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Abstract

The effectiveness of large language models001
(LLMs) is often hindered by duplicated data002
in their extensive pre-training datasets. Current003
approaches primarily focus on detecting and004
removing duplicates, which risks the loss of005
valuable information and neglects the varying006
degrees of duplication. To address this, we pro-007
pose a soft deduplication method that maintains008
dataset integrity while selectively reducing the009
sampling weight of data with high common-010
ness. Central to our approach is the concept of011
"data commonness", a metric we introduce to012
quantify the degree of duplication by measuring013
the occurrence probabilities of samples using014
an n-gram model. Empirical analysis shows015
that this method significantly improves train-016
ing efficiency, achieving comparable perplexity017
scores with at least a 26% reduction in required018
training steps. Additionally, it enhances aver-019
age few-shot downstream accuracy by 1.77%020
when trained for an equivalent duration. Im-021
portantly, this approach consistently improves022
performance, even on rigorously deduplicated023
datasets, indicating its potential to complement024
existing methods and become a standard pre-025
training process for LLMs.026

1 Introduction027

In recent years, the expansion of pre-training028

datasets has played a pivotal role in advancing029

LLMs (Raffel et al., 2023; Gao et al., 2020; Penedo030

et al., 2023). However, a large fraction of these031

datasets is derived from uncurated snapshots of the032

internet, resulting in a significant amount of du-033

plication. Such redundancy, particularly beyond034

certain levels, can severely impair the performance035

of LLMs (Hernandez et al., 2022). While repeti-036

tion under specific conditions may be beneficial,037
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Figure 1: Hard deduplication versus soft deduplication.
Hard deduplication identifies and removes duplicate
samples. Soft deduplication identifies samples with
high commonness, decreasing their sampling weight
during training. Here, a sample refers to a document
within the original corpus.

the marginal gains from additional computation di- 038

minish to zero over time (Muennighoff et al., 2023). 039

Thus, it is imperative to ensure that data repetition 040

is a deliberate choice rather than an unintentional 041

consequence. In light of this, data deduplication 042

has emerged as a critical procedure in the manage- 043

ment of pre-training datasets. 044

Most current data deduplication strategies can be 045

classified as hard deduplication methods, focusing 046

on identifying and removing redundant data. For 047

example, MinHashLSH (Leskovec et al., 2020), 048

a widely utilized method (Soboleva et al., 2023; 049

Penedo et al., 2023), approximates Jaccard similar- 050
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Figure 2: We aim to obtain a more balanced training set from a large raw dataset through data reweighting. Initially,
we train an n-gram model using the raw dataset to calculate the commonness of each sample within the corpus.
Following this, we partition the dataset and assign weights according to data commonness. Samples with higher
commonness are assigned lower sampling weights, while those with lower commonness receive higher sampling
weights. The weighted data is then used for the pre-training of a language model.

ity among samples by generating MinHash (Broder,051

1997) signatures and using locality sensitive hash-052

ing to map these signatures into multiple buckets.053

Samples are considered duplicates if their MinHash054

values exactly match in at least one bucket, indicat-055

ing they exceed a predefined similarity threshold.056

In the subsequent removal stage, a common prac-057

tice involves clustering samples across all buckets058

(for instance, if samples A and B match in one059

bucket, and B and C in another, then A, B, and060

C are considered a cluster) (Penedo et al., 2023).061

Within each cluster, only one sample is preserved.062

These methods face several principal limitations.063

First, the concept of duplicates within a set of sam-064

ples is symmetric. Randomly retaining one sample065

while discarding the others may introduce bias by066

ignoring the differences among them. Second, set-067

ting a specific threshold for duplication presents068

a challenge since the degree of duplication is con-069

tinuous. A high threshold might overlook near-070

duplicates that bear significant similarities, whereas071

a low threshold could result in the exclusion of072

valuable data. Moreover, data categorized as non-073

duplicates according to these thresholds are uni-074

formly treated, despite the variations in the degree075

of duplication among them.076

To address these limitations, we introduce a soft077

deduplication method (Figure 1). This method di- 078

verges from traditional practices by preserving the 079

entirety of the dataset and avoids the need for set- 080

ting thresholds to determine duplicates. We intro- 081

duce the concept of "data commonness", a metric 082

that quantifies the degree of duplication by measur- 083

ing the occurrence probabilities of samples using an 084

n-gram model. Samples with high commonness are 085

assigned a lower sampling weight, while those with 086

low commonness receive a higher weight. This 087

method reduces the risk of inadvertently discarding 088

valuable data and leverages the spectrum of data 089

duplication, offering a refined and comprehensive 090

perspective on data deduplication. 091

Our empirical analysis reveals that the proposed 092

method enables language models to achieve base- 093

line performance with at least 26% fewer train- 094

ing steps, ultimately leading to improved perfor- 095

mance on downstream tasks. It exhibits superior 096

temporal efficiency and outperforms existing meth- 097

ods in terms of effectiveness. Significantly, even 098

when applied to rigorously deduplicated datasets, 099

our method still delivers substantial improvements. 100

These results suggest that our approach can com- 101

plement existing methods and can be adopted as a 102

standard procedure in the pre-training of LLMs. 103
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2 Related Work104

2.1 Data deduplication105

Research has revealed that many existing pre-106

training datasets contain a substantial number of107

duplicate samples (Lopes et al., 2017; Bandy and108

Vincent, 2021; Penedo et al., 2023). To explore109

the impact of duplicate data on model performance,110

numerous studies have been conducted on both111

general and domain-specific datasets (Allamanis,112

2019; Lee et al., 2022; Biderman et al., 2023; Xue113

et al., 2023). The results indicate that repetition at114

certain frequencies can significantly harm model115

performance (Hernandez et al., 2022). Although116

appropriate repetition under specific circumstances117

can be beneficial (Muennighoff et al., 2023), this118

should result from careful selection rather than be-119

ing an unintended consequence of data duplication.120

Therefore, data deduplication is crucial for pre-121

training large language models. Exact dedupli-122

cation is typically achieved through suffix arrays123

(Manber and Myers, 1993). MinHash (Broder,124

1997) and SimHash (Charikar, 2002) are widely125

used fuzzy deduplication methods. In recent re-126

search, some studies have shifted towards semantic-127

based deduplication. Abbas et al. (2023) and128

Sorscher et al. (2023) utilize pre-trained embed-129

dings for clustering to remove semantically redun-130

dant data. Tirumala et al. (2023) combines both131

methods.132

2.2 Data reweighting133

Adjusting the significance of training samples134

through data reweighting has proven to be an ef-135

fective strategy for enhancing model performance,136

either through modifying loss function weights or137

changing the sampling probabilities. Focal Loss,138

as introduced by Lin et al. (2018), employs a soft139

weighting scheme to allocate higher weights to140

more challenging samples. Ren et al. (2019) assign141

weights to training samples based on the direction142

of their gradients. In DSIR (Xie et al., 2023b),143

sampling based on importance weights is utilized,144

allowing the training data to align with the distri-145

bution of high-quality corpora such as Wikipedia.146

DoReMi (Xie et al., 2023a) explores an automated147

scheme for determining the sampling weights of148

different data sources.149

3 Method 150

3.1 Hard deduplication 151

Hard deduplication methods identify and remove 152

duplicate samples. This process can be seen as 153

partitioning the dataset D into numerous distinct 154

subsets Di, such that D =
⋃k

i=1Di. Each of these 155

subsets contains samples deemed to be duplicates 156

based on a specific similarity threshold. Within 157

each subset Di, only one sample, denoted as xi, is 158

retained, while the rest are discarded. If a subset 159

consists of only one sample, it indicates that this 160

sample has no duplicates within the dataset. 161

In the context of pre-training LLMs, the funda- 162

mental training goal is to maximize the log likeli- 163

hood of the training data. Incorporating hard dedu- 164

plication into this process can be formulated as: 165

L =
∑

x∈D
I(x) logP (x|Θ),

I(x) =

{
1, x ∈ {x1, x2, · · · , xk}
0, otherwise

(1) 166

where L denotes the log likelihood function, Θ 167

represents the model parameters. Despite its utility, 168

hard deduplication may inadvertently omit valuable 169

data and fail to adequately consider the degree of 170

redundancy. 171

3.2 Soft deduplication 172

To address the limitations of hard deduplication, we 173

propose a soft deduplication method. This method 174

employs sampling weights W (x), allowing for a 175

nuanced handling of data redundancy by adjusting 176

the influence of each sample on the model based 177

on its commonness: 178

L =
∑

x∈D
W (x)·logP (x|Θ), W (x) ∈ (0, 1). (2) 179

We assume that the sampling weight of sample x 180

can be represented as follows: 181

W (x) ∝ 1

p(x)
. (3) 182

Here, p(x) denotes the occurrence probability of 183

sample x, serving as a direct measure of its com- 184

monness. This probability-based measure effec- 185

tively captures the degree of duplication of each 186

sample. This approach ensures that samples with 187

higher commonness are assigned lower weights, 188

thus mitigating the impact of duplicates without 189

discarding potentially valuable information. 190
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3.3 Implementation of commonness191

calculation192

In practical implementation, we leverage an n-gram193

model to process data, achieving high temporal194

efficiency in calculating the commonness of each195

data sample (Figure 2). This process consists of196

three steps.197

1. Tokenization. The n-gram model assumes198

that the appearance of a word is determined199

by the previous n − 1 words. The first step200

is to tokenize the original corpus. We use the201

same tokenizer as the pre-training models for202

consistency.203

2. Train n-gram model. In the training process204

of an n-gram model (where n = 4), maximum205

likelihood estimation is used to calculate the206

probability of each n-gram. We empirically207

choose n = 4 after conducting early exper-208

iments. To alleviate the issue of data spar-209

sity, we employ the Kneser-Ney smoothing210

technique (Ney et al., 1994). We utilize the211

KenLM toolkit* to accomplish this step.212

3. Calculate commonness. We utilize the ob-213

tained n-gram model to compute the common-214

ness (measured by the occurrence probability)215

for each data sample. For a given x containing216

N tokens,217

p(x) =

(
N∏

i=1

P (wi|wi−1, . . . , wi−n+1)

) 1
N

.

(4)218

By employing the geometric mean, the influ-219

ence of sample length can be eliminated.220

3.4 Approximate sampling for large-scale221

data222

Due to the vast volume of data, directly assigning223

individual sampling weights to each data point is224

impractical. To overcome this, we introduce an225

approximate method for data sampling that seg-226

ments M samples into K categories. This process227

initiates by sorting the M samples in ascending228

order of data commonness, followed by dividing229

the dataset into K distinct segments according to230

K quantiles. For the k-th segment, the sampling231

weight Wk is determined by the k-th quantile, pk,232

as follows:233

Wk = C ·
(

1

pk

)T

(5)234

*https://kheafield.com/code/kenlm

where T is a hyperparameter that adjusts the sam- 235

pling weight and C is a normalization constant, 236

which ensures that the sum of the weights across 237

all segments equals one. 238

4 Experimental Setup 239

4.1 Datasets 240

We conduct experiments on different versions of 241

the Common Crawl dataset, which is a compre- 242

hensive and publicly accessible collection of data 243

obtained through web crawling. 244

RedPajama CommonCrawl is a subset of the 245

RedPajama dataset (Computer, 2023). It involves 246

the original Common Crawl data undergoing pro- 247

cessing through the CCNet pipeline (Wenzek 248

et al., 2019). This dataset has been subjected to 249

paragraph-level deduplication; however, it has not 250

undergone rigorous deduplication procedures. 251

SlimPajama CommonCrawl is a subset of the 252

SlimPajama dataset (Soboleva et al., 2023). The 253

SlimPajama dataset represents a further refined iter- 254

ation of the RedPajama corpus, boasting enhanced 255

data cleansing procedures and the implementation 256

of MinHashLSH (Leskovec et al., 2020) for more 257

effective deduplication. 258

Falcon RefinedWeb is introduced as a pre-training 259

dataset for the Falcon series (Penedo et al., 2023; 260

Almazrouei et al., 2023). It undergoes rigorous 261

deduplication processes using exact matching and 262

MinHashLSH. 263

4.2 Model training 264

In the experiments, we employ the same model 265

architecture as the LLaMA (Touvron et al., 2023) 266

series. Our models are configured with 1.3B pa- 267

rameters, incorporating 16 attention heads and 24 268

layers. The hidden size is set to 2048, and the 269

dimension of feed-forward network is 5504. Pre- 270

vious research has demonstrated the feasibility of 271

pre-training validation on models of this scale (Tiru- 272

mala et al., 2023; Xie et al., 2023a). All models are 273

trained from scratch to 40B tokens. The batch size 274

is 512, and the training sequence length is 1024. 275

The learning rate is decayed from 2e-4 to 2e-5. 276

4.3 Baselines 277

Our primary baseline is defined by directly training 278

on a dataset that has been randomly sampled to en- 279

compass 40B tokens. In our study, we implement 280

the SoftDedup method across all three datasets, 281
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facilitating a comparative analysis between our pro-282

posed technique and the established baseline for283

each dataset. Furthermore, for experiments con-284

ducted on the RedPajama CommonCrawl dataset,285

the SlimPajama CommonCrawl, which employs286

MinHashLSH for deduplication directly on it, is287

considered a hard deduplication baseline.288

4.4 Evaluation metrics289

We evaluate the models by measuring their perplex-290

ity on the test sets and their few-shot performance291

on downstream tasks.292

Test set perplexity. Our test sets come from the293

Pile (Gao et al., 2020) and SlimPajama (Soboleva294

et al., 2023). The Pile test set consists of 22 sub-295

sets, including BookCorpus, DM Mathematics, and296

others. SlimPajama also includes 7 subsets, such297

as Common Crawl, C4, and GitHub. We measure298

the perplexity of the models on each sample and299

report the average for each subset. We investigate300

data leakage and remove the contaminated samples.301

Specifically, if a sample in the training set has more302

than 50 tokens of overlap with a sample in the test303

set, the former will be removed from the training304

set.305

Downstream task accuracy. In order to further306

evaluate the performance of the models, we mea-307

sure their accuracy on 12 downstream tasks. The308

tasks cover the models’ abilities in reading compre-309

hension (SQuADv2 (Rajpurkar et al., 2018), Trivia310

QA (Joshi et al., 2017)), commonsense reason-311

ing (ARC easy and challenge (Clark et al., 2018),312

WinoGrande (Sakaguchi et al., 2019), HellaSwag313

(Zellers et al., 2019), PIQA (Bisk et al., 2020),314

Social IQa (Sap et al., 2019)), world knowledge315

(WebQuestions (Berant et al., 2013), NQ Open316

(Lee et al., 2019)), and contextual understanding317

(LAMBADA standard and openai (Paperno et al.,318

2016)). The evaluation of downstream tasks is pri-319

marily accomplished through the utilization of the320

lm-evaluation-harness (Gao et al., 2023).321

4.5 Hyperparameter impact analysis322

In exploring the impact of hyperparameters on our323

method, we focus on two key hyperparameters:324

the number of data partitions (K) and the weight325

parameter (T ).326

Our experiments involves varying levels of data327

partition granularity by dividing the dataset into 10,328

20, 50, and 100 segments. Regarding weight as-329

signment, we modify the hyperparameter T within330

Equation 5 to alter weight disparities. We investi-331

gate three configurations that result in maximum- 332

minimum weight differences of approximately 2- 333

fold, 5-fold, and 10-fold, respectively. A larger 334

disparity exerts a greater suppression on data with 335

higher commonness. 336

5 Results 337

In this section, we provide a detailed report of the 338

results under various experimental settings. 339

5.1 Enhanced performance and efficiency in 340

language model pre-training 341

To verify the effectiveness of our soft deduplication 342

method, we conduct experiments on the RedPajama 343

CommonCrawl dataset, which has not subjected 344

to meticulous deduplication. Our findings indicate 345

a significant improvement with our method com- 346

pared to the direct training baseline, as illustrated 347

in Figure 3. 348

Our approach consistently outperforms the base- 349

line in terms of average perplexity across all evalu- 350

ated datasets. Specifically, on the Pile test set, our 351

method enables models to achieve baseline perplex- 352

ity within 50,000 iterations, saving nearly 30,000 353

training steps. Furthermore, models continue to 354

improve, ultimately reaching a lower perplexity, as 355

shown in Figure 3a. Similar advancements are ob- 356

served in the SlimPajama test set, confirming our 357

method’s effectiveness (Figure 3b). Additionally, 358

we report the average perplexity for each subset 359

upon completion of training (Appendices A.1 and 360

A.2). Our method enables the models to yield per- 361

formance improvements across the majority of the 362

test subsets. 363

In our evaluation of downstream tasks, our 364

method outperforms the baseline in accuracy. It 365

accelerates learning on the RedPajama dataset, 366

achieving baseline performance nearly 30,000 steps 367

sooner and improving average accuracy by 1.77% 368

at the end of training, as shown in Figure 3c. De- 369

tailed scores for each individual task at the fi- 370

nal training checkpoint are delineated in Table 1. 371

Our approach yields improvements in all evaluated 372

tasks. 373

In summary, our experiments on the RedPajama 374

CommonCrawl dataset substantiate that the soft 375

deduplication method is capable of reducing per- 376

plexity and enhancing the accuracy of downstream 377

tasks more efficiently compared to the baseline 378

model. Such accelerated convergence is crucial for 379

pre-training large language models, considering the 380
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Figure 3: Performance evaluation results of models trained on the RedPajama CommonCrawl dataset. Figures 3a
and 3b display the average perplexity on the Pile and SlimPajama test sets, respectively. Figure 3c illustrates the
average accuracy on various downstream tasks. Our methodology involves a data partitioning number of 20 and a
10-fold weight disparity between the maximum and minimum weights. Baseline refers to direct training.

Task Baseline HardDedup Difference SoftDedup Difference
NQ Open (1-shot) 4.13 4.6 +0.47 5.37 +1.24
SQuADv2 (1-shot) 11.51 12.95 +1.44 14.66 +3.15
Trivia QA (1-shot) 15.89 17.71 +1.82 16.39 +0.5
WebQuestions (1-shot) 3.3 5.71 +2.41 3.4 +0.1
LAMBADA openai (1-shot) 46.07 43.64 -2.43 48.52 +2.45
LAMBADA standard (1-shot) 36.91 37.65 +0.74 40.89 +3.98
PIQA (1-shot) 65.34 66 +0.66 66.7 +1.36
Social IQa (1-shot) 88 87.9 -0.1 89.6 +1.6
WinoGrande (1-shot) 52.88 53.99 +1.11 54.38 +1.5
HellaSwag (1-shot) 34.93 35.54 +0.61 36.51 +1.58
ARC easy (2-shot) 57.24 57.79 +0.55 59.89 +2.65
ARC challenge (2-shot) 25.17 25.09 -0.08 26.28 +1.11
Average 36.78 37.38 +0.6 38.55 +1.77

Table 1: Performance comparison of models on downstream tasks using soft and hard deduplication methods.

significant costs associated with training duration381

and resource utilization.382

5.2 Surpassing hard deduplication in383

effectiveness384

In the experiments carried out using the RedPajama385

CommonCrawl dataset, we also contrast the SoftD-386

edup method against traditional hard deduplication387

techniques (refer to Table 1). Considering that the388

SlimPajama dataset originates from the RedPajama389

dataset, refined through MinHashLSH deduplica-390

tion, we employ models trained on the SlimPajama391

CommonCrawl dataset as the hard deduplication392

baseline.393

The evaluation results of models on various394

downstream tasks reveal our method’s superior per-395

formance over both the hard deduplication tech-396

nique and the direct training baseline. In detail,397

while the hard deduplication method surpasses the398

direct training baseline in nine out of twelve tasks,399

showing an average increase in accuracy of 0.6%, 400

our SoftDedup method demonstrates more consis- 401

tent and significant improvements. It outperforms 402

the direct training baseline across all evaluated 403

tasks, achieving an average accuracy enhancement 404

of 1.77%. These findings underscore the advan- 405

tages over conventional deduplication methods in 406

enhancing downstream task performance. 407

5.3 A powerful complement to existing 408

techniques 409

To further assess the effectiveness of our method 410

when applied in sequence with extant hard dedu- 411

plication processes, we conduct experiments on 412

the SlimPajama CommonCrawl and Falcon Re- 413

finedWeb datasets, which have undergone stringent 414

deduplication processes (as shown in Figures 4 and 415

5). 416

In the evaluations conducted on the Pile and 417

SlimPajama test sets, our method exhibits consis- 418
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Figure 4: Performance evaluation results of models trained on the SlimPajama CommonCrawl dataset. Figures 4a
and 4b display the average perplexity on the Pile and SlimPajama test sets, respectively. Figure 4c illustrates the
average accuracy on various downstream tasks. Our methodology involves a data partitioning number of 20 and a
10-fold weight disparity between the maximum and minimum weights. Baseline refers to direct training.
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Figure 5: Performance evaluation results of models trained on the Falcon RefinedWeb dataset.

tent superiority over the baseline models. Notably,419

our models achieve equivalent baselines in perplex-420

ity with a reduction of 26% to 39% in the number of421

required training steps. Additionally, the ultimate422

performance of the models demonstrates a tangible423

enhancement, as evidenced by the results displayed424

in Figures 4a, 4b, 5a, and 5b. In terms of accuracy425

on downstream tasks, Figures 4c and 5c highlight426

the training efficiency achieved by our models. It427

is particularly noteworthy that our method reaches428

baseline performance with around 20,000 fewer429

training steps. We report the detailed scores in430

Appendices A.1, A.2, and A.3.431

In summary, even when applied to already dedu-432

plicated datasets, our method significantly en-433

hances training efficiency and effectiveness. This434

underscores its capability to address the shortcom-435

ings of current deduplication techniques. Specif-436

ically, our approach reweights the data to reflect437

varying levels of duplication, thus avoiding one-438

size-fits-all solutions. This integration has the po-439

tential to become a standard practice in the pre-440

training of large language models.441

5.4 Finer data partitioning for improved 442

downstream task performance 443

In Figure 6, we illustrate the impact of different 444

numbers of data partitions on model performance. 445

We argue that investigating methods to further en- 446

hance the training effectiveness of higher-quality 447

data is a more critical concern. Therefore, our ex- 448

periments are conducted on the Falcon RefinedWeb 449

dataset. 450

In evaluations conducted on both the Pile and 451

SlimPajama test sets, models exhibit negligible 452

variations in average perplexity across a range of 453

data partition counts, specifically 10, 20, 50, and 454

100. This observation indicates that perplexity, as 455

a metric, demonstrates relatively low sensitivity to 456

changes in the granularity of data partitioning. 457

In contrast, we observe that as the granularity 458

of data partitioning increases, the accuracy of the 459

language model in downstream tasks also improves. 460

As demonstrated in Figure 6c, there is a clear corre- 461

lation between the number of data partitions and the 462

model’s accuracy. This indicates that finer-grained 463

data partitioning can make the training data more 464

balanced, thereby enhancing performance in down- 465
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Figure 6: The effect of data partition number on model performance. The models are trained on the Falcon
RefinedWeb dataset, applying a 10-fold weight disparity between maximum and minimum weights. Data partitions
are set at 10, 20, 50, and 100.
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Figure 7: Evaluation results of models under different weighting disparities, including maximum-minimum weight
differences of approximately 2-fold, 5-fold, and 10-fold. The models are trained on the Falcon RefinedWeb dataset,
and our method involves a data partitioning number of 20.

stream tasks.466

5.5 Effects of sampling weight disparities on467

model performance468

Figure 7 presents the outcomes of experimental in-469

vestigations into the effects of varying disparities470

between maximum and minimum weights assigned471

to different data partitions. The methodology em-472

ployed ensures a consistent ascending order in the473

allocation of weights, with greater disparities indi-474

cating a more pronounced suppression of data with475

high commonness.476

Experiments conducted utilizing disparities in477

the maximum to minimum weight ratios of 2-fold,478

5-fold, and 10-fold reveal a consistent trend: in-479

creased disparities between the maximum and min-480

imum weights lead to a reduction in average model481

perplexity. Although slight variations are observed482

in the performance outcomes for downstream tasks,483

the experiments demonstrate that the largest weight484

disparity consistently facilitates the most optimal485

model performance.486

5.6 Cost of data reweighting 487

The computational processes of n-gram training 488

and commonness calculation are executed solely 489

on CPU resources. For a 40B token corpus, the 490

n-gram training procedure (with n = 4) requires 491

4 CPU cores for 5 hours, followed by computing 492

data commonness using 4 CPU cores in 2 hours. 493

Compared to the substantial costs of GPU con- 494

servation (at least 930 V100 GPU hours in our 495

experiments), these expenses can be considered 496

negligible. This underscores the efficiency of Soft- 497

Dedup and the feasibility of its implementation in 498

resource-constrained environments. 499

6 Conclusion 500

In this study, we introduce a soft deduplication 501

method that effectively addresses the primary lim- 502

itations associated with traditional hard dedupli- 503

cation methods. Unlike its predecessors, this ap- 504

proach retains all samples of data while reallocat- 505

ing sampling weights according to data common- 506

ness. Experimental analyses demonstrate that this 507

technique can significantly expedite the training 508
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process for large language models, evidenced by509

a reduction of over 26% in the number of training510

steps required. The proposed method surpasses511

existing deduplication techniques in effectiveness512

and can serve as a valuable complement to these513

methods. Due to its low operational cost and su-514

perior efficiency, we advocate for the integration515

of this soft deduplication approach with traditional516

hard deduplication methods as a standard practice517

in the pre-training phase of large language models.518

Limitations519

Due to current limitations in computational re-520

sources, the extension of SoftDedup to larger-scale521

models will be deferred to future research endeav-522

ors. Moreover, future studies will seek to conduct523

a more comprehensive evaluation of the method’s524

effectiveness across various mixed data sources.525
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A Appendix 708

A.1 Average perplexity for each subset in the 709

Pile test set 710

In Table 2, we provide a detailed report on the 711

average perplexity for each subset within the Pile 712

test set. For models trained on the RedPajama 713

CommonCrawl dataset, our method results in im- 714

provements across 18 out of 22 subsets. For models 715

trained on the SlimPajama CommonCrawl dataset, 716

our method leads to improvements in 17 subsets. 717

For models trained on the Falcon RefinedWeb, im- 718

provements are observed in 19 subsets. Due to 719

the exceedingly small number of documents in the 720
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RedPajama CC SlimPajama CC Falcon RW
Subset Baseline SoftDedup Baseline SoftDedup Baseline SoftDedup
Pile-CC 17.79 17.20 20.61 19.74 13.66 13.49
YoutubeSubtitles 23.59 22.54 23.40 25.83 18.56 17.45
PhilPapers 15.74 14.59 15.27 14.51 15.03 14.05
HackerNews 31.32 29.81 29.68 28.84 21.13 20.17
Enron Emails 48.23 46.50 47.16 41.81 32.53 31.26
EuroParl 60.96 55.16 60.26 55.72 51.06 40.48
Ubuntu IRC 20.53 19.48 27.16 26.20 75.61 71.47
BookCorpus2 16.22 16.14 15.27 14.46 11.67 11.44
NIH ExPorter 10.92 10.78 10.65 10.72 10.46 10.64
OpenSubtitles 14.45 13.78 14.05 13.67 13.83 13.60
Gutenberg(PG-19) 19.67 19.77 18.71 17.75 18.31 16.58
DM Mathematics 6.51 6.44 6.47 6.60 6.01 5.86
Wikipedia 13.94 13.71 12.85 12.65 10.70 10.45
OpenWebText2 21.97 21.10 27.16 25.44 17.00 16.19
Github 56.03 52.95 55.98 53.65 32.36 26.30
FreeLaw 9.86 10.13 10.37 10.26 13.36 12.93
USPTO Backgrounds 9.59 9.29 9.60 9.42 9.19 8.97
Books3 15.69 16.02 14.82 14.37 11.06 10.65
PubMed Abstracts 8.75 8.79 8.49 8.67 8.85 8.99
StackExchange 31.76 29.44 29.83 27.44 17.84 15.62
ArXiv 17.82 16.99 17.85 18.14 16.17 14.94
PubMed Central 13.44 12.36 12.60 12.19 12.06 12.77

Table 2: Average perplexity for each subset in the Pile test set.

Ubuntu IRC subset, we exclude it from the cal-721

culation of the average perplexity on the Pile test722

set.723

A.2 Average perplexity for each subset in the724

SlimPajama test set725

In Table 3, we provide a detailed report on the av-726

erage perplexity for each subset within the SlimPa-727

jama test set. Our method has led to improvements728

across nearly all subsets.729

A.3 Accuracy for each downstream task730

In Table 4, we provide a detailed report on the731

accuracy for each downstream task. For models732

trained on the RedPajama CommonCrawl dataset,733

our method has led to improvements across all734

tasks. For models trained on the SlimPajama Com-735

monCrawl and Falcon RefinedWeb datasets, our736

approach has also resulted in accuracy improve-737

ments on the majority of tasks.738
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RedPajama CC SlimPajama CC Falcon RW
Subset Baseline SoftDedup Baseline SoftDedup Baseline SoftDedup
Commoncrawl 9.43 9.28 9.19 9.16 10.23 10.20
C4 16.84 16.25 16.46 16.06 13.95 13.81
GitHub 90.00 82.28 81.11 77.59 28.02 20.98
Books 16.03 16.25 14.62 13.91 11.89 11.34
ArXiv 15.86 15.29 15.21 14.57 14.75 13.43
Wikipedia 88.40 82.05 77.44 67.77 68.83 58.69
StackExchange 30.10 28.15 28.00 26.01 18.14 16.01

Table 3: Average perplexity for each subset in the SlimPajama test set.

RedPajama CC SlimPajama CC Falcon RW
Task Baseline SoftDedup Baseline SoftDedup Baseline SoftDedup
NQ Open (1-shot) 4.13 5.37 4.6 4.79 4.18 3.85
SQuADv2 (1-shot) 11.51 14.66 12.95 17.25 26.39 29.95
Trivia QA (1-shot) 15.89 16.39 17.71 17.64 12.24 13.3
WebQuestions (1-shot) 3.3 3.4 5.71 3.59 1.08 3.05
LAMBADA openai (1-shot) 46.07 48.52 43.64 44.65 44.3 46.57
LAMBADA standard (1-shot) 36.91 40.89 37.65 38.83 39.72 40.79
PIQA (1-shot) 65.34 66.7 66 66.76 72.31 72.47
Social IQa (1-shot) 88 89.6 87.9 88.4 89.2 89.3
WinoGrande (1-shot) 52.88 54.38 53.99 55.25 54.7 54.7
HellaSwag (1-shot) 34.93 36.51 35.54 36.8 40.43 40.35
ARC easy (2-shot) 57.24 59.89 57.79 60.44 58.12 59.43
ARC challenge (2-shot) 25.17 26.28 25.09 26.54 25.17 26.02

Table 4: Accuracy for each downstream task.
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