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Abstract

Taxonomy completion, enriching existing tax-
onomies by inserting new concepts as parents
or attaching them as children, has gained sig-
nificant interest. Previous approaches embed
concepts as vectors in Euclidean space, which
makes it difficult to model asymmetric rela-
tions in taxonomy. In addition, they introduce
pseudo-leaves to convert attachment cases into
insertion cases, leading to an incorrect bias
in network learning dominated by numerous
pseudo-leaves. Addressing these, our frame-
work, TAXBOX, leverages box containment
and center closeness to design two specialized
geometric scorers within the box embedding
space. These scorers are tailored for inser-
tion and attachment operations and can effec-
tively capture intrinsic relationships between
concepts by optimizing on a granular box con-
straint loss. We employ a dynamic ranking loss
mechanism to balance the scores from these
scorers, allowing adaptive adjustments of in-
sertion and attachment scores. Experiments on
four real-world datasets show that TAXBOX sig-
nificantly outperforms previous methods, yield-
ing substantial improvements over prior meth-
ods in real-world datasets, with average perfor-
mance boosts of 6.7%, 34.9%, and 51.4% in
MRR, Hit@1, and Prec@1, respectively.

1 Introduction

Taxonomy, a critical knowledge graph with an "is-
a" relationship, plays a vital role in information
retrieval, recommendation systems, and question
answering (Chatterjee and Das, 2022; Chuang and
Chien, 2003; Kejriwal et al., 2022; Kerschberg
et al., 2001; Suchanek et al., 2007; Huang et al.,
2019; Yang et al., 2017; Yu et al., 2021). How-
ever, manual taxonomy enrichment is inefficient
and costly due to the constant emergence of new
concepts. To address the challenge of incorporat-
ing new concepts, taxonomy completion has been
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Figure 1: Example of taxonomy completion with our
TAXBOX framework.

introduced, with new concepts either inserted as
both parents and children or attached only as chil-
dren (Jiang et al., 2022; Zhang et al., 2021; Wang
et al., 2022; Zeng et al., 2021). This task goes be-
yond taxonomy expansion, which primarily treats
new concepts as leaf nodes and tends to have lim-
itations in downstream applications (Shen et al.,
2020; Liu et al., 2021; Yu et al., 2020; Manzoor
et al., 2020; Phukon et al., 2022; Jiang et al., 2023).

Taxonomy completion entails a more compre-
hensive incorporation of new concepts with two
operations: insertion and attachment. For instance,
in Figure 1, new query concepts such as cat and
insect are added to the existing animal taxonomy.
The process requires enumerating all possible can-
didate positions within the original taxonomy, in-
cluding existing edges like <Animal, Vertebrate>
and implicit edges from each node to its descen-
dants such as <Animal, Tiger>. Each candidate
position is then paired with the query concept, and
a confidence score is calculated. Finally, insect is
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attached as a child of animal and cat is inserted as a
parent of Siamese cat and children of Domestic An-
imal and Vertebrate according to their confidences.

Recent research on taxonomy enrichment has
examined various practical methods (Jiang et al.,
2022; Zhang et al., 2021; Wang et al., 2022; Zeng
et al., 2021). Nevertheless, all of these approaches
embed concepts as vectors in Euclidean space,
which makes them less capable of modeling the
asymmetric relationship ("is-a") in taxonomy. Box-
TAXO (Jiang et al., 2023) tried to employ box em-
bedding, a representation method that can capture
more prosperous and asymmetric relationships like
inclusion, disjoint, and proximity among concepts
through its geometric properties. However, this
method is limited in real-world applications for its
reliance only on the volume property, rendering
it suitable only for the taxonomy expansion and
even incapable of discerning optimal ancestor con-
cepts and handling multiple parents during infer-
ence. Moreover, methods for taxonomy completion
(Zhang et al., 2021; Wang et al., 2022) suffer from
using a "pseudo-leaf" as a child node in attachment
cases, leading to confusion in the matching. It is
attributed that attachment cases often predominate
due to leaf nodes’ prevalence in real taxonomies.
Therefore, learning too much about the pseudo-leaf
in the attachment cases may reduce the network’s
perceptual ability for child nodes in the insertion
cases.

To overcome these limitations, we present a
novel framework for taxonomy completion called
TAXBOX, which is the first to apply box em-
bedding to taxonomy completion. This approach
adopts a structurally enhanced box decoder, repre-
senting concepts as box embeddings (Vilnis et al.,
2018) encompassing the information of children,
furnishing richer semantics. Most importantly,
TAXBOX combines two probabilistic scorers to
unify the process of insertion and attachment in
the box embedding space and incorporates both
the volume and center closeness properties of box
embedding. Such a design effectively exploits the
fine-grained geometric attributes of box embed-
dings, circumventing the need for a pseudo-leaf
and yielding optimal, feasible results during the
ranking process. Additionally, we propose two
novel training objectives, optimizing both box vol-
ume and position, and rectifying scorer numerical
imbalances.

The specific contributions of this paper are out-
lined as follows:

• We introduce TAXBOX, the first framework
using box embedding for taxonomy comple-
tion with a structurally enhanced box decoder.

• We establish insertion and attachment scor-
ers, obviating the need for pseudo-leaves and
ensuring the determination of optimal results.

• We design box constraint loss, focusing on
both volume and center closeness, and dy-
namic ranking loss, rectifying scorer numeri-
cal imbalance.

• Experimental outcomes from four datasets
demonstrate our model’s efficacy, achiev-
ing 6.7% MRR, 34.9% Hit@1, and 51.4%
Prec@1 improvements over the previous
methods.

2 Related work

Taxonomy Expansion and Completion. Taxon-
omy expansion, the process of attaching novel con-
cepts into an existing taxonomy, has evolved over
time with various approaches (Shen et al., 2018,
2020; Yu et al., 2020; Manzoor et al., 2020; Liu
et al., 2021; Ma et al., 2021; Phukon et al., 2022;
Jiang et al., 2023). Although effective, these meth-
ods have limitations in addressing real-world ap-
plications. Thus, Zhang et al. (2021) introduced
taxonomy completion, a generalization that allows
for the insertion of a concept as a parent to existing
nodes, generating wider-reaching solutions. Subse-
quent research (Wang et al., 2022; Jiang et al., 2022;
Zeng et al., 2021) sought to tackle this more chal-
lenging version of taxonomy expansion. Jiang et al.
(2022) incorporated contextual embeddings into
input embeddings, leveraging dual LSTMs to en-
code ancestor and descendant information (Staude-
meyer and Morris, 2019). Meanwhile, Zeng et al.
(2021) devised a generative strategy that concur-
rently generates concept names and classifies valid
candidate positions. Wang et al. (2022) introduced
the Quadruple Evaluation Network (QEN), which
utilized pretrained language models (PLM) (De-
vlin et al., 2018; Sanh et al., 2019) to augment
initial embeddings with semantically rich term rep-
resentations. Arous et al. (2023) learns a position-
enhanced node representation through anchor sets
to better find the candidate.
Box Embedding. Box embedding represents a
mapping technique that embeds concepts or objects
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Figure 2: Overview of TAXBOX architecture. (a) The seed taxonomy tree with a query concept. (b) A structurally
enhanced box decoder maps concepts among all the candidates and the query concept to the box embedding space.
(c) Two probabilistic scorers calculate confidence of insertion or attachment for each candidate position. (d) Find
the best position via ranking to complete the seed taxonomy with the novel concept in box embedding space.

within hyperplane boxes. Initially proposed by Vil-
nis et al. (2018), this approach employs probabilis-
tic box lattices to encapsulate entities in knowledge
graphs as n-dimensional rectangles. Subsequently,
various studies have applied box embedding across
diverse domains. For instance, Rau et al. (2020)
predicted visual overlap in images, while Onoe et al.
(2021) and Patel et al. (2021) focused on entity
typing and multi-label classification, respectively.
Moreover, Dasgupta et al. (2022) mapped words to
capture set-theoretic semantics, and Hwang et al.
(2022) and Messner et al. (2022) explored relation
extraction and knowledge graph completion. These
works highlight box embedding’s suitability for
nuanced semantic relationship modeling.

3 Preliminary

Box embedding (Vilnis et al., 2018; Chheda et al.,
2021) refers to a mapping that represents a concept
or object as a hyperplane box. A box x = [xm, xM ]
is a hyperrectangle such that xm ∈ Rd and xM ∈
Rd where xm and xM represent the minimum and
maximum endpoints of the box respectively along
the d axis and xm,i ≤ xM,i holds for each axis
i ∈ {1, 2, ..., d}. The center of box embedding is
formulated as:

Cen(x) =
xM + xm

2
(1)

There are two important operations: Intersection
and Volume which are required for the calculation
of the conditional probability of boxes’ contain-
ment. Given two box embedding x = [xm, xM ],
y = [ym, yM ], the Intersection of them is defined

as follows:

Inter(x, y) = [max(xm, ym),min(xM , yM )] (2)

where min(·, ·) and max(·, ·) in Equation 2
perform element-wise operations. Specifically,
min(a, b) = [min(a1, b1), ...,min(ad, bd)], and
similarly for max(·, ·). The Volume is defined as:

Vol(x) =
d∏

i=1

τ∗softplus(
xMi − xmi

τ
)

softplus(a) = log(1 + exp a)

(3)

where τ is a hyperparameter to adjust the smooth-
ness. The probability of box x containing box y or
the conditional probability of x given y is:

Pr(x|y) = Vol(Inter(x, y))
Vol(y)

(4)

4 The TAXBOX Framework

In this section, we elaborate on the proposed
TAXBOX framework, as shown in Figure 2. We
begin by defining the problem in Section 4.1. Then,
in Section 4.2, we introduce the structurally en-
hanced box decoder, which maps concepts into
box embeddings with hierarchical information en-
hanced. Section 4.3 focuses on the discussion of
two probabilistic scorers that evaluate the query
and candidate boxes, providing attachment and in-
sertion scores. Finally, in Section 4.4, we elucidate
the learning objectives that contribute to improved
optimization of box decoding and scorer balancing.
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4.1 Problem Definition
A taxonomy is a directed acyclic graph and is de-
fined as T 0 = (N 0, E0) where each node n ∈ N 0

represents a concept and each edge ⟨p, c⟩ ∈ E0 rep-
resents the "is-a" relationship edge between con-
cepts. Given a seed taxonomy T 0 and a set of new
concepts C, the definition of taxonomy completion
is to construct a new taxonomy T = (N , E) where
N = N 0 ∪ C and E is updated by adding new
edges among C and N 0. To fulfill the task, all the
candidate positions P = {⟨p, c⟩|∀p ∈ N 0, ∀c ∈
descendants(p)} have to be evaluated given a
novel concept n ∈ C. The whole training paradigm
follows self-supervised learning. For each node in
the seed taxonomy, we pretend it to be a query and
optimize it with a reconstructed taxonomy without
the node.

4.2 Structurally Enhanced Box Decoder
The structurally enhanced box decoder includes a
graph aggregation module to aggregate the hierar-
chical features from the ego subtree, as well as two
box projectors map aggregated features and query
embedding to box embedding space, respectively.
An ego subtree of node n is defined as a tree only
containing n and its one-hop children, denoted by
T(n).

P
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Embedding of p
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Figure 3: Details of Graph aggregation module.

For a query q and a possible candidate ⟨p, c⟩ ∈
P , we first obtain the embedding of each concept
in the candidate along with their hierarchical in-
formation. As illustrated in Figure 3, we design
a graph aggregation module to achieve this. The
formulation is given by Equation 5:

Fk =Lin(R(GAT(T(k)) + T(k))), k ∈ {p, c}
(5)

where Fk is the aggregated feature and R(·) is a
readout method, which implies that we only read
out the root embedding of an ego subtree. Lin
denotes a linear layer with activation. To effec-
tively fuse more information from relevant child

nodes, we opt for GAT (Graph Attention Net-
work) (Veličković et al., 2018) to aggregate these
trees in our implementation.

Next, two box projectors with identical Highway
network(Srivastava et al., 2015) structure project
aggregated features and query embedding to box
embeddings, respectively, as formulated in Equa-
tion 6. To avoid potential conflicts arising from dif-
ferent latent spaces, we do not use a shared weight
module for the aggregated parent/child features and
query embedding.

Bq = QProjector(Fq)

Bk = CProjector(Fk), k ∈ {p, c} (6)

where Fq denotes query embedding and Bq, Bp, Bc

represent the box embedding of query, candidate
parent, and candidate child, respectively. QProjec-
tor is the query box projector, and CProjector is the
candidate box projector.

4.3 Insertion and Attachment Scorer

To make the best use of the geometric properties of
box embedding like volume and center closeness,
we design insertion scorer and attachment scorer to
separately give confidence corresponding to these
two cases.
Insertion Scorer. Assumes that our model cap-
tures fine-grained semantic relationships between
two concept boxes optimized by box constraint
loss (Section 4.4). Given a query concept n, we
first introduce its positive candidate set Cpos(n) =
{⟨p, c⟩|∀p ∈ P(n), ∀c ∈ C(n)} and negative can-
didate set Cneg(n) = {⟨p, c⟩|∃p /∈ P(n) ∨ ∃c /∈
C(n)} where P and C refers to the parents and chil-
dren of a node. Note that C(n) can be an empty
set. For a positive candidate pair, the parent box
can reliably hold the child box, while two boxes
within a negative pair are disjoint. The closer the
pair is in position, the more overlapping their box
embedding will be. Based on this, we propose an
insertion scorer (SI ) that represents the likelihood
of performing insertion into the candidate as fol-
lows:

SI(Bq, Bp, Bc) =Pr(Bp|Bq) · Pr(Bq|Bc)

· NRDt(Bq, Bp, Bc)
(7)

where NRDt(·, ·, ·) is the normalized reciprocal dis-
tance measuring the center closeness between the
candidate parent and a query as well as that be-
tween the query and the candidate child. It is for-
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mulated as:

RD(Bq, Bpi) =
1

||Cen(Bq)− Cen(Bpi)||2
NRDp(Bq, Bp) = softmaxni=1(RD(Bq, Bpi))

NRDt(Bq, Bp, Bc) = NRDp(Bq, Bp)

· NRDp(Bq, Bc)

(8)

where softmaxni=1 represents applying softmax
along a mini-batch and Bpi is a candidate in the
mini-batch. RD(·, ·) is the reciprocal distance, and
NRDp(·, ·) only measures the closeness between
the query and one side in the candidate.
Attachment Scorer. Similar to the insertion scorer,
when faced with the scenario of a candidate pair
with no child, an attachment scorer (SA) is pro-
posed. The attachment scorer is calculated as fol-
lows:

SA(Bq, Bp) = Pr(Bq|Bp) · NRDp(Bq, Bp) (9)

4.4 Multiple Learning Objectives

Classification Loss. The primary objective of our
model is to determine the most suitable positions
among all the candidate positions. We consider
each candidate position as an independent category.
Therefore, the problem can be reduced to a multi-
label classification problem with a binary cross-
entropy loss as:

Lc = − 1

|B|
∑

(Xi,yi)∈B
yilog(Sk(Xi))

+ (1− yi)log(1− Sk(Xi)), k ∈ {I, A}
(10)

where Xi = (Bqi , Bpi , Bci), B refers to a mini-
batch consisting of one positive sample and several
negative samples, y ∈ {0, 1} denotes whether the
sample is positive or not. Sk(k ∈ {I, A}) means
applying the insertion scorer if the candidate pair
has both sides or the attachment scorer if it only
has the parent side.
Box Constraint Loss. To better model the granu-
larity of the "is-a" relationships amongst concepts
using box embeddings, we focus on the geomet-
ric constraints originating from three properties of
boxes: inclusion (lin) and disjointness (ldis) model
the unidirectional relationships between two boxes,
and centrality similarity (lcen) facilitates scorers
by obliging unrelated box pairs to assume orthog-
onal positions. Based on this, the loss functions

for concept inclusion Lin and disjoint Ldis are as
follows:

lin(a, b) = −log Pr(b|a)
ldis(a, b) = max(0, log(1− γ(a, b))

− log(1− Pr(a|b)))
lcen(a, b) = max(0, log(1− γ(a, b))

− log(1− Cen(a) · Cen(b)))

Lin(a, b) = lin(a, b) + ldis(a, b)

Ldis(a, b) = ldis(a, b) + ldis(b, a) + lcen(a, b)

(11)

The dynamic margin, γ(a, b), between two con-
cepts a and b, is adapted from the Wu&P simi-
larity(Wu and Palmer, 1994) and modulates their
semantic distance:

γ(a, b) = α · 2× depth(LCA(a, b))

depth(a) + depth(b)
(12)

where LCA(·, ·) is the least common ancestor,
depth(·) indicates the depth in the seed taxonomy,
and α is a relaxation factor. By imposing con-
straints on volume(lin, ldis), position (lcen), and
distance (SI/A), the optimization search space is
effectively reduced.

Given a query box Bq, for a box Bk(k ∈ {p, c})
in a candidate, there are three possible scenarios:
1) Bq is contained within Bk. 2) Bk is contained
within Bq. 3) both boxes are disjoint. When con-
sidering both sides of the candidate with a total of
6 possible cases, the box constraint loss is:

Lb =
1

|B|
∑

(Xi,li)∈B
l1i · Lin(Bqi , Bpi)

+ l2i · Lin(Bci , Bqi)

+ l3i · Lin(Bpi , Bqi)

+ l4i · Lin(Bqi , Bci)

+ (1− l1i)(1− l3i) · Ldis(Bqi , Bpi)

+ (1− l2i)(1− l4i) · Ldis(Bci , Bqi)

(13)

where li = (l1i , l2i , l3i , l4i) denotes whether the
two sides of the candidate pair indeed contain the
query concept or are contained by the query.
Ranking Loss. It’s evident that the values of two
scorers are numerically unbalanced, namely SI ≤
SA when considering the same candidate parent.
In fact, there is no need for concern, as when a
query is inserted into this candidate position, it
is implicitly attached as a leaf. Our focus should
be on guaranteeing SI(Xpos) ≥ SA(Xneg) where
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Method MAG-CS
MR ↓ MRR Hit@1 Hit@5 Hit@10 Prec@1 Prec@5 Prec@10

TaxoExpan 1523 0.099 0.004 0.027 0.049 0.017 0.023 0.021
ARBORIST 1142 0.133 0.008 0.044 0.075 0.037 0.038 0.033

TMN 639 0.204 0.036 0.099 0.139 0.156 0.086 0.060
QEN† 3960 0.147 0.017 0.062 0.097 0.076 0.054 0.042

TaxoEnrich* 5545 0.184 0.043 0.107 0.158 0.142 0.075 0.055

TAXBOX 596 0.240 0.051 0.139 0.184 0.238 0.131 0.087

Method MAG-PSY
MR ↓ MRR Hit@1 Hit@5 Hit@10 Prec@1 Prec@5 Prec@10

TaxoExpan 728 0.253 0.015 0.092 0.163 0.031 0.038 0.033
ARBORIST 547 0.344 0.062 0.185 0.256 0.126 0.076 0.052

TMN 212 0.471 0.141 0.305 0.377 0.287 0.124 0.077
QEN† 1778 0.293 0.103 0.150 0.206 0.103 0.059 0.042

TaxoEnrich* 2201 0.357 0.082 0.219 0.293 0.167 0.089 0.036

TAXBOX 211 0.479 0.145 0.317 0.393 0.328 0.143 0.089

Method Wordnet-Verb
MR ↓ MRR Hit@1 Hit@5 Hit@10 Prec@1 Prec@5 Prec@10

TaxoExpan 1799 0.227 0.024 0.095 0.140 0.036 0.029 0.021
ARBORIST 1637 0.206 0.016 0.073 0.116 0.024 0.022 0.018

TMN 1445 0.304 0.072 0.163 0.215 0.108 0.049 0.032
QEN* 2095 0.331 0.074 0.178 0.233 0.113 0.054 0.036

TaxoEnrich* 2873 0.320 0.069 0.168 0.229 0.106 0.052 0.035

TAXBOX 1286 0.330 0.105 0.212 0.262 0.179 0.072 0.045

Method SemEval-Food
MR ↓ MRR Hit@1 Hit@5 Hit@10 Prec@1 Prec@5 Prec@10

TaxoExpan 688 0.207 0.041 0.101 0.166 0.083 0.041 0.034
ARBORIST 700 0.129 0.013 0.053 0.088 0.027 0.022 0.018

TMN 559 0.211 0.037 0.113 0.160 0.074 0.046 0.032
QEN 353 0.313 0.070 0.176 0.234 0.146 0.074 0.049

TaxoEnrich† 305 0.348 0.113 0.247 0.290 0.230 0.100 0.063

TAXBOX 281 0.359 0.132 0.264 0.295 0.318 0.127 0.071

Table 1: Overall results on four taxonomy completion datasets. The ↓ denotes that the lower the metric is the higher
performance the model has. Baselines are reported by Zhang et al. (2021) and Wang et al. (2022). * means our
reproduction. † means our implementation on new datasets. We report the mean results of 5 runs.

the subscripts pos and neg indicate positive and
negative samples, respectively. Consequently, for
k, k′ ∈ {I, A}, the ranking loss is strategically
designed to circumvent this particular case.

Lr =
1

|B|
∑

Xi∈B
max(0, γ(Xpos, Xneg)

+ Sk(Xneg)− Sk′(Xpos))

(14)

Here, the dynamic margin compels SI(Xpos) to be
greater than SA(Xneg) to a specific extent based on
their structural similarity. The final loss combines
all of the three losses mentioned above:

L = Lc + Lb + Lr (15)

5 Experiments

5.1 Experiment Setup

Datasets. We assess TAXBOX’s performance in
taxonomy completion on four real-world datasets:
two Microsoft Academic Graph subgraphs, MAG-
CS and MAG-PSY, plus two WordNet subgraphs,
Wordnet-Verb and SemEval-Food. Also, two public
datasets from SemEval-16, Science and Environ-
ment are evaluated for taxonomy expansion. Fur-
ther dataset details are available in Appendix A.
Evaluation metrics consist of Mean Rank (MR),
Mean Reciprocal Rank (MRR), Wu&P, Hit@k, and
Prec@k, with elaboration in Appendix B.
Compared Methods. We select three recent
SOTA taxonomy completion frameworks, Triplet
Matching Network (TMN) (Zhang et al., 2021),
QEN (Wang et al., 2022) and TaxoEnrich(Jiang
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et al., 2022), and two taxonomy expansion frame-
works, TaxoExpan (Shen et al., 2020) and AR-
BORIST (Manzoor et al., 2020), as baselines for
the four completion datasets. Additionally, we com-
pare BoxTAXO(Jiang et al., 2023) and TaxoExpan
demonstrating TAXBOX’s superiority in taxonomy
expansion. A further explanation is presented in
Appendix C.
Implementation Details. The Adam optimizer
was employed with a 0.001 learning rate and the
ReduceLROnPlateau scheduler with a 10-epoch
patience, training our model across all datasets for
100 epochs. Four attention heads were fixed with
0.1 dropout rate in GAT. The dynamic margin re-
laxation factor α was 0.5. The training and predic-
tion smoothness factor τ were 10 and 20 respec-
tively. Batch and negative sample size were set
at 16 and 63, while box dimensions were set at 64
for SemEval-Food, 128 for Wordnet-Verb and MAG-
CS, and 160 for MAG-PSY. Initial embeddings were
the word2vec for the MAG datasets, fasttext for the
Wordnet datasets, barring the PLM-based methods,
and BERT embedding for two expansion datasets
for fair comparison. All the experiments were con-
ducted with one RTX3090.

5.2 Experimental Results
Table 1 demonstrates the superior performance of
TAXBOX in taxonomy completion datasets, reflect-
ing average improvements of 6.7%, 34.9%, and
51.4% in MRR, Hit@1, and Prec@1. It outper-
forms prior SOTA models, such as QEN and Tax-
oEnrich, which utilize the pre-trained language
models (PLM) to enhance the representation. It
showcases TAXBOX’s performance when handling
datasets with varied scales. TAXBOX’s efficacy
originates from its box embedding’s superior abil-
ity to capture asymmetric relationships among con-
cepts and shows a significant improvement over
conventional vector representations. PLM-based
models like QEN, which lean on rich concepts’ de-
scriptions from various internet-based data sources,
tend to induce noise, particularly when dealing with
larger datasets with obscure, overlapping concepts.
Similarly, TaxoEnrich’s taxonomy-contextualized
embeddings may reveal a variance in distribution
between the training and testing phases, chiefly
due to the test phase’s exclusion of query-related
information.

On MAG-PSY and Wordnet-Verb datasets,
TAXBOX outperforms in Hit@k and Prec@k met-
rics but has less exceptional MRR scores. A statisti-

cal analysis revealed that in MAG-CS and SemEval-
Food datasets, the ratios of the maximum number
of positive candidates in the training set to that in
the test set are 2.5 and 1.5, respectively, whereas
for MAG-PSY and Wordnet-Verb, the ratios are 14
and 11. It suggests the need for TAXBOX to opti-
mize for all the concept boxes under relatively re-
laxed conditions to accommodate numerous ground
truth positions in the training set. This presents a
challenge when identifying test queries with fewer
ground truth positions, constricting MRR scores
while showing significant improvements in other
metrics.

5.3 Ablation Study
To assess the efficacy of our proposed learning
objectives (Lr, Lb) and graph aggregation module,
we performed ablation studies using SemEval-Food
and Wordnet-Verb datasets (Table 2). The model’s
overall performance deteriorated when any com-
ponent was removed, more noticeably so with Lb.
This is due to Lb explicitly constraining box loca-
tion and volume, while Lr primarily balances the
gap between scorers, which is implicitly addressed
during the optimization process of Lc. Despite that,
Lr still yields a crucial 10% performance gain. The
graph aggregation module demonstrated a signifi-
cant improvement, underscoring its essential role
in enhancing candidate feature enrichment.

Method SemEval-Food
MRR Hit@1 Prec@1

TAXBOX w/o Lr 0.346 0.104 0.250
TAXBOX w/o Lb 0.304 0.084 0.202

TAXBOX w/o GAM 0.347 0.112 0.270
TAXBOX w/o Lb &Lr 0.285 0.079 0.189

TAXBOX 0.359 0.132 0.318

Method Wordnet-Verb
MRR Hit@1 Prec@1

TAXBOX w/o Lr 0.316 0.097 0.165
TAXBOX w/o Lb 0.211 0.053 0.091

TAXBOX w/o GAM 0.310 0.100 0.173
TAXBOX w/o Lb& Lr 0.220 0.046 0.079

TAXBOX 0.330 0.105 0.179

Table 2: Ablation study on SemEval-Food and Wordnet-
Verb datasets. GAM means graph aggregation module.

5.4 How Two Scorers Work for Attachment
and Insertion

Table 3 highlights the superior performance of
TAXBOX over SemEval-Food and Wordnet-Verb
datasets in terms of attachment and insertion, com-
pared to other methods. It excels in all attachment
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metrics, emphasizing the aptitude of its scorer to
utilize box embeddings’ spatial aspects, while ig-
noring child boxes. For insertion, TAXBOX outper-
forms prevailing methods, indicating its scorer’s
accuracy in identifying optimal candidate positions
considering overlap and center similarity. This con-
firms the effectiveness and necessity of our method,
and the insufficiency of pseudo leaf introduction in
prior methods.

Method
SemEval-Food

Attachment Insertion
MRR Hit@1 MRR Hit@1

TMN 0.633 0.214 0.069 0.000
QEN 0.644 0.178 0.084 0.011

TAXBOX 0.678 0.288 0.133 0.032

Method
Wordnet-Verb

Attachment Insertion
MRR Hit@1 MRR Hit@1

TMN 0.456 0.139 0.121 0.004
QEN 0.466 0.125 0.160 0.007

TAXBOX 0.481 0.165 0.185 0.050

Table 3: Performance in attachment and insertion cases.

5.5 How TAXBOX Solves the Limitation of
BoxTAXO

Method Environment
Prec@1 MRR Wu&P

TaxoExpan 11.1 32.3 54.8
BoxTAXO 38.1 47.1 75.4
TAXBOX 44.2 55.0 77.8

Method Science
Prec@1 MRR Wu&P

TaxoExpan 27.8 44.8 57.6
BoxTAXO 31.8 45.3 64.7
TAXBOX 44.7 54.3 81.3

Table 4: The performance of TAXBOX on taxonomy
expansion datasets. Baselines are reported by Jiang et al.
(2023). *Please note that we have not scaled MRR by
10 and have applied a 100x scale to all results here.

Table 4 reveals that TAXBOX surpassed Box-
TAXO in all metrics to show the TAXBOX’s su-
periority over BoxTAXO. BoxTAXO’s limitations
largely stem from its simplification of taxonomies
into sheer tree structures, resorting to containment
or non-intersection. This approach engenders two
primary concerns: 1) Hard boundaries inhibiting
multiple parent nodes accommodation, and 2) unre-
liable inference criteria due to volume containment
probability being the chief confidence score. Con-
trarily, TAXBOX mitigates these constraints with

its soft margin-based constraints accommodating
overlaps, and improves inference criteria with box
center-position distance. Consequently, TAXBOX’s
predictions are more precise, and it capably pro-
cesses nodes with multiple parents, outperforming
BoxTAXO.

5.6 How Dynamic Margin Affects Box
Constraint

Table 5 highlights the dynamic margin’s efficiency
in box constraint loss, in spite of comparable MRR
results. Discrepancies in Hit@1 and Prec@1 across
fixed margins accentuate the dynamic margin’s su-
periority in accurately modeling inter-box relation-
ships. While a 0.3 fixed margin in SemEval-Food
might parallel its performance, determining the op-
timal margin remains challenging. Notably, the
dynamic margin outperforms all fixed margins in
Wordnet-Verb, further underscoring its adaptability.

Margin SemEval-Food
MRR Hit@1 Prec@1

0.1 0.357 0.107 0.256
0.3 0.355 0.121 0.291
0.5 0.352 0.104 0.250

dynamic 0.359 0.132 0.318

Margin Wordnet-Verb
MRR Hit@1 Prec@1

0.1 0.318 0.096 0.164
0.3 0.328 0.092 0.157
0.5 0.322 0.090 0.154

dynamic 0.330 0.105 0.179

Table 5: The results of different margins in the box
constrain loss on two datasets.

5.7 How to set up TAXBOX

We discuss our choice for box dimensionality and
the number of negative samples in Appendix D.

6 Conclusion

In this study, we present TAXBOX, a novel frame-
work for taxonomy completion using box embed-
dings. Incorporating restricted box constraint loss,
dynamic ranking loss, and two probabilistic scorers
for attachment and insertion, TAXBOX employs a
structurally enhanced box decoder, mitigating the
need for pseudo leaves. Experiments on six real-
world datasets demonstrate its effectiveness and
performance. Future research could refine scor-
ers without numerical imbalance and explore post-
processing measures like reranking with LLM.
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Limitations

The primary limitations of our proposed methods
are as follows: (1) The numerical imbalance be-
tween the two scorers. Although we attempt to
alleviate this issue by introducing a dynamic rank-
ing loss, it remains an imperfect solution. Re-
sults shown in Table 3 indicate that tackling the
insertion case in real-world practice is still chal-
lenging, despite TAXBOX achieving significant im-
provements compared to previous SOTA. A more
practical scorer should be developed to address
this. (2) In real-world applications, the quality of
the initial embedding influences TAXBOX’s perfor-
mance to some extent. Even when we opt for a
well-pretrained language model for encoding, the
concept name and description have a considerable
impact. Thus, a more adaptive training strategy
is needed. For example, we could employ data
augmentation techniques to generate multiple texts
representing the same meaning and use a PLM
to obtain an embedding set pointing to a specific
concept. During training, we can then retrieve dif-
ferent embeddings to fit the network, consequently
enhancing its generalization capabilities.
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A Dataset

We choose six real-world English datasets in dif-
ferent domains, four for taxonomy completion and
two for taxonomy expansion. The statistical infor-
mation about six datasets is shown in table 6.

• Microsoft Academic Graph (MAG) (Sinha
et al., 2015) is a large, multi-disciplinary
graph. The data in MAG includes informa-
tion from a wide range of academic disci-
plines and includes more than 660 thousand
scientific concepts and more than 700 thou-
sand taxonomic relations. Following Zhang
et al. (2021), we use subgraphs related to the
computer science (MAG-CS) and psychol-
ogy(MAG-PSY) domains. The initial embed-
ding is a 250-dimension word2vec embedding
trained by Zhang et al. (2021).

• Wordnet (Miller, 1995) is a large lexical
database of English. Following (Wang et al.,
2022) and (Zhang et al., 2021), we choose
Wordnet-Verb (Jurgens and Pilehvar, 2016)
and SemEval-Food (Bordea et al., 2015)
which are extracted from wordnet. We em-
ploy 300-dimension fasttext embedding as our
initial features following Zhang et al. (2021).

• SemEval-16 we use two public datasets re-
leased from SemEval-16 task. Specifically,
they are small-scaled taxonomy in the do-
mains of Environment and general Science.

Dataset |N | |E | |C|

MAG-CS 24,754 42,329 153,726
MAG-PSY 23,187 30,041 101,077

Wordnet-Verb 13,936 13,408 51,159
SemEval-Food 1,486 1,533 6,122

Science 344 354 344
Environment 209 209 209

Table 6: The statistics of six datasets. |N |, |E |, |C| are
the number of nodes, edges, and candidate positions,
respectively.

And their initial embeddings are produced by
a pre-trained bert(Devlin et al., 2018).

For MAG-CS, MAG-PSY and Wordnet-Verb, we
randomly select 1,000 nodes for testing and 1,000
nodes for validation in each dataset, following the
approach of Zhang et al. (2021). For SemEval-
Food, we sample 10% of all the nodes for testing
and another 10% for validation as done by Wang
et al. (2022). For Environment and Science, we
adopt the same protocol by Jiang et al. (2023). Sub-
sequently, we reconstruct the seed taxonomy using
the remaining nodes and add edges between the
parent and child nodes of the test and validation
sets to restore the fragmented taxonomy resulting
from the dataset split.

B Evaluation Metric

All the methods as well as our model are ranking-
based ones, so we use the ranking-based metric
to evaluate performance. Supposing rank(ci) de-
notes the predicted rank of ground truth position
given a query concept ci ∈ C:

• Mean Rank (MR) mainly measures the av-
erage tail ranking level and we first calculate
the average rank positions of each query and
then average all the queries:

MR =
1

|C|

|C|∑

i=1

(
1

Mi

Mi∑

j=1

rank(cji )) (16)

where Mi denotes the total number of ground
truth positions of a query ci and cji denotes
the jth prediction of ci.

• Mean Reciprocal Rank (MRR) mainly mea-
sures the average head ranking level. Its form
is similar to MR except that we get the recip-
rocal number of the ranks. Here we scale the
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reciprocal rank by 10 to amplify the differ-
ence.

RR =
1

Mi

Mi∑

j=1

1

max(1, rank(cji )/10)
(17)

MRR =
1

|C|

|C|∑

i=1

RR (18)

• Hit@k measures the recall of a model which
averages the true rank positions for all queries
in top k:

Hit@k =

∑|C|
i=1

∑Mi
j=1 1(rank(cji ) ≤ k)
∑|C|

i=1Mi

(19)

• Prec@k measures the precision of the re-
sults and it sums the true rank positions of
all queries in top k, divided by k times the
total number of queries:

Prec@k =

∑|C|
i=1

∑Mi
j=1 1(rank(cji ) ≤ k)

k ∗ |C|
(20)

• Wu&P(Wu and Palmer, 1994) measures the
structural similarity:

Wu&P =
1

|C|

|C|∑

i=1

2× depth(LCA(ai, bi))

depth(ai) + depth(bi)

(21)

where ai and bi are the predicted top-1 result
and the truth potision in taxonomy.

C Compared Methods

Here are the details of compared models:

• TaxoExpan (Shen et al., 2020): a state-of-
the-art method in taxonomy expansion that
utilizes a graph neural network to incorporate
structural information.

• ARBORIST (Manzoor et al., 2020): a state-
of-the-art framework for taxonomy expansion
and it leverages heterogeneous edge semantics
with a dynamic margin loss.

• BoxTAXO (Jiang et al., 2023): a state-of-the-
art method using the property of conditional
probability of box embedding for taxonomy
expansion.

• TMN (Zhang et al., 2021): a state-of-the-art
method for taxonomy completion that em-
ploys the channel-wise gate mechanism and
auxiliary learning with multiple NTNs to eval-
uate partially positive candidate pairs beside
positive pairs.

• QEN (Wang et al., 2022): a state-of-the-art
model for taxonomy completion which uti-
lizes a pre-trained language model to enhance
the initial embedding with semantically rich
term representation and enhance the perfor-
mance with a sibling detector.

• TaxoEnrich (Jiang et al., 2022): a state-of-
the-art model for taxonomy completion that
leverages Taxonomy-Contextualized Embed-
dings and sibling matching modules.

D the Effect of Box Dimensionality and
Negative Samples

We are also interested in how the box dimensional-
ity and the number of negative samples affect the
performance. Figure 4 shows the results of MRR,
Hit@1 and Prec@1 when changing the box dimen-
sionality from { 32, 64, 80, 128 } and the total
number of samples from { 8, 16, 32, 64 }(where
negative samples are { 7, 15, 31, 63 }) over two
datasets.

Notably, it can be observed that for small
datasets SemEval-Food, a dimension of 64 serves
as a turning point. Dimensions below 64 exhibit
a significant decline in overall performance. On
the other hand, dimensions exceeding 64 reach
a plateau, indicating that 64 is an appropriate di-
mension. Furthermore, increasing the dimension
beyond 64 does not yield further performance im-
provements; instead, it leads to a decrease. This
can be attributed to the fact that a dimension of
64 already satisfies the spatial constraints for all
boxes in such a scale dataset. Larger dimensions
introduce redundancy, thereby increasing the op-
timization difficulty. However, for Wordnet-Verb,
it is worth noting that there is still some perfor-
mance improvement observed after surpassing 64
dimensions. This discrepancy can be attributed
to the larger dataset size and the initial quality of
embeddings, which require more dimensions to
effectively accommodate the information.

Regarding the setting of negative sample quanti-
ties, a general observation can be made that larger
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Figure 4: The effect of box dimensionality and the number of negative samples over three datasets.

numbers of negative samples result in better per-
formance on both datasets. However, it is crucial
to acknowledge that an increased number of neg-
ative samples reduces the attention given to posi-
tive samples during the optimization process of the
classification loss. Consequently, it becomes neces-
sary to elevate the weight assigned to positive sam-
ples in calculations. Therefore, the steep decrease
observed at the position of 16 is a consequence
of equal weighting given to positive and negative
samples in the experiment, while higher negative
sample counts were assigned higher weights. This
emphasizes the significance of appropriately adjust-
ing the weight allocation to balance the impact of
positive and negative samples during training.
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