SoftDedup: an Efficient Data Reweighting Method for Speeding Up
Language Model Pre-training

Nan He* Weichen Xiong* Hanwen Liu* Yi Liao’ Lei Ding
Kai Zhang' Guohua Tang Xiao Han Wei Yang
Tencent Al Lab
henan991201 @gmail.com, leoeliao @tencent.com

Abstract

The effectiveness of large language models
(LLMs) is often hindered by duplicated data
in their extensive pre-training datasets. Current
approaches primarily focus on detecting and
removing duplicates, which risks the loss of
valuable information and neglects the varying
degrees of duplication. To address this, we pro-
pose a soft deduplication method that maintains
dataset integrity while selectively reducing the
sampling weight of data with high common-
ness. Central to our approach is the concept of
"data commonness", a metric we introduce to
quantify the degree of duplication by measuring
the occurrence probabilities of samples using
an n-gram model. Empirical analysis shows
that this method significantly improves train-
ing efficiency, achieving comparable perplexity
scores with at least a 26% reduction in required
training steps. Additionally, it enhances aver-
age few-shot downstream accuracy by 1.77%
when trained for an equivalent duration. Im-
portantly, this approach consistently improves
performance, even on rigorously deduplicated
datasets, indicating its potential to complement
existing methods and become a standard pre-
training process for LLMs.

1 Introduction

In recent years, the expansion of pre-training
datasets has played a pivotal role in advancing
LLMs (Raffel et al., 2023; Gao et al., 2020; Penedo
et al., 2023). However, a large fraction of these
datasets is derived from uncurated snapshots of the
internet, resulting in a significant amount of du-
plication. Such redundancy, particularly beyond
certain levels, can severely impair the performance
of LLMs (Hernandez et al., 2022). While repeti-
tion under specific conditions may be beneficial,
*Work done during internships at Tencent Al Lab.

T Corresponding author.
1 Kai Zhang proposed the initial prototype of the method.

Hard deduplication

Earth is a planet in the solar system, orbiting
around the sun. It takes 365 days to complete
one orbit.

<

Similar pair, delete one of them

Mars is a planet in the solar system, orbiting
around the sun. It takes 687 Earth days to
complete one orbit.

x

|

¥
v

Soft deduplication

fEarth is a planet in the solar system, orbiting
around the sun. It takes 365 days to complete
one orbit.

High commonness p—
Low sampling weight bond

Mars is a planet in the solar system, orbiting
around the sun. It takes 687 Earth days to

complete one orbit.
Figure 1: Hard deduplication versus soft deduplication.
Hard deduplication identifies and removes duplicate
samples. Soft deduplication identifies samples with
high commonness, decreasing their sampling weight
during training. Here, a sample refers to a document
within the original corpus.

the marginal gains from additional computation di-
minish to zero over time (Muennighoff et al., 2023).
Thus, it is imperative to ensure that data repetition
is a deliberate choice rather than an unintentional
consequence. In light of this, data deduplication
has emerged as a critical procedure in the manage-
ment of pre-training datasets.

Most current data deduplication strategies can be
classified as hard deduplication methods, focusing
on identifying and removing redundant data. For
example, MinHashLLSH (Leskovec et al., 2020),
a widely utilized method (Soboleva et al., 2023;
Penedo et al., 2023), approximates Jaccard similar-

4011

Proceedings of the 62nd Annual Meeting of the Association for lelputational Linguistics (Volume 1: Long Papers), pages 4011-4022

August 11-16, 2024 ©2024 Association for Computational Linguistics

Large Raw

Dataset

—>E]
.

Train an n-gram model

--"
-

Calculate commonness for

each sample

LLM

Commonness low

P high

low

Sampling weight high <

Figure 2: We aim to obtain a more balanced training set from a large raw dataset through data reweighting. Initially,
we train an n-gram model using the raw dataset to calculate the commonness of each sample within the corpus.
Following this, we partition the dataset and assign weights according to data commonness. Samples with higher
commonness are assigned lower sampling weights, while those with lower commonness receive higher sampling
weights. The weighted data is then used for the pre-training of a language model.

ity among samples by generating MinHash (Broder,
1997) signatures and using locality sensitive hash-
ing to map these signatures into multiple buckets.
Samples are considered duplicates if their MinHash
values exactly match in at least one bucket, indicat-
ing they exceed a predefined similarity threshold.
In the subsequent removal stage, a common prac-
tice involves clustering samples across all buckets
(for instance, if samples A and B match in one
bucket, and B and C in another, then A, B, and
C are considered a cluster) (Penedo et al., 2023).
Within each cluster, only one sample is preserved.

These methods face several principal limitations.
First, the concept of duplicates within a set of sam-
ples is symmetric. Randomly retaining one sample
while discarding the others may introduce bias by
ignoring the differences among them. Second, set-
ting a specific threshold for duplication presents
a challenge since the degree of duplication is con-
tinuous. A high threshold might overlook near-
duplicates that bear significant similarities, whereas
a low threshold could result in the exclusion of
valuable data. Moreover, data categorized as non-
duplicates according to these thresholds are uni-
formly treated, despite the variations in the degree
of duplication among them.

To address these limitations, we introduce a soft

deduplication method (Figure 1). This method di-
verges from traditional practices by preserving the
entirety of the dataset and avoids the need for set-
ting thresholds to determine duplicates. We intro-
duce the concept of "data commonness", a metric
that quantifies the degree of duplication by measur-
ing the occurrence probabilities of samples using an
n-gram model. Samples with high commonness are
assigned a lower sampling weight, while those with
low commonness receive a higher weight. This
method reduces the risk of inadvertently discarding
valuable data and leverages the spectrum of data
duplication, offering a refined and comprehensive
perspective on data deduplication.

Our empirical analysis reveals that the proposed
method enables language models to achieve base-
line performance with at least 26% fewer train-
ing steps, ultimately leading to improved perfor-
mance on downstream tasks. It exhibits superior
temporal efficiency and outperforms existing meth-
ods in terms of effectiveness. Significantly, even
when applied to rigorously deduplicated datasets,
our method still delivers substantial improvements.
These results suggest that our approach can com-
plement existing methods and can be adopted as a
standard procedure in the pre-training of LLMs.

4012

2

2 Related Work

2.1 Data deduplication

Research has revealed that many existing pre-
training datasets contain a substantial number of
duplicate samples (Lopes et al., 2017; Bandy and
Vincent, 2021; Penedo et al., 2023). To explore
the impact of duplicate data on model performance,
numerous studies have been conducted on both
general and domain-specific datasets (Allamanis,
2019; Lee et al., 2022; Biderman et al., 2023; Xue
et al., 2023). The results indicate that repetition at
certain frequencies can significantly harm model
performance (Hernandez et al., 2022). Although
appropriate repetition under specific circumstances
can be beneficial (Muennighoff et al., 2023), this
should result from careful selection rather than be-
ing an unintended consequence of data duplication.

Therefore, data deduplication is crucial for pre-
training large language models. Exact dedupli-
cation is typically achieved through suffix arrays
(Manber and Myers, 1993). MinHash (Broder,
1997) and SimHash (Charikar, 2002) are widely
used fuzzy deduplication methods. In recent re-
search, some studies have shifted towards semantic-
based deduplication. Abbas et al. (2023) and
Sorscher et al. (2023) utilize pre-trained embed-
dings for clustering to remove semantically redun-
dant data. Tirumala et al. (2023) combines both
methods.

2.2 Data reweighting

Adjusting the significance of training samples
through data reweighting has proven to be an ef-
fective strategy for enhancing model performance,
either through modifying loss function weights or
changing the sampling probabilities. Focal Loss,
as introduced by Lin et al. (2018), employs a soft
weighting scheme to allocate higher weights to
more challenging samples. Ren et al. (2019) assign
weights to training samples based on the direction
of their gradients. In DSIR (Xie et al., 2023b),
sampling based on importance weights is utilized,
allowing the training data to align with the distri-
bution of high-quality corpora such as Wikipedia.
DoReMi (Xie et al., 2023a) explores an automated
scheme for determining the sampling weights of
different data sources.

3 Method
3.1 Hard deduplication

Hard deduplication methods identify and remove
duplicate samples. This process can be seen as
partitioning the dataset D into numerous distinct
subsets D;, such that D = Ule D;. Each of these
subsets contains samples deemed to be duplicates
based on a specific similarity threshold. Within
each subset D;, only one sample, denoted as x;, is
retained, while the rest are discarded. If a subset
consists of only one sample, it indicates that this
sample has no duplicates within the dataset.

In the context of pre-training LLMs, the funda-
mental training goal is to maximize the log likeli-
hood of the training data. Incorporating hard dedu-
plication into this process can be formulated as:

L= Z) log P(z]©),
€D !
I($): 17 xe{xllv'%??“' 7$k} ()
0, otherwise

where £ denotes the log likelihood function, ©
represents the model parameters. Despite its utility,
hard deduplication may inadvertently omit valuable
data and fail to adequately consider the degree of
redundancy.

3.2 Soft deduplication

To address the limitations of hard deduplication, we
propose a soft deduplication method. This method
employs sampling weights W (x), allowing for a
nuanced handling of data redundancy by adjusting
the influence of each sample on the model based
on its commonness:

L=>> W(x)

xz€D

log P(x|©), W(z) € (0,1). (2)

We assume that the sampling weight of sample x
can be represented as follows:

3)

Here, p(z) denotes the occurrence probability of
sample x, serving as a direct measure of its com-
monness. This probability-based measure effec-
tively captures the degree of duplication of each
sample. This approach ensures that samples with
higher commonness are assigned lower weights,
thus mitigating the impact of duplicates without
discarding potentially valuable information.

4013

3

3.3 Implementation of commonness
calculation

In practical implementation, we leverage an n-gram
model to process data, achieving high temporal
efficiency in calculating the commonness of each
data sample (Figure 2). This process consists of
three steps.

1. Tokenization. The n-gram model assumes
that the appearance of a word is determined
by the previous n — 1 words. The first step
is to tokenize the original corpus. We use the
same tokenizer as the pre-training models for
consistency.

2. Train n-gram model. In the training process
of an n-gram model (where n = 4), maximum
likelihood estimation is used to calculate the
probability of each n-gram. We empirically
choose n = 4 after conducting early exper-
iments. To alleviate the issue of data spar-
sity, we employ the Kneser-Ney smoothing
technique (Ney et al., 1994). We utilize the
KenLLM toolkit* to accomplish this step.

3. Calculate commonness. We utilize the ob-
tained n-gram model to compute the common-
ness (measured by the occurrence probability)
for each data sample. For a given x containing
N tokens,

N
p(x) = (H P(w;|wi—1, ..., wi—n—i—l))
=1
“4)

By employing the geometric mean, the influ-
ence of sample length can be eliminated.

L
N

3.4 Approximate sampling for large-scale
data

Due to the vast volume of data, directly assigning
individual sampling weights to each data point is
impractical. To overcome this, we introduce an
approximate method for data sampling that seg-
ments M samples into K categories. This process
initiates by sorting the M samples in ascending
order of data commonness, followed by dividing
the dataset into K distinct segments according to
K quantiles. For the k-th segment, the sampling
weight W}, is determined by the k-th quantile, py,

where T is a hyperparameter that adjusts the sam-
pling weight and C is a normalization constant,
which ensures that the sum of the weights across
all segments equals one.

4 Experimental Setup

4.1 Datasets

We conduct experiments on different versions of
the Common Crawl dataset, which is a compre-
hensive and publicly accessible collection of data
obtained through web crawling.

RedPajama CommonCrawl is a subset of the
RedPajama dataset (Computer, 2023). It involves
the original Common Crawl data undergoing pro-
cessing through the CCNet pipeline (Wenzek
et al., 2019). This dataset has been subjected to
paragraph-level deduplication; however, it has not
undergone rigorous deduplication procedures.
SlimPajama CommonCrawl is a subset of the
SlimPajama dataset (Soboleva et al., 2023). The
SlimPajama dataset represents a further refined iter-
ation of the RedPajama corpus, boasting enhanced
data cleansing procedures and the implementation
of MinHashLLSH (Leskovec et al., 2020) for more
effective deduplication.

Falcon RefinedWeb is introduced as a pre-training
dataset for the Falcon series (Penedo et al., 2023;
Almazrouei et al., 2023). It undergoes rigorous
deduplication processes using exact matching and
MinHashL.SH.

4.2 Model training

In the experiments, we employ the same model
architecture as the LLaMA (Touvron et al., 2023)
series. Our models are configured with 1.3B pa-
rameters, incorporating 16 attention heads and 24
layers. The hidden size is set to 2048, and the
dimension of feed-forward network is 5504. Pre-
vious research has demonstrated the feasibility of
pre-training validation on models of this scale (Tiru-
mala et al., 2023; Xie et al., 2023a). All models are
trained from scratch to 40B tokens. The batch size
is 512, and the training sequence length is 1024.
The learning rate is decayed from 2e-4 to 2e-5.

4.3 Baselines

as follows:
T Our primary baseline is defined by directly training
W, =C - (1> (5) ona dataset that has been randomly sampled to en-
Dk compass 40B tokens. In our study, we implement
*https://kheafield.com/code/kenlm the SoftDedup method across all three datasets,
4014

4

facilitating a comparative analysis between our pro-
posed technique and the established baseline for
each dataset. Furthermore, for experiments con-
ducted on the RedPajama CommonCrawl dataset,
the SlimPajama CommonCrawl, which employs
MinHashLLSH for deduplication directly on it, is
considered a hard deduplication baseline.

4.4 Evaluation metrics

We evaluate the models by measuring their perplex-
ity on the test sets and their few-shot performance
on downstream tasks.

Test set perplexity. Our test sets come from the
Pile (Gao et al., 2020) and SlimPajama (Soboleva
et al., 2023). The Pile test set consists of 22 sub-
sets, including BookCorpus, DM Mathematics, and
others. SlimPajama also includes 7 subsets, such
as Common Crawl, C4, and GitHub. We measure
the perplexity of the models on each sample and
report the average for each subset. We investigate
data leakage and remove the contaminated samples.
Specifically, if a sample in the training set has more
than 50 tokens of overlap with a sample in the test
set, the former will be removed from the training
set.

Downstream task accuracy. In order to further
evaluate the performance of the models, we mea-
sure their accuracy on 12 downstream tasks. The
tasks cover the models’ abilities in reading compre-
hension (SQuADvV2 (Rajpurkar et al., 2018), Trivia
QA (Joshi et al., 2017)), commonsense reason-
ing (ARC easy and challenge (Clark et al., 2018),
WinoGrande (Sakaguchi et al., 2019), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020),
Social IQa (Sap et al., 2019)), world knowledge
(WebQuestions (Berant et al., 2013), NQ Open
(Lee et al., 2019)), and contextual understanding
(LAMBADA standard and openai (Paperno et al.,
2016)). The evaluation of downstream tasks is pri-
marily accomplished through the utilization of the
Im-evaluation-harness (Gao et al., 2023).

4.5 Hyperparameter impact analysis

In exploring the impact of hyperparameters on our
method, we focus on two key hyperparameters:
the number of data partitions (/) and the weight
parameter (7).

Our experiments involves varying levels of data
partition granularity by dividing the dataset into 10,
20, 50, and 100 segments. Regarding weight as-
signment, we modify the hyperparameter 1" within
Equation 5 to alter weight disparities. We investi-

gate three configurations that result in maximum-
minimum weight differences of approximately 2-
fold, 5-fold, and 10-fold, respectively. A larger
disparity exerts a greater suppression on data with
higher commonness.

5 Results

In this section, we provide a detailed report of the
results under various experimental settings.

5.1 Enhanced performance and efficiency in
language model pre-training

To verify the effectiveness of our soft deduplication
method, we conduct experiments on the RedPajama
CommonCrawl dataset, which has not subjected
to meticulous deduplication. Our findings indicate
a significant improvement with our method com-
pared to the direct training baseline, as illustrated
in Figure 3.

Our approach consistently outperforms the base-
line in terms of average perplexity across all evalu-
ated datasets. Specifically, on the Pile test set, our
method enables models to achieve baseline perplex-
ity within 50,000 iterations, saving nearly 30,000
training steps. Furthermore, models continue to
improve, ultimately reaching a lower perplexity, as
shown in Figure 3a. Similar advancements are ob-
served in the SlimPajama test set, confirming our
method’s effectiveness (Figure 3b). Additionally,
we report the average perplexity for each subset
upon completion of training (Appendices A.1 and
A.2). Our method enables the models to yield per-
formance improvements across the majority of the
test subsets.

In our evaluation of downstream tasks, our
method outperforms the baseline in accuracy. It
accelerates learning on the RedPajama dataset,
achieving baseline performance nearly 30,000 steps
sooner and improving average accuracy by 1.77%
at the end of training, as shown in Figure 3c. De-
tailed scores for each individual task at the fi-
nal training checkpoint are delineated in Table 1.
Our approach yields improvements in all evaluated
tasks.

In summary, our experiments on the RedPajama
CommonCrawl dataset substantiate that the soft
deduplication method is capable of reducing per-
plexity and enhancing the accuracy of downstream
tasks more efficiently compared to the baseline
model. Such accelerated convergence is crucial for
pre-training large language models, considering the

4015

5

Baseline

g

SoftDedup

AVERAGE PPL
b3 3

b

Baseline

10000 20000 30000 40000 50000 60000 70000
STEPS

(a) The Pile test set

AVERAGE PPL

Baseline

Baseline

SoftDedup

AVERAGE ACC
g e

N

w
&

10000 20000 30000 40000 50000 60000 70000

STEPS

(b) SlimPajama test set

Baseline

Baseline

SoftDedup

10000 20000 30000 40000 50000 60000 70000

STEPS

(c) downstream tasks

Figure 3: Performance evaluation results of models trained on the RedPajama CommonCrawl] dataset. Figures 3a
and 3b display the average perplexity on the Pile and SlimPajama test sets, respectively. Figure 3c illustrates the
average accuracy on various downstream tasks. Our methodology involves a data partitioning number of 20 and a
10-fold weight disparity between the maximum and minimum weights. Baseline refers to direct training.

Task Baseline | HardDedup Difference | SoftDedup Difference
NQ Open (1-shot) 4.13 4.6 +0.47 5.37 +1.24
SQuADV2 (1-shot) 11.51 12.95 +1.44 14.66 +3.15
Trivia QA (1-shot) 15.89 17.71 +1.82 16.39 +0.5
WebQuestions (1-shot) 3.3 5.71 +2.41 34 +0.1
LAMBADA openai (1-shot) 46.07 43.64 -2.43 48.52 +2.45
LAMBADA standard (1-shot) 36.91 37.65 +0.74 40.89 +3.98
PIQA (1-shot) 65.34 66 +0.66 66.7 +1.36
Social IQa (1-shot) 88 87.9 -0.1 89.6 +1.6
WinoGrande (1-shot) 52.88 53.99 +1.11 54.38 +1.5
HellaSwag (1-shot) 34.93 35.54 +0.61 36.51 +1.58
ARC easy (2-shot) 57.24 57.79 +0.55 59.89 +2.65
ARC challenge (2-shot) 25.17 25.09 -0.08 26.28 +1.11
Average 36.78 37.38 +0.6 38.55 +1.77

Table 1: Performance comparison of models on downstream tasks using soft and hard deduplication methods.

significant costs associated with training duration
and resource utilization.

5.2 Surpassing hard deduplication in
effectiveness

In the experiments carried out using the RedPajama
CommonCrawl] dataset, we also contrast the SoftD-
edup method against traditional hard deduplication
techniques (refer to Table 1). Considering that the
SlimPajama dataset originates from the RedPajama
dataset, refined through MinHashLLSH deduplica-
tion, we employ models trained on the SlimPajama
CommonCrawl] dataset as the hard deduplication
baseline.

The evaluation results of models on various
downstream tasks reveal our method’s superior per-
formance over both the hard deduplication tech-
nique and the direct training baseline. In detail,
while the hard deduplication method surpasses the
direct training baseline in nine out of twelve tasks,

showing an average increase in accuracy of 0.6%,
our SoftDedup method demonstrates more consis-
tent and significant improvements. It outperforms
the direct training baseline across all evaluated
tasks, achieving an average accuracy enhancement
of 1.77%. These findings underscore the advan-
tages over conventional deduplication methods in
enhancing downstream task performance.

5.3 A powerful complement to existing
techniques

To further assess the effectiveness of our method
when applied in sequence with extant hard dedu-
plication processes, we conduct experiments on
the SlimPajama CommonCrawl and Falcon Re-
finedWeb datasets, which have undergone stringent
deduplication processes (as shown in Figures 4 and
5).

In the evaluations conducted on the Pile and
SlimPajama test sets, our method exhibits consis-

4016

6

— Baseline

SoftDedup
30

AVERAGE PPL
AVERAGE PPL
S
&

Baseline

Baseline

W
&

~— Baseline Baseline

SoftDedup

AVERAGE ACC
w w
% 8

8

~ Baseline

w
g

SoftDedup

10000 20000 30000 40000 50000 60000 70000
STEPS

(a) The Pile test set

10000 20000 30000 40000 50000 60000 70000
STEPS

(b) SlimPajama test set

10000 20000 30000 40000 50000 60000 70000
STEPS

(c) downstream tasks

Figure 4: Performance evaluation results of models trained on the SlimPajama CommonCrawl dataset. Figures 4a
and 4b display the average perplexity on the Pile and SlimPajama test sets, respectively. Figure 4c illustrates the
average accuracy on various downstream tasks. Our methodology involves a data partitioning number of 20 and a
10-fold weight disparity between the maximum and minimum weights. Baseline refers to direct training.

I
&

Baseline

3

IS
8

SoftDedup

R

AVERAGE PPL
8 M

AVERAGE PPL
g &

3
&

Baseline

Baseline

=
8

Baseline Baseline

w
s

SoftDedup

AVERAGE ACC
wow oW ow
B8 9 8

w
2

~ Baseline

a

3

8

SoftDedup

8

10000 20000 30000 40000 50000 60000 70000
STEPS

(a) The Pile test set

10000 20000 30000 40000 50000 60000 70000
STEPS

(b) SlimPajama test set

10000 20000 30000 40000 50000 60000 70000
STEPS

(c) downstream tasks

Figure 5: Performance evaluation results of models trained on the Falcon RefinedWeb dataset.

tent superiority over the baseline models. Notably,
our models achieve equivalent baselines in perplex-
ity with a reduction of 26% to 39% in the number of
required training steps. Additionally, the ultimate
performance of the models demonstrates a tangible
enhancement, as evidenced by the results displayed
in Figures 4a, 4b, 5a, and 5b. In terms of accuracy
on downstream tasks, Figures 4c and Sc highlight
the training efficiency achieved by our models. It
is particularly noteworthy that our method reaches
baseline performance with around 20,000 fewer
training steps. We report the detailed scores in
Appendices A.1, A.2, and A.3.

In summary, even when applied to already dedu-
plicated datasets, our method significantly en-
hances training efficiency and effectiveness. This
underscores its capability to address the shortcom-
ings of current deduplication techniques. Specif-
ically, our approach reweights the data to reflect
varying levels of duplication, thus avoiding one-
size-fits-all solutions. This integration has the po-
tential to become a standard practice in the pre-
training of large language models.

5.4 Finer data partitioning for improved
downstream task performance

In Figure 6, we illustrate the impact of different
numbers of data partitions on model performance.
We argue that investigating methods to further en-
hance the training effectiveness of higher-quality
data is a more critical concern. Therefore, our ex-
periments are conducted on the Falcon RefinedWeb
dataset.

In evaluations conducted on both the Pile and
SlimPajama test sets, models exhibit negligible
variations in average perplexity across a range of
data partition counts, specifically 10, 20, 50, and
100. This observation indicates that perplexity, as
a metric, demonstrates relatively low sensitivity to
changes in the granularity of data partitioning.

In contrast, we observe that as the granularity
of data partitioning increases, the accuracy of the
language model in downstream tasks also improves.
As demonstrated in Figure 6c¢, there is a clear corre-
lation between the number of data partitions and the
model’s accuracy. This indicates that finer-grained
data partitioning can make the training data more
balanced, thereby enhancing performance in down-

4017

7

Baseline
10
— 20
— 50
— 100

a0

AVERAGE PPL
AVERAGE PPL

Baseline Baseline

" oSN

Baseline
10
20
50
100

40
Baseline

w
&

Baseline
10
— 20
— 50
— 100

AVERAGE ACC
w
8

w
®

32

10000 20000 30000 40000 50000 60000 70000
STEPS

(a) The Pile test set

10000 20000 30000 40000 50000 60000 70000
STEPS

(b) SlimPajama test set

10000 20000 30000 40000 50000 60000 70000
STEPS

(c) downstream tasks

Figure 6: The effect of data partition number on model performance. The models are trained on the Falcon
RefinedWeb dataset, applying a 10-fold weight disparity between maximum and minimum weights. Data partitions

are set at 10, 20, 50, and 100.

IS
&

Baseline
\ 2

-5

N N
= 3
N
&

— 10

N
&

g

n
8
AVERAGE PPL

AVERAGE PPL

3

Baseline

Baseline

Baseline
2 39
—_—5 38

— 10

Baseline

Baseline
2

-5

AVERAGE ACC

34

“<=§~___=======

&

33
\ 32l 7

— 10

10000 20000 30000 40000 50000 60000 70000
STEPS

(a) The Pile test set

10000 20000 30000 40000 50000 60000 70000
STEPS

(b) SlimPajama test set

10000 20000 30000 40000 50000 60000 70000
STEPS

(c) downstream tasks

Figure 7: Evaluation results of models under different weighting disparities, including maximum-minimum weight
differences of approximately 2-fold, 5-fold, and 10-fold. The models are trained on the Falcon RefinedWeb dataset,

and our method involves a data partitioning number of 20.

stream tasks.

5.5 Effects of sampling weight disparities on
model performance

Figure 7 presents the outcomes of experimental in-
vestigations into the effects of varying disparities
between maximum and minimum weights assigned
to different data partitions. The methodology em-
ployed ensures a consistent ascending order in the
allocation of weights, with greater disparities indi-
cating a more pronounced suppression of data with
high commonness.

Experiments conducted utilizing disparities in
the maximum to minimum weight ratios of 2-fold,
5-fold, and 10-fold reveal a consistent trend: in-
creased disparities between the maximum and min-
imum weights lead to a reduction in average model
perplexity. Although slight variations are observed
in the performance outcomes for downstream tasks,
the experiments demonstrate that the largest weight
disparity consistently facilitates the most optimal
model performance.

5.6 Cost of data reweighting

The computational processes of n-gram training
and commonness calculation are executed solely
on CPU resources. For a 40B token corpus, the
n-gram training procedure (with n = 4) requires
4 CPU cores for 5 hours, followed by computing
data commonness using 4 CPU cores in 2 hours.
Compared to the substantial costs of GPU con-
servation (at least 930 V100 GPU hours in our
experiments), these expenses can be considered
negligible. This underscores the efficiency of Soft-
Dedup and the feasibility of its implementation in
resource-constrained environments.

6 Conclusion

In this study, we introduce a soft deduplication
method that effectively addresses the primary lim-
itations associated with traditional hard dedupli-
cation methods. Unlike its predecessors, this ap-
proach retains all samples of data while reallocat-
ing sampling weights according to data common-
ness. Experimental analyses demonstrate that this
technique can significantly expedite the training

4018

8

process for large language models, evidenced by
a reduction of over 26% in the number of training
steps required. The proposed method surpasses
existing deduplication techniques in effectiveness
and can serve as a valuable complement to these
methods. Due to its low operational cost and su-
perior efficiency, we advocate for the integration
of this soft deduplication approach with traditional
hard deduplication methods as a standard practice
in the pre-training phase of large language models.

Limitations

Due to current limitations in computational re-
sources, the extension of SoftDedup to larger-scale
models will be deferred to future research endeav-
ors. Moreover, future studies will seek to conduct
a more comprehensive evaluation of the method’s
effectiveness across various mixed data sources.

References

Amro Abbas, Kushal Tirumala, Daniel Simig, Surya
Ganguli, and Ari S. Morcos. 2023. Semdedup: Data-
efficient learning at web-scale through semantic dedu-
plication.

Miltiadis Allamanis. 2019. The adverse effects of code
duplication in machine learning models of code.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Meérouane Debbah, Etienne Goffinet, Daniel Hesslow,
Julien Launay, Quentin Malartic, Daniele Mazzotta,
Badreddine Noune, Baptiste Pannier, and Guilherme
Penedo. 2023. The falcon series of open language
models.

Jack Bandy and Nicholas Vincent. 2021. Addressing
"documentation debt" in machine learning research:
A retrospective datasheet for bookcorpus.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—-1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piga: Reasoning about

physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

A.Z. Broder. 1997. On the resemblance and con-
tainment of documents. In Proceedings. Compres-
sion and Complexity of SEQUENCES 1997 (Cat.
No.97TB100171), pages 21-29.

Moses S Charikar. 2002. Similarity estimation tech-
niques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory
of computing, pages 380-388.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Together Computer. 2023. Redpajama: an open dataset
for training large language models.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Danny Hernandez, Tom Brown, Tom Conerly, Nova
DasSarma, Dawn Drain, Sheer El-Showk, Nelson
Elhage, Zac Hatfield-Dodds, Tom Henighan, Tris-
tan Hume, Scott Johnston, Ben Mann, Chris Olah,
Catherine Olsson, Dario Amodei, Nicholas Joseph,
Jared Kaplan, and Sam McCandlish. 2022. Scaling
laws and interpretability of learning from repeated
data.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, Van-
couver, Canada. Association for Computational Lin-
guistics.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6086—-6096, Florence, Italy.
Association for Computational Linguistics.

4019

9

http://arxiv.org/abs/2303.09540
http://arxiv.org/abs/2303.09540
http://arxiv.org/abs/2303.09540
http://arxiv.org/abs/2303.09540
http://arxiv.org/abs/2303.09540
http://arxiv.org/abs/1812.06469
http://arxiv.org/abs/1812.06469
http://arxiv.org/abs/1812.06469
http://arxiv.org/abs/2311.16867
http://arxiv.org/abs/2311.16867
http://arxiv.org/abs/2311.16867
http://arxiv.org/abs/2105.05241
http://arxiv.org/abs/2105.05241
http://arxiv.org/abs/2105.05241
http://arxiv.org/abs/2105.05241
http://arxiv.org/abs/2105.05241
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2107.06499
http://arxiv.org/abs/2107.06499
http://arxiv.org/abs/2107.06499
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612

Jure Leskovec, Anand Rajaraman, and Jeffrey David
Ullman. 2020. Mining of massive data sets. Cam-
bridge university press.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. 2018. Focal loss for dense object
detection.

Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav
Saini, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan
Vitek. 2017. Déjavu: A map of code duplicates on
github. Proc. ACM Program. Lang., 1(OOPSLA).

Udi Manber and Gene Myers. 1993. Suffix arrays: A
new method for on-line string searches. SIAM Jour-
nal on Computing, 22(5):935-948.

Niklas Muennighoff, Alexander M. Rush, Boaz Barak,
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi,
Sampo Pyysalo, Thomas Wolf, and Colin Raffel.
2023. Scaling data-constrained language models.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochas-
tic language modelling. Computer Speech Language,
8(1):1-38.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The lambada dataset: Word predic-
tion requiring a broad discourse context.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset for
falcon llm: Outperforming curated corpora with web
data, and web data only.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2019. Learning to reweight examples for
robust deep learning.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. Winogrande: An ad-
versarial winograd schema challenge at scale. arXiv
preprint arXiv:1907.10641.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social iga: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4463—-4473.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya
Ganguli, and Ari S. Morcos. 2023. Beyond neural
scaling laws: beating power law scaling via data
pruning.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan,
and Ari S. Morcos. 2023. D4: Improving llm pre-
training via document de-duplication and diversifica-
tion.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzman, Ar-
mand Joulin, and Edouard Grave. 2019. Ccnet: Ex-
tracting high quality monolingual datasets from web
crawl data.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du,
Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V. Le,
Tengyu Ma, and Adams Wei Yu. 2023a. Doremi:
Optimizing data mixtures speeds up language model
pretraining.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and
Percy Liang. 2023b. Data selection for language
models via importance resampling.

Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei
Zheng, and Yang You. 2023. To repeat or not to
repeat: Insights from scaling 1lm under token-crisis.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

A Appendix

A.1 Average perplexity for each subset in the
Pile test set

In Table 2, we provide a detailed report on the
average perplexity for each subset within the Pile
test set. For models trained on the RedPajama
CommonCrawl dataset, our method results in im-
provements across 18 out of 22 subsets. For models
trained on the SlimPajama CommonCrawl dataset,
our method leads to improvements in 17 subsets.
For models trained on the Falcon RefinedWeb, im-
provements are observed in 19 subsets. Due to
the exceedingly small number of documents in the

4020

10

http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
https://doi.org/10.1145/3133908
https://doi.org/10.1145/3133908
https://doi.org/10.1145/3133908
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
http://arxiv.org/abs/2305.16264
https://doi.org/https://doi.org/10.1006/csla.1994.1001
https://doi.org/https://doi.org/10.1006/csla.1994.1001
https://doi.org/https://doi.org/10.1006/csla.1994.1001
http://arxiv.org/abs/1606.06031
http://arxiv.org/abs/1606.06031
http://arxiv.org/abs/1606.06031
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1803.09050
http://arxiv.org/abs/1803.09050
http://arxiv.org/abs/1803.09050
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
http://arxiv.org/abs/2206.14486
http://arxiv.org/abs/2206.14486
http://arxiv.org/abs/2206.14486
http://arxiv.org/abs/2206.14486
http://arxiv.org/abs/2206.14486
http://arxiv.org/abs/2308.12284
http://arxiv.org/abs/2308.12284
http://arxiv.org/abs/2308.12284
http://arxiv.org/abs/2308.12284
http://arxiv.org/abs/2308.12284
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1911.00359
http://arxiv.org/abs/1911.00359
http://arxiv.org/abs/1911.00359
http://arxiv.org/abs/1911.00359
http://arxiv.org/abs/1911.00359
http://arxiv.org/abs/2305.10429
http://arxiv.org/abs/2305.10429
http://arxiv.org/abs/2305.10429
http://arxiv.org/abs/2305.10429
http://arxiv.org/abs/2305.10429
http://arxiv.org/abs/2302.03169
http://arxiv.org/abs/2302.03169
http://arxiv.org/abs/2302.03169
http://arxiv.org/abs/2305.13230
http://arxiv.org/abs/2305.13230
http://arxiv.org/abs/2305.13230

RedPajama CC SlimPajama CC Falcon RW

Subset Baseline SoftDedup | Baseline SoftDedup | Baseline SoftDedup
Pile-CC 17.79 17.20 20.61 19.74 13.66 13.49
YoutubeSubtitles 23.59 22.54 23.40 25.83 18.56 17.45
PhilPapers 15.74 14.59 15.27 14.51 15.03 14.05
HackerNews 31.32 29.81 29.68 28.84 21.13 20.17
Enron Emails 48.23 46.50 47.16 41.81 32.53 31.26
EuroParl 60.96 55.16 60.26 55.72 51.06 40.48
Ubuntu IRC 20.53 19.48 27.16 26.20 75.61 71.47
BookCorpus2 16.22 16.14 15.27 14.46 11.67 11.44
NIH ExPorter 10.92 10.78 10.65 10.72 10.46 10.64
OpenSubtitles 14.45 13.78 14.05 13.67 13.83 13.60
Gutenberg(PG-19) 19.67 19.77 18.71 17.75 18.31 16.58
DM Mathematics 6.51 6.44 6.47 6.60 6.01 5.86
Wikipedia 13.94 13.71 12.85 12.65 10.70 10.45
OpenWebText2 21.97 21.10 27.16 25.44 17.00 16.19
Github 56.03 52.95 55.98 53.65 32.36 26.30
FreeLaw 9.86 10.13 10.37 10.26 13.36 12.93
USPTO Backgrounds 9.59 9.29 9.60 9.42 9.19 8.97
Books3 15.69 16.02 14.82 14.37 11.06 10.65
PubMed Abstracts 8.75 8.79 8.49 8.67 8.85 8.99
StackExchange 31.76 29.44 29.83 27.44 17.84 15.62
ArXiv 17.82 16.99 17.85 18.14 16.17 14.94
PubMed Central 13.44 12.36 12.60 12.19 12.06 12.77

Table 2: Average perplexity for each subset in the Pile test set.

Ubuntu IRC subset, we exclude it from the cal-
culation of the average perplexity on the Pile test
set.

A.2 Average perplexity for each subset in the
SlimPajama test set

In Table 3, we provide a detailed report on the av-
erage perplexity for each subset within the SlimPa-
jama test set. Our method has led to improvements
across nearly all subsets.

A.3 Accuracy for each downstream task

In Table 4, we provide a detailed report on the
accuracy for each downstream task. For models
trained on the RedPajama CommonCrawl dataset,
our method has led to improvements across all
tasks. For models trained on the SlimPajama Com-
monCrawl and Falcon RefinedWeb datasets, our
approach has also resulted in accuracy improve-
ments on the majority of tasks.

4021

RedPajama CC SlimPajama CC Falcon RW

Subset Baseline SoftDedup | Baseline SoftDedup | Baseline SoftDedup

Commoncrawl 9.43 9.28 9.19 9.16 10.23 10.20

Cc4 16.84 16.25 16.46 16.06 13.95 13.81

GitHub 90.00 82.28 81.11 77.59 28.02 20.98

Books 16.03 16.25 14.62 13.91 11.89 11.34

ArXiv 15.86 15.29 15.21 14.57 14.75 13.43

Wikipedia 88.40 82.05 77.44 67.77 68.83 58.69

StackExchange | 30.10 28.15 28.00 26.01 18.14 16.01

Table 3: Average perplexity for each subset in the SlimPajama test set.
RedPajama CC SlimPajama CC Falcon RW

Task Baseline SoftDedup | Baseline SoftDedup | Baseline SoftDedup
NQ Open (1-shot) 4.13 5.37 4.6 4.79 4.18 3.85
SQuADV2 (1-shot) 11.51 14.66 12.95 17.25 26.39 29.95
Trivia QA (1-shot) 15.89 16.39 17.71 17.64 12.24 13.3
WebQuestions (1-shot) 33 34 5.71 3.59 1.08 3.05
LAMBADA openai (1-shot) 46.07 48.52 43.64 44.65 44.3 46.57
LAMBADA standard (1-shot) | 36.91 40.89 37.65 38.83 39.72 40.79
PIQA (1-shot) 65.34 66.7 66 66.76 72.31 72.47
Social IQa (1-shot) 88 89.6 87.9 88.4 89.2 89.3
WinoGrande (1-shot) 52.88 54.38 53.99 55.25 54.7 54.7
HellaSwag (1-shot) 34.93 36.51 35.54 36.8 40.43 40.35
ARC easy (2-shot) 57.24 59.89 57.79 60.44 58.12 59.43
ARC challenge (2-shot) 25.17 26.28 25.09 26.54 25.17 26.02

Table 4: Accuracy for each downstream task.

4022

