM could be of broader interest.

2 Related Work

In the context of LLMs, Brown et al. (2020) intro­

duced the paradigm of In­Context Learning (ICL)

which means that the models first develop a range

of skills at training time and utilize those skills at

inference time to adapt to a target task. ICL refers

to combining a query example and an instruction

together to form a prompt, which is fed into the

model for predictive tasks (Radford et al., 2019). A

salient feature of ICL, particularly relevant to large­

scale models, is its ability to deliver predictions

without changing any of the model parameters.

In recent years, prior work in the area of Multi­

lingual Large Language Models (MLLMs) has ex­

plored various prompting techniques. Translate­test

is a strong baseline in the traditional pre­train/fine­

tune paradigm (Ponti et al., 2021; Artetxe et al.,

2023). Recent studies show that it is also effec­

tive for prompting autoregressive language models

(Lin et al., 2022; Shi et al., 2023), as these models

exhibit differential performance depending on the

input language (Bang et al., 2023). A newer vari­

ant of translate­test is called self­translate (Etxaniz

et al., 2023) that overcomes the need for an exter­

nal translation system. by leveraging the intrinsic

few­shot translation capabilities inherent in multi­

lingual LLMs. However, these paradigms falter for

same­language sequence­to­sequence tasks where

the output must closely mirror the input. This is

crucial for tasks requiring high input­output corre­

spondance, like Grammar Error Correction (GEC)

and Disfluency Correction (DC).

Recent work has also delved into methodolo­

gies like Intra­Cross­Lingual transfer (Winata et al.,

2021; Ahuja et al., 2023), as well as the Chain­of­

Thought (CoT) style of cross­lingual prompting

(Shi et al., 2023; Huang et al., 2023). Nonethe­

less, a recurring observation across these methods

is their tendency to predominantly focus on few­

shot example composition within a single language.

This approach, albeit comprehensive, often over­

looks the potential benefits in cross­lingual transfer

when languages are mixed. To boost cross­lingual

transferability in multilingual models, a few­shot

prompting method was introduced where the source

and target languages are mixed (Kim et al., 2023).

While the latter explore the merits of language mix­

ing, our work is different in that we modify the

few­shot examples that appear in the prompt with

intra­sentential code­mixing.

3 In­context Mixing (ICM)

A prompt typically comprises an instruction for

a given task, accompanied by few­shot examples

relevant to that task, followed by a test instance.

In “Monolingual Prompting” (Sitaram et al., 2023),

the instruction is written in English, while the few­

shot examples, the test instance, and the output

(when applicable) are all presented in the native

language. A “Cross­lingual Prompt” (Sitaram et al.,

2023) uses English for the instruction and English

or a pivot language for the few­shot examples, with

the test instance still being in the native language.

In both of the above prompting techniques widely

in use, note that the test instances always appear in

the native language.
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मैंने सोचा �क,

उम्म...क्या मैं

आज शाम

को �फल्म

देखने जाऊँ?

Identify Content Words

ICM Bilingual Lexicon

मैंने thought

�क, उम्म...क्या

मैं आज शाम

को movie

देखने जाऊँ?

मैंने thought

�क, उम्म...क्या मैं

today evening

को �फल्म

देखने जाऊँ?

मैंने thought

�क, उम्म...क्या मैं

today evening

को movie

देखने जाऊँ?

30%

50%

80%

Figure 1: Flowchart illustrating how examples are code­

mixed using ICM with varying degrees of mixing.

In­context Mixing (ICM) injects code mixing

within the few­shot examples. The examples are

now mixed with English, i.e., we randomly switch

words in the examples to English. To determine

which words are eligible for switching, we restrict

our choices to content words with one of the follow­

ing part­of­speech (POS) tags: noun, verb, adjec­

tive, or adverb. Whenever possible, we use bilin­

gual lexicons sourced from Conneau et al. (2017)

to facilitate the English replacement, relying on the

spaCy tagger (Honnibal et al., 2020) to predict POS

tags for each word. For languages lacking these

resources, we use NLLB (Costa­jussà et al., 2022)

to translate each sentence word by word into En­

glish and borrow the English POS tags. We now

introduce English words in the example by only

considering content words and randomly switching

a predetermined fraction of them.

We introduce three different degrees of switch­

ing in the examples. We name them “ICM­30”,

“ICM­50”, and “ICM­80”. As the name suggests,

“ICM­x” means that x% of the content words are

randomly switched in each few­shot example. Fig­

ure 1 is an illustration of the switching process, and

Table 1 shows an example of a “ICM­50” prompt,

comparing it with a monolingual prompt. Table

14 in Appendix A shows the prompt template of

ICM­50.

It is important to note that switching is done only

in the few­shot examples, and the instruction and

the test instance are kept intact in their respective

languages. In the few­shot examples, switching is

introduced both in the input and output of each ex­

ample. If a word is switched in the input, and that

word is also present in the corresponding position

in the output, the word in the output is likewise

Monolingual

Prompt

ICM­50 Prompt

Instruction: Correct

disfluencies...

Instruction: Correct

disfluencies...

(in English) (in English)

FewShot Examples: Few Shot Examples:

Input: अमुझे बताइए ये

सेवा नहीं है क्या?

Input: अमुझे tell ये ser­

vice नहीं है क्या?

Output: मुझे बताइए ये

सेवा नहीं है क्या?

Output: मुझे tell ये ser­

vice नहीं है क्या?

... ...

(in native language) (mixed with English)

Test Instance: Test Instance:

Input: क्या हमें कल..

हमें कल चलना चा�हए।

Input: क्या हमें कल..

हमें कल चलना चा�हए।

Output: Output:

(in native language) (in native language)

Table 1: Comparison of the final monolingual prompt

(left column) and the final ICM­50 prompt (right col­

umn), where 50% of the content words are randomly

switched in the few shot examples. Test instances re­

main in the native language.

switched. To safeguard against English tokens ap­

pearing in the outputs (because the MLLM might

learn to also output English target words from the

few­shot examples), we explicitly mentioned in the

prompt “Do not include English words or vocabu­

lary in the output”. Unless specified otherwise, the

prompts are 5­shot.

4 Experimental Setup

4.1 Tasks and Datasets

We conduct experiments across five tasks: Disflu­

ency Correction (DC), Grammar Error Correction

(GEC), Text Simplification (TS), Natural Language

Inference (NLI), and Sentiment Analysis (SA).

4.1.1 Disfluency Correction (DC)

We perform the task of DC on Telugu, Hindi,

Marathi, Bengali, Vietnamese, French, and German.

ForMarathi and Bengali, we use the “real­disfluent”

evaluation set from Kundu et al. (2022). We make

use of the evaluation sets of the DISCO corpus

(Bhat et al., 2023) for Hindi, French and German

DC. Vietnamese DC evaluation data was retrieved

from Dao et al. (2022). Finally, for Telugu, in the

absence of existing datasets, we curated a new eval­

uation set of 200 disfluent­fluent pairs. A native

speaker of Telugu translated 200 English disfluent

sentences sourced from Du Bois et al. (2000) and
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created corresponding fluent counterparts. Table 18

in Appendix B shows the number of instances for

each language.

4.1.2 Grammar Error Correction (GEC)

We present GEC results for Turkish, Korean, Ger­

man, and Czech. Turkish data comes from Kok­

sal et al. (2020), an evaluation set of erroneous

texts from Twitter. For German, we use the Falko

subset test set from Boyd (2018), a GEC corpus

with Wikipedia edits. For Czech, we use the test

set of AKCES­GEC corpus (Náplava and Straka,

2019). Korean evaluation is based on the Korean­

Native test set by Yoon et al. (2023). Table 19 in

Appendix B details the test instances per language.

4.1.3 Text Simplification (TS)

We study TS for a subset of languages – Brazilian

Portuguese, German, and French – from the dataset

in Ryan et al. (2023), a collection of 27 resources

across 12 languages with over 1.7 million complex­

simple sentence pairs. For quicker turnaround, we

randomly select 1000 sentences per language for

evaluation.

4.1.4 Natural Language Inference (NLI) and

Sentiment Analysis (SA)

For NLI, we use test sets of XNLI (Conneau et al.,

2018) to evaluate on four languages Hindi, Turkish,

French and German. We experiment with SA in Tel­

ugu, Hindi, and French. Telugu data comes from

the ACTSA Corpus (Mukku and Mamidi, 2017),

and we use all 5410 instances for evaluation. For

Hindi, we use the test set of IIT Patna Movie re­

view corpus (467 instances) (Akhtar et al., 2016).

French SA evaluation uses the evaluation set (655

sentences) from Apidianaki et al. (2016).

4.2 Models and Implementation Details

We use the XL(3B) and XXL (11B) variants of the

multilingual instruction­tuned LLM mT0­MT, and

BloomZ 7B parameter version (Muennighoff et al.,

2023). Both these models are mT5 (Xue et al.,

2021) and BLOOM (Scao et al., 2022) multitask

fine­tuned on xP3mt (Muennighoff et al., 2023),

respectively.

P3 (Public Pool of Prompts), (Sanh et al., 2022)

an English­only multitask mixture, is a collection

of prompted English datasets covering a diverse set

of NLP tasks. xP3 is a multilingual version of P3

that integrates datasets from 46 different languages.

xP3mt is a collection of the multilingual datasets of

xP3 with English and machine­translated prompts.

xP3 includes instructions for tasks such as NLI, SA,

but not DC, GEC or TS that we mainly evaluate

on. BLOOM and mT5 are multitask finetuned on

xP3mt to derive mT0­XXL and BloomZ­7B. To

check whether our prompting technique works for

much larger LLMs, we also show comparisons with

the GPT­4 (OpenAI, 2023) version of ChatGPT

(OpenAI, 2022) for DC.

We characterize a language to be low­resource

it is not present in either of pre­training or instruc­

tion tuning data, or it is present both during pre­

training and instruction­tuning but is less than or

equal to 1% or 5% of the overall dataset across all

languages, respectively. Based on this characteri­

zation, we consider all the languages in this work

(except French and German) to be low­resource.

5 Main Results

Our baselines include Monolingual, Cross­lingual,

Native­CoT and English­CoT prompts. If the steps

or “chain­of­thought” is conveyed in the native lan­

guage of the input and output, it is “Native­CoT”,

and if expressed in English, it is “English­CoT” (Shi

et al., 2023). An example of English­CoT prompt

is in Appendix A. CoT is complementary to ICM

as a prompting technique. We merge the two to see

if we get further gains; ICM30­CoT, ICM50­CoT,

and ICM80­CoT are the English­CoT versions of

the ICM prompts. That is, the few­shot examples

are mixed, and the reasoning appended is in En­

glish. An example of ICM50­CoT prompt is in

Appendix A. For the tasks NLI and SA, we also in­

clude Translate­Test as one of our baselines. That is,

we use NLLB to translate both the input sentences

and the test instance to English.

Our main observations are summarized below:

1. From Table 2, we see that ICM prompts out­

perform all the baselines for DC, GEC, and TS,

while ICM prompts are not as beneficial for

language understanding tasks such as NLI and

SA as shown in Table 3. ICM is an effective

prompting technique for tasks where a high

degree of correspondence between the input

and output sequences is critical to maintain.

Tasks like DC and GEC retain many of the

original input tokens in their output sequences.

Semantic understanding tasks like NLI, SA,

etc. that do not require such an input­output

correspondence and rely on overall sentence

semantics do not tend to benefit from ICM.
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DC GEC TS

Prompt Te Hi Mr Bn Vi Fr De Tr Ko Cs De Pt De Fr

Cross­lingual 9.0 10.0 3.6 3.2 5.0 21.0 10.5 8.2 10.5 13.1 6.4 29.1 30.2 32.1

Monolingual 29.0 49.0 21.6 8.7 14.1 62.0 25.1 12.2 21.1 18.2 11.2 58.5 60.2 61.2

Native­CoT 28.3 49.1 23.3 8.0 14.9 64.1 26.2 12.2 21.5 18.2 13.6 58.6 61.5 62.7

English­CoT 30.2 51.2 23.5 8.6 15.4 65.0 28.3 12.3 21.4 18.8 15.5 58.9 62.0 62.6

ICM­30 27.8 50.1 20.8 8.0 15.4 61.4 21.7 12.5 21.6 18.6 9.9 58.9 59.1 60.1

ICM­50 33.8 51.2 25.6 9.8 15.7 59.6 22.1 13.0 25.4 18.9 9.9 60.4 61.4 58.7

ICM­80 32.3 46.9 19.6 8.3 15.9 61.3 26.0 13.0 23.1 18.2 11.5 58.1 61.6 58.7

ICM30­CoT 29.8 51.4 21.5 8.9 15.7 61.5 24.3 12.8 23.2 19.0 12.1 58.9 58.9 58.9

ICM50­CoT 37.2 53.5 27.1 10.4 16.9 63.1 25.1 13.2 27.2 19.7 12.4 60.5 61.0 59.1

ICM80­CoT 36.1 50.1 21.2 9.2 16.4 64.1 28.0 13.1 25.4 19.6 13.6 58.6 61.1 59.3

Table 2: Results for DC, GEC, and TS tasks using mT0­XXL. We report exact match scores for DC and GEC, while

we report SARI scores for text simplification. The best baseline (among Cross­lingual, Monolingual, Native­CoT,

English­CoT) and the best ICM results are highlighted in bold. Statistically significant improvements compared to

the best baseline (at p < 0.01 using the Wilcoxon signed rank test) are highlighted in green.

NLI SA

Prompt Hi Tr Fr De Te Hi Fr

Cross­lingual 53.0 52.3 57.1 57.0 50.1 52.4 58.2

Monolingual 56.7 57.7 59.0 59.3 49.8 53.0 60.1

Translate­Test 56.7 58.9 59.5 59.4 47.2 48.1 56.4

ICM­30 56.7 57.5 59.1 59.6 49.1 52.1 57.1

ICM­50 56.1 57.3 58.9 60.1 50.7 51.9 55.4

ICM­80 54.7 56.1 58.8 59.9 51.3 51.9 55.0

Table 3: Accuracy results for the tasks NLI and SA, us­

ing mT0­XXL. The baselines are Cross­lingual, Mono­

lingual, and Translate­Test prompts. Statistically signif­

icant improvements (at p < 0.01 using the Wilcoxon

signed rank test) are highlighted in green.

2. ICM­50 consistently yields scores that are

either comparable to or superior to those

achieved using monolingual prompts. The de­

gree of mixing does appear to be a useful hy­

perparameter to tune. ICM­30 is not enough

mixing and ICM­80 is too much mixing so as

to distort the structure of the target language

sentence.

3. ICM tends to benefit low­resource languages

more than high resource languages (with some

exceptions). ICM shows clear improvements

for low­resource Indic languages such as

Telugu, Marathi, etc., Vietnamese, Turkish.

French and German are examples of high­

resource languages that do not benefit from

ICM in Table 2.

Results in Table 2 are with mT0­XXL; results

with the models mT0­xl and BloomZ­7B follow the

same trend and are summarized in Appendix D. To

DC GEC

Prompt Te Hi Mr Bn Tr

Cross­lingual 56.1 52.8 43.7 38.3 54.1

Monolingual 54.2 56.4 41.2 39.2 56.3

English­CoT 55.5 55.6 46.4 38.8 57.7

ICM­30 56.3 58.8 45.4 38.5 61.1

ICM­50 59.5 60.6 48.6 40.7 64.4

ICM­80 58.6 55.3 44.3 40.1 62.5

Table 4: Results with ChatGPT (GPT­4 version) for

Telugu, Hindi, Bengali, Marathi DC and Turkish GEC.

The exact match scores given are the average across

three runs. Statistically significant improvements (at

p < 0.01 using the Wilcoxon signed rank test) over the

highest baseline score are highlighted in green.

test whether our results scale to larger models, we

also show DC experiments using ChatGPT (GPT­4)

in Table 4. Compared to mT0­XXL (Table 2), all

the baseline numbers significantly improve with

up to 30 absolute points for Bengali. Even with

the significantly improved baseline numbers, ICM

provides consistent gains that are statistically sig­

nificant (at p < 0.01). We use the Wilcoxon signed

rank test for all our experiments in this work.

6 Ablations and Probing Experiments

6.1 Random vs. Natural Switching

Random switching of words, as in ICM, does not

result in naturally code­mixed sentences. To check

whether introducing natural/realistic mixing in the

examples gives more gains compared to random

code­mixing, we compare both strategies on DC

for Hindi, Telugu, Marathi, and Bengali. The realis­

tic code­mixed examples were generated by native
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speakers of these four target languages. From Table

5, we see that natural mixing outperforms monolin­

gual prompts but it is comparable in performance to

random switching. Hence, the effectiveness of us­

ing natural code­mixed prompts relative to random

mixing remains inconclusive. This is encouraging

because random switching can be fully automated

and does not require any human intervention, unlike

the creation of realistic code­mixed examples. An

example demonstrating the qualitative difference

between a natural and a random mixed sentence is

in Appendix E.

Te Hi Mr Bn

Monolingual 29% 49% 21.6% 8.7%
ICM­50 33.8% 51.2% 25.6% 9.8%
ICM­natural 34.5% 50.8% 23.2% 11%

Table 5: Comparison of exact match scores for Telugu,

Hindi, Marathi, and Bengali DC: ICM­50 for random

and ICM­Natural for natural switching. The highest

score among random and natural is highlighted in bold.

6.2 Content word vs. Arbitrary Switching

For ICM, is it important to switch only content

words? We perform DC on Telugu and GEC on

Turkish with the same ICM strategy, with relax­

ing the constraint that only content words can be

switched. Table 6 shows that prompts with arbitrary

switching perform worse than even monolingual

prompts. Switching of content words is a critical

choice in ICM for performance gains.

Telugu (DC) Turkish (GEC)

Monolingual 29.0% 12.2%

C­W Arbitrary C­W Arbitrary

ICM­30 27.8% 25.5% 12.5% 12.1%

ICM­50 33.8% 22.5% 13.0% 11.0%

ICM­80 32.3% 23.3% 13.0% 10.3%

Table 6: Comparison of exact match scores for content­

word and arbitrary switching for Telugu DC and Turkish

GEC. C­W refers to switching only content words. Sta­

tistically significant improvements (at p < 0.01 using
the Wilcoxon signed rank test) compared to Monolin­

gual are highlighted in bold.

6.3 Usage of Alignment Tools

We used bilingual lexicons and POS taggers for

switching, whenever these resources were avail­

able for a target language. For those languages

for which at least one of these resources was not

available, we adopted a noisier approach of trans­

lating the test instance word by word to English,

getting its POS tag, and then randomly switching

content words. We compare this approach with the

usage of existing alignment tools. We use awesome­

align (Dou and Neubig, 2021) to align Hindi and

Vietnamese sentences with their English transla­

tions from Costa­jussà et al. (2022), then randomly

switch the words based on POS tags of aligned En­

glish words. From Table 7, we observe that there is

no significant difference between using an aligner

and translating word by word.

Vietnamese Hindi

Monolingual 14.1% 39.3%

wbw align wbw align

ICM­30 15.4% 15.1% 40% 39.8%
ICM­50 15.7% 15.8% 42% 42.1%

ICM­80 15.9% 15.6% 34.6% 34.2%

Table 7: Comparison of Vietnamese and Hindi DC per­

formance with mT0­XXL, when using word by word

(wbw) translation, and awesome­align (align) (Dou and

Neubig, 2021) for mixing. Statistically significant im­

provements (at p < 0.01 using the Wilcoxon signed

rank test) compared to Monolingual are highlighted in

bold.

6.4 Switching with other Languages

We created ICM prompts with high­resource lan­

guages other than English, such as French and Span­

ish. Following English, these two languages took

up the largest fraction of the overall pretraining

and multitask finetuning data. We tested ICM with

these languages using few­shot examples for Tel­

ugu and Hindi DC, Turkish GEC and Brazilian Por­

tuguese TS with mT0­XXL. From Table 8, we ob­

serve that while French and Spanish yield minor

performance gains, these are not nearly as substan­

tial as when mixing with English, except the case of

Pt­br, where mixing with Spanish has comparable

results to that of mixing with English. English is

disproportionately larger in the pretraining and/or

instruction tuning mixture xP3­mt (approx. 40%)

compared to French and Spanish (approx. 6% each).

This suggests language proportion, similarity, and

influence affects ICM’s effectiveness.

6.5 Switching only in the Input

In all the experiments so far, in the few­shot exam­

ples, switching is introduced both in the input and

output of each example. Consider a DC example. If
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Te (DC) Hi (DC) Tr (GEC) Pt­br (TS)

Monolingual 29% 39.3% 12.2% 58.5

En Fr Es En Fr Es En Fr Es En Fr Es

ICM­30 27.8% 28.4% 22.4% 40.0% 41.3% 40.8% 12.5% 12.2% 12.3% 58.9% 57.9% 58.6%

ICM­50 33.8% 33.0% 23.1% 42.0% 40.0% 38.0% 13.0% 12.1% 12.5% 60.4% 57.1% 60.2%

ICM­80 32.3% 23.6% 24.6% 34.6% 30.0% 28.3% 13.0% 11.3% 12.5% 58.1% 56.0% 58.3%

Table 8: Comparison of Telugu and Hindi DC, Turkish GEC, and Brazilian Portuguese TS performance with mT0­

xxl, when creating ICM prompts by mixing with French and Spanish other than English. Statistically significant

improvements (at p < 0.01 using the Wilcoxon signed rank test) compared to Monolingual are highlighted in bold.

a word is switched in the input (disfluent sentence),

and that word is also present in the corresponding

position in the output (fluent sentence), the word

in the output is likewise switched. We check the

influence of introducing switching exclusively in

the input and leaving the output of the few­shot

examples unaltered. This is done in order to deter­

mine whether it is crucial for the word switched

to English in the input to also be switched in the

output. We performed Hindi DC and Brazilian Por­

tuguese TS with pairs of few­shot examples being

switched only in the input, as shown in Table 9. We

observe that maintaining consistency in switching

across the input­output pairs is indeed significant.

Hi (DC) Pt­br (TS)

Mono 49.0% 58.5

Both only Input Both only Input

ICM­30 50.1% 44.3% 58.9% 58.3%
ICM­50 51.2% 42.1% 60.4% 57.2%
ICM­80 46.4% 38.6% 58.1% 56.1%

Table 9: Comparison of exact match scores (Hi DC) and

SARI scores (Pt­br TS) for the cases where the switching

is done in both input and output of the few­shot exam­

ples (Both) and partial switching (only Input). Here,

Mono stands for Monolingual. Statistically significant

improvements (at p < 0.01 using the Wilcoxon signed

rank test) compared to Monolingual are highlighted in

bold.

6.6 Word Switching vs “Mappings” appended

In this particular experiment, instead of switching

the content words in the few­shot examples, we

augment the input by appending a list of mappings

between content words and their corresponding En­

glish counterparts. These mappings are derived

from a bilingual lexicon, and are a list of key­values

added after the input in the few­shot examples; the

output remains unchanged. The experiment is con­

ducted on Hindi DC and Turkish GEC. The pairs

in the list are also randomly selected and comprise

content words. For ICM­30, the list comprises 30%

of content words, randomly chosen, and paired with

English words derived from the bilingual lexicon.

The main goal here is to assess the importance of

contextualizing switching, as opposed to merely

providing “switch” mappings in the form of a dic­

tionary. From Table 10, we observe that it is indeed

critical for in­context switching of the words in the

sentence, and no performance improvements are

observed when providing the mappings separately.

Hindi (DC) Turkish (GEC)

Mono 49.0% 12.2%

Switching Map­List Switching Map­List

ICM­30 50.1% 48.6% 12.5% 11.6%

ICM­50 51.2% 48.2% 13.0% 11.2%

ICM­80 46.4% 48.1% 13.0% 11.4%

Table 10: Comparison of Hindi DC and Turkish GEC ex­

act match scores with contextual switching (Switching)

versus appending “switch” mappings to few­shot exam­

ple inputs (Map­List). Statistically significant improve­

ments (at p < 0.01 using the Wilcoxon signed rank test)

compared to Monolingual (Mono here) are highlighted

in bold. An example Hindi Mappings appended prompt

is in Appendix A.

6.7 Translations Appended and In­context

Translations

Expanding on the previous method of appending

mappings to the input in few­shot examples, we

append the entire English translation to the native

language sentence in the few­shot examples (and

refer to it as “Translations Appended”). We source

the translations from Costa­jussà et al. (2022). To

further test for the importance of in­context cues,

we align both the input sentence in the native lan­

guage and the English translation using awesome­

align (Dou and Neubig, 2021) and do an “aligned
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Figure 2: Softmax probabilities of different WC probes for three random Hindi sentences, with disfluent words

labeled 1 (red in reference) and fluent words (blue in reference) labeled 0. ICM probes perform the best compared

to all counterparts. In­context Translation (as shown in Section 6.7) is the second­best technique.

concatenation” to get a single sequence that alter­

nates between a native language phrase and its cor­

responding English alignment. We refer to this

method as “In­context Translation”. We perform

these experiments on Telugu and Hindi DC and

Korean GEC, as shown in Table 11. Our findings

indicate that while simply appending translations

does not yield a significant advantage over ICM,

In­context Translation improves over the monolin­

gual baseline and narrows the performance gapwith

ICM. ICM­50 yields significantly better results (at

p < 0.01 using the Wilcoxon signed rank test) than

In­context Translation.

Te (DC) Hi (DC) Ko (GEC)

Monolingual 29.0% 49.0% 21.1%
ICM­30 27.8% 50.1% 21.6%
ICM­50 33.8% 51.2% 25.4%

ICM­80 32.3% 46.9% 23.1%
Translations Appended 29.1% 44.9% 18.9%
In­context Translation 32.5% 50.3% 21.5%

Table 11: Comparison of exact match scores in the case

of ICM, Translations Appended, and In­context transla­

tions for Telugu and Hindi DC, and Korean GEC. The

scores that are significantly better (at p < 0.01 using

the Wilcoxon signed rank test) than both Monolingual

and In­context Translation are highlighted in bold. An

example In­context translation prompt is inAppendix A.

6.8 Probing Experiments

To probe the representations being learned in the

context of varying prompts, we trained a simple

single­layer feedforward neural network (FFN) to

perform disfluency classification. The training data

comprises (last­layer) encoder representations from

the model mT0­XXL, for both fluent and disfluent

Hindi sentences (3000 sentences each) derived from

the training set of PRESTO (Goel et al., 2023). We

use a different dataset for hindi here because of

lack of fluent sentences in the hindi set sourced

from Bhat et al. (2023), which we used consistently

for all other experiments.

We train both sentence­level (SC) andword­level

(WC) classifiers. SC uses an FFN probe trained on

mean­pooled encoder representations from mT0­

XXL to classify the sentence as being disfluent or

not, whileWC uses an FFN probe that acts on every

token within a fixed window of neighbouring words

(of size 7) and classifies it as a disfluency or not.

Token­level predictions are aggregated through ma­

jority voting to get word­level predictions. Evalua­

tions were conducted on disfluent and fluent Hindi

sentences in the DISCO corpus (Bhat et al., 2023).

As shown in Table 12, FFN probes trained

on representations from sentences within ICM­

style prompts outperformed all other techniques in

terms of classification accuracy. Figure 2 shows a

heatmap of softmax probabilities generated by WC

probes for three random Hindi disfluent sentences

across all prompting techniques. The visualization

clearly highlights that ICM probes are not only ac­

curate, but yield fewer false positives compared to

other techniques and demonstrate fairly high confi­

dence in their predictions. In Table 12, we also train

SC probes for Korean GEC with grammatically cor­

rect and incorrect sentences (1500 each) obtained

from Yoon et al. (2023); again, ICM outperforms

all other prompting techniques in terms of probe ac­

curacy. The in­context aspect of ICM is important;

this is also clear from In­context Translation emerg­

ing as the second­best prompting technique. ICM

is likely to have an edge over In­context Translation
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since the latter would disrupt the overall sentence

structure more.

Prompt Hi (DC) Ko (GEC)

SC WC SC

Monolingual 64.0% 59.8% 65.3%
Cross­lingual 32.3% 18.1% 45.1%
Native­CoT 66.3% 61.2% 68.1%
English­CoT 66.5% 68.1% 69.8%

ICM­30 68.5% 76.5% 68.7%
ICM­50 72.1% 83.1% 75.4%
ICM­80 69.9% 78.7% 69.5%
ICM­30­CoT 69.5% 79.5% 73.3%
ICM­50­CoT 75.4% 88.4% 77.5%
ICM­80­CoT 73.2% 85.1% 76.7%

Mappings Appended 63.2% 64.2% 66.1%
Translations Appended 66.5% 67.1% 66.7%
In­context Translation 69.2% 75.2% 70.1%

Table 12: Comparison of classification accuracies of

disfluency detection (Hi) and grammar error detection

(Ko) using trained probes at the sentence­level (SC) and

word­level (WC).

7 Conclusion

In­ContextMixing (ICM) involving intra­sentential

code­mixing has been demonstrated to be an effec­

tive prompting technique to use with multilingual

LLMs. It significantly improves the performance

of NLP tasks that demand a close correspondence

between the input and output sequences such as dis­

fluency correction, grammar error correction, and

text simplification. This prompting technique par­

ticularly benefits low­resource languages such as

Telugu, Korean, Turkish, etc. We present extensive

ablation experiments and a detailed probing analy­

sis to demonstrate the benefits of ICM across many

target languages and models of varying sizes.
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Limitations

• ICM prompts are not beneficial for natural lan­

guage understanding tasks like Natural Lan­

guage Inferencing (NLI) and Sentiment Anal­

ysis (SA).

• ICM prompts also tend to work only for low­

resource languages (languages that do not ap­

pear prominently in the pretraining and/or in­

struction finetuning data of the MLLM), and

not for high­resource languages.
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A Prompt Examples

Question Alice hat 8 Bücher. Sie erhält 3 weit­
ere Bücher von einer Freundin. Wie
viele Bücher hat sie jetzt?

Step­

by­Step

Answer

Alice starts with 8 books, She re­
ceives 3 more books. The total num­
ber of books is the sum of the initial
and additional books. 8 + 3 = 11
Therefore, Alice has 11 books now.

Final An­

swer

Alice hat jetzt 11 Bücher.

Table 13: English­CoT Example, where the chain­of­

thought is in English, but the other parts of the prompt

are in native language (German here).

An example of an English­CoT Prompt is shown

in Table 13. ICM­50, ICM50­CoT, Mappings ap­

pended, and In­Context Translation prompt exam­

ples are shown in table 14, table 15, table 16 and ta­

ble 17 respectively, for Hindi DC. Similar prompts

have been used for other languages.

B Dataset Instances

Table 18 and Table 19 show the number of instances

in each evaluation set for the languages considered

for DC and GEC.

C Number of Few­shot Examples

We performed GEC experiments for Turkish and

Czech with mT0­XXL using varying number of

few­shot examples (3, 5 or 10) in the prompts. Irre­

spective of the number of few­shot examples used,

we see in Table 20 that ICM prompts consistently

surpassed the performance of the baseline prompts

(for tasks where ICM prompts are beneficial). Un­

surprisingly, increasing the number of examples in

the prompt led to improved results for both mono­

lingual and ICM prompts. Even for higher numbers

of few­shot examples, at least one variant of the

ICM prompts consistently demonstrated superior

performance over the monolingual prompts.

D Results with mT0­xl and BloomZ­7B

Though the trend of mixed Prompts being better

than the other counterparts still holds for these mod­

els, the corresponding scores for these models are

lesser than those obtained with mT0­xxl. mT0­xl

because of its smaller size, and BloomZ­7B espe­

cially with low resource Indian languages. Table

21 and Table 22 capture these results.

E Qualitative difference between Random

and Natural Mixing

The automatically generated examples with ran­

domly switched content words, at times, yield un­

natural generations. Here’s an example of a par­

allel set of natural and randomly code­switched

sentences:

• Natural Mixing: "मुझे school जाना है"

(Switched word: school)

• RandomMixing: "मुझे स्कूल go है" (Switched

word: जाना to go)

Natural switching might yield मुझे school जाना है

(school is the word switched) but when randomly

switching, it can be the case that जाना (go, going)

can be switched, which cannot switched naturally
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Input अ मुझे बताइए ये service नहीं है क्या? Remove disfluencies in the given sentence.

Output मुझे बताइए ये service नहीं है क्या?

Input ल�ेकन here पर पर अटकने से work नहीं होगा। Remove disfluencies in the given sentence.

Output ल�ेकन here पर अटकने से work नहीं होगा।

Input बाजपेयी भी इन अर economists में शा�मल थे। Remove disfluencies in the given sentence.

Output बाजपेयी भी इन economists में शा�मल थे।

Input मैंने सोचा �क, उम्म...क्या मैं आज evening को film देखने जाऊँ? Remove disfluencies in the given sentence.

Output क्या मैं आज evening को film देखने जाऊँ?

Input उसके...मतलब, उसने अपनी new car purchase है। Remove disfluencies in the given sentence.

Output उसने अपनी new car purchase है।

Input Test instance Remove disfluencies in the given sentence. Do not include English words or vocabulary in the output.

Output

Table 14: An example Hindi ICM­50 Prompt for Hindi DC.

Input अ मुझे बताइए ये service नहीं है क्या? Remove disfluencies in the given sentence.

Reasoning अ मुझे बताइए ये service नहीं है क्या? In this sentence, अ is a filler pause, and hence a disfluency.

Output मुझे बताइए ये service नहीं है क्या?

Input ल�ेकन here पर पर अटकने से work नहीं होगा। Remove disfluencies in the given sentence.

Reasoning ल�ेकन here पर पर अटकने से work नहीं होगा। In this sentence, पर is repeated twice, and once instance of it needs to be removed.

Output ल�ेकन here पर अटकने से work नहीं होगा।

Input बाजपेयी भी इन अर economists में शा�मल थे। Remove disfluencies in the given sentence.

Reasoning बाजपेयी भी इन अर economists में शा�मल थे। In this sentence, अर has been abruptly corrected to economists, and hence अर is a disfluency and it needs to be removed.

Output बाजपेयी भी इन economists में शा�मल थे।

Input मैंने सोचा �क, उम्म...क्या मैं आज evening को film देखने जाऊँ? Remove disfluencies in the given sentence.

Reasoning मैंने सोचा �क, उम्म...क्या मैं आज evening को film देखने जाऊँ? In this sentence, मैंने सोचा �क, is a discourse marker and उम्म... is a filler pause. Both these are disfluencies and they need to be removed.

Output क्या मैं आज evening को film देखने जाऊँ?

Input उसके...मतलब, उसने अपनी new car purchase है। Remove disfluencies in the given sentence.

Reasoning उसके...मतलब, उसने अपनी new car purchase है। In this sentence, उसके... has been corrected to उसने using an edit मतलब. Hence the word that is corrected उसके... and its corresponding edit मतलब are disfluencies.

Output उसने अपनी new car purchase है।

Input Test instance Remove disfluencies in the given sentence. Do not include English words or vocabulary in the output.

Output

Table 15: An example ICM50­CoT prompt for Hindi DC. ICM50­CoT is the En­CoT version of ICM­50 prompt.

in this sentence. The structure of the sentence it­

self needs to be changed if “go” needs to be used,

making it not natural to say मुझे स्कूल go है"

F Computational Resources

The models mT0­XXL and BloomZ are large. We

used a single 80GB GPU in the NVIDIA DGX

A100 GPU cluster, to run experiments on both the

models simultaneously. We used ChatGPT Sub­

scription for GPT­4 experiments.
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Input अ मुझे बताइए ये सेवा नहीं है क्या?[{सेवा: service}] Remove disfluencies in the given sentence.

Output मुझे बताइए ये सेवा नहीं है क्या?

Input ल�ेकन यहां पर पर अटकने से काम नहीं होगा। [{यहां: here}, {काम: work }] Remove disfluencies in the given sentence.

Output ले�कन यहां पर अटकने से काम नहीं होगा।

Input बाजपेयी भी इन अर अथ�शा�स्�यों में शा�मल थे। [{अथ�शा�स्�यों: economists}] Remove disfluencies in the given sentence.

Output बाजपेयी भी इन अथ�शा�स्�यों में शा�मल थे।

Input मैंने सोचा �क, उम्म...क्या मैं आज शाम को �फल्म देखने जाऊँ? [{शाम: evening}, {�फल्म: film}] Remove disfluencies in the given sentence.

Output क्या मैं आज शाम को �फल्म देखने जाऊँ?

Input उसके...मतलब, उसने अपनी नई कार खरीदी है।[{ नई: new}. { कार: car}, { खरीदी: purchase}] Remove disfluencies in the given sentence.

Output उसने अपनी नई कार खरीदी है।

Input Test instance Remove disfluencies in the given sentence.

Output

Table 16: An example Mappings appended Prompt for Hindi DC.

Input अ Uhh मुझे बताइए tell me ये this सेवा service नहीं है क्या not? Remove disfluencies in the given sentence.

Output मुझे बताइए ये सेवा नहीं है क्या?

Input ल�ेकन But यहां here पर पर अटकने stuck से काम work नहीं होगा। would not. Remove disfluencies in the given sentence.

Output ल�ेकन यहां पर अटकने से काम नहीं होगा।

Input बाजपेयी Bajpai भी also इन these अर अथ�शा�स्�यों economists में शा�मल थे। included. Remove disfluencies in the given sentence.

Output बाजपेयी भी इन अथ�शा�स्�यों में शा�मल थे।

Input मैंने I सोचा �क thought, उम्म... umm... क्या मैं should Iआज today शाम को evening �फल्म देखने जाऊँ go see movie? Remove disfluencies in the given sentence.

Output क्या मैं आज शाम को �फल्म देखने जाऊँ?

Input उसके...मतलब He.. means, उसने he अपनी his नई कार new car खरीदी है। bought. Remove disfluencies in the given sentence.

Output उसने अपनी नई कार खरीदी है।

Input Test instance Remove disfluencies in the given sentence.

Output

Table 17: An example In­Context Translation Prompt for Hindi DC.

Language Dataset Instances

Telugu ­ 200
Marathi (Kundu et al., 2022) 250
Bengali (Kundu et al., 2022) 300
Vietnamese (Dao et al., 2022) 895
French (Bhat et al., 2023) 3005
German (Bhat et al., 2023) 3096
Hindi (Bhat et al., 2023) 3180

Table 18: Number of DC test instances for each lan­

guage.

Language Dataset Instances

German (Boyd, 2018) 1240
Turkish (Koksal et al., 2020) 1970
Czech (Náplava and Straka, 2019) 2675
Korean (Yoon et al., 2023) 4529

Table 19: Number of GEC test instances for each lan­

guage.

Turkish Czech

k­shot 3 5 10 3 5 10

Mono 10.1% 12.2% 13.5% 16.3% 18.2% 22.1%

ICM­30 10.6% 12.5% 13.8% 16.3% 18.6% 22.2%

ICM­50 11.1% 13% 14.5% 17.1% 18.9% 23.4%

ICM­80 10.3% 13% 14.6% 16.6% 18.2% 23.1%

Table 20: Comparison of 3, 5, 10­shot performance

with mT0­XXL, on Turkish and Czech GEC. Significant

improvements are in bold. Mono refers to Monolingual.
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DC GEC Text Simplification

Prompt Te Hi Mr Bn Vi Fr De Tr Cs De Pt De Fr

Cross­lingual 8.2 9.3 5.6 3.2 4.2 42 18.5 9.3 12.2 6 36.2 19.8 30.2

Monolingual 12 17.3 6.8 5.3 8.2 37.5 22 11.3 14.5 8.2 34.3 29.3 29.8

Native­CoT 12.3 18 7.3 5.4 8.8 38.1 21.2 11.4 14.4 9.6 34.5 29.8 32.6

English­CoT 14.1 18.2 7.5 5.6 9.4 45 22 11.4 14.9 9.6 36.2 30.1 32.6

ICM­30 9.7 18.1 6.8 4.3 8.4 35.9 21.2 11.4 14 7.8 36.1 29.5 29.1

ICM­50 12.7 18.2 8 5.3 9.3 36.6 21.4 11.2 15 7.9 38.1 29.5 28.6

ICM­80 9 17.6 6.8 4.3 10.1 35.3 22.7 11.2 14.2 7.5 37.2 29 28.6

ICM30­CoT 10.2 18.4 7.5 4.9 9.1 35.5 21.3 11.4 15.1 8 35.9 28.5 28.9

ICM50­CoT 15 20.1 9.1 6.4 11.2 38.1 22.1 12.5 15.5 8.2 38.5 29.8 28.9

ICM80­CoT 14.8 19.8 8.2 5.2 11.4 36.1 22.5 12.5 15.5 9.2 39 29.7 29.1

Table 21: Results for DC, GEC, and TS tasks using mT0­XL. We report exact match scores for DC and GEC, while

we report SARI scores for text simplification. The best baseline (among Cross­lingual, Monolingual, Native­CoT,

English­CoT) and the best ICM results are highlighted in bold. Statistically significant improvements compared to

the best baseline (at p < 0.01 using the Wilcoxon signed rank test) are highlighted in green.

DC GEC Text Simplification

Prompt Te Hi Mr Bn Vi Fr De Tr Cs De Pt De Fr

Cross­lingual 5.2 4.2 3.6 3.6 8.9 41.3 22.4 9 16.5 8.2 35 22.1 43.1

Monolingual 12 7.3 5.6 5.4 11.2 46.2 22.8 10.1 16.9 8.5 38.1 26.3 45.7

Native­CoT 12.1 7.9 5.3 5 12.8 47.8 22.8 10.2 16.9 9.9 40.3 26.7 46.1

English­CoT 12.1 8.2 7.5 6 13.2 47.5 22.8 10.7 17.8 9.9 43.1 29.3 47.5

ICM­30 6 8 5.3 5 13.4 45.5 22.1 11.2 17.6 8.9 42.1 29.4 43.2

ICM­50 7.5 8.2 5.4 5.3 14.3 46.1 22.8 11.3 18.8 9.9 46.5 30 41.3

ICM­80 7.5 8 5.3 5.3 15 44.2 22.8 11 18.8 9.5 45.6 29.5 40.7

ICM30­CoT 9 8.3 5.6 6 14.8 44.1 22.7 12 17.9 9.1 44 29.2 44.1

ICM50­CoT 12.5 10.1 6 7 16.1 44.3 23.8 12.8 19.1 8.9 46.9 29.9 42.8

ICM80­CoT 12.6 8.8 5.5 6.9 15.7 46.1 23.7 12.6 19 8.6 46.1 29.4 38.7

Table 22: Results for DC, GEC, and TS tasks using BloomZ­7B.We report exact match scores for DC and GEC, while

we report SARI scores for text simplification. The best baseline (among Cross­lingual, Monolingual, Native­CoT,

English­CoT) and the best ICM results are highlighted in bold. Statistically significant improvements compared to

the best baseline (at p < 0.01 using the Wilcoxon signed rank test) are highlighted in green.
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