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Abstract

Event Causality Identification (ECI) aims to
detect whether there exists a causal relation
between two events in a document. Existing
studies adopt a kind of identifying after learn-
ing paradigm, where events’ representations
are first learned and then used for the identi-
fication. Furthermore, they mainly focus on
the causality existence, but ignore causal direc-
tion. In this paper, we take care of the causal
direction and propose a new identifying while
learning mode for the ECI task. We argue that
a few causal relations can be easily identified
with high confidence, and the directionality
and structure of these identified causalities can
be utilized to update events’ representations
for boosting next round of causality identifica-
tion. To this end, this paper designs an iterative
learning and identifying framework: In each
iteration, we construct an event causality graph,
on which events’ causal structure representa-
tions are updated for boosting causal identifica-
tion. Experiments on two public datasets show
that our approach outperforms the state-of-the-
art algorithms in both evaluations for causality
existence identification and direction identifica-
tion.1

1 Introduction

Event Causality Identification (ECI) is the task
of identifying whether there exists a causal re-
lation between two events. ECI can facilitate a
wide range of practical applications, including
knowledge graph construction (Chen et al., 2019;
Al-Khatib et al., 2020), question answering (Oh
et al., 2017), and information extraction (Xiang
and Wang, 2023). The ECI task can be divided into
the sentence-level ECI (two events are in the same
sentence) and document-level ECI (two events may
be in different sentences).

∗Corresponding author
1 The source code is available at https://github.com/

LchengC/iLIF

Input Document and Events:

Troy, Michigan Office Shooting e 1  Follow-Up-1 Dead , 2 Injured e 2 , and 

Suspect Caught

"A man suspectede3 of shooting three people, killinge4 one, at an accounting 

firm where was fired last week was arrestede5 after a high-speed chasee6 a 

few hours after the Monday morning attack", authorities said ...

Event Causal Graph

e1

e2

e4

e5

e6

e3

Three Basic Causal Structures:

Chain:

Fork:

Collider:

e1 e4 e5

e5 e1 e4

e5e6 e3

Three Basic Causal Structures:

Chain:

Fork:

Collider:

e1 e4 e5

e5 e1 e4

e5e6 e3

Figure 1: An example of the event causality graph and
event structures in the EventStoryLine corpus.

In this paper, we focus on the document-level
ECI task, which faces greater challenges due to the
requirement of comprehending long texts for cross-
sentence reasoning. The traditional feature-based
methods (Gao et al., 2019) utilize Integer Linear
Programming (ILP) to model the document causal
structure. In order to better capture the interactions
among events, recent methods (Phu and Nguyen,
2021; Chen et al., 2022, 2023; Fan et al., 2022)
usually construct document-level undirected graphs
to facilitate cross-sentence causal reasoning. Other
methods (Yuan et al., 2023) use sparse attention
to address the issue of long-distance dependencies
and distinguish between intra- and inter-sentential
reasoning.

Modeling the interactions among events has
been proven effective for the document-level ECI
task, however, almost all existing methods focus
on only identifying the existence of causal relation
between the event ei and ej , yet without consider-
ing the causality direction being from ei to ej (or
from ej to ei). In this paper, ei → ej indicates that
“event ei causes ej”. This may lead to the learn-
ing of events’ representations towards capturing
events’ correlations, but correlations may not be
directly mapped into causalities (Pearl and Macken-
zie, 2018). Furthermore, undirected connections
may also lead to incorrect causality identifications,
as some properties of causal structures cannot be
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respected without directionality.
There are three basic causal structures, namely,

the chain, fork, and collider (He et al., 2021).
Causality identification without directionality can-
not well exploit causal structures. As shown in
Figure 1, “Shootinge1”−→“killinge4”−→“arrestede5”
is a chain causal structure. For a model consider-
ing causality direction, if the two directional causal
relations, i.e., e1 → e4 and e4 → e5, can be first
identified with high confidence, then this can help
to identify the causal relation between e1 and e5
due to the causal transmission in the chain structure.
We argue that events’ causal relation should be with
directionality, and considering causal directions
could further boost event causality identification.

Besides ignoring directionality, existing solu-
tions for the ECI task adopt a kind of identify-
ing after learning paradigm. That is, learning
events’ representations first via some advanced neu-
ral networks, and then identifying causal relations
for all event pairs at only one pass. However, it
could happen that some causal relations can be eas-
ily identified with high confidence. As reported
by Yuan et al. (2023), identifying intra-sentence
events’ causality (two events in a same sentence)
is often easier and with better accuracy than identi-
fying inter-sentence events’ causality (two events
in different sentences). This motivates us to pro-
pose a new identifying while learning mode for the
ECI task. That is, identifying some events’ causal
relations with high confidence, and then utilizing
the directionality and structure of such identified
causalities to update events’ representations for
boosting next round of causality identification.

Motivated from the aforementioned considera-
tions, this paper proposes an iterative Learning and
Identifying Framework (iLIF) for the document-
level event causality identification. For an event
ei, we not only encode its contextual text repre-
sentation hi, but also update its causal structure
representation zi in each iteration. Causality iden-
tification is modeled as a classification issue based
on the representation hi and zi of an event pair.
Initially, we employ a pretrained language model
to encode hi. In each iteration, we first construct a
directed event causality graph (ECG) based on the
identified causalities, and propose a causal graph
encoder to next update zi on the ECG. After the
termination, we output the directed ECG as the
final causality identification results. In order to dif-
ferentiate the importance of iterations, we design a
novel iteration discounted loss function to mitigate

the error propagation issue.
We conduct experiments on two public datasets:

The EventStoryLine(v0.9) dataset (Caselli and
Vossen, 2017) and MAVEN-ERE dataset (Wang
et al., 2022) and consider both direction and exis-
tence settings for causal relations. We preprocess
the EventStoryLine dataset 2 to ensure that each
ground truth ECG is a directed acyclic graph (Gop-
nik et al., 2007). Experiment results validate that
our iLIF outperforms the state-of-the-art competi-
tors for the document-level ECI task in evaluations
for both causality existence identification and di-
rection identification.

2 Related work

Sentence-level ECI Early methods in feature
engineering construct classifiers by searching for
effective features, such as connective word cate-
gories (Zhao et al., 2016), syntactic features (Pitler
et al., 2009), and contextual semantic features (Do
et al., 2011). Some studies have employed ex-
ternal knowledge bases or linguistic tools. Cao
et al. (2021) induce descriptive knowledge and re-
lation path knowledge from the ConceptNet for
reasoning. Liu et al. (2021) enhance model recogni-
tion capability by mining context-specific patterns
from the ConceptNet. Zuo et al. (2020) design
data augmentation methods based on lexical knowl-
edge bases like the WordNet (Fellbaum, 1998) and
VerbNet (Schuler, 2005) to generate more training
data. Zuo et al. (2021) introduce specific causal
patterns and transfer them to the target model us-
ing a contrastive transfer learning framework. Hu
et al. (2023) utilize an AMR parser (Banarescu
et al., 2013) to transform text into semantic graphs,
enabling explicit semantic structure modeling and
implicit association mining. Shen et al. (2022)
leverage the prompt learning paradigm to jointly
construct derived templates in order to utilize latent
causal knowledge.

Document-level ECI Compared to the sentence-
level ECI, document-level ECI holds greater po-
tential for applications but also faces greater chal-
lenges, such as weak long-term dependencies and
a lack of clear causal indicators. To address these
challenges, researchers attempt to construct the
topological structure of events for global reasoning.
Gao et al. (2019) propose an approach based on
Integer Linear Programming (ILP) to model the

2See Appendix A for more details.
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Figure 2: Illustration of the iterative learning and identifying framework (iLIF). Causality identification is based on
events’ contextual text and causal graph representations. The event causality graph (ECG) is iteratively constructed
to update events’ causal graph representations. The final ECG contains all identified causal relations as the output.

global causal structure. Phu and Nguyen (2021)
construct a document-level event graph and utilize
GNN to learn structural features. Chen et al. (2022)
build a relational graph and modeled the interac-
tions between event pairs. Furthermore, Chen et al.
(2023) introduce prior knowledge such as central
events and coreference to construct an event inter-
action graph for achieving global reasoning. Yuan
et al. (2023) propose a method that utilizes sparse
attention to learn high-quality representations and
distinguish between intra- and inter-sentential rea-
soning.

To the best of our knowledge, existing methods
ignore casuality direction and adopt the identifying
after learning paradigm for the ECI task. In this pa-
per, we take care of causality direction and propose
an identifying while learning mode.

3 Methodology

We propose an iterative Learning and Identifying
Framework (iLIF) for document-level event causal-
ity identification. The basic idea is to iteratively
update events’ representations for causality identi-
fication by exploiting causal structures on the most
recent event causality graph. As shown in Figure 2,
the iLIF includes four main module: (1) Contextual
Text Encoder (CTE); (2) Causal Graph Encoder
(CGE); (3) Event Causality Identification (ECI) (4)
Causality Graph Construction (CGC).

3.1 Contextual Text Encoder

The CTE module is to encode contextual text infor-
mation for each event mention. Given a document
D with n sentences and the j-th sentence Sj con-
tains m words. We use a Pretrained Language
Model (PLM), say the BERT-base (Devlin et al.,
2018), to sequentially encode the n sentences and
output the encodings for all the words in the doc-
ument D. For the i-th event ei, its contextual text
representation hi is an average of individual token
representations of the event trigger words.

3.2 Causal Graph Encoder

Based on the contextual text representation hi,
we can apply a simple neural classifier, such as
a multi-layer perceptron, to identify the existence
of a causal relation between two events. Although
this naive approach is often not with excellent per-
formance, some identified causal relations may be
with high confidence. So we can choose some
identified causal relations with high confidence to
construct a event causality graph (ECG), denoted
by G. We will discuss how to construct and update
G in the next subsection.

Besides describing the causality of two events,
the ECG G contains more information about causal
relations for all events in a document. Further-
more, some causal structures in G can be used to
boost inferring new causal relations (such as the
chain/fork causal structure) or to help correcting
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unreasonble causal relations (such as the collider
causal structure). To encode causal direction and
structure information from G, we propose to learn
a causal graph representation for each event node,
denoted by zi (with potentially different cardinality
F).

We construct G as a heterogeneous directed
graph containing one type of event node and
two types of directed edges: Intra-sentence
and Inter-sentence. We first utilize the self-
attention (Vaswani et al., 2017) on the event nodes
using a shared attentional mechanism attention :
RF × RF → R to compute the type-specific im-
portance coefficient (Velickovic et al., 2017). For
two events ei and ej with an edge rtij of type t,
the type-specific importance coefficient ctij of rtij
is computed as follows:

ctij = attention(Wzi,Wzj ; t) (1)

where W is a learnable parameter matrix. We note
that the two edge types have different attention
network parameters.

For an event node ei, let N t
i denote the set of its

neighbors each with an edge etji. That is, ej ∈ N t
i

indicates a directed edge from ej to ei. We next
compute the weight wt

ji for the edge eji as follows:

wt
ji =

exp(ctji)∑
k∈N t

i
exp(ctki)

. (2)

Now, we update the causal graph representation
for the event node ei by the following multi-head
attention mechanism as follows:

zti ←∥Kk=1 σ(
∑

j∈N t
i

wt
jiW

kzi) (3)

where σ(·) denotes an element-wise activation
function and ∥ the concatenation operation.

For an event ei with only one edge type, then
its causal graph representation is updated by Equa-
tion (3). For an event ei connected by two types
of edges (t1 for intra-sentence and t2 for inter-
sentence edges), we combine these two types of
features with different weights to distinguish their
confidence in ECI. Since two events within the
same sentence are usually easier to identify, we
tend to give more weight to the features related
to intra-sentence edges. Finally, we combine the
features zt1i and zt2i as follows:

zi ← βzt1i + (1− β)zt2i . (4)

event pairs within the same sentence is relatively
easier to identify

3.3 Event Causality Identification
After learning the contextual text representation h
and causal graph representation z, we use a Multi-
Layer Perceptron (MLP) to output a causal relation
vector pij ∈ R3 for two events ei and ej as follows:

pij = softmax([hi ∥ hj ∥ (zi − zj)]W), (5)

where ∥ stands for concatenation operation and W
is a learnable parameter matrix. We note that the
subtraction of zi and zj is to emphasize the causal
directionality, as they are learned from a directed
causal graph. We write pij = (pnij , p

c
ij , p

e
ij) with

the element pnij/p
c
ij/p

e
ij denoting the probability

of a NONE/CAUSE/EFFECT relation between the
two events.

3.4 Causality Graph Construction
The CGC module is to construct a document-level
event causality graph (ECG) in each iteration. The
ECG G = (N ,R) contains events as nodes, and
event causal relations as edges. Considering the
different information density (Yuan et al., 2023)
and recognition difficulty for inter-sentence event
pairs and intra-sentence event pairs, we define two
types of edges in R: (1) Intra-sentence edges for
two events in the same sentence, e.g., the green
edge of rammed→ smashing in Figure 2. (2) Inter-
sentence edges for two events in two different sen-
tences, e.g., the blue edge of drove→ stealing in
Figure 2.

To minimize error propagation, we resort to the
causal relation vector pij by Equation (5) to em-
ploy only those identified causal relations with high
confidence as edges during iteration. We define ω
as the relation confidence threshold. For two events
ei and ej , if pcij is the largest and pcij ≥ ω, then a
directed edge eij is constructed from ei to ej ; If
peij is the largest and peij ≥ ω, then a directed edge
eji is constructed from ej to ei. After processing
all event pairs’ pij , we construct the ECG G with
an adjacency matrix A: Aij = 1, if there exists a
directed edge from ei to ej ; Otherwise, Aij = 0

In our iterative Learning and Identifying Frame-
work, the ECG G is first initialized and then itera-
tively updated till the termination.

Initialization: We initialize the causal graph
representation for each event node as the event
contextual text representation, i.e., z(0) = h, and
construct an ECG G(0) based on the z(0) and h.

Iteration: In the l-th iteration, we first use the
previous ECG G(l−1) to learn the new causal graph
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representations z(l) for all nodes, as described in
Section 3.2. We next construct a new ECG G(l)
based on the z(l) and h.

Termination: To address the scale differences
among documents and prevent over iteration, we
design an iteration condition that terminates upon
meeting either of the following two criteria. (1)
The iteration count l reaches a predefined maximum
iteration number L. For a document with n < L
sentences, we set its maximum number of iterations
as n. (2) If the structural difference between G(l)
and G(l−1) is less than a predefined threshold:

∑

i

∑

j

|A(l)
ij −A

(l−1)
ij | ≤ δ. (6)

After terminating the iteration, all the directed
edges in the final ECG G are the identified
document-level causal relations.

3.5 Training strategy
Intuitively, the ECG G(l) in each iteration carries
different significance for the final ECG. We differ-
entiate the iterations by first calculating an iteration-
level loss Ll for the l-th iteration. We adopt the
α-balanced variant of focal loss to address the issue
of class imbalance and compute Ll by

Ll = −
∑

ei,ej∈D
αc(1− p̂cij)

γ log(p̂cij), (7)

where p̂cij is the predicted probability of the true
class c, αc is a weighting factor for the true class
c. Additionally, γ represents a predefined focusing
hyper-parameter.

We note that during the identifying while learn-
ing process, if some misidentification happens in
an iteration, it may propagate to the later iterations.
To penalize such propagations, we emphasize the
importance of earlier iterations and introduce a bal-
ancing factor inversely proportional to the iteration
count in the final loss function. We define the final
loss function as follows:

L =

LD∑

l=1

1

l
Ll, (8)

where LD denotes the actual iteration counts of the
document D.

4 Experiments

4.1 Experimental Settings
Datasets Details We evaluate our iLIF on the
widely used EventStoryLine (v0.9) dataset and

MAVEN-ERE dataset. The EventStoryLine dataset
comprises 22 topics, 258 documents, 5,334 event
mentions, 1,770 intra-sentence causal event pairs
and 3,855 inter-sentence causal event pairs (Caselli
and Vossen, 2017). Following (Caselli and Vossen,
2017; Gao et al., 2019), we designate event pairs
annotated with ‘PRECONDITION’ as CAUSE re-
lation, and ‘FALLING_ACTION’ as EFFECT rela-
tion. In both settings, we utilize the last two topics
as the development dataset, leaving the remaining
20 topics for 5-fold cross-validation.

The MAVEN-ERE dataset is a large-scale
dataset, which comprises 4,480 documents,
103,193 events, and 57,992 causal event pairs.
These causal event pairs are annotated as ‘CAUSE’
or ‘PRECONDITION,’ both representing CAUSE
relations. We randomly reverse half of the event
pairs with a CAUSE relation to represent the EF-
FECT relation. As MAVEN-ERE did not release
the test set, following Tao et al. (2023), we use the
original development set as the test set. Addition-
ally, we sample 10% of the data from the original
training set to form the development set.

implementation details Our method is imple-
mented based on the PyTorch version of Hugging-
face Transformer (Wolf et al., 2020). We use the un-
cased BERT-base (Devlin et al., 2018) as the base
PLM and fine-tune it during the training process.
We optimize our model using AdamW (Loshchilov
and Hutter, 2018), with a linear warm-up for the
first 10% of steps. The learning rate for the PLM
is set to 2e-5, while for other modules, it is set to
1e-4. The batch size is set to 1. More details can
be found in Appendix B.

Evaluation Metrics We adopt the commonly
used Precision (P), Recall (R), and F1-score (F1)
as the evaluation metrics. In the direction evalua-
tion, we calculate the micro-averaged results for
Precision, Recall, and F1-score specifically for the
CAUSE and EFFECT classes. In the existence eval-
uation, for the EventStoryLine dataset, we follow
the same approach as previous methods to ensure
fair comparison (Phu and Nguyen, 2021).

Direction and Existence Settings In the di-
rection setting, we utilize three labels: NONE,
CAUSE, EFFECT, which respectively represent the
noncausal relation, the cause relation, and the effect
relation. The direction identification results of com-
petitors are derived by expanding the classification
module of the competitors’ algorithms from binary
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Model Intra-sentence Inter-sentence Intra+Inter

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Causality Direction Identification

BERT (Devlin et al., 2018) 62.4 32.6 42.8 34.4 30.7 32.4 40.7 31.3 35.4
RoBERTa (Liu et al., 2019) 59.7 38 46.4 31.3 34.2 32.7 37.3 35.5 36.4
LONG (Beltagy et al., 2020) 59.0 40.5 48.0 35.2 30.5 32.7 41.6 33.8 37.3
ERGO (Chen et al., 2022) 58.8 47.6 52.6 36.1 41.2 38.5 41.5 43.3 42.4
SENDIR (Yuan et al., 2023) 56.0 52.6 54.2 38.6 39.4 39.0 43.8 43.7 43.7
LLaMA-2-7B (Gao et al., 2023) 17.5 17 17.2 6.8 19.2 10.0 8.3 18.5 11.5

iLIF (the proposed) 66.7 54.5 60.0 41.2 44.6 42.8 47.9 47.8 47.8

Causality Existence Identification

BERT (Devlin et al., 2018) 60.4 45.7 52.0 30.6 39.1 34.3 37.2 41.2 39.1
RoBERTa (Liu et al., 2019) 62.7 45.4 52.7 32.7 38.3 35.3 39.7 40.6 40.1
LONG (Beltagy et al., 2020) 47.7 69.3 56.5 26.1 55.6 35.5 31.4 60.0 41.2
ERGO (Chen et al., 2022) 49.7 72.6 59.0 43.2 48.8 45.8 46.3 50.1 48.1
SENDIR (Yuan et al., 2023) 65.8 66.7 66.2 33.0 90.0 48.3 37.8 82.8 51.9
text-davinci-003 (Gao et al., 2023) 33.2 74.4 45.9 - - - - - -
gpt-3.5-turbo (Gao et al., 2023) 27.6 80.2 41.0 - - - - - -
gpt-4 (Gao et al., 2023) 27.2 94.7 42.2 - - - - - -
LLaMA-2-7B (Gao et al., 2023) 26.9 29.3 28.0 10.8 31.9 16.1 13.2 31.1 18.5

iLIF (the proposed) 76.8 66.3 71.2 53.5 65.9 59.1 59.2 66.1 62.5

Table 1: Overall results on the EventStoryLine dataset in both direction and existence evaluation settings: The best
results are highlighted in bold, and the second-best results are underlined. Intra-sentence indicates that the event
pair is within the same sentence, while Inter-sentence indicates that the event pair is in different sentences.

to ternary classification. In the existence setting,
we adopt two labels: NONE, CAUSAL, which re-
spectively represent noncausal relation and causal
relation. For MAVEN-ERE dataset, we combine
the event pairs identified as the CAUSE class and
the EFFECT class in the direction experiment into
the CAUSAL class event pairs to obtain the exis-
tence identification result.

4.2 Competitors

We compare iLIF with the following competitors:
PLM-base concatenates two events’ contextual

text representations and then identifies causality
relation using a MLP. We use BERT-base (Devlin
et al., 2018), RoBERTa-base (Liu et al., 2019), and
Longformer-base (Beltagy et al., 2020) as the PLM.

ERGO (Chen et al., 2022) builds a relational
graph to model interactions between event pairs.

SENDIR (Yuan et al., 2023) leverages intra-
sentence event pairs to construct a reasoning chain,
facilitating inter-sentence causality reasoning.

Large Language Models (LLMs). Gao et al.
(2023) conduct zero-shot ECI experiments using
OpenAI’s official API 3, covering three versions
of ChatGPT: text-davinci-003, gpt-3.5-turbo and

3https://platform.openai.com/

gpt-4. We also test another popular LLM, the
LLaMA2 (Touvron et al., 2023) of Llama-2-7b-
chat version. Appendix D reports the designed
prompts for the LLMs.

We consider both existence identification and di-
rection identification for performance evaluations.
The existence identification means to only identify
the existence of causal relation between two events
with causality direction. The direction identifica-
tion means to correctly identify the causal direction,
if existing, between two events.

4.3 Overall Results

Table 1 and Table 2 compare the overall results
on the EventStoryLine and MAVEN-ERE dataset,
respectively. We note that all the competitors adopt
the identifying after learning paradigm; While our
iLIF adopts the identifying while learning. Our iLIF
achieves the best overall F1 results (intra+inter)
on the two datasets in both existence and direc-
tion evaluation. This validates the superiority of
our iLIF model with the new yet effective identi-
fying while learning mode for the ECI task. For
those LLMs, although they are capable of zero-shot
causal reasoning, their performance is much worse
than those methods based on the fine-tuned small
PLMs. This suggests that LLMs, like ChatGPT and
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Model Intra-sentence Inter-sentence Intra+Inter

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Causality Direction Identification

BERT (Devlin et al., 2018) 46.0 48.8 47.4 42.1 45.2 43.6 42.4 45.5 43.9
ERGO (Chen et al., 2022) 62.3 63.1 62.7 47.8 59.8 53.1 48.7 60.1 53.8
SENDIR (Yuan et al., 2023) 46.6 44.2 45.4 46.8 43.0 44.8 46.8 43.1 44.9

iLIF (the proposed) 73.7 49.7 59.4 66.3 47.5 55.3 66.9 47.6 55.6

Causality Existence Identification

BERT (Devlin et al., 2018) 46.8 50.3 48.5 43.0 46.8 44.8 43.3 47.1 45.1
ERGO (Chen et al., 2022) 63.1 65.3 64.2 48.7 62.0 54.6 49.6 62.3 55.2
SENDIR (Yuan et al., 2023) 51.4 53.6 52.5 51.9 52.8 52.4 51.9 52.9 52.4
text-davinci-003 (Gao et al., 2023) 25.0 75.1 37.5 - - - - - -
gpt-3.5-turbo (Gao et al., 2023) 19.9 85.8 32.3 - - - - - -
gpt-4 (Gao et al., 2023) 22.5 92.4 36.2 - - - - - -

iLIF (the proposed) 74.4 51.5 60.9 67.1 49.2 56.8 67.7 49.4 57.1

Table 2: Overall results on the MAVEN-ERE dataset in both direction and existence evaluation settings.

Model
Direction Existence

P(%) R(%) F1(%) P(%) R(%) F1(%)

iLIF 47.9 47.8 47.8 59.2 66.1 62.5
iLIF w/o Direction 42.3 49.3 45.5 55.9 63.8 59.6
iLIF w/o Heterogeneity 45.5 47.2 46.3 56.4 66.3 61.0
iLIF w/o Iteration 43.2 45.2 44.2 52.8 65.9 58.6

Table 3: Results of ablation study on EventStoryLine.

LLAMA, may not be effective causal reasoners for
complex causal reasoning tasks.

Taking a close observation of the two tables, all
models perform better on identifying causality in
intra-sentence than that in inter-sentence. This is in
accordance with the report in Yuan et al. (2023), as
comprehending events in one sentence is generally
easier with the same sentential context. We note
that our iLIF achieves large improvements on the
Precision in the intra-sentence causality identifi-
cation. This can be attributed to our using a high
confidence threshold, by which the intra-sentence
causal relations are often with high identification
confidence; While this also leads to a relatively
lower Recall compared with other models. How-
ever, using such identified intra-sentence relations
with high confidence can help improving inter-
sentence identification, as the constructed event
causality graph is becoming more confident with
the iterations, on which events’ causal structure
representations can be well learned to further boost
inter-sentence causality identification. This is ev-
idenced from the high Precision and F1-score in
the inter-sentence identification, and as a result, the
overall intra+inter identification of our iLIF per-

Figure 3: F1 scores on EventStoryLine when using
different edge thresholds in the direction setting.

forms better than the competitors.

4.4 Ablation Study

Table 3 presents the ablation studies for examining
the module functionalities.

(1) iLIF w/o Direction, which removes the direc-
tionality of the ECG. The removal of directionality
causes a decrease in F1-scores by 4.8% and 4.6%
in the two evaluations, respectively. Additionally,
the decrease is primarily concentrated in the Pre-
cision. These results imply the importance of en-
coding causal direction and structure information
on a directed ECG for learning potential events’
interactions. We also observe that removing the
direction increases the Recall in the direction eval-
uation. One possible reason is that the absence of
direction increases the number of edges for encod-
ing more interaction information. However, this
also introduces more noisy edges, leading to inac-
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Figure 4: Results of different maximum number of
iterations on EventStoryLine in the direction setting.

curate causal structure representations and worse
F1 scores.

(2) iLIF w/o Heterogeneity, which only set one
type of edges in the ECG, without distinguishing
the intra-sentence and inter-sentence edges. We ob-
serve that removing edge heterogeneity results in a
reduction in the Precision and F1-scores. One pos-
sible reason is that recognition difficulty does differ
in the intra- and inter-sentence cases; While ne-
glecting such differences cannot well utilize more
confident intra-sentence relations when encoding
on the ECG.

(3) iLIF w/o Iteration, which constructs the ECG
only once for learning causal graph representations
to output final identifications. As it does not evolve
with the re-identified causal relations, it cannot en-
joy the potentials of learning more accurate events’
causal graph representations in the later iterations,
so resulting in decreases of identification perfor-
mance. The results again validate the effectiveness
of our identifying while learning mode.

4.5 Parameter Study

Relation Confidence Threshold Figure 3
presents the results on examining the impact of
using different relation confidence thresholds. It
can be observed that using too low or two high
thresholds introduces performance decrease. This
is not unexpected. Using too low threshold would
introduce more edges in the ECG, yet some may
be incorrect ones, leading to inaccurate causal
graph representation learning on the ECG. Setting
the threshold too high results in a sparse ECG,
which restricts the quality of the learned causal
graph representation. Experiment results suggest
to set 0.6 as the relation confidence threshold.

Final ECG Identification Results

Initial ECG Identification Results
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Ratio: 42% Un-identified (Inter)

Figure 5: Comparison of causality identification results
in the initial ECG and final ECG.

Number of Iterations Figure 4 presents the re-
sults on examining using different numbers of it-
erations. We can fix the number of iterations or
use our termination criterion to adaptively adjust
maximum iterations for different documents. As
different documents may contain different numbers
of sentences, it can be observed that using such
fixed setting cannot well adapt to the length of doc-
uments. Furthermore, our criterion also enables
to terminate iterations for two consecutive ECGs
with small topological difference, hence helping to
balance the under-fitting or over-fitting issue in the
causal representation learning process.

Increasing the number of iterations not only af-
fects the results but also increases the time complex-
ity of the algorithm. We compare the complexity of
different algorithms from both temporal and spatial
perspectives. Experimental details can be found
in Appendix C. The results demonstrate that our
algorithm achieves a trade-off between algorithmic
complexity and identification performance.

4.6 Exploration Study

Figure 5 compares the identification results of the
initial and final ECG on the EventStoryLine test-
ing dataset, which contains 32% intra-sentence and
68% inter-sentence causal relations. Compared
with the initial ECG, the final ECG can increase
the ratio of correct identification and decrease the
ratio of un-identification for both intra-sentence
and inter-sentence causal relations. This indicates
that causality identification can benefit from the
updating of events’ representations during the iden-
tifying while learning process. Figure 6 presents
a case of the identifying while learning process:
Compared with the annotated intra-sentence and
inter-sentence causality (i.e., the ground truth), the
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Document and Events:

S1: Woman Convictede1 of Double Murdere2 In 2010 Kraft Foods Rampagee3 In NE Philadelphia 

S2: September 10, 2012 / 4:15 PM

S3: A Philadelphia judge today founde4 a former Kraft Foods company employee guiltye5 of murdere6 

in a workplace rampagee7 exactly two years ago in Northeast Philadelphia that left two women deade8 

and a third employee woundede9.

…

Annotated 
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Figure 6: A case of the identifying while learning process on the EventStoryLine dataset. The initial ECG is with 3
mis-identified and 4 un-identified causal relations. After learning and updating events’ causal graph representations
from a few ECGs, some mis-identified relations can be corrected and some un-identified relations can be identified.
At the termination, the final ECG is with only 1 mis-identified and 1 un-identified causal relation.

initially constructed ECG is with 3 mis-identified
and 4 un-identified causal relations; While after
learning and updating events’ causal graph repre-
sentations from a few ECGs, 2 mis-identified rela-
tions can be corrected and 1 un-identified can be
correctly identified in an intermediate ECG. At the
termination, the final ECG reduces mis-identified
relations from 3 to 1 and un-identified from 4 to 1.

5 Conclusion

In this paper, we propose a novel identifying while
learning mode where the central idea is to itera-
tively update events’ representations for boosting
next round of causality identification. Within the
proposed iterative Learning and Identifying Frame-
work, an event causality graph is constructed in
each iteration based on previously identified causal
relations with high confidence, which helps to mine
events’ directed interactions for updating their rep-
resentations. Experiments on two widely used
datasets have validated the superiority of this new
working mode.
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Limitation

We preprocess the EventStoryLine dataset (Caselli
and Vossen, 2017) to ensure that each ground truth
ECG is a directed acyclic graph (Gopnik et al.,
2007). However, We do not guarantee that the final
event causality graph is a directed acyclic graph.

In future work, we plan to introduce the directed
acyclic constraint into the causality graph construc-
tion process to enhance the practical application
effectiveness of the model.

Ethics Statement

Our research work meets the ethics of ACL. The
proposed identifying while learning model can
identify causal relations among events in a doc-
ument. However, the algorithm is not perfect and
may result in erroneous predictions. Therefore, re-
searchers should not rely solely on the model to
make real-world decisions.
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A EventStoryLine Dataset Preprocessing

Following the assumption that “provided that pairs
of events have a purely causal relationship, that
is edges represent causal relations between the
events, we will have a directed acyclic graph” (Gop-
nik et al., 2007). However, in the EventStory-
Line dataset, not all document-level event causality
graphs (ECG) constructed with event nodes and
ground truth causal relations as edges are directed
acyclic graphs.

A.1 Directed Acyclic Detection
For a document, we can construct an ECG G with
an adjacency matrix A: Aij = 1 if there exists a
causal relation from ei to ej ; otherwise, Aij = 0,
based on ground truth causal relations. We em-
ploy the directed acyclic constraint proposed by
NOTEARS (Zheng et al., 2018) on A:

H(A) = tr(eA⊙A)− d = 0 (9)

where tr(·) denotes the matrix trace operation, ⊙
is the Hadamard product, and d is the number of
nodes. If the adjacency matrix A satisfies Equa-
tion (9), then G is a directed acyclic graph.

Finally, we find that 16 documents in the
EventStoryLine dataset are not satisfied with this
constraint.

A.2 Event Conflict Relation Detection
We note that Caselli and Vossen (2017) only label
2,265 causal relations, and the rest are extended
using within-document event co-reference chains.
One possible reason is that the expansion process
introduces false causal relations. Considering the
mutually exclusive relation between co-reference
and causality in event relations, we conduct a fur-
ther analysis of the dataset. We observe that some
co-referenced event pairs are incorrectly labeled
as causality. Since the EventStoryLine dataset is
composed by the Event Coreference Bank+ cor-
pus, we remove causal relations that conflict with
co-reference relations in all documents.

A.3 Manual Check
After Event Conflict Relation Detection, we note
that there are still 6 documents that do not satisfy
the directed acyclic constraint. We invite 3 ECI
task researchers to check the causal relations in
these 6 documents according to the annotated re-
quirements Caselli and Vossen (2017), aiming to
minimize causal loops in the ground truth causal

Item Original Size Preprocessed Size
Topic 22 22

Documents 258 258

Sentences 4,316 4,316

Event Mentions 5,334 5,334

Intra-sentence causal links 1,770 1,751

Cross-sentence causal links 3,855 3,727

The Total causal links 5,625 5,478

Table 4: The EventStoryLine v0.9 dataset

relations. Table 4 presents the statistics of the
EventStoryLine v0.9 dataset before and after pre-
processing.

B Implementation Details

Our method is implemented based on the PyTorch
version of Huggingface Transformer (Wolf et al.,
2020). We use the uncased BERT-base (Devlin
et al., 2018) as the base PLM and fine-tune it dur-
ing the training process. We optimize our model
using AdamW (Loshchilov and Hutter, 2018), with
a linear warm-up for the first 10% of steps. The
learning rate for the PLM is set to 2e-5, while for
other modules, it is set to 1e-4. The batch size is
set to 1. The number of attention head K is set to 4.
The weights β is set to 0.7. The relation confidence
threshold ω is set to 0.6. We set the maximum iter-
ation number L to 9 for the EventStoryLine dataset
and 19 for the MAVEN-ERE dataset. The structural
difference threshold δ is set to 2. For loss function,
we set the focusing parameter γ to 2, the weighting
factor of CAUSE/EFFECT class α to 0.75, and the
weighting factor of NONE class is 1−α. The MLP
is a two-layer fully connected network, in which
the activation function is LeakyReLU and the rate
of dropout is 0.4.

The MAVEN-ERE primarily comprises lengthy
documents with a large number of sentences. Cap-
turing sufficient semantics using a single-sentence
encoding approach is challenging. Therefore, for
experiments on the MAVEN-ERE dataset, we em-
ployed the same encoding method as Chen et al.
(2022), leveraging dynamic window and event
marker techniques. In addition, in the existence set-
ting, to fulfill the requirement of constructing a di-
rected event causality graph, we set all the positive
samples to the CAUSE direction for the EventSto-
ryLine dataset.
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Method Time Per Epoch GPU Per Batch

SENDIR (Yuan et al., 2023) 2362 s 24 GB

ERGO (Chen et al., 2022) 131 s 24 GB

iLIF 823 s 16 GB

Table 5: Results of algorithm complexity comparison
on the EventStoryLine dataset. Bold numbers represent
the smallest cost.

C Algorithm Complexity Comparison

Table 5 compares the average resource consump-
tion of various algorithms on the EventStoryLine
(v0.9) dataset, considering both time and space
perspectives on an NVIDIA RTX 3090 GPU with
24GB memory.

From the Table, we observe that the directional
causal graph generation and iterations for causality
updates increase the time complexity of algorithm.
However, due to the excellent identification perfor-
mance of our model, we believe that the time cost
is within an acceptable range, especially compared
to the Yuan et al. (2023). Additionally, due to the
adopted ECG updating approach, our method per-
forms exceptionally well in terms of spatial com-
plexity.

We argue that the key to balancing algorithmic
complexity and recognition performance lies in the
actual number of iterations. Therefore, we pro-
pose termination criterion to achieve the trade-off
between algorithm complexity and identification
performance.

D LLaMA2 Prompt Details

We evaluate LLaMA2’s performance under zero-
shot settings. Following previous works (Gao et al.,
2023), only the top 20 topics of EventStoryLine
dataset are used for evaluation. For the event ei
and event ej , we design two prompt templates as
follows:

• causality existence prompt

Input: {document content}

Question: is there a causal relationship be-
tween " {ei} " and " {ej} " ? Let’s think step
by step.

• causality direction prompt

Question: is the causal direction between "
{ei} " and " {ej} " from " {ei} " to " {ej} "?
Let’s think step by step.

Input: Lindsay Lohan " Leaves " Betty Ford , Checks Into Malibu 

Rehab First Published : June 13 , 2013 4 : 59 PM EDT Lindsay Lohan 

has left the Betty Ford Center and is " moving " to a rehab facility in 

Malibu , Calif . , Access Hollywood has confirmed . A spokesperson for 

The Los Angeles Superior Court confirmed to Access that a judge signed 

an order yesterday allowing the transfer to Cliffside , where she will 

continue with her 90 - day court - mandated rehab . Lohan ’ s attorney , 

Shawn Holley , spoke out about the move . “ Lindsay is grateful for the 

treatment she received at the Betty Ford Center . She has completed her 

course of treatment there and looks forward to continuing her treatment 

and building on the foundation established at Betty Ford , ” Holley said 

in a statement to Access . The actress checked into the Betty Ford Center 

in May as part of a plea deal stemming from her June 2012 car accident 

case .

Question: is there a causal relationship between " Leaves " and " 

moving " ? Let's think step by step.

Answer: Yes, there is a causal relationship between " Leaves " and " 

moving ".

Reasoning Process:

1. Lindsay Lohan left the Betty Ford Center. (Leaves)

2. She is moving to a rehab facility in Malibu. (Moving)

The two events are closely related, as Lindsay Lohan is leaving one 

rehab facility (Betty Ford Center) to move to another (Cliffside) for her 

90-day court-mandated rehab. Therefore, there is a causal relationship 

between " Leaves " and " moving ".

Question: is the causal direction between " Leaves " and " moving " 

from " Leaves " to " moving " ? Let's think step by step.

Answer: Yes, the causal direction between " Leaves " and " moving " 

is from " Leaves " to " moving ".

Reasoning Process:

The sentence "Lindsay Lohan has left the Betty Ford Center" implies that 

she is no longer at the Betty Ford Center, which is the cause of her 

moving to another rehab facility. Therefore, the causal direction is from 

" Leaves " (Lindsay Lohan leaving the Betty Ford Center) to " moving 

" (Lindsay Lohan moving to another rehab facility).

Demonstration of LLaMA2's reasoning

Figure 7: An example of LLaMA2 reasoning ECI task

where we fill the templates with event mentions in
the document to reference specific events.

We first input the causality existence prompt to
obtain the existence identification results. If there
is a causal relation, we input the causality direction
prompt for continuous questioning to obtain the
direction identification results. Figure 7 shows an
example of LLaMA2 reasoning ECI task.
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